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Abstract: By using the generalization of the neutrosophic q-Poisson distribution series, we introduce
a new subclass of analytic and bi-univalent functions defined in the open unit disk. We then apply the
q-Gegenbauer polynomials to investigate the estimates for the Taylor coefficients and Fekete–Szegö
type inequalities of the functions belonging to this new subclass. In addition, we consider several
corollaries and the consequences of the results presented in this paper. The neutrosophic q-Poisson
distribution is expected to be significant in a number of areas of mathematics, science, and technology.
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1. Introduction

The distributions of random variables have attracted a lot of interest recently. In
probability theory and statistics, their probability density functions have been crucial. As
a result, distributions have been extensively studied. Many other types of distributions,
including the binomial distribution, the Poisson distribution, and the hypergeometric
distribution, are taken into account from real-world scenarios.

The probability density function of a Poisson distribution for a discrete random
variable x is as follows [1]:

f (x) =
e−j

x!
jx, x = 0, 1, 2, · · · (j > 0),

where j is the parameter of the distribution.
Legendre [2] first made the discovery of orthogonal polynomials in 1784. Under

specific model restrictions, orthogonal polynomials are frequently employed to solve
ordinary differential equations. Furthermore, a crucial function in the approximation
theory is performed by the orthogonal polynomials [3].

Let Pm and Pn are two polynomials of order m and n, respectively. Then, Pm and Pn
are orthogonal polynomial over the interval [a, b] if

〈Pn, Pm〉 =
∫ b

a
Pn(x)Pm(x)s(x)dx = 0, for m 6= n,

where s(x) is a non-negative function in the interval (a, b); therefore, all finite order poly-
nomials Pn(x) have a well-defined integral (for more details see [2,3]).
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Gegenbauer polynomials are a specific type of orthogonal polynomials. As found in [4],
when traditional algebraic formulations are used, the generating function of Gegenbauer
polynomials and the integral representation of typically real functions TR are related to
each other in a symbolic way TR. This undoubtedly caused a number of helpful inequalities
from the world of Gegenbauer polynomials to emerge.

q-Orthogonal polynomials are now of particular relevance in both physics and mathe-
matics due to the development of quantum groups. The q-deformed A harmonic oscillator,
for instance, has a group-theoretic setting for the q-Laguerre and q-Hermite polynomials.
Jackson’s q-exponential plays a crucial part in the mathematical framework required to
characterize the properties of these q-polynomials, such as the recurrence relations, gen-
erating functions, and orthogonality relations. Jackson’s q-exponential has recently been
expressed by Quesne [5] as a closed form multiplicative series of regular exponentials
with known coefficients. In this case, it is crucial to look into how this discovery might
affect the theory of q-orthogonal polynomials. An effort in such regard is made in the
current work. To get novel nonlinear connection equations for q-Gegenbauer in terms of
their respective classical equivalents, we use the aforementioned result in particular. The
orthogonal polynomials are the theoretic basis for solving the simple governing PDE of
pressure distributions in fractured media see ([6,7]).

This study analyzes various features of the class under consideration after associating
some bi-univalent functions with q-Gegenbauer polynomials. The following part lays the
foundation for mathematical notations and definitions.

2. Preliminaries

Let A denote the class of all analytic functions f defined in the open unit disk U =
{ξ ∈ C : |ξ| < 1} and normalized by the conditions f (0) = 0 and f ′(0) = 1. Thus, each
f ∈ A has a Taylor–Maclaurin series expansion of the form

f (ξ) = ξ +
∞

∑
n=2

anξn, (ξ ∈ U). (1)

Further, let S denote the class of all functions f ∈ A which are univalent in U.
Let the functions f and g be analytic in U. We say that the function f is subordinate to

g, written as f ≺ g, if there exists a Schwarz function w, which is analytic in U with

w(0) = 0 and |w(ξ)| < 1 (ξ ∈ U),

such that
f (ξ) = g(w(ξ)).

In addition, if the function g is univalent in U, then the following equivalence holds

f (ξ) ≺ g(ξ) if and only if f (0) = g(0),

and
f (U) ⊂ g(U).

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1( f (ξ)) = ξ (ξ ∈ U),

and

f−1( f (w)) = w
(
|w| < r0( f ); r0( f ) ≥ 1

4

)
,

where
f−1(w) = w− a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function is said to be bi-univalent in U if both f (ξ) and f−1(ξ) are univalent in U.
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Let Σ denote the class of bi-univalent functions in U given by (1). Example of functions
in the class Σ are

ξ

1− ξ
, log

√
1 + ξ

1− ξ
.

In 2021, Mustafa and Nezir [8] introduced certain subclasses of analytic and univa-
lent functions in U. In addition, applications of a q–Poisson distribution series on the
analytic functions.

A discrete random variable ϑ is said to have q–Poisson distribution if it takes the
values 0, 1, 2, 3, . . . with the probabilities

e−µ
q ,

µe−µ
q

[1]q!
,

µ2e−µ
q

[2]q!
,

µ3e−µ
q

[3]q!
,

µ4e−µ
q

[4]q!
, . . .

respectively, where µ is called the parameter and

eϑ
q = 1 +

ϑ

[1]q!
+

ϑ2

[2]q!
+

ϑ3

[3]q!
+ · · ·+ ϑm

[m]q!
+ · · · =

∞

∑
m=0

ϑm

[m]q!

is the q–analogue of the exponential function eϑ and

[m]q! = [m]q.[m− 1]q · · · [2]q[1]q

is the q–analogue of the factorial function m! = m.(m− 1) · · · 3.2.1 , (see [9,10]).
Thus, for q–Poisson distribution, we have

Pq(ϑ = m) =
µm

[m]q!
e−µ

q , m = 0, 1, 2, · · · .

Meanwhile, q–Poisson distribution series is defined as

ξ +
∞

∑
n=2

µm−1e−µ
q

[m− 1]q!
ξm, ξ ∈ U. (3)

We note that, by using ratio test we conclude that the radius of convergence of the
above power series is infinity.

Recently, precisely in 1995, Smarandache introduced the concept of neutrosophic
theory. It is a new branch of philosophy as a generalization for the fuzzy logic, also as a
generalization of the intrinstic fuzzy logic (see [11]). Neutrosophic q–Poisson distribution of
a discrete variable ϑ is a classical q–Poisson distribution of ϑ, but its parameter is imprecise,
m can be set with two or more elements. The most common of such distribution is when m
is interval. Let

NP q(ϑ = k) =
(mN )k

[k]q!
e−mN

q , k = 0, 1, 2, · · · .

where mN is the distribution parameter and is equal to the expected value and the variance,
that is,

N E(ϑ) = NV(ϑ) = mN ,

and N = d + I is a neutrosophic statistical number (see [11]) and the references therein.
Now, we modifiy (3) as follows

Mq(mN , ξ) = ξ +
∞

∑
n=2

(mN )n−1e−mN
q

[n− 1]q!
ξn, ξ ∈ U. (4)

Now, we consider the linear operator BmN (ξ) : A −→ A defined by the convolution
or Hadamard product
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BmN f (ξ) = Mq(mN , ξ) ∗ f (ξ) = ξ +
∞

∑
n=2

(mN )n−1e−mN
q

[n− 1]q!
anξn, ξ ∈ U, (5)

In 1983, Askey and Ismail [12] found a class of polynomials which can be interpreted
as q–analogues of the Gegenbauer polynomials. These are essentially, the polynomials

G
(ℵ)
q (κ, ξ) =

∞

∑
n=0
C(ℵ)n (κ; q) ξn, (6)

the initial values of C(ℵ)n (κ; q) was found by Chakrabarti et al. [13] in 2006, given by

C(ℵ)0 (κ; q) = 1, C(ℵ)1 (κ; q) = [ℵ]qC1
1(κ) = 2[ℵ]qκ, (7)

C(ℵ)2 (κ; q) = [ℵ]q2 C1
2(κ)−

1
2

(
[ℵ]q2 − [ℵ]2q

)
C2

1(κ) = 2
(
[ℵ]q2 + [ℵ]2q

)
κ2 − [ℵ]q2 .

where ℵ ∈ N = {1, 2, 3, · · · }, q ∈ (0, 1) and Cα
n(κ) is the classical Gegenbauer polynomial

of degree n (for more details, see [14]).
In 2021, Amourah et al. [14,15] considered the classical Gegenbauer polynomials

G(λ)(x, ξ) where ξ ∈ U and x ∈ [−1, 1]. For fixed x the function G(λ) is analytic in U, so it
can be expanded in a Taylor series as

G(α)(κ, ξ) =
∞

∑
n=0

Cα
n(κ)ξn,

where Cα
n(κ) is the classical Gegenbauer polynomial of degree n (see, [16]).

In 2022, Amourah et al. [16] three subclasses of analytic and bi-univalent functions are
introduced through the use of q-Gegenbauer polynomials. For functions falling within these
subclasses, coefficient bounds |a2| and |a3| as well as Fekete–Szegö inequalities are derived.

Recently, several authors have begun examining bi-univalent functions connected to
orthogonal polynomials, of which a few are worth mentioning ([17–29]). This study can be
applied to risk and financial management, and there are several recently published studies
([30,31]).

As far as we are aware, there is no published work on bi-univalent functions for the
neutrophilic q-Poisson distribution series subordinate q-Gegenbauer polynomials. The
major objective of this work is to start an investigation of the characteristics of bi-univalent
functions related to q-Gegenbauer polynomials. In order to accomplish so, we consider the
definitions below.

3. The Class BΣ(δ,G(ℵ)
q (κ, ξ))

In this section, we introduce a new subclass of Σ involving the new constructed
series (4) and q–analogues of the Gegenbauer polynomials.

Definition 1. For x ∈ ( 1
2 , 1] and 0 < q < 1. A function f ∈ Σ given by (1) is said to be in the

class BΣ(δ,G(ℵ)
q (κ, ξ)) if the following subordination is satisfied:

(1− δ)
BmN f (ξ)

ξ
+ δ∂qBmN f (ξ) ≺ G

(ℵ)
q (κ, ξ), (8)

(1− δ)
BmN g(ω)

ω
+ δ∂qBmN g(ω) ≺ G

(ℵ)
q (κ, ω), (9)

where ℵ > 0, δ ≥ 0 and m is a nonzero real constant, and the function g = f−1 is given by (1).

Special cases:
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(i) Let δ = 1, x ∈ ( 1
2 , 1] and 0 < q < 1, A function f ∈ Σ given by (1) is said to be in

the class BΣ(1,G(ℵ)
q (κ, ξ)) if the following subordination is satisfied:

∂qBmN f (ξ) ≺ G
(ℵ)
q (κ, ξ),

and
∂qBmN g(ω) ≺ G

(ℵ)
q (κ, ω),

where ℵ > 0.
(ii) Let δ = 0, x ∈ ( 1

2 , 1] and 0 < q < 1, A function f ∈ Σ given by (1) is said to be in

the class BΣ(0,G(ℵ)
q (κ, ξ)) if the following subordination is satisfied:

BmN f (ξ)
ξ

≺ G
(ℵ)
q (κ, ξ),

and
BmN g(ω)

ω
≺ G

(ℵ)
q (κ, ω),

where ℵ > 0.

4. Coefficient Bounds of the Subclass BΣ(δ,G(ℵ)
q (κ, ξ))

First, we give the coefficient estimates for the classBΣ(δ,G(ℵ)
q (κ, ξ)) given in Definition 1.

Theorem 1. Let given by (1) belong to the class BΣ(δ,G(ℵ)
q (κ, ξ)), then

∣∣a2
∣∣ ≤ 2[ℵ]qκemN

q

√
2[2]q[ℵ]qκ

mN

√√√√ (
4[ℵ]2qemN

q (1 + q(1 + q)δ)− 2[2]q(1 + qδ)2([ℵ]q2 + [ℵ]2q
))

κ2

+[2]q(1 + qδ)2[ℵ]q2

,

and ∣∣a3
∣∣ ≤ 4[ℵ]2qκ2(emN

q
)2(

(1 + qδ)mN
)2 +

2[2]q[ℵ]qκemN
q

(1 + ([3]q − 1)δ)(mN )2 .

Proof. Let f ∈ BΣ(δ,G(ℵ)
q (κ, ξ)). From Definition 1, for some analytical ω, υ such that

ω(0) = υ(0) = 0 and |ω(z)| < 1, |υ(ω)| < 1 for all z, ω ∈ U, then we can write

(1− δ)
BmN f (ξ)

ξ
+ δ∂qBmN f (ξ) = G

(ℵ)
q (κ, ξ), (10)

(1− δ)
BmN g(ω)

ω
+ δ∂qBmN g(ω) = G

(ℵ)
q (κ, ω), (11)

From the equalities (10) and (11), we obtain that

(1− δ)
BmN f (ξ)

ξ
+ δ∂qBmN f (ξ) = 1 + C(ℵ)

1 (κ; q)c1z +
[
C(ℵ)

1 (κ; q)c2 + C(ℵ)
2 (κ; q)c2

1

]
z2 + · · · (12)

and

(1− δ)
BmN g(ω)

ω
+ δ∂qBmN g(ω) = 1 + C(ℵ)

1 (κ; q)d1w +
[
C(ℵ)

1 (κ; q)d2 + C(ℵ)
2 (κ; q)d2

1

]
)w2 + · · · . (13)

It is fairly well known that if

|w(ξ)| =
∣∣∣c1ξ + c2ξ2 + c3ξ3 + · · ·

∣∣∣ < 1, (ξ ∈ U)
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and
|v(w)| =

∣∣∣d1w + d2w2 + d3w3 + · · ·
∣∣∣ < 1, (w ∈ U),

then
|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (14)

Thus, upon comparing the corresponding coefficients in (12) and (13), we have

(1 + ([2]q − 1)δ)mN
emN

q
a2 = C(ℵ)

1 (κ; q)c1, (15)

(1 + ([3]q − 1)δ)(mN )2

[2]q!emN
q

a3 = C(ℵ)
1 (κ; q)c2 + C(ℵ)

2 (κ; q)c2
1, (16)

−
(1 + ([2]q − 1)δ)mN

emN
q

a2 = C(ℵ)
1 (κ; q)d1, (17)

and
(1 + ([3]q − 1)δ)(mN )2

[2]q!emN
q

(
2a2

2 − a3

)
= C(ℵ)

1 (κ; q)d2 + C(ℵ)
2 (κ; q)d2

1. (18)

It follows from (15) and (17) that

c1 = −d1 (19)

and

2

(
(1 + ([2]q − 1)δ)mN

emN
q

)2

a2
2 =

[
C(ℵ)

1 (κ; q)
]2(

c2
1 + d2

1

)
. (20)

If we add (16) and (18), we get

2(1 + ([3]q − 1)δ)(mN )2

[2]q!emN
q

a2
2 = C(ℵ)

1 (κ; q)(c2 + d2) + C(ℵ)
2 (κ; q)(c2

1 + d2
1) (21)

Substituting the value of
(
c2

1 + d2
1
)

from (20) in the right hand side of (21), we deduce
that (1 + ([3]q − 1)δ)

[2]q!
−

(1 + ([2]q − 1)δ)2

emN
q

C(ℵ)
2 (κ; q)[

C(ℵ)
1 (κ; q)

]2

2(mN )2

emN
q

a2
2 = C(ℵ)

1 (κ; q)(c2 + d2) (22)

Moreover, using (7) and (22), we find that

∣∣a2
∣∣ ≤ 2[ℵ]qκemN

q

√
2[2]q[ℵ]qκ

mN

√(
4[ℵ]2qemN

q (1 + q(1 + q)δ)− 2[2]q(1 + qδ)2
(
[ℵ]q2 + [ℵ]2q

))
κ2 + [2]q(1 + qδ)2[ℵ]q2

.

Moreover, if we subtract (18) from (16), we obtain

2(1 + ([3]q − 1)δ)(mN )2

[2]q!emN
q

(
a3 − a2

2

)
= C(ℵ)

1 (κ; q)(c2 − d2) + C(ℵ)
2 (κ; q)(c2

1 − d2
1). (23)

Then, in view of (20), (23) becomes

a3 =

(
emN

q
)2
[
C(ℵ)

1 (κ; q)
]2

2
(
(1 + qδ)mN

)2

(
c2

1 + d2
1

)
+

[2]qemN
q C(ℵ)

1 (κ; q)
2(1 + ([3]q − 1)δ)(mN )2 (c2 − d2).
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Thus, applying (7) and (14), we conclude that

∣∣a3
∣∣ ≤ 4[ℵ]2qκ2(emN

q
)2(

(1 + qδ)mN
)2 +

2[2]q[ℵ]qκemN
q

(1 + ([3]q − 1)δ)(mN )2 .

This completes the proof of Theorem 1.

Motivated by the result of Zaprawa [32], we discuss the following Fekete–Szegö
inequality for functions in the class BΣ(δ,G(ℵ)

q (κ, ξ)).

Theorem 2. Let given by (1) belong to the class BΣ(δ,G(ℵ)
q (κ, ξ)), then∣∣∣a3 − σa2

2

∣∣∣

≤



2[2]qe
mN
q

∣∣[ℵ]q∣∣κ
(1+([3]q−1)δ)(mN )2 ,

8
∣∣[ℵ]q∣∣3κ3[2]q

(
e

mN
q

)2
|1−σ|∣∣∣(4[ℵ]2q(1 + ([3]q − 1)δ)emN

q − 2[2]q(1 + qδ)2
(
[ℵ]q2 + [ℵ]2q

))
κ2

+[2]q(1 + qδ)2[ℵ]q2

∣∣∣
,

|σ− 1| ≤ v(κ)

|σ− 1| ≥ v(κ)

where

v(κ) =

∣∣∣∣∣∣1−
[2]q(1 + qδ)2(2([ℵ]q2 + [ℵ]2q

)
κ2 − [ℵ]q2

)
(1 + ([3]q − 1)δ)emN

q 4[ℵ]2qκ2

∣∣∣∣∣∣
Proof. From (22) and (23)

a3 − σa2
2 =

[2]qemN
q C(ℵ)

1 (κ; q)
2(1 + ([3]q − 1)δ)(mN )2 (c2 − d2)

+
(1− σ)[2]q

(
emN

q
)2
[
C(ℵ)

1 (κ; q)
]3

2(mN )2
[
(1 + ([3]q − 1)δ)emN

q

[
C(ℵ)

1 (κ; q)
]2

+ [2]q(1 + qδ)2C(ℵ)
2 (κ; q)

] (c2 + d2)

= C(ℵ)
1 (κ; q)

[
h(σ) +

[2]qemN
q

2(1 + ([3]q − 1)δ)(mN )2

]
c2

+ C(ℵ)
1 (κ; q)

[
h(σ)−

[2]qemN
q

2(1 + ([3]q − 1)δ)(mN )2

]
d2

where

h(σ) =
(1− σ)[2]q

(
emN

q
)2
[
C(ℵ)

1 (κ; q)
]2

2(mN )2
[
(1 + ([3]q − 1)δ)emN

q

[
C(ℵ)

1 (κ; q)
]2
− [2]q(1 + qδ)2C(ℵ)

2 (κ; q)
] .

Then, in view of (7), we conclude that

∣∣∣a3 − σa2
2

∣∣∣ ≤


[2]qe
mN
q

∣∣∣C(ℵ)
1 (κ;q)

∣∣∣
(1+([3]q−1)δ)(mN )2 , |h(σ)| ≤ [2]qe

mN
q

2(1+([3]q−1)δ)(mN )2 ,

2
∣∣∣C(ℵ)

1 (κ; q)
∣∣∣|h(σ)|, |h(σ)| ≥ [2]qe

mN
q

2(1+([3]q−1)δ)(mN )2 .
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5. Corollaries and Consequences

Each new corollary and implication that follows is derived from our key findings in
this section.

Corollary 1. Let given by (1) belong to the class BΣ(1,G(ℵ)
q (κ, ξ)), then

∣∣a2
∣∣ ≤ 2[ℵ]qκemN

q

√
2[2]q[ℵ]qκ

mN

√ (
4[ℵ]2qemN

q (1 + q(1 + q)δ)− 2[2]q(1 + q)2([ℵ]q2 + [ℵ]2q
))

κ2 + [2]q(1 + q)2[ℵ]q2

,

∣∣a3
∣∣ ≤ 4[ℵ]2qκ2(emN

q
)2(

(1 + q)mN
)2 +

2[2]q[ℵ]qκemN
q

(1 + ([3]q − 1))(mN )2 ,

and∣∣∣a3 − τa2
2

∣∣∣

≤



2[2]qe
mN
q

∣∣[ℵ]q∣∣κ
(1+([3]q−1))(mN )2 ,

8
∣∣[ℵ]q∣∣3κ3[2]q

(
e

mN
q

)2
|1−τ|∣∣∣(4[ℵ]2q(1 + ([3]q − 1))emN

q − 2[2]q(1 + q)2
(
[ℵ]q2 + [ℵ]2q

))
κ2

+[2]q(1 + q)2[ℵ]q2

∣∣∣
,

|τ − 1| ≤ v(κ)

|τ − 1| ≥ v(κ)
.

Corollary 2. Let given by (1) belong to the class BΣ(0,G(ℵ)
q (κ, ξ)), then

∣∣a2
∣∣ ≤ 2[ℵ]qκemN

q

√
2[2]q[ℵ]qκ

mN

√ (
4[ℵ]2qemN

q − 2[2]q
(
[ℵ]q2 + [ℵ]2q

))
κ2 + [2]q[ℵ]q2

,

∣∣a3
∣∣ ≤ 4[ℵ]2qκ2(emN

q
)2(

mN
)2 +

2[2]q[ℵ]qκemN
q

(mN )2 ,

and

∣∣∣a3 − ρa2
2

∣∣∣ ≤


2[2]qe
mN
q

∣∣[ℵ]q∣∣κ
(mN )2 ,

8
∣∣[ℵ]q∣∣3κ3[2]q

(
e

mN
q

)2
|1−ρ|∣∣∣(4[ℵ]2qemN

q − 2[2]q
(
[ℵ]q2 + [ℵ]2q

))
κ2 + [2]q[ℵ]q2

∣∣∣ ,

|ρ− 1| ≤ v(κ)

|ρ− 1| ≥ v(κ)

6. Concluding Remark

In the current study, we have introduced and examined the coefficient issues related to
each of the three new subclasses BΣ(δ,G(ℵ)

q (κ, ξ)), BΣ(0,G(ℵ)
q (κ, ξ)) and BΣ(1,G(ℵ)

q (κ, ξ))
of the class of bi-univalent functions in the open unit disk U. These bi-univalent function
classes are described, accordingly, in Definition 1. We have calculated the estimates of the
Fekete–Szegö functional problems and the Taylor–Maclaurin coefficients |a2| and |a3| for
functions in each of these three bi-univalent function classes. Several more fresh outcomes
are revealed to follow following specializing the parameters involved in our main results.
The bi-univalent functions employing the modified Caputo’s derivative operator can be
used in this investigation. In the future, it is possible to look into the Hankel determinant
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for this distribution. Caputo’s derivative operator is expected to be significant in a number
of areas of mathematics, science, and technology.

Author Contributions: Conceptualization, A.A. (Abdullah Alsoboh) and A.A. (Ala Amourah);
methodology, A.A. (Abdullah Alsoboh); validation, A.A. (Abdullah Alsoboh), A.A. (Ala Amourah)
and M.D.; formal analysis, A.A. (Abdullah Alsoboh); investigation, A.A. (Abdullah Alsoboh), A.A.
(Ala Amourah) and M.D.; writing—original draft preparation, A.A. (Abdullah Alsoboh) and A.A. (Ala
Amourah); writing—review and editing, A.A. (Abdullah Alsoboh), A.A. (Ala Amourah) and R.I.A.S.;
supervision, M.D. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura
University for supporting this work by Grant Code: (22UQU4320576DSR02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Poisson, S. Probabilité des Jugements en Matière Criminelle et en Matière civile, Précédées des Règles générales du Calcul des Probabilitiés;

Bachelier: Paris, France, 1837; Volume 1.
2. Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires présentes par divers savants a laAcadémie des

Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434.
3. Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953.
4. Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153,

273–282.
5. Quesne, C. Disentangling q-exponentials: A general approach. Int. J. Theor. Phys. 2004, 43, 545–559. [CrossRef]
6. Long, G.; Liu, Y.; Xu, W.; Zhou, P.; Zhou, J.; Xu, G.; Xiao, B. Analysis of crack problems in multilayered elastic medium by a

consecutive stiffness method. Mathematics 2022, 10, 4403. [CrossRef]
7. Wang, R.; Singh, A.K.; Kolan, S.R.; Tsotsas, E. Investigation of the Relationship between the 2D and 3D Box-Counting Fractal

Properties and Power Law Fractal Properties of Aggregates. Fractal Fract. 2022, 6, 728. [CrossRef]
8. Mustafa, N.; Nezir, V. Analytic functions expressed with q-Poisson distribution serie. Turk. J. Sci. 2021, 6, 24–30. [CrossRef]
9. Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-starlike functions defined by q-Ruscheweyh differential

operator in symmetric conic domain. Symmetry 2021, 13, 1974.
10. Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator

involving-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [CrossRef]
11. Alhabib, R.; Ranna, M.M.; Farah, H.; Salama, A.A. Some neutrosophic probability distributions. Neutrosophic Sets Syst. 2018, 22,

30–38. [CrossRef]
12. Askey, R.; Ismail, M.E.H. A Generalization of Ultraspherical Polynomials, Studies of Pure Mathematics; Birkhauser: Boston, MA, USA,

1983.
13. Chakrabarti, R.; Jagannathan, R.; Mohammed, S.S.N. New connection formulae for the q–orthogonal polynomials via a series

expansion of the q–exponential. J. Phys. A Math. Gen. 2006, 39, 12371.
14. Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete–Szegö inequality for analytic and bi-univalent functions subordinate to

Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [CrossRef]
15. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10,

625–632.
16. Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R. A generalization of Gegenbauer polynomials and bi-univalent

functions. Axioms 2023, 12, 128.
17. Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of binomial distribution series on certain analytic functions. J.

Comput. Anal. Appl. 2019, 62, 11–17. [CrossRef]
18. Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics

2020, 8, 783.
19. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials.

J. Fract. Calc. Appl. 2017, 8, 32–39. [CrossRef]
20. Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to

k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2020, 32, 631–643. [CrossRef]
21. Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr.

Appl. Anal. 2013, 2013, 573017. [CrossRef]

http://doi.org/10.1016/S0377-0427(02)00642-8
http://dx.doi.org/10.1023/B:IJTP.0000028885.42890.f5
http://dx.doi.org/10.3390/math10234403
http://dx.doi.org/10.3390/fractalfract6120728
http://dx.doi.org/10.3390/sym13101947
http://dx.doi.org/10.1155/2020/8459405
http://dx.doi.org/10.1088/0305-4470/39/40/006
http://dx.doi.org/10.3390/axioms12020128
http://dx.doi.org/10.3390/math8050783
http://dx.doi.org/10.1007/s13370-020-00850-w
http://dx.doi.org/10.1007/s13370-020-00850-w


Mathematics 2023, 11, 868 10 of 10

22. Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with
the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [CrossRef]

23. Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of
Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [CrossRef]

24. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23,
1188–1192.

25. Seoudy, T.; Aouf, M. Admissible classes of multivalent functions associated with an integral operator. Annales Universitatis Mariae
Curie-Sklodowska, Sectio A–Mathematica 2019, 73, 57–73.

26. Seoudy, T. Convolution Results and Fekete–Szegö Inequalities for Certain Classes of Symmetric-Starlike and Symmetric-Convex
Functions. J. Math. 2022, 2022, 8203921. [CrossRef]

27. Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. J. Math. 2022,
2022, 8355285. [CrossRef]

28. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete–Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev
polynomials. Filomat 2018, 32, 3229–3236. [CrossRef]

29. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete–Szegö functional problems for some subclasses of bi-univalent
functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [CrossRef]

30. Xu, D.; Cui, X.; Xian, H. An extended EDAS method with a single-valued complex neutrosophic set and its application in green
supplier selection. Mathematics 2020, 8, 282. [CrossRef]

31. Popescu, C.R.G.; Popescu, G.N. An exploratory study based on a questionnaire concerning green and sustainable finance,
corporate social responsibility, and performance: Evidence from the Romanian business environment. J. Risk Financ. Manag. 2019,
12, 162. [CrossRef]

32. Zaprawa, P. On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math.-Soc.-Simon Stevin 2014, 21,
169–178. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2013/573017
http://dx.doi.org/10.3390/math10142462
http://dx.doi.org/10.1155/2022/8203921
http://dx.doi.org/10.1155/2022/8355285
http://dx.doi.org/10.1016/j.aml.2010.05.009
http://dx.doi.org/10.2298/FIL1809229Y
http://dx.doi.org/10.1007/s13370-019-00662-7
http://dx.doi.org/10.3390/math8020282
http://dx.doi.org/10.3390/jrfm12040162

	Introduction
	Preliminaries
	 The Class B(,G()q(,))
	Coefficient Bounds of the Subclass B(,Gq()(,))
	Corollaries and Consequences
	Concluding Remark
	References

