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Abstract

In this paper, we apply order-theoretic fixed point theorems and isotone selection

theorems to study quasi-equilibrium problems. Some existence theorems of solutions

to quasi-equilibrium problems are obtained on Hilbert lattices, chain-complete

lattices and chain-complete posets, respectively. In contrast to many papers on

equilibrium problems, our approach is order-theoretic and all results obtained in this

paper do not involve any topological continuity with respect to the considered

mappings.
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1 Introduction

Let X be a given set and C be a subset of X. Let T : C → C \ {∅} be a set-valued mapping.

Let f : C ×C → R be a given function. The quasi-equilibrium problem (shortly QEP) is to

find x∗ ∈ T(x∗) such that

f
(

x∗, y
)

≥  for all y ∈ T
(

x∗
)

. (.)

This problemwas introduced byNoor andOettli in []. In particular, ifT(x) = C for any x ∈

C, then the quasi-equilibrium problem is reduced to the following classical equilibrium

problem (shortly EP), which is to find x∗ ∈ C such that

f
(

x∗, y
)

≥  for all y ∈ C. (.)

EP was initially introduced by Blum and Oettli []. It is well known that EP include varia-

tional inequality problems, fixed point problems, complementarity problems, saddle point

problems and Nash equilibrium problems as special cases (see, e.g., [–]).

If there is at least one solution to QEP (EP), then we say QEP (EP) is solvable. For

studying the existence of solutions to QEP and EP, various methods have been developed,

for instance, KKM theorem, F-KKM theorem, Ekeland’s variational principles, topolog-

ical fixed point theorems, auxiliary principle and many others (see, e.g., [–]). Among

these methods, a variety of continuity or Brezis-type monotonicity conditions of f are
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commonly necessary. For instance, Cubiotti [] studies the lower semicontinuous quasi-

equilibrium problems in topological vector spaces. Al-Homidan and Ansari [] consider

the systems of generalized vector quasi-equilibrium problems on topological semilattice

spaces and establish some existence results for solutions of systems of generalized vector

quasi-equilibrium problems and their special cases, where they require the considered

mappings to be upper semicontinuous or lower semicontinuous. However, this approach

may fail when the topological continuity of f is unknown. On the other hand, we note

that Fujimoto [], Chitra and Subrahmanyam [] and Borwein and Dempster [] have

adopted an order-theoretic approach for studying the nonlinear complementarity prob-

lems, where the mappings only need to satisfy some order-preserving properties. Along

this line, Nishimura and Ok [] have extended these results to the case of (generalized)

variational inequalities on Hilbert lattices. Very recently, Li and Ok [] used the varia-

tional characterization and order-preservation properties of a generalized metric projec-

tion operator to study the (generalized) variational inequalities on Banach lattices.

Motivated and inspired by the work of Li and Ok [], Cubiotti [], Al-Homidan and

Ansari [] et al., in this paper we aim to study the quasi-equilibrium problems by using

order-theoretic methods, where we do not require f to be continuous and semicontinu-

ous. Furthermore, it is worthy tomention that some of order-theoretic methods and tech-

niques developed in variational inequality problems are not suitable for studying quasi-

equilibrium problems. Actually, the existence results for variational inequalities are based

on the fact that the solutions to variational inequalities coincide with the fixed points of

the self-correspondence πC ◦ (idX – Ŵ), where idX is the identity mapping on X and Ŵ

is the involved mapping and πC is the metric projection operator onto C. To guarantee

that πC ◦ (idX – Ŵ) has fixed points, we always need the metric projection operator to be

order-preserving. That is, the (generalized) metric projection operators play crucial roles

in dealing with the variational inequalities. Unfortunately, there is no (generalized) met-

ric projection operator in quasi-equilibrium problems. Therefore, it is necessary to pro-

vide some other techniques to circumvent this difficulty. In this paper, we use the order-

theoretic fixed point theorem and isotone selection theorems to obtain some existence

theorems for discontinuous quasi-equilibrium problems.

The rest of the present paper can be summarized as follows. Section  is devoted to

some basic concepts on posets as well as the order-preserving properties of correspon-

dences. In Section , based on the order-theoretic fixed point theorem of Nishimura and

Ok, we study the existence of solutions for quasi-equilibrium problems and equilibrium

problems on Hilbert lattices. In Section , we apply the isotone selection theorems and

the order-theoretic fixed point theorem introduced by Tarski to establish some existence

results for quasi-equilibrium problems and equilibrium problems on chain-complete lat-

tices, which are equipped with neither an algebraic structure nor a topological structure.

Furthermore, we also apply the order-theoretic fixed point theorems introduced by Li to

establish some existence results for quasi-equilibriumproblems and equilibriumproblems

on chain-complete posets.

2 Preliminaries

In this section, we recall some basic concepts aboutHilbert lattices as well as several useful

lemmas. For more details, the readers are referred to [–].
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2.1 Some concepts in poset

A poset is an ordered pair (X,�), where X is a nonempty set and � denotes the partial

order defined on X. For each x ∈ (X,�), we define x↑ = {y ∈ (X,�) : y � x} and x↓ = {y ∈

(X,�) : x� y}. In turn, for any nonempty subset S, we define S↑ =
⋃

{x↑ : x ∈ S} and S↓ =
⋃

{x↓ : x ∈ S}. We say that an element x of (X,�) is an �-upper bound for S if x � S,

that is, x � y for each y ∈ S. The notation S � x is similarly understood. We say that S is

�-bounded from above if x � S for some x ∈ (X,�) and �-bounded from below if S � x

for some x ∈ (X,�). In turn, S is said to be �-bounded if it is �-bounded from above and

below. Particularly, if x ∈ S and x is an �-upper bound for S, then we say that x is the

�-maximum in S. The �-minimum element of S is similarly defined. We say that x is the

�-maximal element of S if x ∈ S and y� x does not hold for any y ∈ S \ {x}. Similarly, x is

said to be the �-minimal element of S if x ∈ S and x� y does not hold for any y ∈ S \ {x}.

A nonempty subset S of X is said to be a�-chain in X if either x� y or y� x hold for each

x, y ∈ S.

The �-supremum of S is the �-minimum of the set of all �-upper bounds for S, and is

denoted by
∨

X S. The �-infimum of S which is denoted by
∧

X S is defined similarly. As

is conventional, we denote
∨

X{x, y} as x∨ y and
∧

X{x, y} as x∧ y for any x, y in (X,�). If

x∨ y and x ∧ y exist for every x and y in (X,�), then we say that (X,�) is a lattice, and if
∨

X S and
∧

X S exist for every nonempty�-bounded S ⊆ (X,�), then we say that (X,�) is

a Dedekind complete lattice. If Y is a nonempty subset of (X,�) which contains
∨

X{x, y}

and
∧

X{x, y} for every x, y ∈ Y , then it is said to be a �-sublattice of (X,�). In turn, if

Y contains
∨

X S and
∧

X S for every nonempty S ⊆ Y , then Y is said to be a complete

�-sublattice of (X,�).

LetA be a nonempty subset ofX,A is said to be inductive if every chain inA has an upper

bound in A. Moreover, A is said to be chain-complete if every chain C in A possesses its

supremum in A.

2.2 Order-preservation for correspondences

For any lattices (X,�X) and (Y ,�Y ), we say that a map F : X → Y is order-preserving if

x�X y implies F(x)�Y F(y) for every x, y ∈ X. In turn, if Ŵ : X → Y is a set-valued map-

ping, we say that Ŵ is upper order-preserving if x�X y implies that Ŵ(y) = ∅, or for every

y′ ∈ Ŵ(y) there is x′ ∈ Ŵ(x) such that x′ �Y y′. Upper order-reversing maps are defined

dually. Similarly, Ŵ is lower order-preserving if x �X y implies that Ŵ(x) = ∅, or for every

x′ ∈ Ŵ(x) there is y′ ∈ Ŵ(y) such that x′ �Y y′. Ŵ is order-preserving if it is both upper and

lower order-preserving. If (X,�X) and (Y ,�Y ) are subposets of a given poset (Z,�), then

we use the phrase�-preserving instead of order-preserving.Ŵ is said to be upper�-bound

if there exists y∗ ∈ Y such that
∨

Y Ŵ(x) exists and

y∗ �
∨

Y

Ŵ(x). (.)

Ŵ is said to have upper bound �-closed values if x ∈ X implies Ŵ(x) = ∅ or

∨

Y

Ŵ(x) ∈ Ŵ(x). (.)

Ŵ is said to be lower �-bound if there exists y∗ ∈ Y such that
∧

Y Ŵ(x) exists and

∧

Y

Ŵ(x)� y∗. (.)



Zhang and Wang Fixed Point Theory and Applications  ( 2015)  2015:54 Page 4 of 13

Ŵ is said to have lower bound �-closed values if x ∈ X implies Ŵ(x) = ∅ or

∧

Y

Ŵ(x) ∈ Ŵ(x). (.)

Definition . Let Ŵ : X → Y \ {∅} be a set-valued mapping. A selection for Ŵ is a single-

valued function F : X → Y such that F(x) ∈ Ŵ(x) for each x ∈ X. An isotone selection is a

selection which is order-preserving.

Lemma . (see []) Let (X,�) be a poset, and let Ŵ : X → X \ {∅} be a set-valued map-

ping. If Ŵ is upper �-preserving and has upper bound �-closed values, then the single-

valued mapping F : X → X defined by F(x) =
∨

X Ŵ(x) is an isotone selection for Ŵ.

Lemma . (see []) Let (X,�) be a poset, and let Ŵ : X → X \ {∅} be a set-valued map-

ping. IfŴ is lower�-preserving and has lower bound�-closed values, then the single-valued

mapping F : X → X defined by F(x) =
∧

X Ŵ(x) is an isotone selection for Ŵ.

2.3 Hilbert lattice and several notations

We say that (X,�) is a Hilbert lattice if X is a Hilbert space with the inner product 〈·, ·〉

and with the induced norm ‖ · ‖ and X is also a poset with the partial order � satisfying

the following conditions:

(i) (X,�) is a lattice.

(ii) The mapping αidX + z is a �-preserving self-mapping on X for every z ∈ X and

positive number α, where idX denotes the identical mapping on X .

(iii) The norm ‖ · ‖ on X is compatible with the partial order �, that is, |x|� |y| implies

‖x‖ ≥ ‖y‖, where |z| = (z∨ ) + (–z∨ ) for every z ∈ X and  denotes the origin

of X .

At the end of this section, we introduce a notation, which will be used frequently in the

following sections. Let X be a given set and let C be a subset of X. Let T : C → C \ {∅} be

a set-valued mapping. Throughout the paper, the set {x ∈ C : x ∈ T(x)} is always denoted

by E.

3 Solvability of quasi-equilibrium problems on Hilbert lattices

For studying generalized variational inequalities, Nishimura and Ok introduced the fol-

lowing order-theoretic fixed point theorem on Hilbert lattices.

Lemma . (see []) Let (X,�) be a separable Hilbert lattice and C be a weakly com-

pact and convex �-sublattice of X. Then every upper �-preserving and compact-valued

correspondence F : C → C \ {∅} has a fixed point.

Based on Lemma ., we can get an existence theorem for quasi-equilibrium problems

as follows.

Theorem . Let (X,�) be a separable Hilbert lattice, and let C be a weakly compact

convex �-sublattice of X. Let f : C × C → R be a bifunction and T : C → C \ {∅} be a

set-valued mapping. Assume that the following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.
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(ii) T is upper �-preserving and compact-valued. x⊁ C \ E for any x ∈ E.

(iii) The set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ T(x) : f (x, y) < 
}

is upper �-preserving and compact-valued.

Then QEP (.) is solvable.

Proof We claim that there exists x∗ ∈ E such that �(x∗) = ∅. Arguing by contradiction,

assume �(x) �= ∅ for all x ∈ E, then we can define a set-valued mapping � : C → C \ {∅}

by

�(x) =

⎧

⎨

⎩

�(x) if x ∈ E,

T(x) if x ∈ C \ E.

Next, we divide the rest of the proof into two steps.

Step . Show that � is upper �-preserving.

Take any x,x ∈ C with x � x and pick an arbitrary y ∈ �(x). We wish to find y ∈

�(x) such that y � y. To this end, we consider the following three cases.

Case I. If x,x ∈ E, then the upper �-preservation of � is equivalent to the upper

�-preservation of �. Thus, we only need to prove that � is upper

�-preserving. From assumption (iii), it is obvious.

Case II. If x,x ∈ C \ E, then the upper �-preservation of � is reduced to the upper

�-preservation of T . It follows immediately from assumption (ii).

Case III. If x ∈ C \ E and x ∈ E, then y ∈ �(x) is reduced to y ∈ �(x), which

implies that y ∈ T(x). Again, since T is upper �-preserving, there exists

y ∈ T(x) = �(x) such that y � y.

Furthermore, since x ⊁ C \ E for any x ∈ E, x � x does not hold for any x ∈ E and

x ∈ C \ E. Above all, from Case I, Case II and Case III, we conclude that � is upper

�-preserving on C.

Step . Prove that � has a fixed point.

Since C is a weakly compact and convex�-sublattice of X and � is upper�-preserving

and compact-valued, � has a fixed point by Lemma .. Denote this fixed point by x̄.

Noting that {x ∈ C : x ∈ �(x)} ⊆ E, we get x̄ ∈ E ∩ �(x̄), and hence we have f (x̄, x̄) < ,

which contradicts with (i). Therefore, there exists x∗ ∈ E such that �(x∗) = ∅. That is,

x∗ ∈ T(x∗) and f (x∗, y) ≥  for all y ∈ T(x∗). �

Example . It is easy to construct examples of a set-valued mapping T that satisfies

the assumption (ii) of Theorem .. For instance, take X = (R,≥) and C = [, ]. Define

T : [, ] → [,] by setting

T(x) =

⎧

⎨

⎩

[, ] if x ∈ [, ],

{} if x ∈ (, ].
(.)

It is easy to check that E = [, ] and C \ E = (, ], and obviously x≤ C \ E for every x ∈ E.
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In Theorem ., the new mapping � related to the considered mapping f is involved in

assumption (iii). It is a kind of burdensome for the applications of Theorem .. Hence,

to whittle down the nuisance caused by �, it is desirable to find some different condi-

tions only on f such that � is still upper �-preserving. Therefore, the following result is

obtained.

Theorem . Let (X,�) be a separable Hilbert lattice, and let C be a weakly compact

convex �-sublattice of X. Let f : C × C → R be a bifunction and T : C → C \ {∅} be a

set-valued mapping. Assume that the following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper �-preserving and compact-valued. x⊁ C \ E for any x ∈ E.

(iii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

Moreover, the set {y ∈ C : f (x, y) < } is closed for any x ∈ C.

Then QEP (.) is solvable.

Proof Define a set-valued mapping � : C → C by setting

�(x) =
{

y ∈ T(x) : f (x, y) < 
}

.

For applying Theorem ., we only need to prove that � is upper �-preserving and

compact-valued. In fact, take any x,x ∈ C with x � x and pick an arbitrary y ∈ �(x).

We wish to find y ∈ �(x) such that y � y.

Since y ∈ �(x), we have

y ∈ T(x) and f (x, y) < . (.)

Since T is upper�-preserving by assumption (ii), there exists y ∈ T(x) such that y � y.

Noting that x � x and that f (·, y) is order-reversing by assumption (iii), we have

f (x, y) ≥ f (x, y). (.)

Again, since y � y and f (x, ·) is order-reversing by assumption (iii), we get

f (x, y) ≥ f (x, y). (.)

Combining (.), (.) and (.), we obtain

f (x, y) < . (.)

Hence, � is upper �-preserving on C.

On the other hand, since {y ∈ C : f (x, y) < } is closed for any x ∈ C by assumption (iii)

and T(x) is a compact subset of C for any x ∈ C by assumption (ii), we conclude that �

is compact-valued. Therefore, � satisfies the assumption (iii) of Theorem ., and then

quasi-equilibrium problem (.) has a solution. �

In particular, if T(x) = C for any x ∈ C, then we can deduce the following results from

Theorem . and Theorem ..
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Corollary . Let (X,�) be a separable Hilbert lattice, and let C be a compact convex

�-sublattice of X. Let f : C ×C → R be a bifunction. Assume that the following conditions

hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) The set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

is upper �-preserving and compact-valued.

Then EP (.) is solvable.

Corollary . Let (X,�) be a separable Hilbert lattice, and let C be a compact convex

�-sublattice of X. Let f : C ×C → R be a bifunction. Assume that the following conditions

hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

Moreover, the set {y ∈ C : f (x, y) < } is compact for any x ∈ C.

Then EP (.) is solvable.

In fact, the assumption (ii) of Corollary . can be weakened as follows.

Corollary . Let (X,�) be a separable Hilbert lattice, and let C be a compact convex

�-sublattice of X. Let f : C ×C → R be a bifunction. Assume that the following conditions

hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii)′ f (·, y) is order-reversing for any y ∈ C, and the set {y ∈ C : f (x, y) < } is compact for any

x ∈ C.

Then EP (.) is solvable.

Proof Define a set-valued mapping � : C → C by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

.

For applying Theorem ., we only need to prove that � is upper �-preserving. In fact,

take any x,x ∈ C with x � x and pick an arbitrary y ∈ �(x). Since y ∈ �(x), we have

y ∈ C and f (x, y) < . Again, since f (·, y) is order-reversing, we get f (x, y) ≥ f (x, y).

Choose y = y, then y ∈ C and f (x, y) < , which implies that y ∈ �(x). Hence, � is

upper �-preserving. By Theorem ., EP (.) is solvable. �

Remark . Actually, based on the dual version of Zorn’s lemma and Lemma ., a fixed

point theorem for lower�-preserving correspondence can be obtained. Applying this new

fixed point theorem, we can explore some existence theorems for quasi-equilibrium prob-

lems and equilibrium problems under the condition of lower �-preservation.

Remark . In order to guarantee that condition (iii) in Theorems . and . holds, the

continuity is not necessary. Indeed, we can give an example as follows. Take Theorem .
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for example. Let (X,�) = (R,≥) and C = [, ] ⊆ R. Denote by D the set {(x, y) ∈ [, ] ×

[, ] : x – y≥ }. Define a mapping f : [, ]× [, ]→ R by

z = f (x, y) =

⎧

⎨

⎩



y – 


x + 


, (x, y) ∈ [, ]× [, ] \D,

y – x, (x, y) ∈D,

and define a set-valued mapping T : C → C \ {∅} by

T(x) =

⎧

⎨

⎩

[, 

], x ∈ [, 


],

{ 

}, x ∈ ( 


, ].

We can check that f and T satisfy all the conditions (including assumption (iii)) in Theo-

rem ., but f is discontinuous. Furthermore, if we take x̂ = 

, then we have

f

(




, y

)

≥  for all y ∈ T

(





)

,

which implies x̂ = 

is a solution to a quasi-equilibrium problem. Similarly, examples for

Theorem . can also be given.

4 Solvability of quasi-equilibrium problems on chain-complete lattices and

chain-complete posets

In this section, we explore several existence theorems on chain-complete lattices and

chain-complete posets, on which there is neither a topological structure nor an algebraic

structure.

Firstly, let us recall the following order-theoretic fixed point theorem, which was intro-

duced by Tarski [] in .

Lemma . (see []) Let (X,�) be a chain-complete lattice, and let F : X → X be an

order-preserving single-valued mapping. If there is x̂ ∈ X with F(x̂)� x̂, then F has a fixed

point.

Theorem . Let (X,�) be a poset and let C be a chain-complete �-sublattice of X. Let

f : C ×C → R be a bifunction and T : C → C \ {∅} be a set-valued mapping. Assume that

the following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper �-preserving and has upper bound �-closed values. x⊁ C \ E for any

x ∈ E.

(iii) The set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ T(x) : f (x, y) < 
}

is upper �-preserving and has upper bound �-closed values.

(iv) There is x̂ ∈ C \ E such that
∨

C T(x̂)� x̂, or there is x̂ ∈ E such that
∨

C �(x̂)� x̂.

Then QEP (.) is solvable.
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Proof We claim that there exists x∗ ∈ E such that �(x∗) = ∅. Arguing by contradiction,

assume �(x) �= ∅ for all x ∈ E. By the same argument as that in Theorem ., we can define

the set-valued mapping � : C → C \ {∅} and prove that � is upper �-preserving. From

assumption (ii) and assumption (iii), it follows that � is upper bound �-closed. From

Lemma ., there is an isotone selection ψ for � . From assumption (iv), there exists x̂ ∈ C

such thatψ(x̂)� x̂. SinceC is a chain-complete�-sublattice ofX, therefore, by Lemma.,

there exists x̄ in C such that x̄ = ψ(x̄) ∈ �(x̄). Since {x ∈ C : x ∈ �(x)} ⊆ E, we get x̄ ∈ E ∩

�(x̄). In particular, we have f (x̄, x̄) < , which contradicts with assumption (i). Therefore,

there exists x∗ ∈ E such that �(x∗) = ∅. That is, x∗ ∈ T(x∗) and f (x∗, y) ≥  for all y ∈

T(x∗). �

Replacing the assumption (iii) of Theorem . by some conditions on f , we can obtain

the following results.

Theorem . Let (X,�) be a poset and let C be a chain-complete �-sublattice of X. Let

f : C ×C → R be a bifunction and T : C → C \ {∅} be a set-valued mapping. Assume that

the following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper�-preserving and has upper bound�-closed values. x⊁ C \E for any x ∈ E.

(iii)′ f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

{y ∈ T(x) : f (x, y) < } is a complete �-sublattice of C for any x ∈ C.

(iv) There is x̂ ∈ C \ E such that
∨

C T(x̂)� x̂, or there is x̂ ∈ E such that
∨

C �(x̂)� x̂.

Then QEP (.) is solvable.

Proof Define a set-valued mapping � : C → C by setting

�(x) =
{

y ∈ T(x) : f (x, y) < 
}

.

We only need to prove that� satisfies the assumption (iii) of Theorem .. By the same ar-

gument as that in Theorem .,� is upper�-preserving. On the other hand, from the def-

inition of �, we have �(x)⊆ T(x) for each x ∈ C. Since {y ∈ T(x) : f (x, y) < } is a complete

�-sublattice of C for any x ∈ C, we have
∨

C{y ∈ T(x) : f (x, y) < } ∈ {y ∈ T(x) : f (x, y) < },

that is,
∨

C �(x) ∈ �(x), which implies that � has upper bound �-closed values. There-

fore,� satisfies the assumption (iii) of Theorem .. FromTheorem ., there is a solution

for quasi-equilibrium problem (.). �

If
∨

C C ∈ C and T(x) = C for each x ∈ C, then we can deduce the following existence

theorems for equilibrium problem (.) from Theorem . and Theorem ..

Corollary . Let (X,�) be a poset and let C be a chain-complete �-sublattice of X such

that
∨

C C ∈ C. Let f : C × C → R be a bifunction. Assume that the following conditions

hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) The set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

is upper �-preserving and has upper bound �-closed values.
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(iii) There is x̂ ∈ E such that
∨

C �(x̂)� x̂.

Then EP (.) is solvable.

Corollary . Let (X,�) be a poset and let C be a chain-complete �-sublattice of X such

that
∨

C C ∈ C. Let f : C × C → R be a bifunction. Assume that the following conditions

hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

{y ∈ C : f (x, y) < } is a complete �-sublattice of C for any x ∈ C.

(iii) There is x̂ ∈ C such that
∨

C{y ∈ C : f (x̂, y) < }� x̂.

Then EP (.) is solvable.

Remark . In Theorem ., Theorem ., Corollary . and Corollary . above, we al-

ways assume that T is upper�-preserving and f (·, y) is order-reversing for each y ∈ C and

f (x, ·) is order-reversing for each x ∈ C. In fact, all of these conditions are used to guaran-

tee that� is upper�-preserving, so that we can obtain an isotone selection by Lemma ..

However, it is worthy tomention that these conditions related to upper�-preservation are

sufficient. That is, for getting an isotone selection, the set-valuedmapping need not be up-

per order �-preserving or lower �-preserving. To see this, take X = (R,≥) and C = [, ].

Define a set-valued mapping Ŵ : [, ] → [,] by setting

Ŵ(x) =
{

y ∈ R : sin(x) + ≥ y≥ sin(x) + 
}

. (.)

It is easy to check that Ŵ is neither upper ≥-preserving nor lower ≥-preserving; however,

we can find an isotone selection F for Ŵ, where F is defined by setting

F(x) =



x + . (.)

Remark . We can also consider the case when T is lower �-preserving and f (x, ·) is

order-preserving for each x ∈ C and f (·, y) is order-preserving for each y ∈ C. Applying

Lemma ., we can explore some existence theorems similar to Theorem . etc.

Now we consider the quasi-equilibrium problems on chain-complete posets. To this

end, we need some order-theoretic fixed point theorems on chain-complete posets.

The following result is usually called Abian-Brown fixed point theorem, which extends

Lemma . from chain-complete lattices to chain-complete posets.

Lemma. (see []) Let (X,�) be a chain-complete poset, and let F : X → X be an order-

preserving single-valued mapping. If there is x̄ ∈ X with F(x̄)� x̄, then F has a fixed point.

By using Lemma . and the methodology given in Theorem ., we can prove the fol-

lowing result, which extends Theorem. from chain-complete lattices to chain-complete

posets.

Theorem . Let (X,�) be a poset and let C be a chain-complete subset of X. Let f : C ×

C → R be a bifunction and T : C → C \ {∅} be a set-valued mapping. Assume that the

following conditions hold:
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(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper �-preserving and has upper bound �-closed values. x⊁ C \ E for any

x ∈ E.

(iii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

{y ∈ T(x) : f (x, y) < } is a complete �-sublattice of C for any x ∈ C.

(iv) There is x̂ ∈ C \ E such that
∨

C T(x̂)� x̂, or there is x̂ ∈ E such that
∨

C{y ∈ T(x̂) : f (x̂, y) < } � x̂.

Then QEP (.) is solvable.

Remark . In a similar way, Theorem ., Corollary . and Corollary . can be ex-

tended to chain-complete posets by using Lemma ..

Very recently, Li [] proved several extensions of Lemma . from single-valued map-

pings to set-valued mappings on chain-complete posets.

Lemma . (see []) Let (X,�) be a chain-complete poset and F : X → X \ {∅} be a

set-valued mapping. Assume that:

A. F is upper order-preserving.

A. There is y in X with u� y for some u ∈ F(y).

In addition, one of the following assumptions holds:

A. SF = {z ∈ X : u� z for some u ∈ F(x)} is an inductive poset for each x ∈ X .

A′. (F(x),�) is inductive with a finite number of maximal elements for every x ∈ X .

A′′. F(x) has a maximum element for every x ∈ X .

A′′′. F(x) is a chain-complete lattice for each x ∈ X .

Then F has a fixed point.

By using conditions A, A and A in Lemma . and the methodology given in Theo-

rem ., we can obtain an existence theorem of solutions to quasi-equilibrium problems

on chain-complete posets, where the isotone selection is dropped.

Theorem . Let (X,�) be a poset and let C be a chain-complete subset of X. Let f : C ×

C → R be a bifunction and T : C → C \ {∅} be a set-valued mapping. Assume that the

following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper �-preserving and T(x) has a maximum element for every x ∈ C.

x⊁ C \ E for any x ∈ E.

(iii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C, and

f (x,
∨

C T(x)) <  for each x ∈ E.

(iv) There is y ∈ C \ E such that y� u for some u ∈ T(y), or there is y ∈ E such that y� u

for some u ∈ T(y) and f (y,u) < .

Then QEP (.) is solvable.

On the other hand, by using conditions A, A and A′′′ in Lemma . and the method-

ology given in Theorem ., we can establish another existence theorem of solutions to

quasi-equilibrium problems on chain-complete posets.
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Theorem . Let (X,�) be a poset and let C be a chain-complete subset of X. Let f : C ×

C → R be a bifunction and T : C → C \ {∅} be a set-valued mapping. Assume that the

following conditions hold:

(i) f (x,x)≥  for any (x,x) ∈ C ×C.

(ii) T is upper �-preserving and T(x) is a chain-complete sublattice of C for every

x ∈ C. x⊁ C \ E for any x ∈ E.

(iii) f (·, y) is order-reversing for any y ∈ C and f (x, ·) is order-reversing for any x ∈ C.

(iv) There is y ∈ C \ E such that y� u for some u ∈ T(y), or there is y ∈ E such that y� u

for some u ∈ T(y) and f (y,u) < .

Then QEP (.) is solvable.

Remark. Based onTheorem. andTheorem., it is easy to deduce some corollaries

for EP (.).

Remark . In the same manner, we can also consider the case when T is lower

�-preserving and f (x, ·) is order-preserving for each x ∈ C and f (·, y) is order-preserving

for each y ∈ C.
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