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Abstract— In this paper we present the N-norms/N-conorms in 

neutrosophic logic and set as extensions of T-norms/T-conorms 

in fuzzy logic and set. 

Then we show some applications of the neutrosophic logic to 

robotics. 
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I.  DEFINITION OF NEUTROSOPHIC SET 

  Let T, I, F be real standard or non-standard subsets of        

]
-
0, 1

+
[,  

with sup T = t_sup, inf T = t_inf,  

sup I  = i_sup, inf I  = i_inf,  

sup F = f_sup, inf F = f_inf,  

and n_sup = t_sup+i_sup+f_sup,    

n_inf  = t_inf+i_inf+f_inf. 

  Let U be a universe of discourse, and M a set included in 

U.  An element x from U is noted with respect to the set M 

as x(T, I, F) and belongs to M in the following way: it is t% 

true in the set, i% indeterminate (unknown if it is or not) in 

the set, and f% false, where t varies in T, i varies in I, f 

varies in F ([1], [3]).  

  Statically T, I, F are subsets, but dynamically T, I, F are 

functions/operators depending on many known or unknown 

parameters. 

II. DEFINITION OF NEUTROSOPHIC LOGIC 

In a similar way we define the Neutrosophic Logic: 

A logic in which each proposition x is T% true, I% 

indeterminate, and F% false, and we write it x(T,I,F), where 

T, I, F are defined above. 

III. PARTIAL ORDER 

We define a partial order relationship on the 

neutrosophic set/logic in the following way: 

x(T1, I1, F1) ≤ y(T2, I2, F2) iff (if and only if)  

T1 ≤ T2, I1 ≥ I2, F1 ≥ F2 for crisp components. 

    And, in general, for subunitary set components: 

x(T1, I1, F1) ≤ y(T2, I2, F2) iff  

               inf T1 ≤ inf T2, sup T1 ≤ sup T2, 

 inf I1 ≥ inf I2, sup I1 ≥ sup I2,  

 inf F1 ≥ inf F2, sup F1 ≥ sup F2.  

      If we have mixed - crisp and subunitary - components, 

or only crisp components, we can transform any crisp 

component, say “a” with a ∈  [0,1] or a∈ ]
-
0, 1

+
[, into a 

subunitary set [a, a]. So, the definitions for subunitary set 

components should work in any case. 

IV. N-NORM AND N-CONORM 

As a generalization of T-norm and T-conorm from the 

Fuzzy Logic and Set, we now introduce the N-norms and N-

conorms for the Neutrosophic Logic and Set. 

A. N-norm 

Nn: ( ]
-
0,1

+
[ × ]

-
0,1

+
[ × ]

-
0,1

+
[ )

2
 → ]

-
0,1

+
[ × ]

-
0,1

+
[ × ]

-
0,1

+
[ 

Nn (x(T1,I1,F1), y(T2,I2,F2)) = (NnT(x,y), NnI(x,y), NnF(x,y)), 

where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 

indeterminacy, and respectively falsehood/nonmembership 

components. 

 

Nn have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of the universe of discourse U, the following 

axioms: 

a) Boundary Conditions: Nn(x, 0) = 0, Nn(x, 1) = x. 

b) Commutativity: Nn(x, y) = Nn(y, x). 

c) Monotonicity: If x ≤ y, then Nn(x, z) ≤ Nn(y, z). 

d) Associativity: Nn(Nn (x, y), z) = Nn(x, Nn(y, z)). 

 

There are cases when not all these axioms are satisfied, for 

example the associativity when dealing with the 

neutrosophic normalization after each neutrosophic 

operation. But, since we work with approximations, we can 

call these N-pseudo-norms, which still give good results in 

practice. 

 

Nn represent the and operator in neutrosophic logic, and 

respectively the intersection operator in neutrosophic set 

theory. 

 

Let J ∈{T, I, F} be a component. 

Most known N-norms, as in fuzzy logic and set the T-

norms, are: 

� The Algebraic Product N-norm: Nn−algebraicJ(x, y) = x · y 

� The Bounded N-Norm: Nn−boundedJ(x, y) = max{0, x + y − 

1} 

� The Default (min) N-norm: Nn−minJ(x, y) = min{x, y}. 

 



A general example of N-norm would be this. 

Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 

set/logic M.  Then: 

Nn(x, y) = (T1/\T2, I1\/I2, F1\/F2) 

where the “/\” operator, acting on two (standard or non-

standard) subunitary sets, is a N-norm (verifying the above 

N-norms axioms); while the “\/” operator, also acting on 

two (standard or non-standard) subunitary sets, is a N-

conorm (verifying the below N-conorms axioms). 

      For example, /\ can be the Algebraic Product T-norm/N-

norm, so T1/\T2 = T1·T2 (herein we have a product of two 

subunitary sets – using simplified notation); and \/ can be 

the Algebraic Product T-conorm/N-conorm, so T1\/T2 = 

T1+T2-T1·T2 (herein we have a sum, then a product, and 

afterwards a subtraction of two subunitary sets). 

      Or /\ can be any T-norm/N-norm, and \/ any T-

conorm/N-conorm from the above and below; for example 

the easiest way would be to consider the min for crisp 

components (or inf for subset components) and respectively 

max for crisp components (or sup for subset components). 

      If we have crisp numbers, we can at the end 

neutrosophically normalize. 

 

B. N-conorm 

Nc: ( ]
-
0,1

+
[ × ]

-
0,1

+
[ × ]

-
0,1

+
[ )

2
 → ]

-
0,1

+
[ × ]

-
0,1

+
[ × ]

-
0,1

+
[ 

 Nc (x(T1,I1,F1), y(T2,I2,F2)) = (NcT(x,y), NcI(x,y), NcF(x,y)), 

where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 

indeterminacy, and respectively falsehood/nonmembership 

components. 

 

Nc have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of universe of discourse U, the following 

axioms: 

a) Boundary Conditions: Nc(x, 1) = 1, Nc(x, 0) = x. 

b) Commutativity: Nc (x, y) = Nc(y, x). 

c) Monotonicity: if x ≤ y, then Nc(x, z) ≤ Nc(y, z). 

d) Associativity: Nc (Nc(x, y), z) = Nc(x, Nc(y, z)). 

 

There are cases when not all these axioms are satisfied, for 

example the associativity when dealing with the 

neutrosophic normalization after each neutrosophic 

operation. But, since we work with approximations, we can 

call these N-pseudo-conorms, which still give good results 

in practice. 

 

Nc represent the or operator in neutrosophic logic, and 

respectively the union operator in neutrosophic set theory. 

 

Let J ∈{T, I, F} be a component. 

Most known N-conorms, as in fuzzy logic and set the T-

conorms, are: 

� The Algebraic Product N-conorm: Nc−algebraicJ(x, y) = x + y 

− x · y 

� The Bounded N-conorm: Nc−boundedJ(x, y) = min{1, x + y} 

� The Default (max) N-conorm: Nc−maxJ(x, y) = max{x, y}. 

 

A general example of N-conorm would be this. 

Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 

set/logic M.  Then: 

Nn(x, y) = (T1\/T2, I1/\I2, F1/\F2) 

Where – as above - the “/\” operator, acting on two 

(standard or non-standard) subunitary sets, is a N-norm 

(verifying the above N-norms axioms); while the “\/” 

operator, also acting on two (standard or non-standard) 

subunitary sets, is a N-conorm (verifying the above N-

conorms axioms). 

     For example, /\ can be the Algebraic Product T-norm/N-

norm, so T1/\T2 = T1·T2 (herein we have a product of two 

subunitary sets); and \/ can be the Algebraic Product T-

conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2 (herein we have 

a sum, then a product, and afterwards a subtraction of two 

subunitary sets). 

     Or /\ can be any T-norm/N-norm, and \/ any T-

conorm/N-conorm from the above; for example the easiest 

way would be to consider the min for crisp components (or 

inf for subset components) and respectively max for crisp 

components (or sup for subset components). 

      If we have crisp numbers, we can at the end 

neutrosophically normalize. 

 

      Since the min/max (or inf/sup) operators work the best 

for subunitary set components, let’s present their definitions 

below. They are extensions from subunitary intervals 

{defined in [3]} to any subunitary sets. Analogously we can 

do for all neutrosophic operators defined in [3]. 

      Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 

set/logic M. 

C. More Neutrosophic Operators 

Neutrosophic Conjunction/Intersection: 

x/\y=(T/\,I/\,F/\), 

where inf T/\ = min{inf T1, inf T2} 

          sup T/\ = min{sup T1, sup T2} 

          inf I/\ = max{inf I1, inf I2} 

          sup I/\ = max{sup I1, sup I2} 

          inf F/\ = max{inf F1, inf F2} 

          sup F/\ = max{sup F1, sup F2} 

 

Neutrosophic Disjunction/Union: 

x\/y=(T\/,I\/,F\/), 

where inf T\/ = max{inf T1, inf T2} 

          sup T\/ = max{sup T1, sup T2} 

          inf I\/ = min{inf I1, inf I2} 

          sup I\/ = min{sup I1, sup I2} 

          inf F\/ = min{inf F1, inf F2} 

          sup F\/ = min{sup F1, sup F2} 

 

Neutrosophic Negation/Complement: 

C(x) = (TC,IC,FC),          

     where TC = F1 

        inf IC = 1-sup I1 



                                  sup IC = 1-inf I1 

             FC = T1 

 

 Upon the above Neutrosophic 

Conjunction/Intersection, we can define the  

 

Neutrosophic Containment: 

We say that the neutrosophic set A is included in the 

neutrosophic set B of the universe of discourse U, 

 iff for any x(TA, IA, FA) ∈A with x(TB, IB, FB) ∈B we 

have: 

inf TA ≤ inf TB ; sup TA ≤ sup TB;  

inf IA ≥ inf IB ; sup IA ≥  sup IB;  

inf FA ≥  inf FB ; sup FA ≥  sup FB. 

D. Remarks 

a) The non-standard unit interval ]
-
0, 1

+
[ is merely 

used for philosophical applications, especially 

when we want to make a distinction between 

relative truth (truth in at least one world) and 

absolute truth (truth in all possible worlds), and 

similarly for distinction between relative or 

absolute falsehood, and between relative or 

absolute indeterminacy. 

 

But, for technical applications of neutrosophic logic and set, 

the domain of definition and range of the N-norm and N-

conorm can be restrained to the normal standard real unit 

interval [0, 1], which is easier to use, therefore: 

 

Nn: ( [0,1] × [0,1] × [0,1] )
2
 → [0,1] × [0,1] × [0,1] 

and 

               Nc: ( [0,1] × [0,1] × [0,1] )
2
 → [0,1] × [0,1] × [0,1]. 

 

b) Since in NL and NS the sum of the components (in 

the case when T, I, F are crisp numbers, not sets) is 

not necessary equal to 1 (so the normalization is 

not required), we can keep the final result un-

normalized. 

But, if the normalization is needed for special 

applications, we can normalize at the end by 

dividing each component by the sum all 

components. 

If we work with intuitionistic logic/set (when the 

information is incomplete, i.e. the sum of the crisp 

components is less than 1, i.e. sub-normalized), or 

with paraconsistent logic/set (when the information 

overlaps and it is contradictory, i.e. the sum of 

crisp components is greater than 1, i.e. over-

normalized), we need to define the neutrosophic 

measure of a proposition/set. 

If x(T,I,F) is a NL/NS, and T,I,F are crisp numbers 

in [0,1], then the neutrosophic vector norm of 

variable/set x is the sum of its components: 

                      Nvector-norm(x) = T+I+F. 

Now, if we apply the Nn and Nc to two 

propositions/sets which maybe intuitionistic or 

paraconsistent or normalized (i.e. the sum of 

components less than 1, bigger than 1, or equal to 

1), x and y, what should be the neutrosophic 

measure of the results Nn(x,y) and Nc(x,y) ? 

Herein again we have more possibilities: 

- either the product of neutrosophic measures of 

x and y: 

Nvector-norm(Nn(x,y)) = Nvector-norm(x)·Nvector-

norm(y),  

- or their average: 

 Nvector-norm(Nn(x,y)) = (Nvector-norm(x) + Nvector-

norm(y))/2, 

- or other function of the initial neutrosophic 

measures: 

 

Nvector-norm(Nn(x,y)) = f(Nvector-norm(x), Nvector-

norm(y)), where f(.,.) is a function to be determined 

according to each application. 

 

Similarly for Nvector-norm(Nc(x,y)). 

Depending on the adopted neutrosophic vector 

norm, after applying each neutrosophic operator 

the result is neutrosophically normalized. We’d 

like to mention that “neutrosophically normalizing” 

doesn’t mean that the sum of the resulting crisp 

components should be 1 as in fuzzy logic/set or 

intuitionistic fuzzy logic/set, but the sum of the 

components should be as above: either equal to the 

product of neutrosophic vector norms of the initial 

propositions/sets, or equal to the neutrosophic 

average of the initial propositions/sets vector 

norms, etc. 

In conclusion, we neutrosophically normalize the 

resulting crisp components T`,I`,F` by multiplying 

each neutrosophic component T`,I`,F` with S/( 

T`+I`+F`), where  

S= Nvector-norm(Nn(x,y)) for a N-norm or S= Nvector-

norm(Nc(x,y)) for a N-conorm - as defined above. 

 

c) If T, I, F are subsets of [0, 1] the problem of 

neutrosophic normalization is more difficult. 

i) If sup(T)+sup(I)+sup(F) < 1, we have an 

intuitionistic proposition/set. 

ii) If inf(T)+inf(I)+inf(F) > 1, we have a 

paraconsistent proposition/set. 

iii) If there exist the crisp numbers t ∈T, i ∈ I, 

and f ∈F such that t+i+f =1, then we can say 

that we have a plausible normalized 

proposition/set. 

But in many such cases, besides the 

normalized particular case showed herein, we 

also have crisp numbers, say t1 ∈T, i1 ∈I, and 

f1 ∈ F such that t1+i1+f1 < 1 (incomplete 



information) and t2 ∈T, i2 ∈I, and f2∈F such 

that t2+i2+f2 > 1 (paraconsistent information). 

 

 

E. Examples of Neutrosophic Operators which are N-

norms or N-pseudonorms or, respectively N-conorms or 

N-pseudoconorms 

We define a binary neutrosophic conjunction 

(intersection) operator, which is a particular case of a N-

norm (neutrosophic norm, a generalization of the fuzzy T-

norm): 

[ ] [ ] [ ]( ) [ ] [ ] [ ]
2

: 0,1 0,1 0,1 0,1 0,1 0,1
N

TIFc × × → × ×  

            

( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

TIFc x y TT I I IT TI FF FI FT FT FI= + + + + + +

. 

The neutrosophic conjunction (intersection) operator 

Nx y∧  component truth, indeterminacy, and falsehood 

values result from the multiplication 

( ) ( )1 1 1 2 2 2T I F T I F+ + ⋅ + +  

since we consider in a prudent way T I F≺ ≺ , where 

“≺ ” is a neutrosophic relationship and means “weaker”, 

i.e. the products i jT I  will go to I , i jT F  will go to F , and 

i jI F  will go to F for all i, j ∈{1,2}, i ≠ j, while of course 

the product T1T2 will go to T,  I1I2 will go to I, and F1F2 will 

go to F (or reciprocally we can say that F  prevails in front 

of I  which prevails in front of T , and this neutrosophic 

relationship is transitive): 

 

 

 

 

 

 

 

 

(T1         

 

 

                       (T2          I2           F2) 

 

 

 

So, the truth value is 1 2TT , the indeterminacy value is 

1 2 1 2 1 2I I I T T I+ +  and the false value is 

1 2 1 2 1 2 2 1 2 1F F F I FT F T F I+ + + + . The norm of Nx y∧  

is ( ) ( )1 1 1 2 2 2T I F T I F+ + ⋅ + + . Thus, if x  and y  are 

normalized, then Nx y∧  is also normalized. Of course, the 

reader can redefine the neutrosophic conjunction operator, 

depending on application, in a different way, for example in 

a more optimistic way, i.e. I T F≺ ≺  or T  prevails with 

respect to I , then we get: 

( )1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

ITFc x y TT TI TI I I FF FI FT FT FI= + + + + + +  

Or, the reader can consider the order T F I≺ ≺ , etc. 

 

V. ROBOT POSITION CONTROL BASED ON 

KINEMATICS EQUATIONS 

A robot can be considered as a mathematical relation 

of actuated joints which ensures coordinate transformation 

from one axis to the other connected as a serial link 

manipulator where the links sequence exists. Considering 

the case of revolute-geometry robot all joints are rotational 

around the freedom ax [4, 5]. In general having a six 

degrees of freedom the manipulator mathematical analysis 

becomes very complicated. There are two dominant 

coordinate systems: Cartesian coordinates and joints 

coordinates. Joint coordinates represent angles between 

links and link extensions. They form the coordinates where 

the robot links are moving with direct control by the 

actuators.  

 

 

Fig.1. The robot control  through DH transformation. 

The position and orientation of each segment of the 

linkage structure can be described using Denavit-Hartenberg 

[DH] transformation [6]. To determine the D-H 

transformation matrix (Fig. 1) it is assumed that the Z-axis 

(which is the system’s axis in relation to the motion surface) 

is the axis of rotation in each frame, with the following 

notations: θj  - joint angled is the joint angle positive in the 

right hand sense  about jZ ; aj - link length is the length of 

the common normal, positive in the direction of (j+1)X  ; αj - 

twist angled is the angle between jZ  and  (j+1)Z, positive in 

the right hand sense about the common normal ;  dj   - offset 

distance is the value of  jZ  at which the common normal 

intersects jZ ; as well  if  jX  and (j+1)X are parallel and in the 

  (T1          I1         F1) 

(T2            I2         F2) 

(T1          I1         F1) 

(T2          I2         F2) 

(T1          I1           F1) 



same direction, then  θj = 0 ; (j+1)X - is chosen to be 

collinear with the common normal between jZ  and  (j+1)Z  

[7, 8] . Figure 1 illustrates a robot position control based on 

the Denavit-Hartenberg transformation. The robot joint 

angles, θc, are transformed in Xc - Cartesian coordinates 

with D-H transformation. Considering that a point in j, 

respectively j+1 is given by: 

P
Z

Y

X

j

j

=

1

      and     
1

1
1

j

j

X

Y
P

Z

+

+

=
' 

      

 

 (1) 

 

then 
j
P can be determined in relation to 

j+1
P through the 

equation :  

j
P = 

j
Aj+1 ⋅

 
 
j+1

P,    (2) 

where the transformation matrix 
j
Aj+1  is: 

cos sin cos sin sin cos

sin cos cos cos sin sin 
   

+1 0 sin cos

0 0 0 1

j j j j j j j

j j j j j j j

j j j

a

aj
A 

j d

θ θ α θ α α

θ θ α θ α α

θ θ

− ⋅ + ⋅ ⋅⎡ ⎤
⎢ ⎥

− ⋅ − ⋅ ⋅⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  . 

Control through forward kinematics consists of the 

transformation of robot coordinates at any given moment, 

resulting directly from the measurement transducers of each 

axis, to Cartesian coordinates and comparing to the desired 

target’s Cartesian coordinates (reference point). The 

resulting error is the difference of position, represented in 

Cartesian coordinates, which requires changing. Using the 

inverted Jacobean matrix ensures the transformation into 

robot coordinates of the position error from Cartesian 

coordinates, which allows the generating of angle errors for 

the direct control of the actuator on each axis.  

The control using forward kinematics consists of 

transforming the actual joint coordinates, resulting from 

transducers, to Cartesian coordinates and comparing them 

with the desired Cartesian coordinates. The resulted error is 

a required position change, which must be obtained on 

every axis. Using the Jacobean matrix inverting it will 

manage to transform the change in joint coordinates that 

will generate angle errors for the motor axis control.  

Figure 2 illustrates a robot position control system 

based on the Denavit-Hartenberg transformation. The robot 

joint angles, θc, are transformed in  Xc - Cartesian 

coordinates with   D-H transformation, where a matrix 

results from (1) and (2) with θj -joint angle, dj -offset 

distance, a j - link length, αj  - twist.  

Position and orientation of the end effector with 

respect to the base coordinate frame is given by  XC  :  

XC = A1 · A2 · A3 · .........  · A6    (3) 

 Position error ΔX is obtained as a difference between 

desired and current position. There is difficulty in 

controlling robot trajectory, if the desired conditions are 

specified using position difference ΔX  with continuously 

measurement of current position θ
1,2,.....6

. 

X =A* ...A*
(4*4)

C 1 6

Desired 
XD (6*1)

Processing
Jacobian

Triangulate
Jacobian

ROBOT
SYSTEM

Back-
Substitution

Actual Position   i

  I (6*1)

X
Actuators
Control

Sensor
Signals

J
-1
(θ) · δ

6
X

6
J ( θ ) · δ θ

1,2,.....6

XC = A1 · A2 ... · A6

 

Fig. 2. Robot position control system based on the Denavit-

Hartenberg transformation 

The relation, between given by end-effector's position and 

orientation considered in Cartesian coordinates and the 

robot joint angles θ
1,2,.....6

, it is :   

xi = f i (θ)   (4) 

where  θ  is vector representing the degrees of freedom of 

robot. By differentiating we will have: δ 
6
X

6 =  J ( θ ) ·  

δ θ
1,2,.....6 , where δ 

6
X

6
 represents differential linear and 

angular changes in the end effector at the currently values of  

X6  and δ θ
1,2,.....6 represents the differential change of the set 

of joint angles.  J (θ) is the Jacobean matrix in which the 

elements aij  satisfy the relation: aij  =  δ   f i-1 /  δ  θ  j-1 , 

(x.6)  where  i, j are corresponding to the dimensions of  x 

respectively θ. The inverse Jacobian transforms the 

Cartesian position δ
6
X

6 respectively ΔX  in joint angle error  

(Δθ):  δ θ 
1,2,...6  =  J

-1
(θ)  ·  δ  

6
X

6 . 

 

VI. HYBRID POSITION AND FORCE CONTROL OF 

ROBOTS 

Hybrid position and force control of industrial robots 
equipped with compliant joints must take into consideration 
the passive compliance of the system. The generalized area 
where a robot works can be defined in a constraint space 
with six degrees of freedom (DOF), with position constrains 
along the normal force of this area and force constrains along 
the tangents. On the basis of these two constrains there is 
described the general scheme of hybrid position and force 
control in figure 3. Variables XC and FC represent the 
Cartesian position and the Cartesian force exerted onto the 
environment. Considering XC and FC expressed in specific 
frame of coordinates, its can be determinate selection 
matrices Sx and Sf, which are diagonal matrices with 0 and 1 



diagonal elements, and which satisfy relation: Sx  +  Sf  = Id , 
where Sx and Sf are methodically deduced from kinematics 
constrains imposed by the working environment [9, 10].  
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Fig. 3. General structure of hybrid control. 

Mathematical equations for the hybrid position-force 
control. A system of hybrid position–force control normally 
achieves the simultaneous position–force control. In order to 

determine the control relations in this situation, ΔXP – the 
measured deviation of Cartesian coordinate command 

system is split in two sets: ΔX
F
 corresponds to force 

controlled component and ΔX
P
 corresponds to position 

control with axis actuating in accordance with the selected 
matrixes Sf and Sx. If there is considered only positional 
control on the directions established by the selection matrix 
Sx there can be determined the desired end - effector 
differential motions that correspond to position control in the 

relation: ΔXP  = KP ΔX
P
 , where KP is the gain matrix, 

respectively desired motion joint on position controlled axis: 

Δθ P  =  J
-1

(θ)  ·  ΔXP [11, 12].    
Now taking into consideration the force control on the 

other directions left, the relation between the desired joint 

motion of end-effector and the force error ΔXF is given by 

the relation:  Δθ F  =  J
-1

(θ)  ·  ΔXF , where the position 

error due to force ΔXF  is the motion difference between 

ΔX
F
– current position deviation measured by the control 

system that generates position deviation for force controlled 

axis and ΔXD – position deviation because of desired 
residual force. Noting the given desired residual force as FD 
and the physical rigidity KW there is obtained the relation: 

ΔXD = KW
-1

 · FD .   

Thus, ΔXF can be calculated from the relation: ΔXF  = 

KF (ΔX
F
 – ΔXD), where KF is the dimensionless ratio of the 

stiffness matrix. Finally, the motion variation on the robot 
axis matched to the motion variation of the end-effectors is 

obtained through the relation: Δθ =  J-1
(θ) ΔXF  +  J

-1(θ) 

ΔXP. Starting from this representation the architecture of the 
hybrid position – force control system was developed with 
the corresponding coordinate transformations applicable to 
systems with open architecture and a distributed and 
decentralized structure.   

For the fusion of information received from various 
sensors, information that can be conflicting in a certain 
degree, the robot uses the fuzzy and neutrosophic logic or set 
[3]. In a real time it is used a neutrosophic dynamic fusion, 
so an autonomous robot can take a decision at any moment. 

CONCLUSION 

In this paper we have provided in the first part an 

introduction to the neutrosophic logic and set operators and 

in the second part a short description of mathematical 

dynamics of a robot and then a way of applying 

neutrosophic science to robotics. Further study would be 

done in this direction in order to develop a robot 

neutrosophic control. 
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