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Applications of operator separation
in reflection seismology

David L. Brown*

ABSTRACT

The principle of operator separation, a generalization of
operator splitting, is applied to some problems in reflection
seismology. In particular, the examples of wave-equation
migration of seismic data in a three-dimensional medium
and accurate depth migration in a laterally varying medium
are considered in light of this theory. For the case of a strat-
ified three-dimensional medium, the standard dimensional
splitting technique used in the downward-continuation step
of the migration process can be replaced with full dimen-
sional separation. The computational implications of this
result are that the wave field array need only be transposed
once during the downward continuation rather than 2n
times, where # is the number of finite-difference steps taken
in the calculation. For the example of downward continua-
tion in a laterally varying medium, the ideas of operatar
separation can be used to split the downward continuation
operator into two parts, one that looks like the conventional
downward-continuation operator for a stratified medium,
and a second that represents the correction for the effects of
lateral variation.

INTRODUCTION

Threc-dimensionai (3-D) migration of seismic data is in princi-
ple not different from conventional two-dimensional (2-D) migra-
tion. Algorithmically it is very much the same as 2-D migration,
the only major difference being the addition of another horizontal
dimension, Instead of recording seismic data along geophone lines
in one dimension, the data are recorded on a grid extending in both
horizontal directions. Since this amounts to an order of magnitude
increase in the amount of information that must be processed, it is
extremely important that the algorithm used for the migration be
as efficient as possible. In particular, if the in-core memory size
of the data processing computer is of limited size, the major cost of
a 3-D migration will typically result from the input and output of
information to and from the permanent storage area (disc or tape).

As an example, consider the 3-D migration problem using the
wave-equation migration technique. An obvious generalization of

Claerbout’s 2-D method (Claerbout, 1976) leads to the following
formulation of the problem. The reflection seismic data are given
as, for example, zero-offset sections which come from data re-
corded along many parallel lings in the x-direction which are spaced
in the y-direction (x and y are the horizontal space coordinates cor-
responding to the in-line and crossline directions, respectively).
I call these data Py (x, y, f) and assume for the moment that they
are known everywhere for —o¢ < x, ¥y < +2¢ and recorded for al]
t 2 0. The migration process then consists of a downward con-
tinuation of the data using a one-way equation, followed by the
application of an appropriate seismic imaging principle to get the
carth image, or depth section.

Following Claerbout (1976), the fifteen-degree one-way wave
equation for a 3-D vertically stratified medium in a retarded-time
coordinate system is given by

P.‘I’ = 122_) (Px.r + P_.-'\-). {l)

where P is the state variable (pressure, for exampie), v(z) is the
velecity function for the medium, z is the depth measured down-
ward from the surface, and subscripts denote partial differentia-
tion. The retarded time variable  is related to true one-way travel-
time ¢ by

f=1 o+ f &/ (D). @
1]

Now solve equation (1) as an initial value problem in the z-direction
with initial data

P(X, Y. e = 03 'fJ = Pﬂ[xp ¥, IJ (3]

forall x, y. 1. The seismic imaging principle for this problem, using
the “*exploding reflector’* model for the seismic experiment, says
that the function

Se, v, 2) =Plx, v, z,¢ = f dr /v (L)) &)
0

calculated from the problem above is the migrated depth section.

in principle, one can solve the downward continuation problem
given by equations (1), (2), and (3) by Fourier transforming over
the variables x, y, and . The Fourier transform of P {x, ¥, 2, t) over
these variables is given by
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plke, ky, 2, @) = (2m)™*2 IJ’I P(x, y, z, e~ R~ Ry Hiot dedydy

= F{P(x, y, z, 9. (5a)

Denote the inverse Fourier transform by

Plx,y,z,0) = (211)“"'2” Ip(k,,k,,z.m}e*‘*r“"sw-wdk,dk,dm

=F'[plks, ky, 2, w)]. (5b)
Upon Fourier transformation, the one-way equation (1) becomes
—iv(z)
p.=—— (kF + K)p. ©6)
2w

The initial data (3) becomse
p(kjn ky’ z= 0’ ‘ﬂ) = po(kxs kys w) = F[PU(I| y' f)]. (?)
The solution of equations (6) and (7) is clearly

Pk, ky, 2, 0} = polhy, ky, w) exr)[ii(kf + k%]J v(t)dc].
1]
6]

The imaged depth section is then obtained by inverse Fourier trans-
forming this function p(k,, k,, z, w) according to equation (5)
and replacing ¢ by

jo "

in the integral.

Consider now how the downward continuation step of the migra-
tion problem given by equations (1), (2}, and (3) would be imple-
mented using a finite-difference technique, The initial data as
given, Py(x, y, 1), are a function of the thres variables x, y, and ¢
and can be rather unwieldy. It is therefore appropriate to use a
“*splitting”’ method to solve the differential equation (1). With
such a method, the full 3-D problem is divided up into an alternat-
ing sequence of 2-D problems, each of which is easier to solve
than the original problem and that in particular reduce the amount
of information that must be dealt with at a given time during the
computation. The splitting method is illustrated using the differ-
ential formulation of the problem. Replace equations (1) and (3)
as follows. First solve the 2-D equation

. viz) .

P, = T P (9
for 0 = z = Az for each value of y, using as initial data
P(x,y,0,1) = Polx, y. ). (10)
Then solve
P, = sz) B, (1)

for 0 = z = Az for each value of x, using as initial data the result
of the first calculation

Plx,y, 0,0 = Plx, y, Az, 1. (12)

Then repeat the process to solve fromz = Aztoz = 2Az, replac-
ing equation (10} with A(x, y, Az, 1) = B(x, y, Az, £) and equa-
tion (12) with A(x, y, Az, ) = P(x, y, 2Az, 1). This process is
repeated until the desired value of z is reached. Note that both
equations (9) and (11} are 2-D fifteen-degree one-way wave equa-
tions, so this process is an alternating sequence of swo-dimensional

downward continuation steps of in-line and crossline sections. For
data with N values of x and N values of y, and an implicit finite-
difference scheme to solve the equations, each z-step with the full
3-D equation (1) involving the solution of a banded N* by N?
system of equations has been replaced by 2N steps using a 2-D
equation, each of which involves solving a banded N by N system
of equations.

The method of splitting (sometimes referred to as the alternating
direction method) and its various advantages are well-known and
are discussed in many places throughout the literature (Richtmyer
and Morton, 1967; Mitchell, 1969). The usual implementation of
splitting methods is to take one step in the extrapolation direction
(in this case z) with one equation followed by a second step in the
z-direction with the other equation. The computational error as-
sociated with the splitting process is typically O(Az?), where
Az is the z-step being used. This typically is comparable with the
error caused by the finite-difference method itself. In the example
above, however, it turns out that the splitting procedure is exact
rather than approximate in the sense that all the computational error
results from the finite-difference method uvsed to approximate the
derivatives, while none is attributable to the splitting. This is ap-
parent if one writes the solution of the splitting problem explicitly
using Fourier transforms. The Fourier transform of the solution
of equations (9) and (10) for any depth z is

F(P(x.y, z, D] = plks, &y, 2, @) (13)
i 2

k2 [t
= polks, ky, w) exp — [i;: j v(g)dg],
0

and the Fourier transform of the solution of equations (11) and
(12) is

F{P(x, y, z, 0] = pks, ky, o) (14)

[C]

X k2 [*
= gk, ky, 2, w)exp — '2— vi{{)di |.
Q
Substituting equation (13) into equation (14), '

Plky ky, 2, 0) = polky, ky, w) exp [2;:) (ki + k‘y]J; V(UdQ] :
_ (15)
and hence by comparison with equation (8},
Plx,y, 2,0 =Plx,y, 2, ). (16)

The computational implications of equation (16) are important.
Since the solution of the full problem and the splitting problem are
identical, it is not necessary to alternate directions at each z-step.
Instead, equation (9) can be integrated numerically to the required
depth z; then one can use the resulting solution as initial data for
equation (1) and integrate it to that depth. Rather than having to
regroup the data in alternating directions twice at every z-step,
simply reorganize that data once during the computational pro-
cedure. For the downward continuation step in the migration prob-
lem, this essentially means a 2-D downward continuation of each
of the in-line sections, a regrouping of the result into cross-line
sections, and then a 2-D downward continuation of each of these
sections. Clearly the computational cost can be reduced drastically
using this method.

CONDITION FOR SEPARABILITY OF AN OPERATOR

In the simple example above, the full problem given by equa-
tions (1) and (3) has been split into two simpler problems that are
solved independently but which yield the same final result. Since
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this amounts to separating the operator on the right-hand side of
equation (1) into two parts, this procedure is called *“‘operator
separation.”” This full separation of the downward continuation
procedure info two parts cannot always be theoretically justified.
The Appendix establishes that the following easily checked con-
ditions on an opérator will allow that operator to be separated in
such a way that the corresponding problem can be separated into
two independent parts.

Consider the initial-vatue problem in z for a general lincar dif-
ferential eduation of the form

aP(x.y, 1) ( da 4 )
— = Al T T
az dx dy

J d
+Blx, vz, —,— | |[Plx.yz). (I7)
dx dy

A solution of equation (17) is sought for 0 = : = zo,
—o < %, y < o with initial data
P(x, ¥,0) = Polx, »). (18

Here A(x, y, z, #/dx, 0/dy) and B(x, ¥, z, 8/dx. 8/dy) are
linear differential operators. A scparation procedure for equations
(17) and (18) follows. First solve
dP 3
AP (19)
dz

I

for z = 0 with initial data
Plx. y, 0) = Polx, y). (20}

The solution of equations {19) and (20) at some depth zp is then
used as initial data for

;

BB, 2n

RS
I

i.e., take
Plx, ¥, 0) = Plx. ¥, zo)- (22)

If the solution at depth z,, of the problem given by cquations (17)
and (18) is identical to the solution at depth zg of the problem
given by equations (19) through (22), i.e., if Plzp) = Plzy),
then the operator A + B is separable. The condition for this is that
operators A(x, y, 7, 8/dx, 3/dy) and B(x, y, z;, /3x. 8/ay)
commute (i.e., AB = BA) for all values of z, and z, (kecping
x and ¥ fixed). In general, of course, this condition will not hold.
However, there are special problems of interest in reflection
seismology where it does hold. The example in the Introduction
is one such case.

in most cases, A and B will not commute and so A + B will
not be a separable operator. In this case, however, the problem
given by equations (17) and (18) can always be solved by using
splitting, i.e., by solving the finite-differcnced versions of equa-
tions (19) and (21) alternately at each z-step. The error in the solu-
tion at each z-step due to the splitting procedure is O(Az%),
where Az is the length of the finite-difference step in the z-direction.
This erfor is typically comparable to the error from other parts of
the computation and so gives a result that is of similar accuracy
to that which one would get using the usual finite-difference ap-
proach without splitting.

In the next two sections some further examples of applications

of the operator separability theory are discussed. While the 3-D

migration equation operator is scpardble into a pair of 2-D opera-
iors for a vertically stratified medium (demonstrated above), it

turns out that it is not scparable in a laterally inhomogencous
medium. In the next section 1 continve the discussion of 3-D
migration to consider both this problem and to find 45-degree type
separable one-way wave equations.

The usefulness of the theory for operator separation is not
limited to problems in which the number of dimensions in the
problem can be reduced. It is also useful as a theoretical tcol for
understanding how different facets of reflection seismic processing
can be separated from each other. For example, Yilmaz (1979)
used operator separation theory to motivate the finding of separable
approximations to the **double square-root equation’’ proposed by
Claerbout. The essential element of Yilmaz® prestack partial mi-
gration theory is the approximate separation of the double square-
root opeator into the conventional downward continuation operator,
a “‘stacking’’ operator, and a ‘‘deviation’* operator. The devia-
tion operator is applied to unstacked common-offsct sections to
correct partially the effects of wide offsets and dipping events.
Operator separation theory can also be applied to the theory of
migration in 2 laterally varying medium. This is discussed in the
last section.

DOWNWARD CONTINUATION IN THREE DIMENSIONS

Two difficultics may arise in separating an operator into two
parts. The first is the problem discussed above: the two parts of
the operator to be separated may not commute, Another possibility
is that the operator simply cannot be written as a sum of two opera-
tors at all. An example of the first case shows up in the downward
continuation problem in a medium in which the velocity function
varies laterally, The sduare-root dispetsion relation associated
with upward-traveling waves in a 3-D (non time-retarded) medium
is given by

b —2 vix, y, 2)°
Toviy, ) w?

where k., k., k. are the x, y, and z components, respectively, of
the wavenumber and w is the temporal frequency. I assume here
that the velocity function v depends upon all three space dimen-
sions. [This assumption can be considered valid in a WKB or
asymptotic sense. A similar approximation was made by Whitham
(1974, section 11.8) in his treatment of dispersive waves in an
inhomogeneous medium. |

A second-order Taylor expansion of the square root gives the
fifteen-degree dispersion relation

j Lxs
(kf+k,2-)] N X))

g = — |- vix, y, 2)
vix, y, 2) 2w

From this dispersion relation one can deduce the 15-degree one-
way wave equation,

b = _{[ fw N ivix, v, 2) 6_2]
: 2v(x, ¥, 2) 20 ax?

+ [ o My i]}ﬁ 25)
2vix, v, 2) 2w ay? '

which is written here in such a way as to indicatc the proposed
separation of the operator. P = P(x, y, 2) is the wave function in
the frequency domain. Equation (25} is in the form of equation
(17) with A and B given by

k2 + kIE]jI. (24)

—iw ivix.y, z) 9*
= -+ -—2’
2vix, y, 2) 2w dx
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and

—iw ivix,y, z) 3*
+ -

B= 26
2vix, v, 2) 2w Ay (26)

By inspection, one can sce that the operator A + Bis not separable
because A and B do not commute. If, however, the velocity func-
tion v depended only on the depth variable z, i.e., v = v(z), then
A and B would commute and hence the operator would be separable
into two parts each containing only one kind of derivative. This
is essentially the example given in the Introduction.

In (k,, k,, k) space the dispersion relation given by equation
(23) is [for a given location in (x, ¥, z) space] a hemisphere of
radius w/v(x, y, z). The fifteen-degree dispersion relation fequa-
tion (24)] approximates this hemisphere with a hyperboloid of
revolution. The two dispersion relations agree exactly only at
k, = k, = 0. As k, and k, increase, the approximation to the
hemisphere becomes worse. Since v Vi + k7/w is a measure of
the angle from the vertical direction at which the waves propagate
in the medium, the fifteen-degree equation approximates waves
traveling at high angles rather poorly. The large dispersion error
in the fifteen-degree equation makes it desirable to approximate
equation (23) more accurately. Dispersion relations based on
Padé rational approximations to the square-root that lead to stable
differential equations were given by Clayton and Engquist (1977).
The second rational approximation to equation (23) is

3
1= = vk} + K)o
w 4 :
k= —— | : 2n
v
-3 vi(ki + ki) w®

In order to calculate solutions to the differcntial equation cor-
responding to equation (27) at reasonable cost, it is important to
be able to split or separate the operator on the right-hand side of
equation (27) into two parts each depending only on &, or &, Un-
fortunately, because the denominator in equation (27) contains
both k, and k., this is a case where the differential equation
cannot be written in a useful separable form. However, it is pos-
sible to find dispersion relations that improve upon equation (24).
One possibility, suggested by Francis Muir (personal communica-
tion, 1977), is first te approximate equation (23) by

lke 172 2k2 142
k,=—2[(l—v2') +(1— v—z‘) —l]. (28)
v uy w

When &, = O (corresponding to waves travcling in the in-line
direction) or when k, = 0 (corresponding to waves traveling in
the cross-line direction), equation (28) is an exact approximation
to equation (23). Waves traveling at off-linc angles other than
90 degrees are not treated exactly. To find the error in this approxi-
mation, replace k, and k, in equation (28) by new variables k,
and ¢ defined by

k= Vi + k%
and
& = tan™" (ky/k,).

The variable ¢ can be identified as the off-line angle. Equation (28)

becomes
ey Vzkz 112
kz=—~—|:(l— 5 coszrb)
Vv w

V2R 2
+ (l — — sin? d:) - l]. (29)

l_"2

Clearly, equation (29) deviates the most from equation (23) at
& = 45 degrees. For this value of ¢, equation (29) becomes

w ViR
=-2|-1+2(1- : 30
k’ v[ ( 2w2) ] a

For any reasonable approximation of the square roots in equation
(28) (i.e., fifieen-degree or higher rational approximations), it is
clear from equation (30) that the resulting dispersion relation will
be at least as good as the fifteen-degree dispersion relation (24)
in its approximation to equation (23). Thus replacing the square
roots in equation (28) with the second rational approximation
given by Clayton and Engquist (1977), yields a dispersion rela-
tion in which the operator is either separable or splittable, de-
pending upon the spatial dependence of v.

The new 45-degree dispersion relation for three space dimen-
sions is therefore

3 v2k} 3 v
k=-2 l_z—m?_l"_ T4 o 1
: v I__l_vzkf 2 _i_v_z‘iki 2]’
4 w? 4 w?

3D

where the parentheses emphasize which parts are 1o be separated.
The separated differential equations for equation (31), correspond-
ing to equations (19) and (21) in the general theory, will be

1 VZ fw Siv
P,+""_‘,PJJ:=_“_P___P”’
4 w? 2v 8w
and
1 ¥2 fw Siv .
P.+——Pup=—""P— Py, 0
4 w 2v 8w

If v = v{z) then the problem is separable. If v = v(x, y, 2) then
the two equations (32) are to be used in a splitting procedure.

Another approach to finding accurate separable approximations
to the square root in equation (23) is by using least-squares ap-
proximations to the operator. This was discussed by Ristow and
Houba (£979).

ACCURATE DEPTH MIGRATION IN A
LATERALLY VARYING MEDIUM

In a fixed reference frame, the 45-degree one-way wave equa-
tion for upgoing waves in two space dimensions (x and z) is given by

v? 1 3v?
dy — 7 e Pz = = |dy — O P, {33)
4 | v 4

where v = v(x, z) and a subscripted 3 is used to represent a differ-
ential operator, e.g., d, = 8/dx, etc. |Compare with the down-
going equation given by Clayton and Engquist (1977), equation
(10).] For convenience, wrile equation (33) as

P,. (33a)
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(The interpretation of ‘‘dividing’” by a differential operator is to
operate on the equation from the left with the operator in the de-
nominator.) When equation (33) is used for migration, it is con-
ventional first to transform to a time-retarded coordinate system
in which vertically traveling waves either appear not to move or
travel at only a very small speed. (One motivation for this change
of variables is that it reduces the dispersion error due to the finite
difference approximation since that error is proportional to the
velocity at which waves are traveling.) If one changes to a retarded
time variable ¢’ that depends upon a constant or z-variable velocity
¥(2), i.e.,

=1+ f di /v (L),
0

equation (33a) becomes (dropping primes on variables)

1,
v " 4 1
P,=|————a,~<a|P. (34
Vv v
B,,-:Bu

Written in this way, eguation (34) can easily be interpreted in
terms of operator separation theory. Let A be the differential opera-
tor on the right-hand side of equation (34) and let B = —(1/¥)4,.
It is clear that A + B is the operator on the right-hand side of
equation {33a). Note also that because ¥#(z) depends only upon
the depth varjable z, the operators A and B commute. Hence time-
retardation is equivalent to separating equation (33a) into the two
equations (34) and '

._l P
vz "

and then neglecting equation (35). The general solutions of equa-
tion (35) are functions of the form

pP= f[: - J; d;,!v(;)].

If the initial data for equation (35) are a single time trace, then
integration of equation (35) from 0 to z results in time shifting
the trace by

P, = 35)

t= J; dr/v(g).

In this context, it is clear that (1/v)d, is a purely shifting operator.

Equation (34) is unfortunately not particularly convenient for
computation. Unless ¥ = v, equation (34) when written out con-
tains a triple time derivative term. A much more convenient for-
mulation splits the gperator A into two parts also. Introduce
C = (1/v — 1/¥)8,, a differential shifting operator; then P, =
{A — C)P, when written out, is

v:ix, 2) _ Yy
[au 4 axx] P: - 2 Pnr- (36)

Unfortunately, the operators C and A — C do not commute in
general. So one cannot dismiss P, = CP as being equivalent to
a time retardation and drop it altogether. Instead one can use a
splitting procedure, solving equation (36) and

-3)
Po={=-=]P (37)

alternately at each step in z. Solving equation (37) for one step in z
just amounts to shifting each trace slightly. If v = v(x, 2), then

traces at different locations in x will be shifted by different amounts.
The precedure just described is the basis for most modern accurate
depth migration procedures for laterally varying media (Judson
et al, 1980).
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APPENDIX
JUSTIFICATION OF THE SEPARABILITY CONDITION

The separability condition discussed in the text can be justified
by explicit calculation of the solutions of the various problems
involved. In this Appendix, the finite differenced versions of the
problem given by equations (17) and (18) are shown to be equiva-
lent to the finite differenced version of equations (19) through
(22), provided that the finite differenced versions of the opera-
tors A and B commute. For numerical solutions of the downward
continuation equations, this result is fully adequate.

First assume that operators A and B can be taken to be poly-
nomials of order ¢ in 3/dx and 4/dy with variable coefficients,
for example,

vt
A= 2 o,y ——0.  (A-D)
vj+vysg ax"lay™?
The operator B can be defined analogously.

Now consider finite-difference approximations to equation (17}
and discretize the problem in x and y, leaving z as a continuous
variable. Truncate the region in the x — y planeto 0 = x < X
and 0 < y = Y and introduce a computational grid which covers
this region by dividing the x-axis into N + 1 points with equal
spacing Ax = X/N and dividing the y-axis into M + | points
with equal spacing Ay = ¥/M. The result is a mesh with (¥ + 1)
(M + 1) points located at (xp.yp) = (vax, pAy)v = 0,1,...
N,pn=0,1,..., M. The function P(x, y, 2) is then approxi-
mated at the points {x,, y,) = (vAx, pAy),v=0,1,.._,N,
B =0,1,...,M. Thefunction P(x, y, 2) is then approximated
at the points (x,, y,) with the grid function P, ,{z). Approximate
the differential operators A and B using finite-differences. In
general at each point (x,, y,}, AP(x,, y.. 2)and BP(x,, y,, 2)
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are replaced by linear combinations of the values of P, ,(z)
near the point (x,, y,). This can be represented by

d 6‘
Alx y, 2 P o Ple,,y,,2)—

N—j M-k

Apxu, ¥us Py jural2)
v==j p=—k

and

8 8
B x,y,z,a— P Plx,.y,.2)—
-j M=k
>

v=—j p=—4%k

bjk(-“v' ,‘“p.' Z}Pv -j,pnl'(z}v [A_Z)

The right-hand side of equation (A-2) can be written more
compactly by introducing vector notation. Let p(z) be an
(N + 1)(M + 1)—dimensional vector with elements p;(z)
given by the relation pys+1)vep(2) = Py o (2). Then it is obvi-
ous that equation (A-2) can be replaced with

AP — A(Z)p(2)
and

BP — B(z)pl2), (A-3)

where coefficients of the (¥ + E){M + 1) by (N + 1}{M + I}
matrices A(z) and B{z) clearly depend upon the coefficients
ap(xy, Yu, 2) and by(x,, y,.. 2) in equation (A-2). Using thesc
approximations, the finite-difference scheme for solving equation
(17) can be written as

? = [A(z) + B(2)]p(2) (A4}
with initial data
pl0) = p°. (A-3)

where the elements p{ of the vector p° are given by plar+ 1sp =
Pylx,, ¥,). Equation (A-4) is a linear ordinary differential equa-
tion with matrix coefficients, and its solution can be written ex-
plicity if A(z) and B(z) are sufficiently smooth functions of z:

pa) = 2 {f (A + B{CJ]dE} PP (A-D)
=0 [}

(Gantmacher, 1959), where for convenience the notation

(Lo

is interpreted as a multiple integral, i.c.,

['[: A(;)d;]a = I; A({a)dijlfl A(L2)dLy - -

Ln-1
[ agor,.
[+]
Note that if A and B are constant matrices, equation (A—6) reduces
to the more familiar result

p(z) = p°exp {[(A + B)z]. (A-T)

Now turn to the separability question. The separation procedure
for the differential case is given by equations (19) through (22).
The finite differenced version of this is given by the following.
First solve

4
BE _ 45 (A-8)
dz

for z = 0 with initial data
pO) = p°. (A-9)

The solution of equations (A-8) and (A-9) at some depth zg is
then used as initial data for

d
‘Z{Z} = B@pQ), (A-10)
i.e., take
p0) = plzo). {A-11)

Using the formulation of equation (A—6), the solution of equa-
tions (A—8) through (A—11) is given by

B(z0) = {ZD [E’B(c)d;r}{éu UOO A(Ud{l]m}lf

(A-12)

Now consider under what conditions the solution of equations
(A-8) through (A—11) at depth zg is the same as or near the
solution .of equations {(A—4) and (A-5). Comparison of equation
(A-6) with equation (A-12) shows that p(z¢) = p(zo) only if
all the integrals involved commute. In particular, one must have

I:B dtlJ': Adgz = r Adi, " Bd(, + r Bdglrl Adl,.
0 [} 0 [ 0 0 Aot

Equation (A—13) will hold if {and only if) the matrix operators
A(z,) and B{(z,) commute for all values of their arguments z,
and z5. If the matrix operators A (z) and B (2) do commute for all
values of their arguments, then the full problem given by equa-
tions (A—4) and (A-5) and the separated problem given by equa-
tions (A—8) through (A—11) are exactly equivalent, and 1 will say
that the operator A + B is separable. One can formally replace
the matrix operators A and B with the differentiat operators A and
B in this argument and say that the differential operator A + B
is separable if the operators. A and B commute. In practice, the
commutivity of differential operators is easier to check than the
commutivity of matrix operators, and this is what was done in
some of the examples in the text.

If A and B do not commute, then A + B is not a separable
operator. In this case, it is easy to show that the problem given
by equations (17) and (18) can always be solved by using splitting,
i.e., by solving the finite-difference equations (A—8) and (A-10)
alternately at each z-step. If the length of the z-step is Az, then
the solution of equations (A-8) through (A-11) after one such
step from z to Az is

-

= -+ Az
Pz + Az) = { > [ B(g)dg] ]

roaJpo

- [1+ U :Bd{+I mAdg)

+ Uzmndz; j Bdl, +

[:+A: Bdg[:hﬂ: Adt] N J::—ﬁ: Ang:x*'( Bd;])
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2+ Az g 1+ Az s+ L
+ O(Azz)]f)(zj. (A-14) ~J Bd;f Adi, —f Adgj Bdi,
Similarly, the solution of equations (A—4) and (A-5) after a step o _ R
frﬂm Zi0z + ﬁz iS + O(&Z ] P[Z] - O(AZ ). (A"‘lﬁ)
r+ Az z+ Az
_ Hence the error in the solution at each z-step caused by the splitting
+ = |+ J Bdi + f Ad - T

Pz + 47) I:! ( - ¢ - C) procedure is O {Az2), which is typically comparable to the error

i+ Az 2+ 14 Az s from other parts of the computation.
+ (J de Bdi, + f Bd{ I Adl, To summarize, the operator A + B is separable if and only if
z z : AB = BA_ If this is the case, then using equations (A—8) through
z+Az 2+ sz 2y ' (A-11) is basically a two-step procedure. If A and B do not com-

+ I Adl J' Bdl, + f AdgL de;.)

mute, then a splitting procedure can be expected to work. This
means that equations (A—8) and (A- 10} must be solved alternately

z

at every z-step, or at least often enough so that the splitting error
3 - -
+ 0(az )] pla). (A-15) does not become unacceptably large. In many cases, a separated
problem is much cheaper to solve than a problem solved by
If p(z) = p(2), then splitting.

) r+Ax s+ Az
piz + Az) — p(z + Az) = [f Bd{j Adi,

I



