
Applications of Ontologies in Software Engineering

Hans-Jörg Happel*) and Stefan Seedorf†)

*) FZI Forschungszentrum Informatik
Forschungsgruppe Information Process Engineering (IPE)

Haid-und-Neu-Str. 10-14, 76137 Karlsruhe, Germany
happel@fzi.de

†) Universität Mannheim

Lehrstuhl für Wirtschaftinformatik III, Schloss, 68131 Mannheim, Germany
 seedorf@uni-mannheim.de

Abstract. The emerging field of semantic web technologies promises new
stimulus for Software Engineering research. However, since the underlying
concepts of the semantic web have a long tradition in the knowledge
engineering field, it is sometimes hard for software engineers to overlook the
variety of ontology-enabled approaches to Software Engineering. In this paper
we therefore present some examples of ontology applications throughout the
Software Engineering lifecycle. We discuss the advantages of ontologies in
each case and provide a framework for classifying the usage of ontologies in
Software Engineering.

1 Introduction

The communities of Software Engineering and Knowledge Engineering share a
number of common topics [1]. While Software Engineering research has been
continuously striving towards a higher degree of abstraction and emphasizing
software modeling during the last decade, the Knowledge Engineering community has
been eager to promote several modeling approaches in order to realize the vision of
the semantic web [2].

With the advent of web-based software and especially web services, the overlap
becomes even more evident. However, both communities mostly live in their own
worlds. The number of forums for discussing synergies is still relatively small (e.g.
SWESE1, SEKE2 and W3C3) although growing steadily.

The discussion on integrating Software and Knowledge Engineering approaches
tends to be academic, focusing on aspects like meta-modeling, thereby neglecting
important aspects such as applicability and providing little guidance for software
engineers. Further, both are cultivating their own understanding of central concepts,
making it difficult for members of each community to grasp the concepts of the other
one. To overcome this gap, we review potential benefits the Software Engineering

1 http://www.mel.nist.gov/msid/conferences/SWESE/
2 http://www.ksi.edu/seke/
3 http://www.w3.org/2001/sw/BestPractices/

2 Hans-Jörg Happel and Stefan Seedorf

community can achieve by applying ontologies in various stages of the development
lifecycle in this paper.

The intended contribution of this paper is threefold. We first provide a concise
description of various ontology-based approaches in Software Engineering, ordered
by their position in the Software Engineering lifecycle (chapter 2). Second, we
propose a framework which allows us to classify the different approaches (chapter 3).
Finally, we try to derive some generic advantages of ontologies in the context of
Software Engineering.

1.1 Software Engineering

Software engineering is the “application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software” [3]. Although
the claim of software development being an engineering discipline is subject to
ongoing discussions, there is no doubt that it has undergone fundamental changes
during the last three decades. This assertion holds true both for emergence of new
technology and sophistication of methodology.

In order to cope with the complexity inherent to software, there has been a constant
drive to raise the level of abstraction through modeling and higher-level programming
languages. For example, the paradigm of model-driven development proposes that the
modeling artifacts are “executable”, i.e. through automated validation and code
generation as being addressed by the OMG Model Driven Architecture (MDA) [4].
However, many problems have only partially been solved including component reuse,
composition, validation, information and application integration, software testing and
quality. Such fundamental issues are the motivation for new approaches affecting
every single aspect in Software Engineering. Within this paper, we will thus restrain
the scope of interesting applications and techniques to ontologies.

1.2 Knowledge Engineering

The engineering of knowledge-based systems is a discipline which is closely related
with Software Engineering. The term Knowledge Engineering is often associated with
the development of expert-systems, involving methodologies as well as knowledge
representation techniques. Since its early days the notion of “ontology” in computer
science has emerged from that discipline, giving rise to Ontology Engineering [5],
which we focus on in this paper.
Despite sharing the same roots, ontologies emphasize aspects such as inter-agent
communication and interoperability [6]. In computer science, the concept “ontology”
is interpreted in many different ways and concrete ontologies can vary in several
dimensions, such as degree of formality, authoritativeness or quality. As proposed by
Oberle [7], different kinds of ontologies can be classified according to purpose,
specificity and expressiveness. The first dimension ranges from application ontologies
to reference ontologies that are primarily used to reduce terminological ambiguity
among members of a community. In the specificity dimension, Oberle distinguishes
generic (upper level), core and domain ontologies. Domain ontologies are specific to
a universe of discourse, whereas generic and core ontologies meet a higher level of

Applications of Ontologies in Software Engineering 3

generality. According to the expressiveness of the formalism used, one can further
distinguish lightweight and heavyweight ontologies.

Due to the emergence of the “semantic web” vision ontologies have been attracting
much attention recently. Along with this vision, new technologies and tools have been
developed for ontology representation, machine-processing, and ontology sharing.
This makes their adoption in real-world applications much easier. While ontologies
are about to enter mainstream Software Engineering practices, their applications in
Software Engineering are manifold, which increases terminological confusion. We
therefore try to alleviate some of the confusion by providing a framework for
categorizing potential uses of ontologies in Software Engineering.

2 Ontologies in the Software Engineering Lifecycle

In this chapter, we will present concrete approaches for using ontologies in the
context of Software Engineering. The presentation will be in the order of appearance
in the Software Engineering lifecycle. Each approach will be described concerning
the general problem it tries to solve. It is followed by a short description of the
approach and the assumed advantages of ontologies.

2.1 Analysis and Design

Within software analysis and design, two main areas of application are identified:
First, requirements engineering can benefit from ontologies in terms of knowledge
representation and process support. Second, component reuse is chosen as a potential
application area during design.

2.1.1 Requirements engineering

Problem addressed: The phase of requirements engineering deals with gathering
the desired system functionality from the customers. Since the involved software
engineers are often no domain experts, they must learn about the problem domain
from the customers. A different understanding of the concepts involved may lead to
an ambiguous, incomplete specification and major rework after system
implementation. Therefore it is important to assure that all participants in the
requirements engineering phase have a shared understanding of the problem domain.
Moreover, change of requirements needs to be considered because of changing
customer’s objectives.

Description of approach: An ontology can be used for both, to describe
requirements specification documents [8, 9] and formally represent requirements
knowledge [10, 11]. In most cases, natural language is used to describe requirements,
e.g. in the form of use cases. However, it is possible to use normative language or
formal specification languages which are generally more precise and pave the way
towards the formal system specification. Because the degree of expressiveness can be
adapted to the actual needs, ontologies can cover semi-formal and structured as well
as formal representation [11].

4 Hans-Jörg Happel and Stefan Seedorf

Further, the “domain model”4 represents the understanding of the domain under
consideration, i.e. in the form of concepts, their relations and business rules. In its
simplest form, a glossary may serve as a basis for a domain model. However, it can be
formalized using a conceptual modelling language such as the UML. Moreover, the
problem domain can be described using an ontology language, with varying degrees
formalization and expressiveness.

Advantages of ontologies: In contrast to traditional knowledge-based approaches,
e.g. formal specification languages, ontologies seem to be well suited for an
evolutionary approach to the specification of requirements and domain knowledge
[11]. Moreover, ontologies can be used to support requirements management and
traceability [8, 10]. Automated validation and consistency checking are considered as
a potential benefit compared to semi-formal or informal approaches providing no
logical formalism or model theory. Finally, formal specification may be a prerequisite
to realize model-driven approaches in the design and implementation phase.

2.1.2 Component reuse

Problem addressed: Modern Software Engineering practices advise developers to

look for components that already exist when implementing functionality, since reuse
can avoid rework, save money and improve the overall system quality. Usually, this
search for reusable components takes place after the analysis phase, when the
functional requirements are settled [12]. Since most reuse repositories are limited to a
plain syntactical key-word based search, they are suffering from low precision (due to
homonyms) and low recall (due to synonyms) [13].

Description of approach: Ontologies can help here to describe the functionality of
components using a knowledge representation formalism that allows more convenient
and powerful querying [14]. One approach implementing this is the KOntoR system,
that allows to store semantic descriptions of components in a knowledge base and run
semantic queries on it (using the SPARQL language).

Advantages of ontologies: Compared to traditional approaches, ontologies
provide two advantages in this scenario. First, they help to join information that
normally resides isolated in several separate component descriptions. Second, it
provides background knowledge (e.g. about the properties of a certain software
license) that allows non-experts to query from their point of view (ask for a license
that allows to modify source code).

2.2 Implementation

A critical step in the development process is moving from analysis and design to
implementation. To this end, the way in which the problem domain is mapped to code
has always been playing a pivotal role. The question arises how ontologies can be
leveraged to narrow the gap between design and implementation. Two areas of
interest are the overlaps of software modelling with ontology languages and the run-

4 In Software Engineering, the terms domain model, ontology and CIM (Computation

Independent Model) are sometimes used to describe the same thing [cf. 20].

Applications of Ontologies in Software Engineering 5

time usage of ontologies in applications. We also look at techniques where ontologies
support coding and code documentation.

2.2.1 Integration with Software Modelling Languages

Problems addressed: The current MDA-based infrastructure provides an
architecture for creating models and metamodels, define transformations between
those models, and managing metadata. Though the semantics of a model is
structurally defined by its metamodel, the mechanisms to describe the semantics of
the domain are rather limited compared to knowledge representation languages [cf.
15]. MDA–based languages do not have a knowledge-based foundation to enable
reasoning. Other possible shortcomings include validation and automated consistency
checking. However, this is addressed by the Object Constraint Language (OCL).

Description of approach: There are several alternatives for integrating MDA-
based information representation languages and ontology languages, which are
exemplified in [16]. Whereas some regard the UML as ontology representation
language by defining direct mappings between language constructs [17], others
employ the UML as modelling syntax for ontology development [18]. In most cases,
MDA-compliant languages and RDF/OWL are regarded as two distinct technological
spaces sharing a “semantic overlap” where synergies can be realized by defining
bridges between them [19]. The Ontology Definition Metamodel (ODM) [20] is an
effort to standardize the mappings between knowledge representation and conceptual
modelling languages. It specifies a set of MOF metamodels for RDF Schema and
OWL among others, informative mappings between those languages, and profiles for
a UML-based notation.

Advantages of ontologies: Software modelling languages and methodologies can
benefit from the integration with ontology languages such as RDF and OWL in
various ways, e.g. by reducing language ambiguity, enabling validation and
automated consistency checking [cf. 15]. Ontology languages provide better support
for logical inference, integration and interoperability than MOF-based languages.
UML-based tools can be extended more easily to support the creation of domain
vocabularies and ontologies. Since ontologies promote the notion of identity, ODM
and related approaches simplify the sharing and mediation of domain models.

2.2.2 Ontology as Domain Object Model

Problems addressed: Since a domain model is initially unknown and changes
over time, a single abstraction and separation of concerns is considered feasible if not
necessary [cf. 21]. Therefore a single representation of the domain model should be
shared by all participants throughout the lifecycle to increase quality and reduce costs
[22]. The mapping of a domain model to code should therefore be automatized to
enable the dynamic use by other components and applications.

Description of approach: The programmatic access of ontologies and
manipulation of knowledge bases using ontology APIs requires special knowledge by
the developers. Therefore an intuitive approach for object-oriented developers is
desirable [cf. 23]. This can be achieved by ontology tools that generate an API from
the ontology, e.g. by mapping concepts of the ontology to classes in an object-

6 Hans-Jörg Happel and Stefan Seedorf

oriented language. The generated domain object model can then be used managing
models, inferencing, and querying. Tools supporting those features are already
available today, e.g. [23] and [24].

Advantages of ontologies: The end-to-end use of ontologies in analysis and
design as well as implementation is highly suitable for rapid application development
[22]. Not only is this an intuitive way for object-oriented developers for managing
ontologies and knowledge models, interoperability with other components or
applications is improved as well. The use of a web-based knowledge representation
format enables developers to discover sharable domain models and knowledge bases
from internal and external repositories.

2.2.3 Coding Support

Problem addressed: In object-oriented software development, the concept of

encapsulation demands the decoupling of the interface specification from its
implementation in order to make requesting applications independent from internal
modifications [25]. Nowadays, developers face a large number of frameworks and
libraries they have to access through application programming interfaces (APIs).
Thus, the documentation of APIs has become an important issue. Some IDEs like
Eclipse use this information to enhance developer productivity by providing auto-
completion of method calls. However, many operations (such as the connection to a
database) require several calls to an API. While developers could benefit from
formalized knowledge about the interrelations of method calls in the API in a similar
way to auto-completion, there is currently no support for this.

Description of approach: The SmartAPI approach [26] suggests enriching APIs
with semantic information. Since the semantics of string parameters like "username"
or "password" is only clear for users, but not for machines, they must be annotated
with the concept "database user name". The authors propose to store those annotations
via a public web service to enable a collaborative knowledge acquisition effort.
Besides the easier location of API interfaces and methods, the authors present how a
suitable sequence of method calls can be automatically generated, given a desired
goal state (like getting a database result set).

Advantages of ontologies: In the SmartAPI scenario, the main advantage of
ontologies is that they provide a globally unique identifier for concepts. While at the
programming level it is convenient to have a limited set of data "types" like strings,
that can be used for multiple purposes, an ontology enables developers to annotate
API elements with an unambiguous concept. A potential drawback is the extra-effort
for modelling the semantic layer. In the case of APIs, this is partially eased since an
initial modelling effort scales well with the estimated reuse. However, the question of
incentives for someone to semantically describe an API still remains.

2.2.4 Code Documentation

Problem addressed: The maintenance of software systems is one of the most

dominant activities in Software Engineering. However, programming languages as the
default representation of knowledge in Software Engineering are badly suited for

Applications of Ontologies in Software Engineering 7

maintenance tasks. They describe knowledge in a procedural way and are rather
geared towards the execution of code than towards the querying of knowledge [27].

Description of approach: So called "Software Information Systems" (SIS) [28,
29] were among the first approaches that applied description logics to Software
Engineering problems. Their main goal was to improve the maintainability of large
software systems by providing powerful query mechnisms. The LaSSIE system [28]
for example consists of programming-language independent descriptions of software
structures and an ontology that describes the problem domain of the software. Both
can be manually connected to allow e.g. querying for all functions dealing with a
certain domain object.

Advantages of ontologies: Here, ontologies provide a unified representation for
both problem domain and source code, thus enabling easier cross-references among
both information spheres. Moreover, it is easy to create arbitrary views on the source
code (e.g. concerning a variable). Reasoning is applied to create those views, e.g. to
find all places where a variable is accessed either directly or indirectly.

2.3 Deployment and Run-time

2.3.1 Semantic Middleware

Problem addressed: In modern three-tier architectures, the middleware layer lies in
the focus of attention. Sophisticated middleware infrastructure like application servers
shield a lot of complexity from the application developer, but creates challenging
tasks for the administrator. Issues like interdependencies between modules or legal
constraints make the management of middleware systems a cumbersome task.
Description of approach: In the context of his work in the area of semantic
management of middleware [7], Oberle developed a number of ontologies for the
formal description of concepts from component-based- and service-oriented
development5. His goal is to support system administrators in managing server
applications, e.g. by making knowledge about library dependencies explicit. The
conceptualization of the ontology was driven by two objectives: to provide a precise,
formal definition of some ambiguous terms from Software Engineering (like
"component" or "service") as well as structures supporting the formalization of
middleware knowledge (i.e. by modelling the dependencies of libraries, licenses etc.).
Advantages of ontologies: In this case, ontologies provide a mechanism to capture
knowledge about the problem domain. So the semantic tools in this approach create
an information space where knowledge, e.g. about library dependencies, can be
stored. Reasoning can then be applied to reuse this knowledge for various purposes.
Oberle provides a detailed qualitative analysis on the modelling effort for a number of
use-cases [7].

2.3.2 Business Rules

Problem addressed: In most software systems, the "business logic" - i.e. the
mechanisms implemented in software systems to comply with the business policies of

5 http://cos.ontoware.org

8 Hans-Jörg Happel and Stefan Seedorf

a company - are hard-coded in programming languages. Thus, changes to the business
logic of a software system require modifications to the source code, triggering the
normal compilation and deployment cycle. Since many companies are facing flexible,
frequently changing business environments nowadays, technologies are sought, that
support a quick propagation of new business rules into the core software systems [30].
Description of approach: (Business) rule engines are a possible solution approach
for this problem. The core idea is to untangle business logic and processing logic. The
business logic is modelled declaratively with logical statements and processed by a
rule engine. Similar to a reasoner, it applies inference algorithms to derive new facts
on a knowledge base. Most rule engines forward-chain rules in the knowledge base to
infer actions the system should take [31]. While business rule engines are available
for quite some time, they can be regarded as "ontology-based" approaches towards
Software Engineering since they run declarative knowledge on a special middleware.
Also there are standardization efforts in place to enable interoperability between rule
formalisms used by the industrial vendors and those proposed in the semantic web
community6. A better integration of rules with available description logics formalisms
[32] could also help to establish a "knowledge layer" in system architectures which is
served by a special kind of middleware (i.e. inference engines).
Advantages of ontologies: The main advantage in this approach is the declarative
specification of knowledge which tends to change frequently. Business rules that
would be hard-coded in most current systems, can be changed more easily, because
they are not buried implicitly in some source code, but explicitly stated in a formal
language that can be presented in a user friendly way for editing.

2.3.3 Semantic Web Services

Problem addressed: Offering data and services via well-defined interface
descriptions in the web is the core idea of "web services" [33]. While web services
enable developers to combine information from different sources to new services in
the first place7, the actual composition process remains troublesome. First, it is rather
difficult to find appropriate services, since most industry standards (e.g. WSDL) are
purely syntactical. Thus, also the wiring of services has to be done manually, since an
algorithm can not find out, whether a string output "credcardNo" of some service is
appropriate as a string input value for "ccNumber" for another service.
Description of approach: The basic idea of the semantic web services effort is to add
a semantic layer on top of the existing web service infrastructure [34]. Input
parameters, functionality and return values are annotated semantically, such that - at
least in theory - automatic discovery, matching and composition of service-based
workflows. Several standards and frameworks like OWL-S [35] or WSMX [36] are
currently under development.
Advantages of ontologies: In the case of semantic web services, ontologies provide
the flexibility that is sought in dynamic scenarios. They can ensure discovery and
interoperability in cases that were not anticipated by the initial developer, since
semantic descriptions can be extended in the course of time. Even mediation among

6 http://www.w3.org/2005/rules/
7 e.g. „mash-ups“ - http://www.programmableweb.com/

Applications of Ontologies in Software Engineering 9

services that have been developed independently and annotated with different
ontologies could interoperate by defining mappings that are supported by most
ontology languages.

2.4 Maintenance

2.4.1 Project Support

Problem addressed: In software maintenance workflows, several kinds of related
information exists without an explicit connection. This is problematic, since a unified
view could avoid redundant work and speed up problem solving. A bug resolution
process for example usually involves the discovery and reporting of a bug (often into
a bug tracking system), subsequent discussion inside a developer group, and finally
changes in the code that hopefully resolve the bug. While the discussion on the
mailing list and the code changes are clearly triggered by the bug report, their relation
is not necessarily explicit and often kept separately. Since it is difficult to manage
larger amounts of bugs without all existing context information, the lack of tool
support may lead to delays in bug fixing and duplicate work or discussions.

Description of approach: Dhruv [37, 38] is a semantic-web enabled prototype to
support problem-solving processes in web communities. The application scenario is
how open source communities deal with bugs in their software under development.
Ontologies help to connect the electronic communication (via forums and mailing
lists) of the developers with bug-reports and the affected areas in the source code.
Central concepts are the community (e.g. developers), their interactions and content
(e.g. emails). The knowledge is codified in three kinds of ontologies: two “content”
ontologies describe the structure of artefacts, i.e. a software ontology based on
Welty’s work and a taxonomy of software bugs. Second, an ontology of interactions
describes the communication flow among the developers. Third, a community
ontology defines several roles that are involved in the problem solving process.

Advantages of ontologies: In the Dhruv system, ontologies primarily provide a
layer to integrate data from different source into a unified semantic model. The
combined data can then be used to derive additional information that was not stated
explicitly in one of the single sources before. The author gives the example of
classifying people into roles like “bug-fixer” or “core developer” [37, p. 173].

2.4.2 Updating

Problem addressed: Agile development practices like rapid prototyping have led
to an acceleration of release cycles for software products. So, keeping one's
application zoo up-to-date is a time consuming tasks that involves checking for new
versions, downloading and installing them. Although lots of modern software
programs come with auto-update functions, there is no general mechanism to cope
with such problems in a platform independent way.

Description of approach: Dameron describes a framework for automatically
updating the Protege ontology editor and its plug-ins [39]. Therefore he uses an

10 Hans-Jörg Happel and Stefan Seedorf

extension of the DOAP ontology8 and a python script that retrieves the most recent
version number and a download URL by calling a web service that does reasoning.

Advantages of ontologies: The basic advantage of an RDF-based solution in
contrast to e.g. describing the download information in XML is extensibility. Using
an XML schema, all plug-in providers must provide their data in the specified format.
In order to stay compatible to the update script, changes would have to be done
centrally and distributed to all plug-in providers. Using an RDF ontology, every
provider is free to add or subclass concepts from the initial version without being at
risk to become incompatible.

2.4.3 Testing

Problem addressed: Software tests are an important part of quality assurance [3].
However, the writing of test cases is an expensive endeavour that does no directly
yield business value. It is also not a trivial task, since the derivation of suitable test
cases demands a certain amount of domain knowledge.

Description of idea: Ontologies could help to generate basic test cases since they
encode domain knowledge in a machine processable format. A simple example for
this would be regarding cardinality constraints. Since those constraints define
restrictions on the association of certain classes, they can be used to derive
equivalency classes for testing (see also [23]).

Advantages of ontologies: Ontologies may not be the first candidate for such a
scenario, since there are formalisms like OCL that are specialized for such tasks.
However, once domain knowledge is available in an ontology format anyway (e.g.
due to one of the various other scenarios described in this paper), it might be feasible
to reuse that knowledge.

3 Categorizing Ontologies in Software Engineering

The preceding section has presented a number of different approaches for using
ontologies in the context of Software Engineering. In this chapter, we propose a
simple classification scheme that allows a better differentiation among the various
ideas. While the ordering according to their position in the Software Engineering
lifecycle was suitable to provide a first roundtrip in the world of ontologies and
Software Engineering, we think there should be more meaningful distinctions
regarding their application. Common categorizations of ontologies rank them by their
level of abstraction and their expressivity (see sec. 1). However, when trying to
understand how ontologies can be applied in Software Engineering and what the
benefits are in each case, this distinction does not help much.

The Ontology Driven Architecture (ODA) note at W3C merely served as a starting
point to elaborate a systematic categorization of the approaches and to derive more
clearly defined acronyms [cf. 15]. Rethinking the approaches described in section 2,
and bearing in mind the basic properties of Software Engineering, we propose two
dimensions of comparison to achieve a more precise classification. First, we
distinguish the role of ontologies in the context of Software Engineering between

8 http://usefulinc.com/doap/

Applications of Ontologies in Software Engineering 11

usage at run-time and development time. Second, we look at the kind of knowledge
the ontology actually compromises. Here, we distinguish between the problem
domain that the software system tries to tackle itself, and infrastructure aspects to
make the software or its development more convenient. Putting these two dimensions
together, we end up with the matrix in figure 1. We see four basic areas there:

Ontology-driven development (ODD) subsumes the usage of ontologies at

development time that describe the problem domain itself. Prime example are the
approaches in the context of MDD, presented in sec. 2.2.1.

Ontology-enabled development (OED) also uses ontologies at development time,
but for supporting developers with their tasks. For example, component search (sec.
2.1.2) or problem-solving support (sec. 2.4.1) can be put in here.

Ontology-based architectures (OBA) use an ontology as a primary artifact at run-
time. The ontology makes up a central part of the application logic. Business rule
approaches are an example for this kind of application.

Ontology-enabled architectures (OEA) finally, leverage ontologies to provide
infrastructure support at the run-time of a software system. An example are semantic
web services, where ontologies add a semantic layer on top of the existing web
service descriptions, adding functionality for the automatic discovery, matching and
composition of service-based workflows.

ODD
(e.g. MDA)

OBA
(e.g. Business-Rules)

OED
(e.g. Knowledge

Management)

OEA
(e.g. Semantic Web

Services)

In
fra

st
ru

ct
ur

e
So

ftw
ar

e

dev-time run-time

O
nt

ol
og

y
m

od
el

s…

Roles of ontologies in the
context of software engineering

ODD
(e.g. MDA)

OBA
(e.g. Business-Rules)

OED
(e.g. Knowledge

Management)

OEA
(e.g. Semantic Web

Services)

In
fra

st
ru

ct
ur

e
So

ftw
ar

e

dev-time run-time

O
nt

ol
og

y
m

od
el

s…

Roles of ontologies in the
context of software engineering

Figure 1: Usage categories for ontologies in Software Engineering

Although the four clusters seem to be quite distinct on first glance, there may be

overlaps in some application areas. In particular, the classification scheme does not
make any statement about clustering within or between the categorization groups.
Indeed, in order to make the case for the large-scale reusability of ontologies, it is
crucial to provide evidence for a broad range of applications. So one specific ontology
might be useful in several of the described dimensions in parallel.

12 Hans-Jörg Happel and Stefan Seedorf

4 Advantages of Ontologies in Software Engineering

Since modeling ontologies is a tedious and costly task, it is always important to
demonstrate the advantages one can gain by applying ontologies in Software
Engineering. This is underlined by the fact that most of the formal foundations of
ontologies have been in place for a long time, without enjoying a wide-spread
adoption by software engineers.

So clearly the current advent of logic-based formalisms in the context of the
semantic web effort is an important factor. Activities by the W3C and others have
helped to flesh out standards like RDF or OWL that receive increasing attention by
tool builders and users. In a certain sense, the importance of standardization here can
be compared to the situation of visual modeling in Software Engineering before
UML.

Another important factor is the flexibility of ontologies. With information
integration as a major use case, ontologies are well-suited to combine information
from various sources and infer new facts based on this. Also, the flexibility allows to
extend existing ontologies very easy, thus fostering the reuse of existing work.

This is further promoted by the "web"-focus of current ontology approaches. Due
to the fact that software systems also get increasingly web-enabled and must thus
cope with data from heterogeneous sources that may not be known at development
time, software engineers seek technologies that can help in this situation. Thus,
experts in the field like Grady Booch are expecting semantic web technology to be
one of the next big things in the architecture of web-based applications [40]. Also, the
web makes it easier to share knowledge. Having URIs as globally unique identifiers,
it is easy to relate one’s ontology to someone else's conceptualization. This in turn
encourages interoperability and reuse.

Regarding more Software Engineering-specific advantages, ontologies make
domain models first order citizens. While domain models are clearly driving the core
of every software system, their importance in current Software Engineering processes
decreases after the analysis phase. The core purpose of ontologies is by definition the
formal descriptions of a domain and thus encourages a broader usage throughout the
whole Software Engineering lifecycle.

5 Conclusion

There is some discussion about how ontologies and Software Engineering fit together,
and how both communities can learn from each other. As a contribution to this
process, we presented a couple of approaches that use ontologies in a Software
Engineering context in this paper. Therefore we selected examples from the entire
Software Engineering lifecycle.

While studying the ontology applications, we found that the purpose of ontologies
as well as the real benefits are hard to grasp without a proper framework for analysis.
Thus, in section 3, we came up with an initial proposal for a better categorization,
refining the notion of "Ontology Driven Architecture" (ODA) into four categories,
that describe the usage of ontologies in different contexts. However, we think that this
is just a preliminary step towards a better understanding of possible benefits of
ontologies in Software Engineering.

Applications of Ontologies in Software Engineering 13

Those benefits are a core part of a better understanding of ontologies in Software
Engineering. Like Oberle [7] pointed out, ontologies demand additional modeling
effort, that must pay off by savings at other places. Thus, we think that one key to
promoting the advantages of ontologies is in a higher reuse of ontological knowledge
across the Software Engineering lifecycle. While this may be partially conflicting
with the presented approaches in detail, it would be interesting to perform a case
study to what extent a single domain ontology could be leveraged across some of the
presented works.

Acknowledgement

This work was supported by the BMBF-funded project WAVES under (01ISF04A)
and the Landesstiftung Baden-Würrtemberg foundation. The authors are responsible
for the content of this publication.

References

1. Rech, J and Althoff, K.-D.: Artificial Intelligence and Software Engineering: Status and Future
Trends. 18(3) (2004), , 5-11.

2. Berners-Lee, T., Hendler J. and Lassila, O.: The Semantic Web. Scientific American 284(5)
(2001)

3. Abran, A., and Moore, J.W. (Exec. Eds.), Bourque, P. and Dupuis, R. (Eds.) Guide to the
Software Engineering Body of Knowledge (2004)

4. OMG: MDA Guide. http://www.omg.org/docs/omg/03-06-01.pdf (2003)
5. Gomez-Perez, A., Fernández-Lopez, M. and Corcho, O.: Ontological Engineering. Springer

(2004)
6. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods, and Applications. Knowledge

Engineering Review 11 (1996) 93-155
7. Oberle, D.: Semantic Management of Middleware, Volume I of The Semantic Web and Beyond

Springer, New York (2006)
8. Mayank, V., Kositsyna, N., Austin, M.: Requirements Engineering and the Semantic Web, Part

II. Representation, Management, and Validation of Requirements and System-Level
Architectures. Technical Report. TR 2004-14, University of Maryland (2004)

9. Decker, B., Rech, J., Ras, E., Klein, B., Hoecht, C.: Selforganized Reuse of Software
Engineering Knowledge supported by Semantic Wikis. In: Proc. of Workshop on Semantic
Web Enabled Software Engineering (SWESE). November (2005)

10. Lin, J., Fox, M. S.; Bilgic, T.: A Requirement Ontology for Engineering Design. Enterprise
Integration Laboratory,, University of Toronto, Manuscript, September (1996)

11. Wouters, B., Deridder, D., Van Paesschen, E.: The Use of Ontologies as a Backbone for Use
Case Management. In: "European Conference on Object-Oriented Programming (ECOOP
2000), Workshop : Objects and Classifications, a natural convergence" (2000)

12. Cheesman, J. and Daniels, J.: UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley, 2000.

13. Mili, A., Milli, R.., Mittermeir, R.T.: A Survey of Software Reuse Libraries. In: Annals of
Software Engineering, vol. 5, (1998) 349-414

14. Happel, H.-J., Korthaus, A., Seedorf, S., Tomczyk, P.: KOntoR: An Ontology-enabled
Approach to Software Reuse. In: Proc. of the 18th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE), San Francisco, July (2006)

15. Tetlow, P., Pan, J., Oberle, D., Wallace E., Uschold, M., Kendall, E.: Ontology Driven
Architectures and Potential Uses of the Semantic Web in Software Engineering. W3C,
Semantic Web Best Practices and Deployment Working Group, Draft (2006)

14 Hans-Jörg Happel and Stefan Seedorf

16. Kiko, K. and Atkinson, C.: Integrating Enterprise Information Representation Languages. In:
Proc. of Int. Workshop on Vocabularies, Ontologies and Rules for The Enterprise (VORTE
2005), Enschede, The Netherlands (2005)

17. Cranefield, S.: UML and the Semantic Web. In: Proceedings of the International Semantic Web
Working Symposium (SWWS), Stanford (2001)

18. Baclawski K., Kokar, M. K., Kogut, P., Hart, L.; Smith J. E., Letkowski, J., and Emery, P.:
Extending the Unified Modeling Language for Ontology Development. Int. Journal Software
and Systems Modeling (SoSyM) 1(2) (2002) 142-156

19. Gaševic, D., Djuric, D., Devedzic, V., Damjanovic, V.: Approaching OWL and MDA Through
Technological Spaces. Workshop WS5 at the 7th International Conference on the UML,
Lisbon, Portugal (2004)

20. OMG: Ontology Definition Metamodel RFP. http://www.omg.org/dontology/, 6th Revised
Submission (2006)

21. Evans, E.: Domain-Driven Design - Tackling Complexity in the Heart of Software. Addison-
Wesley (2004)

22. Knublauch, K.: Ramblings on Agile Methodologies and Ontology-Driven Software
Development. In: Proc. of the Workshop SWESE, ISWC, Galway, Ireland (2005)

23. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E.: A Semantic Web Primer for Object-
Oriented Software Developers. W3C Working Group Note, http://www.w3.org/TR/sw-oosd-
primer/, 9 March (2006)

24. Völkel, M.: RDFReactor - From Ontologies to Programatic Data Access. In: Proc. of the Jena
User Conference 2006. HP Bristol, May (2006)

25. Schach, S. R.: Object-Oriented and Classical Software Engineering. 6. McGraw-Hill (2004)
26. Eberhart, A. and Argawal, S.: SmartAPI - Associating Ontologies and APIs for RAD. In:

Proceedings of Modellierung (2004)
27. Welty, C.A.: An Integrated Representation for Software Development and Discovery. Ph.D.

Thesis, Rensselaer Polytechnic Institute (1995)
28. Devanbu, R,. Brachman, J., Selfridge, P. G., Ballard, B. W.: LaSSIE? - A Knowledge-Based

Software Information System, ACM Comm., 34(5), (1991) 34-49.
29. Welty, C.A.: Software Engineering. In: Description Logic Handbook (2003) 373-387
30. von Halle, B.: Business Rules Applied Building Better Systems Using the Business Rules

Approach. John Wiley & Sons (2001)
31. McClintock, C. and de Sainte Marie, C.: ILOG's position on Rule Languages for

Interoperability. In: Proceedings of the W3C Workshop on Rule Languages for Interoperability.
Washington, DC, USA. (2005)

32. Motik, B., Sattler, U. and Studer, R..: Query Answering for OWL-DL with Rules, Proc. of the
3rd Int. Semantic Web Conference (ISWC 2004), Hiroshima, Japan (2004)

33. Huhns, M.H., and Singh, M.P., Service-Oriented Computing: Key Concepts and Principles,
IEEE Internet Computing, 9(1), (2005). 75-81

34. McIlraith, S. A., Son, T. C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems, 16:2,
(2001) 46-53

35. OWL Services Coalition: OWL-S Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.html (2004)

36. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In: Proc. of the Int. Conference on Web Service. Orlando (2005)

37. Ankolekar, A.: Towards a Semantic Web of Community, Content and Interactions. Ph.D.
Thesis September, CMU-HCII-05-103 (2005)

38. Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., Welty, C.: Supporting Online Problem-
solving Communities with the Semantic Web. In Proc. of the 15th Int. Conference on World
Wide Web, Edinburgh, Scotland, (2006) 575-584.

39. Dameron, O.: Keeping Modular and Platform-Independent Software Up-To-Date: Benefits
from the Semantic Web. 8th International Protege conference, Madrid, Spain (2005)

40. Booch, G.: Generations of Software Architecture. http://www-03.ibm.com/developerworks/
blogs/page/gradybooch?entry=generations_of_software_architecture. September (2005)

