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An nth power root fuzzy set is a useful extension of a fuzzy set for expressing uncertain data. Because of their wider range of
showing membership grades, nth power root fuzzy sets can cover more ambiguous situations than intuitionistic fuzzy sets. In this
article, we present several novel operations on nth power root fuzzy sets, as well as their various features. Besides, we develop a new
weighted aggregated operator, namely, nth power root fuzzy weighted power average (nPR-FWPA) over nth power root fuzzy sets
to deal with choice information and show some of their basic properties. In addition, we defne a scoring function for nth power
root fuzzy sets ranking. Furthermore, we use this operator to determine the optimal location for constructing a home and
demonstrate how we may choose the best alternative by comparing aggregate outputs using score values. Finally, we compare the
nPR-FWPA operator outcomes to those of other well-known operators.

1. Introduction

Making a decision is the process of selecting the best option/
options from a set of possibilities. Humans make numerous
decisions throughout the course of their daily lives. Tere is
no need to make a decision if there is just one alternative, but
it is benefcial when there are two or more options. Mul-
ticriteria decision-making (MCDM) is a type of operational
research that deals with one kind of outcomes by evaluating
viable alternatives against a set of criteria in decision-making
that is inconsistent. It is a far-fetched assumption that
perfect numerical data are necessary to replicate real-world
decision-making methods, which are characterized by in-
trinsic ambiguity in human judgments. Terefore, to cope
with imprecise data, Zadeh [1] introduced the notion of
fuzzy sets, and several studies on generalizations of the
concept of fuzzy set were conducted after that. General-
ization of fuzzy sets begun by Atanassov [2] who described
the intuitionistic fuzzy sets as a fascinating generalization of

fuzzy sets and explored essential features. Intuitionistic fuzzy
sets have a wide range of applications in diferent felds
including reservoir food control operation, image fusion
[3], pattern recognition [4], medical diagnosis, optimization
issues [5], group theory [6, 7], and decision-making [8, 9].
Ten, Yager [10] explored Pythagorean fuzzy sets (PFSs) as
a model for dealing with imprecise data, and Zhang and Xu
[11] introduced the concept of a Pythagorean fuzzy number.
Garg [12] examined the use of PFSs in decision-making
situations. Senapati and Yager [13] introduced Fermatean
fuzzy sets and basic processes on them, as well as a Fer-
matean fuzzy TOPSIS technique for solving multiple criteria
decision-making problems. To broaden the scope of
membership and nonmembership degrees, Yager [14] put
forward the idea of q-rung orthopair fuzzy sets (q-ROFSs),
where q≥ 1.

Recently, it has been suggested diferent approaches to
deal with the input data inspired by the fact that the sig-
nifcance of membership and nonmembership degrees need
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not to be equal in general cases. Tese approaches are
useable to describe some real-life issues and enlarge the
spaces of data under study. In this regard, Ibrahim et al. [15]
defned the (3,2)-fuzzy sets as another type of generalized
Pythagorean fuzzy set. Al-Shami et al. [16] introduced a new
type of fuzzy set known as the SR-fuzzy set and studied its
features in depth. Ten, Al-Shami [17] displayed the idea of
(2,1)-fuzzy sets and furnished its basic set of operations. At
the beginning of the year 2023, Al-Shami and Mhemdi [18]
ofered the concept of (m, n)-fuzzy sets as a generalized
frame for these types of fuzzy sets. Tey introduced diferent
types of operations and aggregation operators via the en-
vironment of (m, n)-fuzzy sets. Gao and Zhang [19] pro-
vided the concept of linear orthopair fuzzy sets to address
some empirical problems of vagueness.

Multiple attribute decision-making (MADM) is a strat-
egy that takes into account the best possible alternatives. To
deal with the complications and complexity of MADM
problems, a variety of helpful mathematical methods, such
as soft sets and fuzzy sets, were improved. MADM is
a procedure that may produce ranking outcomes for fnite
alternatives based on their attribute values, and it is an
important part of decision sciences. Te concept of intui-
tionistic fuzzy weighted averaging operators was proposed
by Xu [20], and Xu and Yager [21] proposed geometric
weighted and geometric hybrid operators in the context of
intuitionistic fuzzy sets. To cope with Pythagorean fuzzy
MCDM difculties, Yager [22] devised a useful decision
technique based on Pythagorean fuzzy aggregation opera-
tors. Senapati and Yager [23] developed the Fermatean fuzzy
weighted power average operator over Fermatean fuzzy sets,
as well as their attributes. Al-Shami et al. [16] proposed the
SR-fuzzy weighted power average operator and used it to
choose the best university. Akram et al. [24] discussed a new
approach to opt for the optimal alternative(s) using the 2-
tuple linguistic T-spherical fuzzy numbers. Ambrin et al.
[25] studied TOPSIS method in the frame of picture hesitant
fuzzy sets utilizing linguistic variables. Jana et al. [26] dis-
cussed multiple attribute decision-making methods under
Pythagorean fuzzy information.

Te notion of nth power root fuzzy sets was created by
Al-Shami et al. [27], and they are more likely to be employed
in uncertain situations than other forms of fuzzy sets due of
their larger range of displaying membership grades. Tey
also looked into the idea of topology for nth power root fuzzy
sets. In this context, we continue to investigate some con-
cepts and notions inspired by this type of extension of fuzzy
sets and show how this class of extension of fuzzy sets we can
enable to evaluate the input data with diferent signifcance
for grades of membership and nonmembership, which is
appropriate for some real-life issues.

Te layout of this manuscript is as follows. In Section 2,
we survey orthopairs in the light of fuzzy computing with an
illustrative example. In Section 3, we introduce a series of
operations for the nth power root fuzzy set and investigate
their major characteristics. In Section 4, we display the
concept of a weighted power average operator defned over
the class of nth power root fuzzy set. Ten, we go into the
MADM issues that can arise when using this operator and

provide an empirical example. It can be seen that the pri-
mary advantage of nth power root fuzzy sets is that they can
be applied to a wide variety of decision-making scenarios. In
Section 5, we supply a comparison analysis of the proposed
nPR-FWPA operator with other well-known operators and
compared the current operator with SR-FWPA [16] and
FFWPA operators [23]. Finally, in Section 6, we summarize
the paper’s major accomplishments and suggest some future
research.

2. Preliminaries

In this section, we recall some relevant defnitions related to
this paper.

Defnition 1. Let W be the universal set and let
ϖℏ,ωℏ: W⟶ [0, 1] be the functions that, respectively,
determine the degrees of membership and nonmembership
for every w ∈W. Ten, the triplet
ℏ � 〈w,ϖℏ(w),ωℏ(w)〉: w ∈W􏼈 􏼉 is called the following:

(i) An intuitionistic fuzzy set (IFS) [2] if 0≤ϖℏ(w)

+ωℏ(w)≤ 1
(ii) A Pythagorean fuzzy set (PFS) [10] if 0≤ (ϖℏ(w))2

+(ωℏ(w))2 ≤ 1
(iii) A Fermatean fuzzy set (FFS) [13] if 0≤ (ϖℏ(w))3+

(ωℏ(w))3 ≤ 1
(iv) A q-rung orthopair fuzzy set (q-ROFS), where q≥ 1,

[14] if 0≤ (ϖℏ(w))q + (ωℏ(w))q ≤ 1

Defnition 2 (see [17]). Te (2,1)-FS defned over the uni-
versal set W is represented for each q≥ 1 as follows.
ℏ � 〈w,ϖℏ(w),ωℏ(w)〉: w ∈W􏼈 􏼉, where ϖℏ,ωℏ: W

⟶ [0, 1] are functions that respectively determine the
degrees of membership and nonmembership for every
w ∈W under the constraint 0≤ (ϖℏ(w))2 + (ωℏ(w))≤ 1.

Defnition 3 (see [27]). Let N be a set of all natural numbers
and W be a universal set. An nth power root fuzzy set (briefy,
nPR-FS) ℏwhich is a set of ordered pairs over W is defned as
following:

ℏ � 〈w,ϖℏ(w),ωℏ(w)〉: w ∈W􏼈 􏼉, (1)

where ϖℏ(w) (resp.ωℏ(w)): W⟶ [0, 1] is the degree of
membership (resp. nonmembership) of w ∈W to ℏ, such
that

0≤ ϖℏ(w)( 􏼁
n

+

������

ωℏ(w)
n

􏽱

≤ 1,
n ∈ N
1{ }

. (2)

For the sake of simplicity, we shall mention the symbol
ℏ � (ϖℏ,ωℏ) for the nPR-FS ℏ � 〈w,ϖℏ(w),ωℏ(w)〉:􏼈

w ∈W}.
Te spaces of some kinds of nPR-fuzzy membership

grades are displayed in Figure 1.

Remark 1. From Figure 2, we get that
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(1) the space of 4-rung orthopair fuzzy membership
grades is larger than the space of 4PR-fuzzy
membership grades

(2) ℏ � (ϖℏ ≈ 0.724,ωℏ ≈ 0.276) is a point of in-
tersection between 4PR-fuzzy and intuitionistic
fuzzy sets

(3) for ϖℏ ∈ (0, 0.724) and ωℏ ∈ (0.276, 1), the space of
4PR-fuzzy membership grades starts to be larger
than the space of intuitionistic membership grades

(4) for ϖℏ ∈ (0.724, 1) and ωℏ ∈ (0, 0.276), the space of
4PR-fuzzy membership grades starts to be smaller
than the space of intuitionistic membership grades

(5) ℏ � (ϖℏ �
���������
5

√
− 1/2

􏽰
,ωℏ � 7 − 3

�
5

√
/2) is a point

of intersection between 4PR-fuzzy and SR-fuzzy
(6) for ϖℏ ∈ (0,

���������
5

√
− 1/2

􏽰
) and ωℏ ∈ (7 − 3

�
5

√
/2, 1),

the space of 4PR-fuzzy membership grades starts to
be larger than the space of SR-fuzzy membership
grades

(7) for ϖℏ ∈ (
���������
5

√
− 1/2

􏽰
, 1) and ωℏ ∈ (0, 7 − 3

�
5

√
/2),

the space of 4PR-fuzzy membership grades starts to
be smaller than the space of SR-fuzzy membership
grades

(8) ℏ � (ϖℏ ≈ 0.819,ωℏ ≈ 0.091) is a point of in-
tersection between 4PR-fuzzy and CR-fuzzy sets

(9) for ϖℏ ∈ (0, 0.819) and ωℏ ∈ (0.091, 1), the space of
4PR-fuzzy membership grades starts to be larger
than the space of CR-fuzzy membership grades

(10) for ϖℏ ∈ (0.819, 1) and ωℏ ∈ (0, 0.091), the space of
4PR-fuzzy membership grades starts to be smaller
than the space of CR-fuzzy membership grades

Remark 2. It is clear that for any nPR-FS ℏ � (ϖℏ,ωℏ), we
have

0≤ϖn
ℏ + ωn
ℏ ≤ϖ

n
ℏ +

���
ωℏn

√ ≤ 1, (3)

then ℏ is an n-rung orthopair fuzzy set. Terefore, every
nPR-fuzzy set is an n-rung orthopair fuzzy set.

Defnition 4 (see [27]). Let ℏ � (ϖℏ,ωℏ), ℏ1 � (ϖℏ1,ωℏ1), and
ℏ2 � (ϖℏ2,ωℏ2) be three nPR-FSs, then

(1) ℏ1 ∩ℏ2 � (min ϖℏ1,ϖℏ2􏽮 􏽯, max ωℏ1,ωℏ2􏽮 􏽯)

(2) ℏ1 ∪ℏ2 � (max ϖℏ1,ϖℏ2􏽮 􏽯, min ωℏ1,ωℏ2􏽮 􏽯)

(3) ℏc � (
���ωℏn2

√
, (ϖℏ)

n2)

Defnition 5 (see [27]). Let ℏ1 � (ϖℏ1,ωℏ1) and
ℏ2 � (ϖℏ2,ωℏ2) be two nPR-FSs, then

(1) ℏ1 � ℏ2⇔ϖℏ1 � ϖℏ2 and ωℏ1 � ωℏ2
(2) ℏ1 ≥ℏ2⇔ϖℏ1 ≥ϖℏ2 and ωℏ1 ≤ωℏ2
(3) ℏ2 ⊂ ℏ1 or ℏ1 ⊃ ℏ2 if ℏ1 ≥ℏ2

3. Some Operations via nPR-Fuzzy Sets

In this section, we propose various new operations on nPR-
fuzzy sets and discuss some of their features in detail. In the
entire work, we employ only three decimal places for
computations.

Defnition 6. Let ℏ � (ϖℏ,ωℏ), ℏ1 � (ϖℏ1,ωℏ1), and
ℏ2 � (ϖℏ2,ωℏ2) be three nPR-FSs and ε be a positive real
number (ε> 0), then their operations are defned as follows:

(1) ℏ1 ⊕ℏ2 � (
����������������
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

n

􏽱
,ωℏ1ωℏ2)

(2) ℏ1 ⊗ℏ2 � (ϖℏ1ϖℏ2, (
���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2−���

[n]
√

ωℏ1
���
[n]

√
ωℏ2)

n)

(3) εℏ � (
���
[n]

√
1 − (1 − ϖn

ℏ)
ε,ωε
ℏ)

(4) ℏε � (ϖεℏ, (1 − (1 −
���
[n]

√
ωℏ)

ε)n)

Example 1. Consider the 4PR-FSs ℏ1 � (0.61, 0.51) and ℏ2 �

(0.52, 0.62) for W � w{ }. Ten,

(1) ℏ1 ⊕ℏ2 � (
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

,ωℏ1ωℏ2)
� (

���
[4]

√
0.614 + 0.524 − (0.61)4(0.52)4,

(0.51)(0.62)) ≈ (0.670, 0.316)

(2) ℏ1 ⊗ℏ2 � (ϖℏ1ϖℏ2, (
���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2−���

[n]
√

ωℏ1
���
[n]

√
ωℏ2)

n) � ((0.61)(0.52),

1
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Figure 1: Grades spaces of some kinds of nPR-fuzzy sets.
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(
������
[4]0.51

√
+

������
[4]0.62

√
−

������
[4]0.51

√ ���
[4]

√
0.62)4) �

(0.317, 0.932)

(3) εℏ1 � (
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε,ωε
ℏ1

) � (
���
[4]

√
1 − (1−

0.614)2, 0.512) ≈ (0.713, 0.260), for ε � 2
(4) ℏε1 � (ϖεℏ1 , (1 − (1 −

���
[n]

√
ωℏ1)

ε)n) � (0.612, (1−

(1 −
���
[4]

√
0.51)2)4) � (0.372, 0.907), for ε � 2

Theorem 1. If Z1 � (ϖZ1
,ωZ1

) and Z2 � (ϖZ2
,ωZ2

) are two
nPR-FSs, then Z1⊕Z2 and Z1 ⊗ Z2 are also nPR-FSs.

Proof. For nPR-FSs ℏ1 � (ϖℏ1,ωℏ1) and ℏ2 � (ϖℏ2,ωℏ2) the
following relations are evident:

0≤ϖn
ℏ1 ≤ 1, 0≤

������
[n]ωℏ1

􏽱
≤ 1, 0≤ ϖℏ1􏼐 􏼑

n
+

���
[n]

􏽰
ωℏ1 ≤ 1,

0≤ϖn
ℏ2 ≤ 1, 0≤

���
[n]

􏽰
ωℏ2 ≤ 1, 0≤ ϖℏ2􏼐 􏼑

n
+

���
[n]

􏽰
ωℏ2 ≤ 1.

(4)

Ten, we have

ϖn
ℏ1 ≥ϖ

n
ℏ1ϖ

n
ℏ2 ,ϖ

n
ℏ2 ≥ϖ

n
ℏ1ϖ

n
ℏ2 , 1≥ϖ

n
ℏ1ϖ

n
ℏ2 ≥ 0,

���
[n]

􏽰
ωℏ1 ≥

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2,

���
[n]

􏽰
ωℏ2 ≥

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2, 1≥

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2 ≥ 0,

(5)

which indicates that

ϖn
ℏ1 + ϖn

ℏ2 − ϖn
ℏ1ϖ

n
ℏ2 ≥ 0 implies

������������������
[n]ϖn
ℏ1 + ϖn

ℏ2 − ϖn
ℏ1ϖ

n
ℏ2

􏽱
≥ 0,

���
[n]

􏽰
ωℏ1 +

���
[n]

􏽰
ωℏ2 −

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2 ≥ 0 implies

���
[n]

􏽰
ωℏ1 +

���
[n]

􏽰
ωℏ2 −

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2􏼐 􏼑

n
≥ 0.

(6)

Since ϖn
ℏ2
≤ 1 and 0≤ 1 − ϖn

ℏ1
, then ϖn

ℏ2
(1 − ϖn

ℏ1
)≤ (1 −

ϖn
ℏ1

) and we get ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2
≤ 1 and hence���

[n]
√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2
≤ 1.

Similarly, we can obtain the following equation:
���
[n]

􏽰
ωℏ1 +

���
[n]

􏽰
ωℏ2 −

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2􏼐 􏼑

n
≤ 1. (7)

It is obvious that

0≤
���
[n]

􏽰
ωℏ1 ≤ 1 − ϖn

ℏ1 ,

0≤
���
[n]

􏽰
ωℏ2 ≤ 1 − ϖn

ℏ2 ,
(8)

then we can obtain the following equation:
������
[n]ϖn
ℏ1

􏽱
+ ϖn
ℏ2 − ϖn

ℏ1ϖ
n
ℏ2􏼒 􏼓

n

+
���
[n]

􏽰
ωℏ1ωℏ2

≤ϖn
ℏ1 + ϖn

ℏ2 − ϖn
ℏ1ϖ

n
ℏ2 + 1 − ϖn

ℏ1􏼐 􏼑 1 − ϖn
ℏ2􏼐 􏼑 � 1.

(9)

Terefore,

0≤
���
[n]

􏽰
ϖn
ℏ1 + ϖn

ℏ2 − ϖn
ℏ1ϖ

n
ℏ2 ≤ 1,

0≤ωℏ1ωℏ2 ≤ 1,

0≤
������
[n]ϖn
ℏ1

􏽱
+ ϖn
ℏ2 − ϖn

ℏ1ϖ
n
ℏ2􏼒 􏼓

n

+
���
[n]

􏽰
ωℏ1ωℏ2 ≤ 1.

(10)

1

1
0

x4 + y4 = 1

x + y = 1

x3+ 3√y = 1

x4+ 
4
√y = 1

x2 + √y = 1

Figure 2: Some comparisons between some kinds of nPR-fuzzy sets and other generalizations of IFSs.
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Similarly, we have

0≤ϖℏ1ϖℏ2 ≤ 1, 0≤
���
[n]

􏽰
ωℏ1 +

���
[n]

􏽰
ωℏ2 −

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2􏼐 􏼑

n
≤ 1,

0≤ ϖℏ1ϖℏ2􏼐 􏼑
n

+
���
[n]

􏽰 ���
[n]

􏽰
ωℏ1 +

���
[n]

􏽰
ωℏ2 −

���
[n]

􏽰
ωℏ1

���
[n]

􏽰
ωℏ2􏼐 􏼑

n
≤ 1.

(11)

Tus, ℏ1⊕ℏ2 and ℏ1 ⊗ ℏ2 are nPR-FSs. □

Theorem  . Let Z � (ϖZ,ωZ) be a nPR-FS and ε> 0. Ten,
εZ and Zε are nPR-FSs.

Proof. Since 0≤ϖn
ℏ ≤ 1, 0≤

���
[n]

√
ωℏ ≤ 1 and 0≤ (ϖℏ)

n +���
[n]

√
ωℏ ≤ 1, then

0≤
���
[n]

􏽰
ωℏ ≤ 1 − ϖn

ℏ

⇒0≤ 1 − ϖn
ℏ( 􏼁

ε

⇒1 − 1 − ϖn
ℏ( 􏼁

ε ≤ 1

⇒0≤
���
[n]

􏽰
1 − 1 − ϖn

ℏ( 􏼁
ε ≤

���
[n]

􏽰
1 � 1.

(12)

It is obvious that 0≤ωε
ℏ ≤ 1, then we can obtain the

following equation:

0≤
���
[n]

􏽰
1 − 1 − ϖn

ℏ( 􏼁
ε

􏼐 􏼑
n

+
���
[n]

􏽰
ωε
ℏ

≤ 1 − 1 − ϖn
ℏ( 􏼁

ε
+ 1 − ϖn

ℏ( 􏼁
ε

� 1.
(13)

Similarly, we can also obtain the following equation:

0≤ ϖεℏ( 􏼁
n

+
���
[n]

􏽰
1 − 1 −

���
[n]

􏽰
ωℏ􏼐 􏼑

ε
􏼐 􏼑

n
≤ 1. (14)

Terefore, εℏ and ℏε are nPR-FSs. □

Theorem 3. Let Z1 � (ϖZ1
,ωZ1

) and Z2 � (ϖZ2
,ωZ2

) be two
nPR-FSs. Ten,

(1) Z1⊕Z2 � Z2⊕Z1

(2) Z1 ⊗ Z2 � Z2 ⊗ Z1

Proof

(1) ℏ1⊕ℏ2 � (
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

,ωℏ1ωℏ2)
(

���
[n]

√
ϖn
ℏ2

+ ϖn
ℏ1

− ϖn
ℏ2
ϖn
ℏ1

,ωℏ2ωℏ1) � ℏ2⊕ℏ1.
(2) ℏ1 ⊗ ℏ2 � (ϖℏ1ϖℏ2, (

���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2 −

���
[n]

√
ωℏ1���

[n]
√

ωℏ2)
n) � (ϖℏ2ϖℏ1, (

���
[n]

√
ωℏ2 +

���
[n]

√
ωℏ1−

���
[n]

√

ωℏ2
���
[n]

√
ωℏ1)

n) � ℏ2 ⊗ ℏ1 □

Theorem 4. Let Z1 � (ϖZ1
,ωZ1

), Z2 � (ϖZ2
,ωZ2

) and Z3 �

(ϖZ3
,ωZ3

) be three nPR-FSs, then

(1) Z1⊕Z2⊕Z3 � Z1⊕Z3⊕Z2

(2) Z1 ⊗ Z2 ⊗ Z3 � Z1 ⊗ Z3 ⊗ Z2

Proof

(1) ℏ1⊕ℏ2⊕ℏ3 � (ϖℏ1,ωℏ1)⊕(ϖℏ2,ωℏ2)⊕(ϖℏ3,ωℏ3) �

(
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

,ωℏ1ωℏ2)⊕(ϖℏ3,ωℏ3) �

(
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

+ ϖn
ℏ3

− ϖn
ℏ3

(ϖn
ℏ1

+ ϖn
ℏ2

−

ϖn
ℏ1
ϖn
ℏ2

),ωℏ1ωℏ2ωℏ3) � (
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

+ ϖn
ℏ3

− ϖn
ℏ1

ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ3

− ϖn
ℏ2
ϖn
ℏ3

+ ϖn
ℏ1
ϖn
ℏ2
ϖn
ℏ3

,ωℏ1ωℏ2ωℏ3) �

(
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ3

− ϖn
ℏ1
ϖn
ℏ3

+ ϖn
ℏ2

− ϖn
ℏ2

(ϖn
ℏ1

+ ϖn
ℏ3

−

ϖn
ℏ1
ϖn
ℏ3

),ωℏ1ωℏ2ωℏ3) � (
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ3

− ϖn
ℏ1
ϖn
ℏ3

,

ωℏ1ωℏ3)⊕(ϖℏ2,ωℏ2) � ℏ1⊕ℏ3⊕ℏ2
(2) Following similar technique given in (1) □

Theorem 5. Let Z � (ϖZ,ωZ), Z1 � (ϖZ1
,ωZ1

), and
Z2 � (ϖZ2

,ωZ2
) be three nPR-FSs, then

(1) ε(Z1⊕Z2) � εZ1⊕εZ2, for ε> 0
(2) (ε1 + ε2)Z � ε1Z⊕ε2Z, for ε1, ε2 > 0
(3) (Z1 ⊗ Z2)

ε � Zε
1 ⊗ Zε

2, for ε> 0
(4) Zε1 ⊗ Zε2 � Z(ε1+ε2), for ε1, ε2 > 0

Proof

(1) ε(ℏ1⊕ℏ2) � ε(
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

,ωℏ1ωℏ2) �

(
���
[n]

√
1 − (1 − ϖn

ℏ1
− ϖn
ℏ2

+ ϖn
ℏ1
ϖn
ℏ2

)ε, (ωℏ1ωℏ2)
ε) �

(
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε(1 − ϖn

ℏ2
)ε,ωε
ℏ1
ωε
ℏ2

). And εℏ1⊕εℏ2 �

(
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε,ωε
ℏ1

)⊕(
���
[n]

√
1 − (1 − ϖn

ℏ2
)ε,ωε
ℏ2

) �

(
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε + 1 − (1 − ϖn

ℏ2
)ε − (1 − (1 − ϖn

ℏ1
)ε)

(1 − (1 − ϖn
ℏ2

)ε),ωε
ℏ1
ωε
ℏ2

) � (
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε(1−

ϖn
ℏ2

)ε,ωε
ℏ1
ωε
ℏ2

) � ε(ℏ1⊕ℏ2)
(2) (ε1 + ε2)ℏ � (ε1 + ε2)(ϖℏ,ωℏ) � (

���
[n]

√
1 − (1−

ϖn
ℏ)

ε1+ε2 ,ωε1+ε2
ℏ ) � (

���
[n]

√
1 − (1 − ϖn

ℏ)
ε1 (1 − ϖn

ℏ)
ε2 ,

ωε1+ε2
ℏ ) � (

���
[n]

√
1 − (1 − ϖn

ℏ)
ε1 + 1− (1 − ϖn

ℏ)
ε2 − (1 −

(1 − ϖn
ℏ)

ε1)(1 − (1 − ϖn
ℏ)

ε2),ωε1
ℏ ω

ε2
ℏ ) � (

���
[n]

√
1− (1−

ϖn
ℏ)

ε1 ,ωε1
ℏ )⊕(

���
[n]

√
1 − (1 − ϖn

ℏ)
ε2 ,ωε2
ℏ ) � ε1ℏ⊕ε2ℏ

(3) (ℏ1 ⊗ℏ2)
ε � (ϖℏ1ϖℏ2, (

���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2−

���
[n]

√

ωℏ1
���
[n]

√
ωℏ2)

n)ε � ((ϖℏ1ϖℏ2)
ε, (1 − (1 −

���
[n]

√
ωℏ1−���

[n]
√

ωℏ2 +
���
[n]

√
ωℏ1

���
[n]

√
ωℏ2)

ε)n) � (ϖεℏ1ϖ
ε
ℏ2

, (1−

(1 −
���
[n]

√
ωℏ1)

ε(1 −
���
[n]

√
ωℏ2)

ε)n) � (ϖεℏ1 , (1 − (1−
���
[n]

√
ωℏ1)

ε)n)⊗ (ϖεℏ2 , (1 − (1 −
���
[n]

√
ωℏ2)

ε)n) �

ℏε1 ⊗ℏ
ε
2

(4) ℏε1 ⊗ ℏε2 � (ϖε1ℏ , (1 − (1 −
���
[n]

√
ωℏ)

ε1)n)⊗ (ϖε2ℏ , (1−

(1 −
���
[n]

√
ωℏ)

ε2)n) � (ϖε1+ε2
ℏ , 1 − (1 −

���
[n]

√
ωℏ)

ε1

+1 − (1 −
���
[n]

√
ωℏ)

ε2 − (1 − (1 −
���
[n]

√
ωℏ)

ε1)(1− (1
−

���
[n]

√
ωℏ)

ε2)) � (ϖε1+ε2
ℏ , (1 − (1 −

���
[n]

√

ωℏ)
ε1+ε2)n) � ℏ(ε1+ε2) □
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Theorem 6. Let Z1 � (ϖZ1
,ωZ1

), Z2 � (ϖZ2
,ωZ2

), and Z3 �

(ϖZ3
,ωZ3

) be three nPR-FSs, then

(1) (Z1 ∩ Z2)⊕Z3 � (Z1⊕Z3)∩ (Z2⊕Z3)

(2) (Z1 ∪ Z2)⊕Z3 � (Z1⊕Z3)∪ (Z2⊕Z3)

(3) (Z1 ∩ Z2)⊗ Z3 � (Z1 ⊗ Z3)∩ (Z2 ⊗ Z3)

(4) (Z1 ∪ Z2)⊗ Z3 � (Z1 ⊗ Z3)∪ (Z2 ⊗ Z3)

Proof. From Defnitions 6 and 4, we have

(1) (ℏ1 ∩ℏ2)⊕ℏ3 � (min ϖℏ1,ϖℏ2􏽮 􏽯, max ωℏ1,ωℏ2􏽮 􏽯)⊕
(ϖℏ3,ωℏ3) � (

���
[n]

√
min ϖn

ℏ1
,ϖn
ℏ2􏽮 􏽯 + ϖn

ℏ3
− ϖn
ℏ3
min

ϖn
ℏ1

,ϖn
ℏ2􏽮 􏽯, max ωℏ1,ωℏ2􏽮 􏽯ωℏ3) � (

���
[n]

√
(1 − ϖn

ℏ3
)

min ϖn
ℏ1

,ϖn
ℏ2􏽮 􏽯 + ϖn

ℏ3
, max ωℏ1ωℏ3,ωℏ2ωℏ3􏽮 􏽯). And,

(ℏ1⊕ℏ3)∩ (ℏ2⊕ℏ3) � (
���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ3

− ϖn
ℏ1
ϖn
ℏ3

,

ωℏ1ωℏ3)∩ (
���
[n]

√
ϖn
ℏ2

+ ϖn
ℏ3

− ϖn
ℏ2
ϖn
ℏ3

,ωℏ2ωℏ3) � (min
���
[n]

√
ϖn
ℏ1

+􏽮 ϖn
ℏ3

− ϖn
ℏ1
ϖn
ℏ3

,
���
[n]

√
ϖn
ℏ2

+ ϖn
ℏ3

− ϖn
ℏ2
ϖn
ℏ3

},

max ωℏ1ωℏ3,ωℏ2ωℏ3􏽮 􏽯) � (min
���
[n]

√
(1−􏼈 ϖn

ℏ3
)ϖn
ℏ1

+

ϖn
ℏ3

,
���
[n]

√
(1 − ϖn

ℏ3
)ϖn
ℏ2

+ ϖn
ℏ3

}, max ωℏ1ωℏ3,ωℏ2ωℏ3􏽮 􏽯)

� (
���
[n]

√
(1 − ϖn

ℏ3
)min ϖn

ℏ1
,ϖn
ℏ2􏽮 􏽯 + ϖn

ℏ3
, max ωℏ1􏽮

ωℏ3,ωℏ2ωℏ3}).
Tus, (ℏ1 ∩ ℏ2)⊕ℏ3 � (ℏ1⊕ℏ3)∩ (ℏ2⊕ℏ3).

(2) Following similar technique given in (1).
(3) (ℏ1 ∩ℏ2)⊗ ℏ3 � (min ϖℏ1,ϖℏ2􏽮 􏽯, max ωℏ1,􏽮 ωℏ2})⊗
ℏ3 � (min ϖℏ1,ϖℏ2􏽮 􏽯ϖℏ3, (max

���
[n]

√
􏼈 ωℏ1,

���
[n]

√

ωℏ2} +
���
[n]

√
ωℏ3 −

���
[n]

√
ωℏ3 max

���
[n]

√
ωℏ1,􏽮

���
[n]

√

ωℏ2})
n) � (min ϖℏ1ϖℏ3,ϖℏ2ϖℏ3􏽮 􏽯, ((1 −

���
[n]

√
ωℏ3)

max
���
[n]

√
ωℏ1,

���
[n]

√
ωℏ2􏽮 􏽯 +

���
[n]

√
ωℏ3)

n). And, (ℏ1
⊗ℏ3)∩ (ℏ2 ⊗ℏ3) � (ϖℏ1ϖℏ3, (

���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ3 −

���
[n]

√
ωℏ1

���
[n]

√
ωℏ3)

n) ∩ (ϖℏ2ϖℏ3, (
���
[n]

√
ωℏ2 +

���
[n]

√

ωℏ3 −
���
[n]

√
ωℏ2

���
[n]

√
ωℏ3)

n) � (ϖℏ1ϖℏ3, ((1−
���
[n]

√
ωℏ3)���

[n]
√

ωℏ1 +
���
[n]

√
ωℏ3)

n)∩ (ϖℏ2ϖℏ3, ((1 −
���
[n]

√

ωℏ3)
���
[n]

√
ωℏ2 +

���
[n]

√
ωℏ3)

n) � (min ϖℏ1ϖℏ3,ϖℏ2ϖℏ3􏽮 􏽯,

max ((1 −
���
[n]

√
ωℏ3)

���
[n]

√
ωℏ1+􏽮

���
[n]

√
ωℏ3)

n, ((1−
���
[n]

√
ωℏ3)

���
[n]

√
ωℏ2 +

���
[n]

√
ωℏ3)

n}) � (min ϖℏ1􏽮 ϖℏ3,
ϖℏ2ϖℏ3}, ((1 −

���
[n]

√
ωℏ3)max

���
[n]

√
ωℏ1,􏽮

���
[n]

√
ωℏ2}

+
���
[n]

√
ωℏ3)

n).
Tus, (ℏ1 ∩ ℏ2)⊗ℏ3 � (ℏ1 ⊗ℏ3)∩ (ℏ2 ⊗ℏ3).

(4) Following similar technique given in (3). □

Theorem 7. Let Z1 � (ϖZ1
,ωZ1

) and Z2 � (ϖZ2
,ωZ2

) be two
nPR-FSs and ε> 0, then

(1) ε(Z1 ∪ Z2) � εZ1 ∪ εZ2

(2) (Z1 ∪ Z2)
ε � Zε

1 ∪ Zε
2

Proof. From Defnitions 4 and 6, we have

(1) ε(ℏ1 ∪ ℏ2) � ε(max ϖℏ1,ϖℏ2􏽮 􏽯, min ωℏ1,ωℏ2􏽮 􏽯) �

(
���
[n]

√
1 − (1 − max ϖn

ℏ1
,ϖn
ℏ2􏽮 􏽯)ε, min ωε

ℏ1
,ωε
ℏ2􏽮 􏽯).

And, εℏ1 ∪ εℏ2 � (
���
[n]

√
1 − (1 − ϖn

ℏ1
)ε,ωε
ℏ1

)∪
(

���
[n]

√
1 − (1 − ϖn

ℏ2
)ε,ωε
ℏ2

) � (max
���
[n]

√
1 −􏼈 (1−

ϖn
ℏ1

)ε,
���
[n]

√
1 − (1 − ϖn

ℏ2
)ε}, min ωε

ℏ1
,ωε
ℏ2􏽮 􏽯) � (

���
[n]

√

1 − (1 − max ϖn
ℏ1

,ϖn
ℏ2􏽮 􏽯)ε, min ωε

ℏ1
,ωε
ℏ2􏽮 􏽯) � ε(ℏ1 ∪

ℏ2).
(2) It can be proved similar to (1). □

Theorem 8. Let Z � (ϖZ,ωZ), Z1 � (ϖZ1
,ωZ1

), and
Z2 � (ϖZ2

,ωZ2
) be three nPR-FSs, and ε> 0, then

(1) (Z1⊕Z2)
c � Zc

1 ⊗ Zc
2

(2) (Z1 ⊗ Z2)
c � Zc

1⊕Z
c
2

(3) (Zc)ε � (εZ)c

(4) ε(Z)c � (Zε)c

Proof. From Defnitions 6 and 4 (3), we have

(1) (ℏ1⊕ℏ2)
c � (

���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

,ωℏ1ωℏ2)
c �

(
����
[n2]

􏽰
ωℏ1ωℏ2, (

���
[n]

√
ϖn
ℏ1

+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

)n2) � (
����
[n2]

􏽰

ωℏ1
����
[n2]

􏽰
ωℏ2, (ϖn

ℏ1
+ ϖn
ℏ2

− ϖn
ℏ1
ϖn
ℏ2

)n) � (
����
[n2]

􏽰
ωℏ1,

(ϖℏ1)
n2)⊗ (

����
[n2]

􏽰
ωℏ2, (ϖℏ2)

n2) � ℏc1 ⊗ ℏ
c
2

(2) (ℏ1 ⊗ℏ2)
c � (ϖℏ1ϖℏ2, (

���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2−

���
[n]

√

ωℏ1
���
[n]

√
ωℏ2)

n)c � (
����
[n2]

􏽰
(

���
[n]

√
ωℏ1 +

���
[n]

√
ωℏ2−���

[n]
√

ωℏ1
���
[n]

√
ωℏ2)

n, (ϖℏ1ϖℏ2)
n2) � (

���
[n]

√
(

���
[n]

√
ωℏ1

+
���
[n]

√
ωℏ2 −

���
[n]

√
ωℏ1

���
[n]

√
ωℏ2), (ϖℏ1)

n2(ϖℏ2)
n2) �

(
����
[n2]

􏽰
ωℏ1, (ϖℏ1)

n2)⊕(
����
[n2]

􏽰
ωℏ2, (ϖℏ2)

n2) � ℏc1⊕ℏ
c
2

(3) (ℏc)ε � (
���ωℏn2

√
, (ϖℏ)

n2)ε � ((
���ωℏn2

√
)ε, (1 − (1−

ϖn
ℏ)

ε)n) � (
�����������
1 − (1 − ϖn

ℏ)
εn

􏽱
,ωε
ℏ)

c � (εℏ)c

(4) ε(ℏ)c � ε( ���ωℏn2
√

, (ϖℏ)
n2) � (

�������������
1 − (1 −

���ωℏn
√

)εn

􏽱
,

(((ϖℏ)
n2)ε) � (ϖεℏ, (1 − (1 −

���ωℏn
√

)ε)n)c � (ℏε)c □

4. nPR-Fuzzy Weighted Power Average
Inspired by the Class of nPR-Fuzzy Sets

In this section, we put forth the operator of nPR-fuzzy
weighted power average and evince its main characteriza-
tions. In particular, we prove the properties of boundedness,
monotonicity, and idempotency for this operator. Ten, we
illustrate how nPR-FWPA operator is applied to evaluate
options of an MCDM problem with nPR-fuzzy data.

Defnition 7. Let ℏi � (ϖℏi,ωℏi)(i � 1, 2, . . . , k) be the values
of nPR-FSs and η � (η1, η2, . . . , ηk)T be weight vector of ℏi
with ηi > 0, 􏽐

k
i�1ηi � 1 and n> 1. Ten, an nPR-fuzzy

weighted power average (nPR-FWPA) operator is a func-
tion nPR-FWPA: ℏk⟶ℏ, where

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁

� 􏽘

k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

, 􏽘

k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠.
(15)
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Example 2. Consider ℏ1 � (0.5, 0.5), ℏ2 � (0.2, 0.7),

ℏ3 � (0.6, 0.1), ℏ4 � (0.4, 0.3) and ℏ5 � (0.2, 0.9) are fve
nPR-fuzzy sets and let η � (0.2, 0.4, 0.2, 0.1, 0.1)T be a weight
vector of ℏi (i� 1, 2, . . ., 5). Ten,

nPR − FWPA ℏ1, ℏ2, . . . , ℏ5( 􏼁 �
0.5n

× 0.2 + 0.2n
× 0.4 + 0.6n

× 0.2 + 0.4n
× 0.1 + 0.2n

× 0.1( 􏼁
1/n

,

0.51/n × 0.2 + 0.71/n × 0.4 + 0.11/n × 0.2 + 0.31/n × 0.1 + 0.91/n × 0.1􏼐 􏼑
n

⎛⎝ ⎞⎠

≈

(0.428, 0.457), if n � 3,

(0.470, 0.442), if n � 5,

(0.505, 0.433), if n � 8,

(0.519, 0.430), if n � 10,

(0.541, 0.426), if n � 15,

(0.563, 0.423), if n � 25,

(0.586, 0.420), if n � 70,

(0.590, 0.419), if n � 100.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Theorem 9. Let Zi � (ϖZi
,ωZi

)(i � 1, 2, . . . , k) be a value of
nPR-FSs and η � (η1, η2, . . . , ηk)T be weight vector of Zi with
ηi > 0 and 􏽐

k
i�1ηi � 1. Ten, nPR-FWPA (Z1, Z2, . . . , Zk) is an

nPR-FS.

Proof. For any nPR-FS ℏi � (ϖℏi,ωℏi), we have

0≤ϖn
ℏi ≤ 1,

0≤ω1/n
ℏi ≤ 1,

0≤ϖn
ℏi + ω1/n

ℏi ≤ 1.

(17)

Ten, we obtain the following equation:

0≤ η1ϖ
n
ℏ1 + η1ω

1/n
ℏ1 ≤ η1,

0≤ η2ϖ
n
ℏ2 + η2ω

1/n
ℏ2 ≤ η2,

0≤ ηkϖ
n
ℏk + ηkω

1/n
ℏk ≤ ηk,

(18)

and so

0≤ η1ϖ
n
ℏ1 + η1ω

1/n
ℏ1􏼐 􏼑 + η2ϖ

n
ℏ2 + η2ω

1/n
ℏ2􏼐 􏼑

+ · · · + ηkϖ
n
ℏk + ηkω

1/n
ℏk􏼐 􏼑≤ η1 + η2 + · · · + ηk,

(19)

implies that

0≤ 􏽘
k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiω

1/n
ℏi ≤ 􏽘

k

i�1
ηi � 1. (20)

Terefore,

0≤ 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

⎞⎠⎛⎝

n

+ 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

⎞⎠⎛⎝

1/n

� 􏽘
k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiω

1/n
ℏi ≤ 1.

(21)

It is obvious that,

0≤ 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

≤ 1,

0≤ 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

≤ 1.

(22)

Ten, nPR-FWPA (ℏ1, ℏ2, . . . , ℏk) is an nPR-FS. □

Theorem 10. Let Zi � (ϖZi
,ωZi

)(i � 1, 2, . . . , k) be a value of
nPR-FSs, Z � (ϖZ,ωZ) be nPR-FS and η � (η1, η2, . . . , ηk)T

be a weight vector of Zi with 􏽐
k
i�1ηi � 1. Ten,

nPR − FWPA(Z1⊕Z, Z2⊕Z, . . . , Zk⊕Z)≥ nPR − FWPA(Z1 ⊗
Z, Z2 ⊗ Z, . . . , Zk ⊗ Z).

Proof. For any ℏi � (ϖℏi,ωℏi)(i � 1, 2, . . . , k) and
ℏ � (ϖℏ,ωℏ), we have

ϖn
ℏi + ϖn

ℏ − ϖn
ℏiϖ

n
ℏ ≥ 2ϖ

n
ℏiϖ

n
ℏ − ϖn
ℏiϖ

n
ℏ � ϖn
ℏiϖ

n
ℏ,

ω1/n
ℏi + ω1/n

ℏ − ω1/n
ℏi ω

1/n
ℏ ≥ 2ω

1/n
ℏi ω

1/n
ℏ − ω1/n

ℏi ω
1/n
ℏ � ω1/n

ℏi ω
1/n
ℏ ,

(23)

that is,

(1) 􏽐
k
i�1ηi(ϖn

ℏi
+ ϖn
ℏ − ϖn
ℏi
ϖn
ℏ)≥􏽐

k
i�1ηiϖn

ℏi
ϖn
ℏ ⇒(􏽐

k
i�1ηi

(ϖn
ℏi

+ ϖn
ℏ − ϖn
ℏi
ϖn
ℏ))

1/n ≥ (􏽐
k
i�1ηiϖn

ℏi
ϖn
ℏ)

1/n

(2) 􏽐
k
i�1ηi(ω1/n

ℏi
+ ω1/n
ℏ − ω1/n

ℏi
ω1/n
ℏ )≥􏽐

k
i�1ηiω1/n

ℏi
ω1/n
ℏ .

⇒(􏽐
k
i�1ηi (ω1/n

ℏi
+ ω1/n
ℏ − ω1/n

ℏi
ω1/n
ℏ ))n ≥ (􏽐

k
i�1ηi

ω1/n
ℏi
ω1/n
ℏ )n

Hence, we have
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nPR − FWPA ℏ1⊕ℏ, ℏ2⊕ℏ, . . . , ℏk⊕ℏ( 􏼁 � 􏽘
k

i�1
ηi ϖ

n
ℏi + ϖn

ℏ − ϖn
ℏiϖ

n
ℏ􏼐 􏼑⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi ω

1/n
ℏ

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠,

nPR − FWPA ℏ1 ⊗ℏ, ℏ2 ⊗ ℏ, . . . , ℏk ⊗ ℏ( 􏼁 � 􏽘
k

i�1
ηiϖ

n
ℏiϖ

n
ℏ

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηi ω1/n
ℏi + ω1/n

ℏ − ω1/n
ℏi ω

1/n
ℏ􏼐 􏼑⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠.

(24)

Ten, from (1) and (2), we obtain the following equation:

nPR − FWPA ℏ1⊕ℏ, ℏ2⊕ℏ, . . . , ℏk⊕ℏ( 􏼁≥nPR − FWPA ℏ1 ⊗ ℏ, ℏ2 ⊗ℏ, . . . , ℏk ⊗ ℏ( 􏼁. (25)

□
Theorem 11. Let Zi � (ϖZi

,ωZi
)(i � 1, 2, · · · , k) be a value of

nPR-FSs, Z � (ϖZ,ωZ) be nPR-FS and η � (η1, η2, . . . , ηk)T

be weight vector of Zi with 􏽐
k
i�1ηi � 1, then

(1) nPR-FWPA (Z1⊕Z, Z2⊕Z, · · · , Zk⊕Z)≥ nPR-FWPA
(Z1, Z2, · · · , Zk)⊗ Z

(2) nPR-FWPA (Z1, Z2, · · · , Zk)⊕Z≥ nPR-FWPA
(Z1, Z2, · · · , Zk)⊗ Z

Proof. We will give the proof of (1). Te other claim is
proven in a similar manner. Since for any
ℏi � (ϖℏi,ωℏi)(i � 1, 2, · · · , k) and ℏ � (ϖℏ,ωℏ), we have

􏽘

k

i�1
ηi ϖ

n
ℏi + ϖn

ℏ − ϖn
ℏiϖ

n
ℏ􏼐 􏼑⎛⎝ ⎞⎠

1/n

≥ 􏽘
k

i�1
ηiϖ

n
ℏiϖ

n
ℏ

⎛⎝ ⎞⎠

1/n

� 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

ϖℏ. (26)

Similarly,

􏽘

k

i�1
ηi ω1/n
ℏi + ω1/n

ℏ − ω1/n
ℏi ω

1/n
ℏ􏼐 􏼑⎛⎝ ⎞⎠

n

≥ 􏽘
k

i�1
ηiω

1/n
ℏi ω

1/n
ℏ

⎛⎝ ⎞⎠

n

� 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

ωℏ. (27)

Terefore, we have

nPR − FWPA ℏ1⊕ℏ, ℏ2⊕ℏ, . . . , ℏk⊕ℏ( 􏼁

� 􏽘
k

i�1
ηi ϖ

n
ℏi + ϖn

ℏ − ϖn
ℏiϖ

n
ℏ􏼐 􏼑⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi ω

1/n
ℏ

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠,

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊗ℏ

� 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠⊗ ϖℏ,ωℏ( 􏼁

� 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

ϖℏ, 􏽘
k

i�1
ηiω

1/n
ℏi + ω1/n

ℏ − 􏽘
k

i�1
ηiω

1/n
ℏi ω

1/n
ℏ

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠.

(28)

Ten, from (1) and (2) we obtain the following equation:
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nPR − FWPA ℏ1⊕ℏ, ℏ2⊕ℏ, . . . , ℏk⊕ℏ( 􏼁≥nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊗ℏ. (29)
□

Theorem 1 . Let Zi � (ϖZi
,ωZi

) and Li � (ϖLi
,ωLi

)

(i � 1, 2, . . . , k) be two values of nPR-FSs, and η �

(η1, η2, . . . , ηk)T be a weight vector of them with 􏽐
k
i�1ηi � 1.

Ten,

(1) nPR-FWPA (Z1⊕L1, Z2⊕L2, . . . , Zk⊕Lk)≥ nPR-
FWPA (Z1 ⊗ L1, Z2 ⊗L2, . . . , Zk ⊗Lk)

(2) nPR-FWPA (Z1, Z2, . . . , Zk)⊕ nPR-FWPA (L1, L2,

. . . , Lk)≥ nPR-FWPA (Z1, Z2, . . . , Zk)⊗ nPR-FWPA
(L1, L2, . . . , Lk)

Proof. For any ℏi � (ϖℏi,ωℏi) and Li � (ϖLi
,ωLi

)

(i � 1, 2, . . . , k), we have

(1) ϖn
ℏi

+ ϖn
Li

− ϖn
ℏi
ϖn

Li
≥ 2ϖn
ℏi
ϖn

Li
− ϖn
ℏi
ϖn

Li
� ϖn
ℏi
ϖn

Li

ω1/n
ℏi

+ ω1/n
Li

− ω1/n
ℏi
ω1/n

Li
≥ 2ω1/n
ℏi
ω1/n

Li
− ω1/n
ℏi
ω1/n

Li
� ω1/n
ℏi
ω1/n

Li

that is,

(1) 􏽐
k
i�1ηi(ϖn

ℏi
+ ϖn

Li
− ϖn
ℏi
ϖn

Li
)≥􏽐

k
i�1ηiϖn

ℏi
ϖn

Li
⇒

(􏽐
k
i�1ηi(ϖn

ℏi
+ ϖn

Li
− ϖn
ℏi
ϖn

Li
))1/n ≥ (􏽐

k
i�1ηiϖn

ℏi
ϖn

Li
)1/n

(2) 􏽐
k
i�1ηi(ω1/n

ℏi
+ ω1/n

Li
− ω1/n
ℏi
ω1/n

Li
)≥􏽐

k
i�1ηiω1/n

ℏi
ω1/n

Li

⇒(􏽐
k
i�1ηi(ω1/n

ℏi
+ ω1/n

Li
− ω1/n
ℏi
ω1/n

Li
))n ≥ (􏽐

k
i�1ηiω1/n

ℏi
ω1/n
ℏ )n

Terefore, we have

nPR − FWPA ℏ1⊕L1, ℏ2⊕L2, . . . , ℏk⊕Lk( 􏼁

� 􏽘
k

i�1
ηi ϖ

n
ℏi + ϖn

Li
− ϖn
ℏiϖ

n
Li

􏼐 􏼑⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi ω

1/n
Li

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠,

nPR − FWPA ℏ1 ⊗L1, ℏ2 ⊗ L2, . . . , ℏk ⊗Lk( 􏼁

� 􏽘
k

i�1
ηiϖ

n
ℏiϖ

n
Li

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηi ω1/n
ℏi + ω1/n

Li
− ω1/n
ℏi ω

1/n
Li

􏼐 􏼑⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠.

(30)

Tus, from (1) and (2) we obtain the following
equation:

nPR − FWPA ℏ1⊕L1, ℏ2⊕L2, . . . , ℏk⊕Lk( 􏼁≥ nPR − FWPA ℏ1 ⊗ L1, ℏ2 ⊗L2, . . . , ℏk ⊗Lk( 􏼁. (31)

(2) Since,

􏽘

k

i�1
ηiϖ

n
ℏi ≥ 􏽘

k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

,

􏽘

k

i�1
ηiϖ

n
Li
≥ 􏽘

k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

,

(32)

so

􏽘

k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiϖ

n
Li
≥ 􏽘

k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

+ 􏽘
k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

,

(33)

implies that

􏽘

k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiϖ

n
Li

− 􏽘
k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

≥ 􏽘
k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

,

(34)

and hence

���
[n]

􏽰
􏽘

k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiϖ

n
Li

− 􏽘
k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

≥
���
[n]

􏽰
􏽘

k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

.

(35)

Similarly,
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􏽘

k

i�1
ηiω

1/n
ℏi + 􏽘

k

i�1
ηiω

1/n
Li

− 􏽘
k

i�1
ηiω

1/n
ℏi 􏽘

k

i�1
ηiω

1/n
Li

⎛⎝ ⎞⎠

n

≥ 􏽘
k

i�1
ηiω

1/n
ℏi 􏽘

k

i�1
ηiω

1/n
Li

⎛⎝ ⎞⎠

n

. (36)

Terefore, we have

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊕nPR − FWPA L1, L2, . . . , Lk( 􏼁

� 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠⊕ 􏽘
k

i�1
ηiϖ

n
Li

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
Li

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠

�
���
[n]

􏽰
􏽘

k

i�1
ηiϖ

n
ℏi + 􏽘

k

i�1
ηiϖ

n
Li

− 􏽘
k

i�1
ηiϖ

n
ℏi 􏽘

k

i�1
ηiϖ

n
Li

, 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

􏽘

k

i�1
ηiω

1/n
Li

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠,

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊗ nPR − FWPA L1, L2, . . . , Lk( 􏼁

� 􏽘

k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

, 􏽘

k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠⊗ 􏽘

k

i�1
ηiϖ

n
Li

⎛⎝ ⎞⎠

1/n

, 􏽘

k

i�1
ηiω

1
n
Li

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽘
k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

􏽘

k

i�1
ηiϖ

n
Li

⎛⎝ ⎞⎠

1/n

, 􏽘
k

i�1
ηiω

1/n
ℏi + 􏽘

k

i�1
ηiω

1/n
Li

− 􏽘
k

i�1
ηiω

1/n
ℏi 􏽘

k

i�1
ηiω

1/n
Li

⎛⎝ ⎞⎠

n

⎛⎝ ⎞⎠.

(37)

Tus, from (1) and (2) we obtain the following equation:

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊕nPR − FWPA L1, L2, . . . , Lk( 􏼁≥

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁⊗ nPR − FWPA L1, L2, . . . , Lk( 􏼁
(38)

□

Theorem 13. (Boundedness) Let Zi � (ϖZi
,ωZi

)(i �

1, 2, . . . , k) be a number of nPR-FSs, and
η � (η1, η2, . . . , ηk)T be a weight vector of Zi with 􏽐

k
i�1ηi � 1.

Suppose that ϖ∗Z � min1≤i≤k ϖZi
􏽮 􏽯, ϖ⋆Z � max1≤i≤k ϖZi

􏽮 􏽯, ω∗Z �

min1≤i≤k ωZi
􏽮 􏽯 and ω⋆Z � max1≤i≤k ωZi

􏽮 􏽯. Ten,

ϖ∗ℏ ,ω
⋆
ℏ( 􏼁≤nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁≤ ϖ⋆ℏ ,ω

∗
ℏ( 􏼁.

(39)

Proof. For any ℏi � (ϖℏi,ωℏi)(i � 1, 2, . . . , k), we can get
ϖ∗ℏ ≤ϖℏi ≤ϖ

⋆
ℏ and ω∗ℏ ≤ωℏi ≤ω

⋆
ℏ . Ten, the inequalities for

membership value are

ϖ∗ℏ � 􏽘

k

i�1
ηiϖ
∗n
ℏ

⎛⎝ ⎞⎠

1/n

≤ 􏽘

k

i�1
ηiϖ

n
ℏi

⎛⎝ ⎞⎠

1/n

≤ 􏽘

k

i�1
ηiϖ
⋆n
ℏ

⎛⎝ ⎞⎠

1/n

� ϖ⋆ℏ .

(40)

Similarly, for nonmembership value

ω∗ℏ � 􏽘
k

i�1
ηiω
∗(1/n)
ℏ

⎛⎝ ⎞⎠

n

≤ 􏽘
k

i�1
ηiω

1/n
ℏi

⎛⎝ ⎞⎠

n

≤ 􏽘
k

i�1
ηiω
⋆
ℏ1/n⎛⎝ ⎞⎠

n

� ω⋆ℏ .

(41)

Terefore, (ϖ∗ℏ ,ω
⋆
ℏ)≤ nPR-FWPA (ℏ1, ℏ2, . . . , ℏk)≤

(ϖ⋆ℏ ,ω
∗
ℏ). □

Theorem 14. (Monotonicity) Let Zi � (ϖZi
,ωZi

) and
Li � (ϖLi

,ωLi
)(i � 1, 2, . . . , k) be two numbers of nPR-FSs. If

ϖZi
≤ϖLi

and ωZi
≥ωLi
∀i, then

nPR − FWPA ℏ1, ℏ2, . . . , ℏk( 􏼁

≤ nPR − FWPA L1, L2, . . . , Lk( 􏼁.
(42)

Proof. Since for all i we have ϖℏi ≤ϖLi
and ωℏi ≥ωLi

, then
(􏽐

k
i�1ηiϖn

ℏi
)1/n ≤ (􏽐

k
i�1ηiϖn

Li
)1/n and (􏽐

k
i�1ηiω1/n

ℏi
)n ≥ (􏽐

k
i�1ηi

ω1/n
Li

)n, therefore nPR-FWPA (ℏ1, ℏ2, . . . , ℏk) � ((􏽐
k
i�1

ηiϖn
ℏi

)1/ n, (􏽐
k
i�1ηiω1/n

ℏi
)n)≤ ((􏽐

k
i�1ηiϖn

Li
)1/n, (􏽐

k
i�1ηiω1/n

Li
)n) �

nPR-FWPA (L1, L2, . . . , Lk). □
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Theorem 15. (Idempotency) Let Zi � (ϖZi
,ωZi

)(i �

1, 2, . . . , k) be a number of nPR-FSs such that
Zi � Z � (ϖZ,ωZ) and η � (η1, η2, . . . , ηk)T be a weight
vector of Zi with 􏽐

k
i�1ηi � 1, then nPR-FWPA (Z1,

Z2, . . . , Zk) � Z.

Proof. Since ℏi � ℏ � (ϖℏ,ωℏ)(i � 1, 2, . . . , k), then nPR-
FWPA (ℏ1, ℏ2, . . . , ℏk) � ((􏽐

k
i�1ηiϖn

ℏi
)1/n, (􏽐

k
i�1ηiω1/n

ℏi
)n) �

((􏽐
k
i�1ηiϖn

ℏ)
1/n, (􏽐

k
i�1ηiω1/n

ℏ )n) � (ϖℏ,ωℏ) � ℏ.
We introduce the score and accuracy functions of the

nPR-FS in order to rank nPR-FSs. □

Defnition 8

(1) Te score function of an nPR-FS ℏ � (ϖℏ,ωℏ) is
defned as s(ℏ) � ϖn

ℏ −
���
[n]

√
ωℏ

(2) Te accuracy function of an nPR-FS ℏ � (ϖℏ,ωℏ) is
defned as a(ℏ) � ϖn

ℏ +
���
[n]

√
ωℏ

Example 3. Consider ℏ � (0.2, 0.9) is nPR-FS, then

a(ℏ) ≈

0.992, if n � 13,

0.988, if n � 9,

0.983, if n � 6,

0.973, if n � 3,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s(ℏ) ≈

− 0.992 if n � 13,

− 0.988 if n � 9,

− 0.983 if n � 6,

− 0.957 if n � 3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

Theorem 16. Let Z � (ϖZ,ωZ) be any nPR-FS, then

(1) s(Z) ∈ [− 1, 1]

(2) a(Z) ∈ [0, 1]

Proof

(1) For any nPR-FS ℏ, we have ϖn
ℏ + ω1/n
ℏ ≤ 1. Hence,

ϖn
ℏ − ω1/n
ℏ ≤ϖ

n
ℏ ≤ 1 and ϖn

ℏ − ω1/n
ℏ ≥ − ω1/n

ℏ ≥ − 1 .
Tus, − 1≤ϖn

ℏ − ω1/n
ℏ ≤ 1, namely s(ℏ) ∈ [− 1, 1]. In

particular, if ℏ � (0, 1), then s(ℏ) � − 1 and if
ℏ � (1, 0), then s(ℏ) � 1.

(2) Te proof is obvious. □

Note 1. For any nPR-FSs ℏi � (ϖℏi,ωℏi), the comparison
technique is supposed as follows:

(1) if s(ℏ1)< s(ℏ2), then ℏ1≺ ℏ2
(2) if s(ℏ1)> s(ℏ2), then ℏ1≻ ℏ2
(3) if s(ℏ1) � s(ℏ2), then

(a) if a(ℏ1)< a(ℏ2), then ℏ1≺ ℏ2
(b) if a(ℏ1)> a(ℏ2), then ℏ1≻ ℏ2

(c) if a(ℏ1) � a(ℏ2), then ℏ1 ≈ ℏ2
In what follows, we will use an nPR-FWPA operator to

MCDM issues in order to evaluate options with nPR-fuzzy
data. Te proposed method, in general, intertwines the
following steps:

Step 1. We formulate the nPR-fuzzy decision matrix
R � (aij)m2×m1

for an MCDM problem with values of
nPR-FSs, where the elements aij(j � 1, 2, . . . , m1, i �

1, 2, . . . , m2) are the appraisals of the alternative Li ∈W

regarding the criterion Kj ∈ K

Step 2. Convert the nPR-fuzzy decision matrix R �

(aij)m2×m1
into the normalized nPR-fuzzy decision

matrix

Step 3. To compute alternative preference values with
related weights, we use the proposed nPR-FWPA
operator
Step 4. Calculate the scores and accuracy of the nPR-
FSs values obtained in Step 3
Step 5. By using Note 1, determine the best ranking
order for the alternatives and identify the best option
Step 6. End

In order to exemplify the proposedmethod, we will show
a realistic example of evaluating specifc locations using
nPR-fuzzy data.

Example 4. Every family on the planet fantasizes about
having their own home. It is assumed that a family wishes to
build their home at a specifc location. Tey go to fve
diferent places: L1, L2, L3, L4, and L5 and establish the
following fve criteria for selecting a house-building site:

Accessibility and location (K1): make an efort to learn
the location’s address as well as any other pertinent
information. Is it possible to locate the site using
Google Maps? Is it simple to get to? You will have a leg
up on the competition if you can fnd answers to
questions like these.
Access to raw resources and utility services (K2): any
construction or building project must be carried out in
an area with easy access to infrastructure and utilities in
order to be successful.Water, electricity, shoppingmall,
a good waste disposal system, and healthcare, among
other things, should all be available.
Shape and size (K3): both of these aspects must be
taken into account. Knowing the shape and size of your
home will help you fnd a layout that is ideal for you.
Te site should be large enough to accommodate future
expansion, and the shape should be even and free of
sharp corners.
Te nature of the neighborhood and security (K4): in
any residential area, the protection of lives and property
is critical. As a result, this element should not be taken
lightly. Before you start anything, conduct a thorough
investigation of the security system in place at the
location and its environs.
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Knowing the area crime rate allows you to make in-
formed decisions and take preventative measures to
safeguard yourself, your family, employees, and
property.

Te neighborhood’s nature is also highly important.
Are your neighbors pleasant? Is there a lot of toxins in
the environment? Is there any kind of contamination at
the location that could endanger people’s health?
Recognize the soil type (K5): on a given site, various
varieties of soil can be found. As a result, you must pay
close attention to the soil available on your site and
assess whether it is suitable for construction.

It is assumed that L � L1, L2, L3, L4, L5􏼈 􏼉 is a set of al-
ternatives (places), and K � K1, K2, K3, K4, K5􏼈 􏼉 is a set of

criteria for the selection of places. Table 1 shows how to build
the nPR-fuzzy set decision-making matrices, could a chance
to be demonstrated that the degree to which the area Li

fulflls those criteria Ki is ϖLi
and the level with which the

area Li dissatisfes those criteria Ki is ωLi
such that

0≤ (ϖLi
)n + ω1/n

Li
≤ 1 for ϖLi

,ωLi
∈ [0, 1]. Te weight vector of

the criteria was established by the family as follows:
η � (0.09, 0.24, 0.17, 0.31, 0.19)T. Tey place a lower priority
on K1 and a higher priority on K4.

Now, using weight vectors η � (0.09, 0.24, 0.17,

0.31, 0.19)T and n � 3, 4, 5, 10, 15, 20, we apply the nPR-
FWPA operator as follows in Table 2.

Now, as shown in Table 3, we calculate the score value of
each choice as well as their ranking.

We used diferent values of n to rank the options to
explain the efect of the parameter n on MADM end fnd-
ings. Table 3 shows the results of the ranking order of the
alternatives based on the nPR-FWPA operator. When
n � 3, 4, 5, 10, 15, 20, we obtained a rank of alternatives as
L3≻L5≻L2≻L1≻L4, here, L3 is the best choice.

 . Comparison Analysis

Tis section gives the comparison analysis of the proposed
nPR-FWPA operator under nPR-fuzzy numbers with other
well-known operators. We compared the results of nPR-
FWPA operator with SR-FWPA [16] and FFWPA operators
[23]. Te following is a summary of the fndings, which can
be found in Table 4.

Table 1: nPR-fuzzy values.

Places K1 K2 K3 K4 K5

L1 (0.29, 0.79) (0.61, 0.35) (0.55, 0.46) (0.67, 0.27) (0.63, 0.32)
L2 (0.32, 0.80) (0.65, 0.29) (0.56, 0.45) (0.69, 0.26) (0.64, 0.31)
L3 (0.37, 0.71) (0.69, 0.25) (0.58, 0.44) (0.71, 0.24) (0.65, 0.28)
L4 (0.24, 0.85) (0.43, 0.65) (0.53, 0.51) (0.61, 0.36) (0.61, 0.34)
L5 (0.35, 0.69) (0.67, 0.26) (0.57, 0.45) (0.70, 0.25) (0.65, 0.30)

Table 2: Aggregated nPR-fuzzy information matrix.

Operators L1 L2 L3 L4 L5

3PR-FWPA (0.609, 0.364) (0.630, 0.342) (0.654, 0.311) (0.542, 0.478) (0.643, 0.322)
4PR-FWPA (0.614, 0.362) (0.635, 0.340) (0.658, 0.310) (0.549, 0.476) (0.648, 0.321)
5PR-FWPA (0.617, 0.361) (0.639, 0.339) (0.662, 0.309) (0.556, 0.475) (0.651, 0.320)
10PR-FWPA (0.629, 0.360) (0.650, 0.337) (0.674, 0.307) (0.574, 0.473) (0.663, 0.318)
15PR-FWPA (0.636, 0.359) (0.657, 0.336) (0.680, 0.306) (0.584, 0.472) (0.669, 0.317)
20PR-FWPA (0.640, 0.359) (0.661, 0.336) (0.684, 0.306) (0.590, 0.472) (0.673, 0.317)

Table 3: Ranking using score value.

n s(L1) s(L2) s(L3) s(L4) s(L5) Ranking

3 0.488 − 0.450 − 0.398 − 0.623 − 0.420 L3≻L5≻L2≻L1≻L4
4 − 0.634 − 0.601 − 0.559 − 0.740 − 0.576 L3≻L5≻L2≻L1≻L4
5 − 0.726 − 0.699 − 0.664 − 0.809 − 0.679 L3≻L5≻L2≻L1≻L4
10 − 0.893 − 0.883 − 0.869 − 0.924 − 0.875 L3≻L5≻L2≻L1≻L4
15 − 0.933 − 0.928 − 0.921 − 0.951 − 0.924 L3≻L5≻L2≻L1≻L4
20 − 0.950 − 0.947 − 0.942 − 0.963 − 0.944 L3≻L5≻L2≻L1≻L4

Table 4: Comparison analysis.

SR-FWPA FFWPA
L1 (0.602, 0.367) (0.609, 0.437)
s(L1) − 0.243 0.142
L2 (0.624, 0.345) (0.630, 0.428)
s(L2) − 0.198 0.172
L3 (0.648, 0.315) (0.654, 0.389)
s(L3) − 0.141 0.221
L4 (0.532, 0.483) (0.542, 0.549)
s(L4) − 0.412 − 0.006
L5 (0.637, 0.325) (0.643, 0.390)
s(L5) − 0.164 0.207
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Te most ideal ranking order of the fve areas is
L3≻L5≻L2≻L1≻L4, if we utilize SR-fuzzy weighted power
average (SR-FWPA) and Fermatean fuzzy weighted power
average (FFWPA) operators for aggregating the distinctive
options. Along these lines, the best option is L3, which is
same as that of the suggested operator. As a result, our
proposed method is more adaptable than other methods
already in use.

6. Conclusions

In this study, a set of operations via the class of nPR-fuzzy
sets have been studied and their relationship have been il-
lustrated with the assistance of suitable examples. Ten, we
have presented a new weighted aggregated operator over
nPR-fuzzy sets and discussed their properties in details. In
addition, with one fully practical example, we have dem-
onstrated this procedure. Finally, the fndings of the nPR-
FWPA operator have been compared to the outcomes of
other well-known operators.

On the one side, the proposed type of fuzzy sets enables
us to evaluate the input data with diferent signifcance for
grades of membership and nonmembership, which is ap-
propriate for some real-life issues. In contrast, the diferent
values estimated for the nonmembership and membership
spaces require a comprehensive realization of the situations
by the experts they are in charge of to evaluate the inputs of
the case under study. Tis procedure is not required in the
previous types of extensions of IFSs inspired by the same
values of nonmembership and membership spaces.

In future works, it is possible that other uses of nPR-
fuzzy sets will be investigated, for example, construct ab-
stract structures like those given in [28]. Furthermore, over
nPR-FSs, we will try to provide several diferent types of
weighted aggregated operators and study novel MCDM
methods depending on these operators.
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