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Abstract

Novel approaches toward understanding the evolution of disease can lead to the discovery of biomarkers that will enable better

management of disease progression and improve prognostic evaluation. Raman spectroscopy is a promising investigative and

diagnostic tool that can assist in uncovering the molecular basis of disease and provide objective, quantifiable molecular

information for diagnosis and treatment evaluation. This technique probes molecular vibrations/rotations associated with chem-

ical bonds in a sample to obtain information on molecular structure, composition, and intermolecular interactions. Raman

scattering occurs when light interacts with a molecular vibration/rotation and a change in polarizability takes place during

molecular motion. This results in light being scattered at an optical frequency shifted (up or down) from the incident light. By

monitoring the intensity profile of the inelastically scattered light as a function of frequency, the unique spectroscopic fingerprint

of a tissue sample is obtained. Since each sample has a unique composition, the spectroscopic profile arising from Raman-active

functional groups of nucleic acids, proteins, lipids, and carbohydrates allows for the evaluation, characterization, and discrim-

ination of tissue type. This review provides an overview of the theory of Raman spectroscopy, instrumentation used for mea-

surement, and variation of Raman spectroscopic techniques for clinical applications in cancer, including detection of brain,

ovarian, breast, prostate, and pancreatic cancers and circulating tumor cells.
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1 Introduction

Noninvasive or minimally invasive in vivo tools that can pro-

vide rapid tissue assessment and/or monitor treatment thera-

pies have potential application in many fields of medicine.

Interest in clinical spectroscopy is rising due to the potential

of vibrational spectroscopic techniques for noninvasive tissue

diagnostics. Spectroscopic techniques involve the study of the

interaction matter with light. Molecules are composed of two

or more bonded atoms that are in continuous motion (be it

electronic, vibrational, rotational, or translational). Due to

the different kinds of motion and intermolecular interactions,

a molecule possesses different forms of energy that can be

probed with electromagnetic radiation to obtain information

on molecular structure and composition. A molecule can react

to incoming light via the processes of absorption and scatter-

ing. The process of absorption occurs when a material takes

up radiant energy internally. Since energy is quantized, there

are distinct energy levels in a molecule that correspond to

different amounts of rotational, vibrational, and electronic en-

ergy. If the energy of a photon matches a difference between

two energy levels in a molecule, absorption can occur causing

a transition from the lower to higher energy state. Rotational

transitions occur at low energies (microwave region of the

electromagnetic spectrum), while vibrational transitions occur

in the infrared (IR), and electronic transitions occur in the

visible and ultraviolet (UV) region of the electromagnetic

spectrum [1].
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Conversely, scattering can occur without an energy level

transition. When light, with insufficient energy to cause exci-

tation, impinges on a molecule, it can be scattered at the same

frequency as the incident light [2]. This is termed elastic scat-

tering and is typically describe by Rayleigh or Mie theory.

While most light is elastically scattered from molecules, some

light can be scattered at frequencies that differ from the inci-

dent radiation and is termed inelastic scattering. Unlike the

elastic process, inelastic scattering involves a net energy trans-

fer between the incident photons and a material [2].

Fluorescence and Raman scattering are examples of inelastic

processes.

Both Raman and infrared (IR) spectroscopy probe molec-

ular vibrations associated with chemical bonds in a sample

to obtain information on molecular structure, composition,

and intermolecular interactions. IR spectroscopy and Raman

spectroscopy are complementary techniques that differ in

their methodology to probe vibration. IR spectroscopy mon-

itors the net absorption of incident radiation by a sample in

the IR region of the electromagnetic spectrum (and depends

on a net change in dipole moment of a molecule as it vi-

brates/rotates). The wavelength of IR absorption bands is

characteristic of vibrational modes of specific bond types

in a sample, whereas Raman spectroscopy profiles vibration-

al and rotational motion of molecules that arise from an

inelastic scattering event that depends on nuclear vibrations

that create a change in polarizability of a molecule as it

vibrates/rotates. Thus, Raman spectroscopy provides intensi-

ty profiles of scattered light as a function of frequency. The

frequency difference between the incident and scattered light

is the frequency of vibration. The vibrational frequency at

which Raman bands occur is characteristic of vibrational

modes of specific bond types in a molecule, with the inten-

sity directly proportional to the concentration of molecular

constituents that give rise to the bands. Vibrations that are

Raman active may not be IR active, and vice versa, or they

may be strong in one effect and weak in the other. Due to

strong water absorbance in the IR region of the electromag-

netic spectrum, analysis of aqueous solutions or tissue with

high water content may be difficult with IR spectroscopy,

whereas the Raman water signal is weak making it an ideal

technique for in vivo tissue interrogation. Since Raman spec-

troscopy is a nondestructive, reagentless, vibrational spectro-

scopic technique, it provides rapid molecular characteriza-

tion of tissue in vivo or in vitro for biopsy, margin assess-

ment, therapeutic evaluation, or laboratory use. The spectro-

scopic profile arising from the unique composition of

Raman-active functional groups of nucleic acids, proteins,

lipids, and carbohydrates that each sample has allows for

the evaluation, characterization, and discrimination of tissue

type. Numerous experimental studies have demonstrated the

capability of Raman spectroscopy for tissue characterization

in neurosurgical application and for evaluation of breast,

prostate, ovarian, and pancreatic cancers, among others.

This review summarizes some of the Raman work to date

for pathophysiological evaluation of cancerous tissue, for

characterizing circulating tumor cells to determine their re-

lation to the primary tumor and the metastasis process, and

discusses the future of Raman spectroscopy for clinical on-

cology applications.

2 Theory of Raman spectroscopy
(spontaneous Raman scattering)

2.1 Classical theory

The Raman effect was discovered in 1928 by CV Raman

when he observed that light traveling through various liquids

scatter differently in a behavior distinct from fluorescence [3].

This inelastic molecular vibration/rotation phenomenon that

causes a change in the polarizability of a molecule occurs in

approximately 1 in 107 photon interactions with matter [4].

The polarizability of a molecule represents the ability of an

external electric field, of strength E, to induce a dipole mo-

ment, μind (or an additional dipole moment), in the molecule.

For a small field, the induced dipole moment can be expressed

as [5, 6]:

μind ¼ αE ð1Þ

and the electric field of the incident light by [5, 6]:

E ¼ E0cos 2πtν0ð Þ ð2Þ

where E0 is the field strength and ν0 is the frequency of

oscillation. For any molecular bond, the individual atoms

in a molecule are confined to specific vibrational modes.

The displacement, Q, of atoms about their equilibrium

position due to a particular vibrational mode can be de-

fined by [5, 6]:

Q ¼ Q0cos 2πtνvð Þ ð3Þ

where Q0 is the amplitude and νv is the frequency of

vibration. For small displacements (such as that of a typ-

ical diatomic molecule), polarizability can be approximat-

ed as a Taylor series expansion in normal coordinates [5,

6]:

α ¼ α0 þ
∂α

∂Q

� �

0

Q ð4Þ

The polarizability has a static term and a sinusoidal oscil-

lating term. For Raman scattering to occur, the polarizability

needs to changewith vibration, ∂α
∂Q

� �

0
≠0. Here, the subscript 0

indicates that the parameters α0 and (∂α/∂Q)0 are evaluated at
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the equilibrium position of the atoms. Substituting Eqs. 2, 3,

and 4 into Eq. 1 yields [5, 6]:

μind ¼ α0E0cos 2πtv0ð Þ

þ
∂α

∂Q

� �

0

E0Q0

2
cos 2π v0 þ vvð Þtð Þ þ cos 2π v0−vvð Þtð Þ½ �

ð5Þ

Classically, an oscillating induced dipole moment emits

radiation at the frequency of oscillation. The first term of the

equation represents an oscillating dipole that emits radiation at

the same frequency, ν0, of the incident light (Rayleigh scat-

tering). The second term of the equation represents Raman

scattering. The oscillating polarizability causes an induced

dipole moment that oscillates and emits radiation at frequen-

cies (ν0 ± νv) that differ from the incident light. The classical

picture cannot account for many aspects of Raman scattering

observed experimentally, such as the intensities of scattered

light. Quantum mechanical treatment can provide a more de-

tailed description that involves quantized energy levels and

wave functions of the molecule.

2.2 Quantum description

Atoms joined by bonds are confined spatially resulting in

molecular vibrations/rotations to occur at discrete energy

levels. For a diatomic molecule undergoing simple harmonic

motion (vibration), energy can be written as:

Ε j ¼ jþ
1

2

� �

hνv for j ¼ 1; 2; 3… ð6Þ

where νv is the frequency of a vibrational mode, h is Plank’s

constant, and j is the quantum number. A simple energy level

diagram is shown in Fig. 1. As illustrated, when light is inci-

dent on a molecule at an initial ground state, j = 0, with energy

E0, it can be prompted to a virtual energy level (very short-

lived, unobservable quantum state) and quickly return to the

initial state. Since there is no energy level transition, photons

are emitted at the same energy (frequency) as the incident light

(Rayleigh scattering). Raman scattering also involves an in-

termediate virtual energy state. In this case, there is an energy

transfer between the incident light and molecule. The Raman

emission occurs as two possible outcomes, Stokes or anti-

Stokes scattering. Stokes scattering occurs when a molecule

is initially in the ground state, j = 0, with energy E0 = (1/2) hνv
and is transitioned to a virtual energy level and then relaxes to

an excited state, j = 1, with energy E1 = (3/2) hνv [7]:

E1 ¼ final energy state of molecule ¼ E0 þ hνv ð7Þ

A Raman mode is active only if the polarizability changes

during a molecular motion (vibration/rotation). In the

quantum description, a transition electric dipole and polariz-

ability replaces the oscillating electric dipole and polarizabil-

ity. The transition moment leads to a transition between two

quantum states, i and f, only if it is nonzero [8]:

M ind i→ fð Þ ¼
∂α

∂Q

� �

0

E0∫ψiQ ψ f dQ≠0 ð8Þ

where Mind is the Raman transition moment for a diatomic

molecule, ψi and ψf are wave functions (solutions to the

time-dependent Schrodinger equation) for states i and f, α is

the polarizability operator (tensor property), 퓔0 is the ampli-

tude of the electric field, and Q are the coordinates. Since

energy is conserved, the gain in energy, hνv, by the molecule

results in an equal amount of energy, hν, being removed from

the incident photon, where hν0 is incident energy. This change

in energy is the energy of a scattered photon [7]:

energy of a scattered photon ¼ h ν0−νð Þ ¼ h ν0−νvð Þ ð9Þ

Since wavelength is inversely proportional to the frequen-

cy, radiation is emitted at longer wavelengths (lower energy)

than the incident light.

As depicted in Fig. 1, anti-Stokes scattering occurs when a

molecule is initially in an excited state prior to irradiation with

E1 = (3/2) hνv and is promoted to a virtual energy level, then

relaxes to the ground state with E0 = (1/2) hνv after scattering

[7]:

E0 ¼ final energy state of molecule ¼ E1−hνv ð10Þ

Here, energy is removed from the molecule. This corre-

sponds to photon energy, hν = hνv, being transferred to the

energy of the incident photon. The energy of a scattered pho-

ton is expressed by Eq. 10 [7]:

energy of a scattered photon ¼ h ν0 þ νvð Þ ð11Þ

Radiation is emitted at shorter wavelengths (higher energy)

than the original radiation. However, since Stokes-shifted

scatter is more intense than anti-Stokes, Stokes scatter is typ-

ically measured.

With conventional Raman spectroscopy, the effect is inde-

pendent of wavelength since no real energy states are involved

(only virtual states). This is termed nonresonance Raman.

Certain substances, when exposed to electromagnetic radiation,

can produce a strong fluorescence signal that overlaps the

Raman signal. Raman scattering and fluorescence are compet-

ing phenomena that have similar origin. With the Raman effect,

molecules are excited to a virtual energy level for a short period,

on the order of picoseconds, before a photon is emitted.

Whereas in fluorescence, incident light is absorbed by a mole-

cule and re-emitted from electronically excited states after a

resonance time on the order of nanoseconds. Here, light is typ-

ically emitted at a longer wavelength than the incident light.
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In contrast, resonance Raman spectroscopy, a variant of

conventional Raman, measures molecular vibrations in a

wavelength-dependent manner. When the wavelength of the

exciting source coincides with an electronic transition of the

molecule, a resonance effect is observed and the intensity of

some Raman-active vibrations can be increased by a factor of

102–106.

3 Instrumentation and Raman spectra

3.1 Laboratory instrument

Raman instruments built for laboratory research are typically

used in ex vivo applications. Such systems, geared toward

research and development studies, are typically constructed

to collect high-quality spectra with the ability to use different

excitation/detection wavelengths and data acquisition times to

determine and refine experimental parameters. These systems

are also used to develop and test statistical algorithms/models

for material/tissue characterization. For tissue interrogation,

the Raman spectra can be obtained at discrete points or from

an area bymapping.With spatial mapping, the laser spot scans

the sample at preset steps and a Raman spectrum is obtained at

each point. This technique can be used to render 1-D profiles,

2-D images, or 3-D volumes. Variation in spectral information

from different points on the sample can be obtained using the

intensity of a particular Raman band or by utilizing the entire

spectra. Raman imaging techniques allow visualization and

quantification of the distribution of different components in

an area of the sample.

Figure 2 shows the configuration of a typical laboratory

Raman system. Light from a laser is reflected off a long pass

edge filter (or notch filter) and is directed through lens 1 that

focuses the laser light onto the sample. Light scattered off the

sample is collected in a 180° backscatter geometry. Light col-

lected by lens 1 is directed to the edge filter which blocks the

laser light and lets only the Raman scattered light through. The

Raman scattered light is focused by lens 2 onto the entrance

slit of the spectrometer. Light entering through the slit is col-

limated by mirror M1 and directed onto the grating of the

spectrometer. The grating disperses the light focused bymirror

M2 into images of the entrance slit on the charge-coupled

device (CCD).

3.2 Raman probe

A small footprint high-resolution system that enables rapid

measurement is desired for in vivo clinical application.

Typically, Raman fiber optic probe is employed to allow ac-

cess to organs. The smaller footprint can translate to lower

resolution or smaller spectral range of measurement compared

to a laboratory research-grade instrument. Lower resolution

means information may be lost and spectral features may not

be differentiated. Shorter measurement times can translate to a

lower signal-to-noise ratio. However, advancements in instru-

mentation that improve sensitivity while reducing size and

cost and strategies to promote signal enhancement are under
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development that will increase the feasibility of Raman spec-

troscopy for clinical use.

Figure 3 shows a schematic of a Raman probe. Light from

the laser transverses through an optical fiber and through a

laser line cleanup filter that is internal to the probe. This filter

suppresses unwanted signals including those that can arise

from the fiber itself. The laser light is then focused onto the

sample with an internal lens (or assembly of lenses).

Backscattered light is collected via the lens and directed

through an edge filter (internal in the probe) that allows only

the Raman signal to pass though. The Raman scattered light is

then coupled into a second fiber or assumedly of fibers that

connect to the spectrometer at the slit.

3.3 The Raman spectra

A Raman spectrum is obtained by plotting the intensity of

scattered light as a function of frequency. By convention, the

frequency of scattered light is converted to Raman shifts, the

difference in frequency between the incident and scattered

light (usually in units of wavenumbers (cm−1)). Because en-

ergy levels are quantized, Raman scattering occurs at discrete

wavelengths that correspond to the energy level transition.

Since each type of sample has a distinctive chemical compo-

sition and molecular structure, a characteristic spectral finger-

print of the sample is obtained.

Figure 4 shows the Raman spectra of surgically excised

brain tissue in the spectral region of 400–1800 cm−1 deemed

by histopathology as normal (gray matter and white matter),

tumor (GBM), infiltrating tumor, and necrosis. It is evident

that the spectroscopic profile of each tissue type is unique and

can provide a basis for characterization and differentiation.

Raman spectra are complex in nature and often contain

broad peaks due to an ensemble effect with contributions aris-

ing from all the molecules present in the sample.

Characteristic Raman peaks that correspond to the vibration/

rotation of functional groups of atoms in the Fig. 4 sample are

as follows: (1) in the region between 1760 and 1500 cm−1

arise from C=O stretching vibrations (amide I band) with con-

tributions of water, proteins (C=C), nucleic acids, and lipids

(C=C stretch); (2) bands in the region between 1500 and

1400 cm−1 are due to C–H, CH2, and CH3 vibrations; and

(3) in the region between 1400 and 1200 cm−1 arise from C–

N stretching and N–H bending (amide III band) with

contributions from proteins (CH3CH2 wagging, twisting,

bending), polysaccharides, lipids (CH3CH2 twisting, wag-

ging, bending), and nucleic acids. (4) The region between

1200 and 800 cm−1 has contributions from nucleic acids,

lipids (C–C, C–O stretching), proteins (C–C, C–N stretching),

and C–O stretching of carbohydrates, and (5) the region be-

tween 800 and 600 cm−1 has vibrations associated with nucle-

otide conformation, cholesterol, and phosphodiesters. The

peak location of an isolated functional group is typically

known. However, the actual peak location of a functional

group in a molecule may differ (shift) from the isolated case

because of interactions and bonding with its neighbors [9].

3.4 Analysis of spectroscopic data

Continued advancements in analysis methodologies are para-

mount in biomedical Raman spectroscopy. There are a variety

of methods used to correlate Raman spectroscopic data with

tissue type for diagnostic evaluation. Methods that use dis-

crete Raman bands to distinguish and discriminate between

tissue types have been widely used to develop statistical

models or classification algorithms. Alternatively, whole spec-

trum analyses usingmachine learning techniques are also used

for tissue discrimination. Whether discrete bands or whole

spectra are used to develop automated tissue classification

schemes, algorithms need to be robust and have low classifi-

cation error. There are several factors that can affect the result

of many analysis methods such as spectral preprocessing.

Various interferents can hamper the interpretation of Raman

spectra of biological samples such as fluorescence or other

additive features that contribute to the baseline noise in the

raw spectra. Preprocessing the raw data helps eliminate un-

wanted signals and enhance Raman spectral features. Two

basic preprocessing steps are typically required to achieve
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reproducible qualitative and quantitative data: (1) baseline

corrections to remove spectral contributions due to fluores-

cence and (2) a normalization procedure to remove focusing

effects and effects that can arise from laser intensity fluctua-

tions. Since preprocessed spectra are typically analyzed, these

methodologies are important to consider.

4 Variations of Raman spectroscopy

Since spontaneous Raman scattering is weak, many tech-

niques have been developed to improve the signal-to-noise

ratio. Table 1 identifies several of these methods that deviate

from standard Raman spectroscopy and include the challenges

to incorporating them into a diagnostic or intraoperative sur-

gical tool.

5 Raman spectroscopy for clinical application

5.1 Neurosurgery

In 2017, there was an estimate of over 23,000 cases of brain

and other nervous system cancers in the USA with a 70%

mortality rate [28]. According to the most recent data

(2010–2014) from the Central Brain Tumor Registry of the

United States (CBTRUS), brain and central nervous system

cancers were the fifth most common cause of death for ages

15–39 [29]. Glioblastomas, grade IV according to the World

Health Organization (WHO), accounted for 14.9% of brain

and CNS tumors and 47.1% of malignant tumors with a 4-

year survival rate of 7.1% [29]. Petrecca et al. analyzed 20

patients and found that in 17 patients the tumor recurred only

at the resection margin; thus, complete tumor resection is cru-

cial for patient longevity [30]. Stummer et al. found that sur-

vival for patients with no residual tumor was, on average,

23.6 months; for patients with residual tumors < 1.5 cm sur-

vival was, on average, 16.9 months; and patients with residual

tumors > 1.5 cm survival was, on average, 13.9 months [31].

This finding underlies the importance of maximum tumor re-

section during surgery. One of the characteristics of glioblas-

tomas is that it grows in a diffuse manner beyond the primary

tumor location. Current image modalities used in presurgical

imaging, MRI, do not capture the diffuse nature of glioblas-

tomas. MRI imaging can suffer from brain shift between

presurgical pictures and intrasurgery due to gravity,

intrasurgical deformation, tumor resection, brain swelling,

and cerebrospinal fluid [32, 33]. Raman spectroscopy is a

potential modality that can identify the margins of the tumor

intraoperatively.

The majority of research into using RS for brain tumor

assessment has been done using standard RS [33–45]. Kast

et al. and Kalkanis et al. [35, 40] demonstrated RS’s ability to

distinguish between white matter, gray matter, glioblastoma,

and necrosis. Kast et al. created images from frozen sections

of brain tissue samples using Raman peak intensities at 1004,

1300:1344, and 1660 cm−1which are indicative of protein and

lipid content. Raman spectra were acquired on five frozen

section tissues (one normal, one necrotic, one GBM, and

two infiltrating glioma) with an inVia Raman microscope

(Renishaw) using an excitation wavelength of 785 nm. The

sections were mapped in their entirety using a 300-μm2 step

size. Smaller regions of interest were also mapped using a

25-μm step size, with each step corresponding to a discrete

Raman spectrum. For each Raman image, the pixels were

comprised of data from the selected Raman features. Each

peak (or peak ratio) was assigned a color: red (1004 cm−1),

green (1300:1344 cm−1), or blue (1660 cm−1). The colored

images allow interpretation of boundaries between gray mat-

ter, white matter, and diseased tissue that corresponded with

the findings from adjacent hematoxylin and eosin-stained sec-

tions. Performing leave-one-out discriminant function analy-

sis using the three Raman features provided more than 90%

classification accuracy [35]. Kalkanis et al. used discriminant

functional analysis to distinguish normal tissue, necrosis, and

glioblastoma. The Raman spectra from 95 regions from 40

frozen tissue sections were acquired with an inVia Raman

microscope (Renishaw) using an excitation wavelength of

785 nm. The spectra were split into a test set, a validation

set, and a secondary validation set of tissue with regions con-

taining freeze artifacts. Discriminant function analysis showed

99.6, 97.8, and 77.5% accuracy in distinguishing tissue types

in the training, validation, and validation with freeze artifacts

datasets, respectively. Decreased classification in the freeze

artifacts group was due to tissue preparation damage [40].

Jermyn et al. demonstrated that a handheld RS probe could

detect cancer cells intraoperatively that could not be detected

by T1-contrast-enhanced and T2-weighted MRI [34]. The gli-

omas were detected with 93% sensitivity and specificity of

91% [34]. The handheld fiber optic probe (EmVision LLC,

FL, USA) was connected to a 785-nm laser (Innovative

Photonic Solutions, NH, USA) and a high-resolution charge-

coupled device spectroscopic detector (ANDOR Technology,

Belfast, UK). The probe was placed in direct contact with the

brain at the resection cavity margin for each measurement,

with a 0.2-s acquisition time. A supervised machine learning

boosted-trees classification algorithm that utilizes all spectral

data was used to distinguish samples containing invasive can-

cer cells versus normal brain. The use of a handheld RS probe

that can be used intraoperatively is a significant advance and

has been used in several studies to successfully identify can-

cerous cells [33, 34, 37].

Recently, Desroches et al. used a RS needle biopsy system

to ensure cells are collected from an area that is dense enough

with cancer cells to provide accurate biopsy information, with

proof of concept demonstrated during surgery on a pig [45].
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Table 1 Variations of Raman spectroscopy [10–27]

Surface enhanced Raman spectroscopy (SERS)

Method SERS employs metallic nanostructures, typically gold, silver, or platinum as a substrate.

Electromagnetic enhancement is considered the dominant contributor to most SERS

processes [10, 11]. This involves the interaction of surface plasmons (generated by

incident light) on metallic nanostructures with Raman-active molecules. Light from a

laser beam excites surface plasmons (collective oscillations of conduction electrons) in the

metal. Resonant interaction between the incoming laser light and surface plasmons leads

to an enhanced electric field (whose magnitude may be many orders stronger than that of

the incident light) in areas around the metallic nanostructures. The enhanced field created

at the surface of the nanostructures is localized to a region of a few nanometers from the

surface. Molecules nearby or absorbed on the metallic substrate experience the enhanced

field, which subsequently can lead to an order of magnitude increase in signal strength of

Raman scattered light [10, 12].

Advantage over standard Raman Significant enhancement of Raman signal is reported by a factor of 105 to 1010.

Disadvantage for intraoperative use Requires additional steps during surgery such as adding a nanoprobe molecule to the tissue

of interest for enhancement [10], SERS tag must be biocompatible, and Raman

measurement must be in close proximity to tag. The analysis is confined to tens of

nanometers from the nanoparticle or probe. The variability of the nanoparticles creates

nonreproducible results.

Tip enhanced Raman spectroscopy (TERS)

Method TERS achieves an analogous signal enhancement by focusing incident light onto a

nanometer-scale metal coated tip of a scanning probe microscopy (SPM) cantilever. Tips

are typically a Si or Si3N4 base coated by a thin evaporation deposit of Ag or Au [13],

though protected TiNx tips have shown potential as a cheaper andmore durable alternative

for aqueous solutions [14] The gap distance between the tip and the substrate is precisely

regulated by the SPM controller allowing for subnanometer spatial resolution. Various

SPM technologies, including atomic force microscopy (AFM), scanning tunneling mi-

croscopy (STM), and scanning nearfield optical microscopy (SNOM) [13, 15], may be

used concurrently with an inverted Raman spectroscopy geometry to obtain coincident

SERS spectra and SPM images [13]. TERS provides a unique opportunity to assign

spectral characteristics to topographical locations and correlate to mechanical properties.

Advantage over standard Raman As with SERS, significant enhancement of Raman signal is reported by a factor of 1010 [13].

Raman spectra obtained may be mapped to the substrate SPM image to facilitate

identification of spectral peaks.

Disadvantage for intraoperative use Due to its inverted optical geometry, traditional TERS techniques require the incident light to

be focused though the bottom of the substrate onto the point of the SPM tip.

Consequently, these techniques can only interrogate nearly clear or extremely thin

substrates. To address this, side, top, and parabolic illumination configurations have been

developed to interrogate opaque samples from above without disturbing the SPM

functionality. However, these alternative geometries require excitation illumination to be

applied off-axis creating an elliptical focal spot. This induces a larger focal surface area

and stronger far field background noise resulting in lower SNR compared to traditional

bottom illumination [17]. SPM also requires robust sample preparation and data inter-

pretation sensitive to ambient conditions making it unsuitable for the surgical suite [16].

Resonance Raman scattering (RRS)

Method Signal enhancement with resonance Raman is achieved when the frequency of incident

radiation coincides with the frequency of an electronic transition of a molecule. This

provides energy to excite electrons to a higher electronic state. This technique can

selectively augment signals affiliated with chromophores and other large conjugated

molecules. Even in a complex sample with numerous vibrational modes, RR

spectroscopy allows one to look at relatively few vibrational modes at a time. This can

reduce the complexity of the spectrum to allow for easier identification. However, RRS

often suffers from fluorescence background, which can obscure the Raman signals but

may be avoided using short (deep UV) wavelengths [18].

Advantage over standard Raman Increased signal strength is reported by a factor of 102 to 106.

Disadvantage for intraoperative use RRS provides more limited/selective molecular information. Nonresonance-enhanced bands

may seemingly disappear under the intensity of resonance-enhanced spectral peaks.

Requires a tunable laser to selectively isolate the contributions from different chromo-

phores. Carotenoids show enhancement in the visible region of the spectra, while DNA is

enhanced in the UV region. UV laser sources can cause cellular damage. Fluorescence
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Table 1 (continued)

backgrounds can be significant due to excitation coinciding with UV–visible absorption

[18].

Surface enhanced resonance Raman scattering (SERRS)

Method SERRS signal enhancement is due to a combined effect of SERS and RRS. SERS is

achieved when molecules are in contact (or in close vicinity) with nanostructures that

support surface plasmon resonance (SPR). The Raman signal is enhanced due to an

increase of the EM field at/near the surface of the nanostructures due to the interaction of

light with the substrate. The Raman signal is further amplified by tuning the excitation

source (laser) to match an internal electronic transition of the adsorbed molecule [19].

Advantage over standard Raman Increased signal strength is reported by a factor 1013 and 1015 [19].

Disadvantage for intraoperative use Nanoprobe molecules (SERS nanoparticle) need to be added the tissue of interest [10]. For

in vivo application, the SERS tags must be biocompatible. Another disadvantage is that

only materials in close proximity to the tag will be subjected to measurement. The

variability of the nanoparticles creates nonreproducible results. Resonance enhancement

provides limited/selective molecular information. This feature has limited benefit de-

pending on the application.

Spatially offset Raman spectroscopy (SORS)

Method Traditional Raman spectral acquisition of tissue is typically obtained using a 180°

backscatter geometry and is limited to near-surface measurements within the first few

hundred microns of the surface. Spatially offset Raman spectroscopy (SORS) enables

measurements from subsurface layers in diffusely scattering media [20] and information

as deep as 4 mm into the sample [21]. As opposed to traditional Raman, where laser

illumination and collection are from the same area of the sample, SORS involves

collecting the scattered light from a point that is laterally offset from the laser illumination.

For a two-layered sample, twomeasurements are required to recover the Raman spectra of

the individual layers. One spectrum is typically taken at zero offset, while the other is

taken at nonzero offset. For this case, a scaled subtraction of the two spectra may be

sufficient to recover the spectrum of the sublayer. For a multilayered system, more so-

phisticated methods may need to be employed. Clinical applications of this technique can

be extended to bone [21] and breast tumor margin evaluation [22].

Advantage over standard Raman Using an offset collection point allows data to be collected from deeper within the area of

interest, up to 4 mm was demonstrated [21]. By comparison, standard Raman only

penetrates a few hundred micrometers. Reduces tissue fluorescence.

Disadvantage for intraoperative use Interrogation and collection offset of at least 3.5 mm are recommended, tumor thickness

detection limitation of 2 mm (breast tissue) [22]; complex hardware requirements.

Transmission Raman spectroscopy (TRS)

Method TRS is considered a form of SORS, with collection and illumination points being on

opposite sides of the sample. Unlike SORS, it is unable to provide the signatures of

individual layers within the sample. Instead, it provides information on the entire sample

volume.

Advantage over standard Raman Unlike standard Raman spectroscopy, TRS has the potential to collect data from deeper

within an area of interest.

Disadvantage for intraoperative use For tissue interrogation, the coupling of laser radiation into deep tissue layers is hindered by

losses of laser radiation at the surface of the sample from scattering as well as the diffuse

nature of photon propagation through tissue [23]. However, by employing a dielectric

filter on the surface of the tissue, Stone et al. detected Raman signals from depths of up to

2.7 cm within a breast phantom made up of porcine tissues [23].

Coherent anti-Stokes Raman scattering (CARS)

Method CARS is a 3rd-order nonlinear process that typically employs picosecond pulsed lasers.

With this technique, a pump laser at a frequency ωp, a probe at a frequency ωpr, and a

Stokes laser at a frequency ωs interact with a sample via a wave mixing process. Here, the

probe beam is commonly at the same frequency as the pump [24]. When the frequency

difference between the pump and Stokes beam matches the frequency of a vibrational

transition of a molecule, a resonantly enhanced anti-Stokes signal is generated at a fre-

quency ωas = 2ωp − ωs [24]. CARS is typically employed for video-rate imaging of single

Raman bands, with most studies focusing on the CH–/OH–stretch region of the spectra for

tissue analysis (2500–3500 cm−1). Narrow laser bandwidth, speed of laser tuning rates,

and nonresonant background interference limit this technique to species with high oscil-

lator density and uniquely isolated Raman peaks [25]. This prevents access to Raman

biomarkers in the fingerprint region (500–1800 cm−1) of the spectra [25].
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Following pig surgery, a different system was used intraoper-

atively during human glioma surgery to verify that it could

detect cancer tissue in biopsy locations [45]. A 671-nm spec-

trum stabilized near-infrared laser (Laser Quantum, Inc) was

used for Raman excitation with spectra collected at 0.5 s ac-

quisition time. Using high wavenumber Raman spectroscopy,

dense cancer with > 60% cancer cells was detected in situ

during surgery with a sensitivity and specificity of 80 and

90%, respectively. The support vector machine (SVM) tech-

nique was used for RS tissue classification using 141 features

of the spectra. Leave-one-out cross-validation was used to

determine the classification accuracy, sensitivity, and specific-

ity. These studies suggest that RS can be used prior to surgery

to ensure the biopsy is taken from the correct area and intra-

operatively to detect cancerous cells more effectively than

current modalities.

Another type of RS being investigated for use during brain

surgery is surface-enhanced Raman scattering (SERS)

[46–50]. Much of this research is still being completed in

animal models due to the requirement of nanoparticles to en-

hance the surface for RS. Of note, Kircher et al. used a

trimodality ofMRI, photoacoustic imaging, and SERS inmice

to get whole-brain tumor location prior to surgery and during

surgery [47]. They measured the Raman signal with a custom-

ized Ramanmicroscope (inVia, Renishaw) using an excitation

wavelength of 785 nm. Magnetic resonance imaging–

photoacoustic imaging–Raman imaging nanoparticles

(MPRs) were injected intravenously into glioblastoma-

bearing mice. TheMPR is a gold-silica–based SERS nanopar-

ticle coated with Gd3+ ions. The MPRs accumulated and were

retained by the tumors, with no MPR accumulation in the

surrounding healthy tissue. The MPRs were detected by all

threemodalitieswith at least picomolar sensitivity both in vitro

and in living mice. Prior to surgery, nanoparticles were visible

through the skin and skull of mice to a depth of about 2–5 mm

[47]. SERS was used during tumor resection [47]. Residual

blood-borne Gd3+ was removed by renal function.

Additionally, Karabeber et al. used a handheld Raman

probe to detect gold-silica SERS nanoparticles in glioblasto-

ma tumors grown in mice [50]. The particles were intrave-

nously injected into the mice and allowed to circulate for

24 h to ensure that they accumulated in the tumors. Mouse

brainswere then harvested and fixed in 4% paraformaldehyde.

Tumors were then resected with and without Raman guidance.

Table 1 (continued)

Multiplex techniques have been developed to simultaneously excite multiple Raman

transitions providing a more complete vibrational picture than found with the single

frequency method. With broadband CARS, the pump pulse has a narrow bandwidth and

defines the spectral resolution, whereas the Stokes pulse is spectrally broad (usually in the

femtosecond regime). Multiple Raman transitions within the bandwidth of the Stokes

pulse are excited and are probed. This method allows the entire spectrum of excited states

to be obtained at once and has been extended in the fingerprint region of the spectra to

allow imaging of biological tissue.

Advantage over standard Raman Background fluorescence does not interfere with the sample and the signal is 4 orders of

magnitude stronger than standard Raman [24].

Disadvantage for intraoperative use Requires tunable pulsed lasers to probe different molecules in the sample. Difficult to

effectively couple and synchronize the lasers into a handheld or portable intraoperative

device.

Stimulated Raman scattering (SRS)

Method Stimulated Raman scattering typically uses 2 ps pulsed lasers (a pump beam at frequency ωp

and a Stokes beam at frequency ωs) that coincide on the sample. By tuning the frequency

difference between the pump and Stokes beams to match the frequency of a molecular

vibration, ωvib = ωp −ωs, stimulated excitation of the vibrational transition occurs [26].

This nonlinear process causes an intensity loss in the pump beam and an intensity gain in

the Stokes beam [26]. By modulating one of the beams, e.g., the Stokes beam, and

measuring the signal of the pump beam at the frequency of modulation, the intensity loss

of the pump beam due to excitation of molecular vibrations can be distinguished from

noise to generate high-speed images of a selected Raman band (vibrational transition).

While both CARS and SRS occur simultaneously, CARS detects radiation at a new

optical frequency, while SRS measures the intensity gain/loss signal of the excitation

beams [26, 27].

Advantage over standard Raman Greater signal strength of approximately 4 orders of magnitude.

Disadvantage for intraoperative use Coherent techniques such as CARS and SRS allow much more rapid image acquisition than

afforded by spontaneous Raman imaging techniques. However, CARS and SERS

systems are larger and more complex setups that are difficult to transition to an

intraoperative environment. They require tunable pulsed lasers to probe different

molecules in the sample, and it may be difficult to effectively couple and synchronize the

lasers into a handheld or portable intraoperative device.
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Image guidance with a MiniRam Raman handheld scanner

(B&W TEK, Inc., Newark, DE) using a 785-nm excitation

laser and 1–2-s long acquisition times was cross-validated

with a conventional Raman microscope. The conventional

static system was a customized benchtop inVia Raman micro-

scope (Renishaw) equipped with a 785-nm laser as the exci-

tation source with an integration time of 2 s. Both handheld

and static SERS image-guided resections were more accurate

than resection using white light visualization alone.

Correlation with histology showed that SERS nanoparticles

accurately outlined the extent of the tumor. Although the

Raman scanner cannot acquire the entire SERS images, as

with the static system (which takes minutes to hours to map

a sample), it has important advantages in that the form factor is

conducive for operating room use, it provides near real-time

scanning, and it can probe areas of the operative bed due to

variable tile angles. The authors demonstrated the handheld

probe was able to detect microscopic foci of cancer in the

resection bed that were not seen on static SERS images [50].

Although SERS is not as mature as standard RS, it still has

considerable potential to be used to detect tumor margins.

Surface-enhanced resonant Raman spectroscopy (SERRS)

is another variety of Raman being used to image brain tumors

[51–53]. Much like SERS, the research is currently being

conducted in animal models, as it requires the use of nanopar-

ticles. Of note, Huang et al. found that the SERRS signal was

orders of magnitude higher than nonresonant SERS and is

capable of imaging just a few cells [52]. In this study, GBM-

bearing mice were intravenously injected with integrin-

targeted RGD SERRS nanoparticles. Raman imaging of

paraffin-embedded coronal brain sections was accomplished

with an inVia Raman microscope (Renishaw) using an exci-

tation wavelength of 785 nm. Integrin targeting was shown to

be highly specific to tumor but not normal tissue and enabled

visualization of the extent of tumor and the diffuse margin of

the main tumor. This also included areas distinct from the

main tumor, tracks of migrating cells of two to three cells in

diameter and isolated distant tumor cell clusters of less than

five cells [52].

Coherent anti-Stokes Raman spectroscopy (CARS) is an

alternative type of Raman being investigated to make images

of brain tumors. Most studies are being conducted in murine

models, but these have recently been extended to human tissue

[54–60]. Galli et al. conducted CARS on excised human tissue

samples after 5-aminolaevulinic acid (5-ALA) was preopera-

tively administered. The investigators found that 5-ALA did

not interfere with CARS [57]. The fluorescence of 5-ALA-

induced protoporphyrin IX was used to identify tumorous

tissue. Using it as a reference, CARS images were generated

with the signal at a wavenumber of 2850 cm−1, which is used

to address the distribution of lipids inside tissue. By combin-

ing CARS with two-photon excited fluorescence (TPEF) and

second harmonic generation (SHG), detailed images of tissue

with structures such as extracellular matrix, blood vessels, and

cell bodies were produced. The cell morphology in the CARS

images was useful for tumor recognition, and the chemical

contrast provided by CARS allowed localization of infiltrating

tumor cells in fresh tissue samples [57]. Romeike et al. also

combined CARS at wavenumber 2850 cm−1 with TPEF to

produce detailed images of human brain biopsy specimens

that had been cryogenically frozen [58]. The images demon-

strate cytological and architectural features that may allow

tumor typing and grading [58]. They noted that for CARS to

advance, it requires miniaturization.

Finally, stimulated Raman spectroscopy (SRS) is a further

category of Raman being researched to identify brain tumors

[61–65]. Ji et al. used biopsies from adult and pediatric pa-

tients to detect tumor infiltration with 97.5% sensitivity and

98.5% specificity with a generalized additive model (GAM)

for the classifier [62]. In this method, a Stokes beam

(1064 nm) was combined with a tunable pump beam (650–

1000 nm) from an optical parametric oscillator that was fo-

cused on the sample via a laser scanning microscope. The

energy difference between the pump and Stokes beams was

tuned to specific molecular vibrations, which cause an inten-

sity loss in the pump beam, that are detectable with the aid of a

lock-in amplifier. Raman frequencies of 2845 (lipids) cm−1

and 2930 (protein) cm−1 were chosen for two-color (green,

blue) SRS imaging for each 300 × 300 μm2 field of view

(FOV). Using quantitative measurements of tissue cellularity,

axonal density, and protein/lipid ratio in SRS images, they

derived a classifier capable of detecting tumor infiltration

[62]. Hollon et al. also used fresh tissue from pediatric patients

with classification algorithm accuracy of 93.8% on cross-

validated data on normal versus lesional tissue and 89.4%

accuracy on cross-validated data for low-grade versus high-

grade tumors [63]. SRS images were generated with a clinical

fiber-laser–based SRS microscope. Raman frequencies of

2845 (lipids) cm−1 and 2930 (protein) cm−1 were chosen for

two-color (green, blue) 400 × 400-μm2 SRS images. These

images allow neuropathologists to diagnose the tissue with

92–96% accuracy. The image features were then used to de-

velop a random forest machine learning model for automated

classification [63]. Lu et al. profiled 41 specimens resected

from 12 patients with a range of brain tumors. SRS Raman

imaging data were correlated with the current clinical gold

standard of histopathology and were shown to capture many

essential diagnostic hallmarks for glioma classification.

Interestingly, in fresh tumor samples, Lu et al. detected struc-

tures that were not evident in the H&E stains, such as abun-

dant intracellular lipid droplets within the glioma cells, colla-

gen deposition in gliosarcoma, and irregularity in the disrup-

t ion of myelinated fibers in areas infi l t rated by

oligodendroglioma cells [64].

Lastly, progress is being made in making SRS more porta-

ble and practical for the surgical suite. Orringer et al.
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demonstrated SRS microscopy in the operating room using a

portable fiber-laser–based microscope and unprocessed spec-

imens from 101 neurosurgical patients [65]. Histologic images

of fresh, unstained surgical specimens were created with the

clinical SRS microscope. The all fiber-based system had a

790-nm pump beam and a tunable Stokes beam over the entire

tuning range from 1010 to 1040 nm. While for clinical imple-

mentation an all fiber system is desired, the relative intensity

of noise intrinsic to fiber lasers can vastly degrade SRS image

quality. To address this, the authors developed a noise cancel-

ation scheme to improve the signal-to-noise ratio by 25-fold.

Images were created by mapping two biologically significant

Raman shifts: 2845 cm−1, which corresponds to CH2 bonds in

lipids, and 2930 cm−1, which corresponds to CH3 bonds in

proteins and DNA. To produce simulated Raman histology

(SRH) images, FOVs are acquired at a speed of 2 s per frame

in a mosaic pattern, stitched, and recolored. A subtracted

CH3–CH2 image was assigned to a blue channel and a CH2

image was assigned to the green channel. Using SRH images

generated by this system, pathologists diagnosed lesional

from nonlesional areas with 98% accuracy and glial from

nonglial tumors with 100% accuracy [65]. The authors

employed a machine learning process called a multilayer

perceptron (MLP) for diagnostic prediction. The diagnostic

capacity for classifying individual FOVs as lesional or

nonlesional was 94.1% specificity and 94.5% sensitivity,

and glial from nonglial specimens were differentiated with

90% accuracy [65]. With this advance, SRS is now a promis-

ing technology for identifying tumor margins in brain cancer.

Neuronavigation techniques and brain tumor assessment can

benefit from the addition of Raman spectroscopy systems dur-

ing surgery.

5.2 Ovarian cancer

Ovarian cancer is the fifth leading cause of cancer among

women. In 2018, the estimated number of women that will

receive a new diagnosis of ovarian cancer in the USA is about

22,240 with 14,070 estimated deaths [66]. Advances in iden-

tifying precursor lesions to ovarian cancer may enhance the

ability to detect early-stage disease. The 5-year relative sur-

vival rate for women treated for cancer at stages IA and IB is

92%. However, only 15% of all ovarian cancers are found at

this early stage [67]. Scientists at the ovarian cancer SPORE at

Brigham and Women’s Hospital have found evidence that a

majority of serous cancers originate in the fimbria of the

fallopian tube rather than on the ovarian surface [68].

5.2.1 Raman spectroscopy of ovarian cancer tissues

The authors did a preliminary investigation on excised

fallopian tubes to identify spectral biomarkers that distinguish

cancer from normal tissue. Fresh tissue samples from surgical

resection were used to generate immunohistochemical profiles

and Raman spectra of the inner wall of fallopian tubes from

normal tissue and from malignant carcinomas. The Raman

spectra were acquired with an inVia Raman microscope

(Renishaw) using an excitation wavelength of 785 nm.

Several spectral biomarkers (indicative of protein and lipid

changes) were relevant in distinguishing between healthy

fallopian tube, malignant ovary, and omental metastasis. The

Raman bands were located at wavenumbers of 718, 1004,

1090, 1247, 1321, 1340, 1440, and 1660 cm−1. These corre-

spond to: (a) C–N vibrations of membrane phospholipid head;

(b) symmetric ring breathing mode of phenylalanine; (c) sym-

metric phosphate stretching vibrations of DNA/C–N

stretching of protein; (d) amide III vibrations; (e) CH3CH2

twisting in collagen/amide III vibrations; (f) nucleic acids/

collagen; (g) CH2, CH3 deformations of lipids and collagen;

and (h) amide I vibrations, respectively. These spectroscopic

biomarkers may provide insight on the evolution of the

disease.

Another study used fresh ovarian tissue samples from

biopsy or surgical resection in saline solution from the

Department of Obstetrics and Gynecology, Manipal

University, Manipal [69]. In this study, a 785-nm diode

laser was used for excitation and the Raman signals were

detected by an HR 320 spectrograph. A holographic filter

and a notch filter were used to filter out unwanted lines

from the excitation source and reject Rayleigh scattering

from the Raman signals, respectively. The scientists ob-

tained 72 certified spectra, 38 spectra of eight normal tis-

sues, and 34 spectra of seven malignant tissues. Grams 32

software was used to carry out baseline correction, smooth-

ening, calibration, and normalization over δCH2. Grams

PLS Plus/IQ was used to carry out principal components

analysis (PCA) in the 800–1800-cm−1 spectral range.

Following analysis, the spectral features of the malignant

tissues revealed the presence of additional biomarkers in-

cluding proteins, lipids, and DNA. These were defined by a

broader amine I band (protein), stronger amide III band

(protein), a minor blue shift in the δCH2 band (lipid), and

a hump around 1480 cm−1 (DNA) and other peaks around

834, 900, 1000, and 1165 cm−1 (proteins) when compared

to normal tissue spectra [69]. The study also found that

variations in the secondary structures of proteins were im-

plicated by spectral profiles in the 900–950-cm−1 region

[70, 71]. Multiple methods were employed for analysis

including discriminating algorithms, score of factor,

Mahalanobis distance, spectral residuals, and the limit test.

Maheedhar et al. were able to obtain a 100% specificity

and sensitivity using the limit test approach. Moreover,

the results provided unambiguous and objective discrimi-

nation. The method is easily adaptable to routine clinical

conditions and facilitates diagnosis of ovarian cancers by

minimally skilled personnel making it more cost-effective.

Cancer Metastasis Rev (2018) 37:691–717 701



Raman spectroscopy has been utilized to detect metastasis

[72]. The primary metastatic route of ovarian cancer occurs

through the peritoneal surface [73]. The metastasis begins at

the microscopic level and, therefore, can be easily missed

during investigation of possible tumors. In addition, the folate

receptor (FR) is overexpressed in more than 70% of primary

ovarian cancers [74]. Researchers at the Department of

Radiology and Center for Molecular Imaging and

Nanotechnology developed a folate-targeted detectionmethod

of microscopic ovarian tumors [72]. The method utilizes

SERRS nanoparticles (NP) to enhance the weak Raman sig-

nals, and increase sensitivity and specificity for detection of

the folate receptors, which are indicative of ovarian cancer

metastasis. Two types of NPs were synthesized with gold

nanostar cores and silica shells: a targeted nanoprobe func-

tionalized with an anti-folate receptor antibody (αFR-Ab)

via a PEG–maleimide–succinimide crosslinker and using the

infrared dye IR780 as the Raman reporter and a nano-targeted

probe (nt-NP) coated with PEG5000-maleimide and containing

IR140 infrared dye as the Raman reporter. Mouse studies were

conducted on athymic mice. The mice were injected with 4 ×

106 SKOV-3 cells transduced with luciferase and green fluo-

rescent protein. The NPs were injected intraperitoneally,

which prevented systemic uptake. Luciferin was then injected

retro-orbitally. The entire mouse was imaged with BLI and the

regions of interest were scanned with the Raman microscope

to assess the correlation of the ratiometric method to the BLI

map. The ratiometric method was shown to be accurate for

screening metastasis at the microscopic level and tumors as

small as 370 μm were found [72]. This method was called

Btopically applied surface-enhanced resonance Raman

ratiometric spectroscopy ,̂ or TAS3RS for short.

5.2.2 Raman spectroscopy of ovarian cancer patient serum

Screening to detect early-stage ovarian cancer is difficult due

to the lack of symptoms or minimal nonspecific symptoms

early in the disease. Until now, no tumor markers have been

identified with the high sensitivity and high specificity neces-

sary to develop a screening test for ovarian cancer. Serum

markers, such as cancer antigen (CA-125), are often used in

clinical practice. CA-125 is often elevated in women with

advanced ovarian cancer. However, this marker is tumor-

associated rather than tumor-specific and lacks the specificity

and sensitivity required for early detection. The FDA-

approved OVA1 measures five biomarkers in the blood to

assess the likelihood of ovarian cancer in women diagnosed

with ovarian mass that requires surgery. OVA1 has been

shown to have over 90% sensitivity but low specificity (~

35%) with a positive predictive value of 40% [75]. ROMA

(The Risk of Ovarian Malignancy Algorithm) evaluates HE4

(a whey acidic four-disulfide core domain protein) and CA-

125 levels along with a woman’s menopausal states to

generate scores. The scores reflect a predictive index of ovar-

ian cancer for women diagnosed with ovarian tumor that re-

quires surgery. ROMA has reported 89% sensitivity and has a

specificity of 75% [75].

CA-125 is elevated by 23–50% in stage I and 90% in stage

II ovarian cancer patients. CA-125 detection has poor sensi-

tivity and specificity for ovarian cancer making it a poor

screening target when used alone [76]. However, the detection

of other biomarkers paired with detection of CA-125 could be

much more effective. Researchers at the Pakistan Institute of

Engineering and Applied Science, National Institute of Lasers

and Optronics, and Citi Lab conducted a study investigating

optical differences between the serum of healthy and ovarian

cancer patients using Raman spectroscopy [77]. In this study,

blood samples from 11 patients with confirmed clinical and

histopathological ovarian cancer and 11 healthy volunteers

that matched the case group in demographic profile including

median age, race, and gender were used to study the possible

spectroscopic signatures of ovarian cancer compared to

healthy samples. The sera were extracted and stored at −
20 °C until final Raman spectroscopic measurement. The re-

searchers obtained 42 Raman spectra using Raman spectrom-

eter (Dongwoo Optron). They used a 532-nm wavelength

light beam for probing the samples. A ×100 objective lens

was used to properly direct the incident light on the sample

and to focus the light after interaction on the detector in the

backscattering configuration. Raman spectra were obtained

for each sample in the spectral range of 500–2000 cm−1. A

Savitzky–Golay (SG) was used to improve the signal-to-noise

ratio (SNR) while preserving the integrity of the weak Raman

peaks. The cubic spine interpolation method followed by

spectra normalization was used to remove the fluorescence

contribution toward the Raman spectra. The researchers de-

veloped a SVM algorithm toward computer-assisted classifi-

cation of healthy and ovarian cancer samples based on the

differences in Raman spectra. The algorithm first calculates

the p values from unpaired two-tailed t tests and categorizes

the spectra into three categories: p < 0.05 (five peaks),

p < 0.01 (one peak), and p < 0.0001 (six peaks). Four samples

from each group were then used to train the SVM algorithm

for blind classification of the remaining samples. Lastly, the

performance of the algorithm was evaluated in terms of spec-

ificity, sensitivity, positive predictive values, and negative pre-

dictive values. An unpaired samples t test was used to analyze

differences in amplitude and peak positions and showed sig-

nificant results. The maximum amplitude differences on the

spectra were the CH2 peak at 1447 cm−1, the amide peak at

1657 cm−1, and the C=O stretching peak at 1744 cm−1, which

were assigned to the bending of proteins/lipids/fatty acids, the

amide I stretching of protein backbone, and the stretching of

lipids, respectively [77–79]. Amplitude peaks were also found

at 640, 749, and 950 cm−1, which were allotted to the

stretching of C–S in cysteine, the symmetric breathing of
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tryptophan, and the hydroxyapatite/carotenoid/cholesterol

breathing of phenylalanine, respectively [77, 78]. The ob-

served differences in peak amplitudes and positions found in

this study can be attributed to changes in expression of multi-

ple proteins as well as changes to protein conformation. In

ovarian cancer, CA-125, human epididymis protein 4 (HE4),

haptoglobin, osteopontin, and mesothelin, among other pro-

teins are overexpressed [80–83]. As previously stated, the

peak position differences were divided into three categories,

with 846 cm−1 as the only member of p < 0.01 group. The

evaluation of the SVM algorithm showed encouraging results

with a sensitivity of 90%, specificity of 100%, positive pre-

dictive values of 100%, and negative predicted value of

87.5%, when the combination of all spectral peaks (p < 0.05,

p < 0.01, p < 0.0001) was used.

5.2.3 Raman spectroscopy of ovarian cancer cell lines

Raman spectroscopy can not only help with the discrimination

between malignant and healthy tissue and between malignant

and healthy serum, but it has also been used to discriminate

between chemically fixed cisplatin-resistant (A2780cp) and

cisplatin-sensitive (A2780s) human ovarian carcinoma cells.

Most patients initially respond to chemotherapy; however,

about 75% of those patients relapse after treatment, and about

30% will fail to respond to treatment and/or quickly progress

over the course of 1 year of treatment [84]. The main reason

behind the relapses is that prior to treatment, some cancer cells

were platinum-resistant. Following treatment, the platinum-

sensitive cells are destroyed while the platinum-resistant cells

continue to multiply, thus creating a platinum-resistant tumor.

The ability to remove the platinum-resistant tumor in the early

stages would improve prognosis. Researchers at Carleton

University used Raman spectroscopy to differentiate between

cultured A2780s and A2780cp cells. They fixed the cells to

coverslips in order to preserve the cells prior to and during

Raman imaging. Imaging was performed with a confocal

Raman microscope with a 785-nm diode laser. The light was

reflected off a dichroic mirror, and the reflected light passed

through a ×60 water-immersion objective with a numerical

aperture (NA) of 1.5 and focused to a spot of diameter ~

1 μm. The backscattered light was filtered to remove the

Rayleigh-scattered laser light and focused into a 100-μm pin-

hole. The light collected from the focal plane was directed to a

Shamrock 303i-B spectrograph. This provided a spectral

range from 700 to 1600 cm−1. The Raman spectra were col-

lected using a CCD camera that was thermoelectrically cooled

to − 80 °C. The spectra underwent background subtraction,

normalization, and noise reduction to obtain accurate Raman

peaks of the cells for subsequent cells. Background subtrac-

tion was carried out using a modified version of the open

source algorithm (SMIRF) from the University of Rochester

[85]. A Savitzky–Golay filter was used to smooth the spectra.

PCA, combined with linear discriminant analysis (LDA), was

performed on the Raman spectra for classification purposes.

The relative abundance of proteins and glutathione in the

A2780cp compared to the A2780s cells is a strong indicator

of platinum resistance. The main peak contributions to this

discrimination were at 746, 849, 873, 1002, 1030, 1176,

1208, 1553, and 1584 cm−1, which were all spectral features

of proteins arising from aromatic amino acids such as tyrosine,

phenylalanine, and tryptophan. Peaks at 932, 955, 983, 1086,

and 1158 cm−1 were due to carbon stretching or deformation

of carbon atoms bonded with other nitrogen or carbon atoms.

The peaks at 932 and 1441 cm−1 can also be attributed to the

vibration of glutathione, which has also been associated with

resistance to cisplatin in A2780cp cells [86–89]. The spectra

contained peaks at 782, 810, 1338, and 1579 cm−1, which

were due to vibrations of individual DNA/RNA bases.

Vibrations due to lipids were shown corresponding to peaks

718, 824, 1064, and 1302 cm−1 with some overlap at

1127 cm−1. The spectra of the A2780s and A2780cp cells

were mostly identical with a few notable differences at 718,

932, 1086, 1127, 1262, 1301, and 1335 cm−1, which are at-

tributed to protein, nucleic acid, and lipid spectral features

mentioned previously.

5.3 Prostate cancer

Prostate cancer is the second leading cause of cancer-related

death in the USA. About one in nine men will be diagnosed

with prostate cancer in their lifetime with the average age at

diagnosis being about 66 [90]. It is estimated that in 2018

about 164,690 men will be diagnosed with prostate cancer

with 29,430 estimated deaths. When treated, the 5-, 10-, and

15-year survival rate is 99, 98, and 96%, respectively [91]. In

2014, Kast et al. discussed the clinical applications of Raman

spectroscopy to prostate cancer including screening, biopsy,

margin assessment, and monitoring of treatment efficacy as

well as potential future avenues of research with emphasis on

multiplexing Raman spectroscopy with other modalities [92].

Along with similar reviews [93, 94], they found successful

clinical proof-of-concept, surgical RS fiber optic probe studies

for a variety of other cancers in vivo, including bladder, breast,

colon and upper GI, lung, brain, skin, and cervical. However,

up to that point, only in vitro studies on surgical RS fiber optic

probes for prostate cancer had been conducted.

5.3.1 Raman spectroscopy of prostate cancer cell lines

Since Kast et al., progress has been made in using various

types of RS in clinical settings for the detection and diagnosis

of prostate cancer. Beginning with ex vivo pathology, Corsetti

et al. took advantage of RS’s high chemical specificity to

differentiate between a late-stage androgen-resistant cancer

cell line from a nonandrogen-resistant line. A custom-made
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Raman setup using a 785-nm fiber-coupled diode laser was

narrowed to an 18-μm output so that a single acquisition was

representative of a single cell. Three spectral regions were

acquired in succession for each cell: the Bfingerprint region^

(330–1350 cm−1), the Bbending region^ (1400–1800 cm−1),

and the Bstretching region^ (2800–3100 cm−1). Spectral data

were analyzed using PCA and subsequent LDA to the finger-

print region resulting in cell line differentiation with 95% sen-

sitivity and 88% specificity via phenylalanine, tyrosine, DNA,

amide III, and L-arginine content [95]. Aubertin et al. differ-

entiated between benign and malignant prostate tissue biop-

sies of 32 patients using a custom handheld contact RS probe

system. The probe consisted of seven 300 μm core detection

fibers surrounding a 272-μm core excitation fiber through

which a wavelength-stabilized 785-nm laser light was passed.

Spectral data were classified using supervised machine learn-

ing neural network methods with leave-one-out cross-valida-

tion. The entire spectrum (500–1700 cm−1) was used to dis-

tinguish benign and malignant tissue samples, among other

histopathological criterions, with a sensitivity of 87% and a

specificity of 86% [96]. In addition, Lernhardt et al. presented

that they had success in distinguishing between aggressive

and nonaggressive prostatectomy cancer tissue in a retrospec-

tive study of 30 prostatectomy patients of known outcome

using a Raman confocal microspectrometer (CellTool

BioRamTM) with an accuracy of 84% [97].

5.3.2 Raman spectroscopy of prostate cancer patient blood

and plasma samples

Moving away from invasive biopsy-based methods, Li et al.

demonstrated potential for a noninvasive prostate cancer

screening technology using silver colloidal SERS nanoparti-

cles mixed with serum from peripheral blood samples of 68

healthy volunteers and 93 histology-confirmed prostate cancer

patients. Spectra were collected using a Renishaw Raman sys-

tem (inVia) with a 785-nm diode laser and normalized in the

range of 400–1800 cm−1. Conventional SVM diagnostic al-

gorithms were developed to classify serum SERS spectra be-

tween cancer and normal with a 98.1% diagnostic accuracy

[98]. Later, Medipally et al. tested a high-throughput RS tech-

nique on peripheral blood plasma using a Horiba (Jobin Yvon

LabRAM HR 800) setup equipped with 785, 660, 532, and

473 nm lasers collecting spectra from each sample in a range

of 400–1800 cm−1. After preprocessing, spectra were ana-

lyzed using PCA–LDA with leave-one-out cross-validation

that differentiated between prostate cancer patients and

noncancer controls with a sensitivity and specificity of 96.5

and 95%, respectively [99]. Furthermore, a preliminary study

by Del Mistro et al. has shown the potential for gold

nanoparticle-based SERS as a noninvasive prostate cancer

screening technology via urine sample interrogated with a

785-nm laser through a Renishaw Raman (inVia) setup.

Preprocessing was conducted using hyperSpec package for

R and classified using a PCA–LDA model with a sensitivity

of 100%, a specificity of 89%, and an overall diagnostic ac-

curacy of 95% [100].

5.3.3 Raman spectroscopy of prostate tissues

To more closely address surgical needs, Harmsen et al. dem-

onstrated successful proof-of-concept prostate cancer margin

demarcation in near-clinical situations on a mouse model

using a SERRS nanostars and RS imaging combination.

Spectra were collected using a Renishaw Raman (inVia) sys-

tem equipped with a 785-nm diode laser, and statistical sig-

nificance was determined with a Student’s t test [101]. While

nanoparticle injection methods havemany obstacles including

cytotoxicity and FDA clearance [102], Harmsen et al. showed

that tumor boundaries could be detected in near real time

under clinical ly viable 10–100 mW laser power.

Alternatively, Lindahl et al. have proposed a dual RS and

stiffness sensing probe intended for detecting any positive

surgical margin left behind during radical prostatectomy.

The probe consists of a hollow stiffness sensor through which

fiber optics are fed and connected to a 785-nm RXN1 Raman

spectroscope (Kaiser Optical), allowing the user to switch

between modalities without moving the probe. A total of 36

measurements were taken ex vivo on four radical prostatecto-

my human prostates. Stiffness, autofluorescence, and the

Raman peak found at 2881 cm−1 were used as discriminatory

parameters. However, strong Raman fluorescence resulted in

lower detectability (77% sensitivity and 65% specificity). Yet,

with stiffness and autofluorescence parameters combined,

they were able to achieve 100% sensitivity and 91% specific-

ity, demonstrating potential utility of the probe’s combination

[103, 104]. Using a non-SERS probe would eliminate the

need for nanoparticle injection if they can overcome the tis-

sue’s inherently strong fluorescent background.

Overall, various RS technologies continue to demonstrate

great promise as a noninvasive prostate cancer diagnostic tool.

However, there is much room for technique and optics im-

provement before being used in the surgical suite, specifically

optimizing excitation wavelength to mitigate inherent fluores-

cence of prostate tissue.

5.4 Pancreatic cancer

Pancreatic cancer is the third leading cause of cancer-related

death in the USA [105]. It is estimated that in 2018 about

53,600 people will be diagnosed with pancreatic cancer with

44,300 estimated deaths. The 5-year survival rate of people

treated for exocrine pancreatic cancer at stage IA is 12%, stage

IIA 5%, stage III 3%, and stage IV 1% [106]. The survival rate

of patients with neuroendocrine pancreatic tumors that were

treated with surgery at stage I is 61%, stage II 52%, stage III
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41%, and stage IV 16%. About 94% of pancreatic cancers are

classified as exocrine tumors with the vast majority being

adenocarcinomas [107].

Scientists at the Leibniz Institute of Photonic Technology

and Friedrich Schiller University Jena collected Raman spec-

tra from T lymphocyte Jurkat cells and pancreatic cell lines

Capan1 and MiaPaca2 [108]. Their Raman microscopy setup

uses a 785-nm single-mode excitation laser and a sample hold-

er mounted to a motorized x–y translational stage with a man-

ual Z-positioning stage. An oil immersion objective lens fo-

cuses the excitation laser beam into the sample plane to a spot

size of approximately 0.8 μmwith a focal length near 1.6 μm.

The spectrometer resolution is 9 cm−1 from 300 to 4000 cm−1

range. The Raman signal is received by a CCD with 400 ×

1340 pixels. Using a support vector machine method with

linear kernel, coupled with PCA, the cell classification preci-

sion for pancreatic cell lines is higher than 90%. They found

that pancreatic cells have higher lipid content, which is evi-

dent from stronger lipid-related bands in the high wavenum-

ber region at 2854 cm−1, and higher band ratios 1440/1660

and 1320/1340 cm−1. Also, the acquisition of integrated

Raman signals of large portions of cells allowed for sampling

of single cells and simpler interpretation of the cell type dif-

ferences that are comparable to the acquisition of single spec-

tra. The integrated Raman spectra approach provided better

and more stable predictions for individual cells and may have

a major impact on the implementation of Raman-based cell

classification.

Researchers from Purdue University and Indiana

University School of Medicine found a link between choles-

terol esterification and metastasis in pancreatic cancer. They

used SRS microscopy and Raman spectroscopy to map lipid

droplets (LDs) stored inside single cells. Analyses of the com-

position of individual LDs revealed an aberrant accumulation

of cholesteryl ester (CE) in human pancreatic cancer speci-

mens and cell lines [109]. Their SRS imaging was conducted

using a femtosecond laser source. The pump and Stokes

beams are collinearly overlapped and combined with the

pump beam that is tunable from 680 to 1080 nm and the

Stokes beam that is tunable from 1.0 to 1.6 μm. Images were

taken on a laser scanning microscope with a ×60 water im-

mersion objective. The signals were detected by a photodiode

and then sent to a fast lock-in amplifier, which has a time

constant as small as 800 ns. The lateral and axial resolutions

of their SRS microscope are about 0.42 and 1.01 μm, respec-

tively. For coherent Raman scattering imaging, two synchro-

nized 5-ps, 80-MHz laser oscillators are temporally synchro-

nized and collinearly combined into a laser scanning inverted

microscope. The CARS signals are detec ted by

photomult ipl ier tube detectors . Confocal Raman

microspectroscopy is realized by mounting a spectrometer to

the side port of the microscope. The pump and Stokes lasers

are tuned to 707 and 885 nm, respectively, to be in resonance

with the CH2 symmetric stretch vibration. The spectrometer is

equipped with a 300-grooves/mm 500-nm blaze angle grating

and a thermoelectrically (TE) cooled back-illuminated elec-

tron-multiplying charge-coupled device. LD amount was

quantified based on the SRS images using the software

ImageJ. CE level in individual LDs was quantified by analyz-

ing the height ratio of the 702-cm−1 peak to 1442-cm−1 peak.

They found that the peak of cholesterol at 702 cm−1 and the

peak of ester bond at 1742 cm−1 are high for cancer tissues.

They also found that abrogation of cholesterol esterification,

either by an ACAT-1 inhibitor or by shRNA knockdown, sig-

nificantly suppressed tumor growth and metastasis in an

orthotopic mouse model of pancreatic cancer. These results

demonstrate a new strategy for treating metastatic pancreatic

cancer by inhibiting cholesterol esterification.

About 10 years prior, researchers at Wayne State

University [110] collected Raman spectra of normal and pan-

creatic tissue from mouse model using a Renishaw Raman

microscope equipped with a thermoelectric cooled 578 ×

385-pixel CCD. A 785-nm wavelength laser line (approxi-

mately measured at 130 × 25 um) was used to excite the tissue

sample with 50 mWof power. The excitation laser line covers

a section of tissue encompassing multiple cells and reflects the

averaged characteristic over that section. The spectral range is

from 600 to 1800 cm−1, with the resolution of 4 cm−1. The

Raman data were analyzed by PCA and discriminant function

analysis (DFA). They found that Raman spectroscopy differ-

entiated normal pancreatic tissue from tumors in a mouse

model with high sensitivity (91%) and specificity (88%),

and pancreatic tumors were characterized by increased colla-

gen content and decreased DNA, RNA, and lipid components

compared to normal pancreatic tissue.

Using SERRS nanoparticles, scientists at the Memorial

Sloan Kettering Cancer Center demonstrated an imaging

method for the precise visualization of tumor margins, micro-

scopic tumor invasion, and multifocal locoregional tumor

spread [111]. They designed, synthesized, and tested a new

SERRS nanoprobe that is resonant in the near-infrared (NIR)

window, where optical penetration in tissue is maximized.

Their nanoparticles feature a star-shaped gold core, a Raman

reporter resonant in the near-infrared spectrum, and a primer-

free silication method. Raman scans were performed on an

inVia Raman microscope (Renishaw) equipped with 785 nm

diode laser and a 1-in. charge-coupled device detector with a

spectral resolution of 1.07 cm−1. The Raman maps were gen-

erated and analyzed by applying a DCLS algorithm (WiRE

3.4 software, Renishaw). Counts per second represent the in-

tensity of the 950-cm−1 peak of SERRS nanoparticles.

Statistical analysis was performed in Excel (Microsoft). In

genetically engineered mouse models of pancreatic cancer,

breast cancer, prostate cancer, and sarcoma, and in one human

sarcoma xenograft model, this method enabled accurate de-

tection of macroscopic malignant lesions, as well as
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microscopic disease, without the need for a targeting moiety,

and the sensitivity (1.5 fM limit of detection) of this method

allowed imaging of premalignant lesions of pancreatic and

prostatic neoplasias.

5.4.1 Raman spectroscopy of pancreatic cancer serum

markers

Early-stage pancreatic cancer is difficult to detect due to the

lack of symptoms, which often results in diagnosis at an ad-

vanced stage of disease. CA19-9 and carcinoembryonic anti-

gen (CEA) are tumor markers that may be detected in the

blood and are tied to pancreatic cancer. These proteins may

or may not be elevated in a person with pancreatic cancer.

About 59% of patients with pancreatic carcinoma have high

concentrations of CEA that suggest a mucinous pancreatic

cyst. However, CEA testing does not reliably distinguish be-

tween begin, premalignant, or malignant mucinous cysts.

Serum CA19-9 is a tumor-associated mucin glycoprotein an-

tigen related to the Lewis blood group protein. About 5% of

the population do not produce CA19-9 antigen. The sensitiv-

ity (68–93%) and specificity (76–100%) of CA19-9 is not

adequate for diagnosis and precludes it as a screening tool

[112].

Using SERS, researchers from Iowa State University,

University of Nebraska Medical Center, University of

Pittsburgh Medical Center, and University of Utah demon-

strate the first ever detection of the potential pancreatic cancer

marker MUC4 in cancer patient serum samples [113]. Their

SERS-based immunoassay chip design includes (a) a capture

substrate to specifically extract and concentrate antigens from

solution, (b) surface-functionalized gold nanoparticles (extrin-

sic Raman labels or ERLs) to bind to captured antigens selec-

tively and generate intense SERS signals, and (c) sandwich

immunoassay with SERS readout. The Raman spectra were

collected with a NanoRaman I fiber-optic–based Raman sys-

tem, a portable, field-deployable instrument. The light source

was 632.8 nm He–Ne laser. The spectrograph consisted of an

imaging spectrometer (6–8 cm−1 resolution) and a CCD im-

aging array. The incident laser light was focused to a 25-μm

spot on the substrate. The analyte concentration was quanti-

fied using the peak intensity of the symmetric nitro stretch at

1336 cm−1. The amount of human mucin MUC4 was mea-

sured in CD18/HPAF lysate (positive control) by sandwich

enzyme-linked immunosorbent assay (ELISA). SERS mea-

surements showed that sera from patients with pancreatic can-

cer produced a significantly higher SERS response for MUC4

compared to sera from healthy individuals and from patients

with benign diseases. And SERS measurement can also detect

CA19-9 concentration.

Recently, scientists at the University of Massachusetts

[114] demonstrated a novel system for multiplex detection

of pancreatic biomarkers CA19-9, MMP7, and MUC4 in

serum samples with high sensitivity using surface-enhanced

Raman spectroscopy. Their SERS-based immunoassay for

biomarker quantification includes (I) functionalizing gold

substrate with thiol and antibody, (II) capturing desired anti-

gens from the serum, and (III) loading antibody-conjugated

extrinsic Raman labels (ERL), and gold nanoparticles were

modified with antibody and Raman reporter. Raman spectra

collection was performed with a portable BWS415 i-Raman at

an excitation wavelength of 785 nm. The antigen concentra-

tion was quantified using intensity at the 1336-cm−1 position

which corresponds to a symmetric stretch of the NO2 group

whose intensity of this band depends proportionally on the

concentration of MUC4 in a sample. They found that immo-

bilization of functionalized gold nanoshells with resonance

wavelength of 660 nm on the gold-coated silicon substrate

led to a significant improvement of SERS signals, and suc-

cessfully detected three pancreatic biomarkers, CA19-9,

MMP7, and MUC4, in spiked serum samples at concentra-

tions as low as 2 ng per ml. Measuring the levels of these

biomarkers in pancreatic cancer patients, pancreatitis patients,

and healthy individuals revealed the unique expression pattern

of these markers in pancreatic cancer patients, suggesting the

great potential of using this approach for early diagnostics of

pancreatic cancers.

5.5 Breast cancer

Breast cancer is the leading cause of new cancer cases (30% of

all new cancer cases) and the second leading cause of cancer

deaths (14% of all cancer deaths) in American women [115].

A low-dose X-ray mammogram is the most common tech-

nique used for screening of microcalcifications in breast can-

cers. Mammography is not effective in dense female breasts

and do not discriminate whether a lesion is benign or malig-

nant. Therefore, it is always followed by either surgical exci-

sion biopsy or needle biopsy, thus delaying the diagnostic

process from weeks to months causing unnecessary psycho-

logical stress and medical costs. The combination of clinical

breast examination, mammography, and tissue sampling to-

gether is effective in improving the sensitivity and specificity

of breast cancer detection [116–118]. However, only 36.5% of

microcalcifications identified on a mammogram that are sub-

sequently biopsied turn out to be malignant [119]. There is a

need for minimally invasive optical imaging and spectroscopy

techniques that can improve breast cancer diagnosis, especial-

ly with the ability to distinguish benign from malignant breast

tissues.

5.5.1 Raman spectroscopy of breast cancer tissues

Alfano et al. is the first group to use FT Raman spectroscopy

with 1064 nm laser excitation source on three normal, four

benign, and seven malignant breast tissues. They observed
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spectral variation between three different breast tissues and

correlated these to differences in amide modes [120]. Using

the samemethodology (FT RSwith 1064 nm laser excitation),

Bitar et al. in 2006 tried to differentiate normal and six sub-

types of breast pathologies: fibrocystic condition, ductal car-

cinoma in situ, ductal carcinoma in situ with necrosis, infil-

trating ductal carcinoma not otherwise specified (NOS), col-

loid infiltrating ductal carcinoma, and invasive lobular carci-

nomas. Except for inflammatory and medullary ductal carci-

nomas from infiltrating duct carcinoma NOS, they were able

to differentiate normal tissue from diseased breast tissue sub-

types based on spectral differences. By relating each observed

peak to a specific biomolecule with a special role in carcino-

genesis, they established biochemical basis for each spectrum

[121].

Using conventional Raman spectroscopy, Redd et al. in

1993 studied the Raman spectra of normal, benign, and ma-

lignant breast tissue using different excitation wavelengths of

the visible region (406.7, 457.9, and 514.5 nm). The peak

differences between benign and malignant breast tissues were

attributed to β-carotene and fatty acids [122]. In 1995, the

same group used a 784-nm excitation source to differentiate

normal breast tissue from benign (fibroadenoma) and malig-

nant tissues (infiltrating duct carcinoma NOS). Using the area

ratio of amide I and CH2 bending modes as a discriminating

parameter, they established profiles for normal tissue (more

lipids, mainly derivates of oleic acids) and malignant tissues

(increased protein content). However, their study could not

statistically differentiate infiltrating duct carcinoma and

fibroadenoma [123]. Manoharan et al. in 1996 used NIR

Raman spectroscopy with an 830-nm excitation source to ex-

amine normal, fibroadenoma, or infiltrating duct carcinoma

NOS breast tissues. They used ratio of amide I to CH2 bending

modes as their discriminating parameter and employed PCA

and multivariate analysis for statistical analysis. They also

observed abundance of lipid features in normal breast tissue

spectra and abundance of protein signatures in breast lesion

spectra. However, they could not differentiate benign from

malignant tissues [124].

Haka et al. in 2002 used a confocal micro-Raman spectro-

scope with an 830-nm excitation source on breast tissues.

They used a microlaser spot (~ 5–20 μm instead of ~ 50–

100 μm) and constructed a morphological/chemical model

for the breast tissue by fitting tissue spectra with a linear com-

bination of basis spectra derived from cell cytoplasm, cell

nucleolus, fatty acids, β-carotene, collagen, calcium hydroxy-

apatite, calcium oxalate dehydrate, cholesterol-like lipids, and

water. For their diagnostic algorithm, they used fit coefficients

of fat and collagen and reported an abundance of lipids in

normal breast tissue, increased levels of collagen in diseased

breast tissue, and markedly elevated levels in benign condi-

tions [125]. They adopted this approach to ex vivo diagnosis

and classified benign and malignant breast legions with 94%

sensitivity and 96% specificity [126]. Further, they adopted

this approach to in vivo intraoperative tumor margin assess-

ment. They collected 31 Raman spectra from nine patients

undergoing partial mastectomy procedures and fit the data into

their previously established model, which resulted in charac-

terization of tissue in 1 s. Using this method, they were able to

detect grossly invisible cancer that was validated later by pa-

thology review [127]. Mohs et al. in 2010 used a different

approach in which they used Raman spectroscopy to measure

exogenous contrast agents that were designed to adhere to

tumor cells during surgical procedures for in vivo and intraop-

erative tumor detection. They developed a handheld spectro-

scopic device named BSpectroPen^ that has a 785-nm laser

source and is coupled with compact head unit for light exci-

tation and collection. Using SpectroPen, they detected in vivo

fluorescent contrast agent (indocyanine green, ICG) with a

limit of detection of 2–5 × 10−11 M and SERS contrast agent

(pegylated colloidal gold) with a limit of detection of 0.5–1 ×

10−13 M with a tissue penetration depth of 5–10 mm [128].

In another study, Haka et al. investigated the chemical com-

position of macrocalcifications in breast duct. They showed

that microcalcifications can be divided into type I, consisting

of calcium oxalate dihydrate that are present in benign lesions,

and type II, consisting of calcium hydroxyapatite deposits that

are present in proliferative lesions, which can be either benign

or malignant depending on their carbonate content. Benign

lesions had more calcium carbonate and less proteins com-

pared to malignant lesions. PCA and logistic regression anal-

ysis demonstrated 88% sensitivity and 93% specificity in di-

agnosing type II microcalcifications which is a significant

improvement over X-ray mammography [125]. They adopted

this technique to detect microcalcifications in core needle bi-

opsies using a portable, compact clinical Raman spectroscopy

system, which has 830 nm excitation source. Using this sys-

tem, they tested 159 tissues samples from 33 patients (54

normal, 75 lesions with microcalcifications, and 30 lesions

without microcalcifications) and obtained 97% of positive

predictive value in correctly classifying microcalcifications

[129]. Further, this portable Raman spectroscope system was

used as a guidance tool for mastectomy procedures. From 33

patients that underwent mastectomy, 146 freshly excised tis-

sue sites (50 normal, 77 lesions with microcalcifications, and

19 lesions without microcalcifications) were used ex vivo to

obtain Raman spectra. They reported 62.5% sensitivity and

100% specificity and showed potential of Raman spectrosco-

py to provide real-time feedback and simultaneously detect

microcalcifications and diagnose associated lesions, including

ductal carcinoma in situ [130].

Baker et al. and Matousek et al. in 2007 used Raman spec-

troscopy to noninvasively detect microcalcifications in vivo.

Using Kerr-gated Raman spectroscopy (830 nm), Baker et al.

identified calcified material, buried within chicken breast and

fatty tissues as well as normal and cancerous human breast
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tissues, at depths of 0.96 mm [131]. Matousek et al. used

transmission Raman spectroscopy (827 nm excitation source)

and successfully recovered Raman signal from calcified ma-

terial buried within 16-mm-thick chicken breast tissue slabs

[132]. Keller et al. in 2009 adopted this approach to look at the

feasibility of spatially offset Raman spectroscopy (SORS) to

determine cancer margins under a layer of normal breast tis-

sue. They were able to detect breast cancer spectral signatures

of tumors as small as 1–2 mm thick beneath up to 2 mm thick

normal breast tissue [133]. Later, they improved sensitivity

and specificity of this approach to 95 and 100%, respectively

[134]. One potential problem with this approach is the differ-

entiation of type II microcalcifications as benign or malignant

using carbonate content. The ratio of phosphate and carbonate

Raman bands at 960 and 1070 cm−1 helps to determine car-

bonate content. However, in subsurface Raman spectral anal-

ysis, Raman band at 1070 cm−1 is relatively weak and is over-

lapped with Raman collagen bands from the tissue. To over-

come this problem, Kerssens et al. in 2010 came up with an

alternate method. They realized that carbonate ion substitution

leads to a perturbation of the hydroxyapatite lattice, which in

turn affects the phosphate vibrational modes. By directly mon-

itoring the position and bandwidth of the intense 960-cm−1

phosphate Raman band alone, they were able to determine

carbonate content and thus different ia te type II

microcalcifications as either benign or malignant to a depth

of 5.6 mm using an 830-nm excitation source [135]. This

approach is promising for noninvasive breast cancer

screening.

Kneipp et al. looked at normal breast duct epithelial secre-

tions using Raman spectroscopy to identify molecular chang-

es that may occur during precancerous or cancerous condi-

tions. They performed Raman spectroscopy using an 840-

nm excitation source on breast secretions that cover the epi-

thelium in most samples. The resulting spectra used PCA and

K-means. The spectral signals from secretions were dominat-

ed by contributions from lipids. They observed two different

classes of lipid secretion spectra that were sometimes identi-

fied on the same sample [136].

Yu et al. used micro-Raman spectra to compare normal and

malignant human breast tissues. The observed spectral chang-

es in cancerous tissue suggested decreased lipid content, in-

creased nucleic acid content with conformation changes, and

increased protein content with conformation changes and

structural disorders such as broken molecular hydrogen bonds

[137]. These results were corroborated by Yan et al. in 2005

and Yu et al. in 2006 using breast cancer cell lines [138, 139].

Yan et al. analyzed Raman spectra obtained using a 780-nm

excitation source of normal and cancerous breast cells and

reported decreased intensity of DNA phosphate groups and

deoxyribose-phosphate in the cancer cells suggesting partial

destruction of phosphate backbone [138]. Yu et al. looked at

normal and transformed human breast epithelial cell lines

using a 785-nm excitation source and reported that DNA du-

plication activities in tumorigenic cell nuclei are significantly

higher than in normal cells [139].

Pichardo-Molina et al. in 2007, using an excitation source

of 830 nm, looked at serum samples from 12 healthy volun-

teers and 11 patients that were clinically diagnosed with breast

cancer using Raman spectroscopy. Using PCA and LDA, they

detected significant spectral changes relating to proteins,

phospholipids, and polysaccharides suggesting that this could

be a potential approach for breast cancer detection [140].

Kast et al. in 2007 looked at mice normal and cancerous

breast tissues from 17 mouse samples using Raman spectros-

copy (785 nm excitation source). The lipid signatures were

dominant in the normal mammary gland and associated lymph

nodes, whereas the cancerous mammary glands showed in-

creased protein and decreased lipid content. Inflamed mastitis

tissue lacked the phospholipid peak at 1747 cm−1 and showed

superimposed peaks in 1200–1500 cm−1. Furthermore,

Raman spectral changes were detectable in preneoplastic

changes in breast tissue [141].

Brozek-Pluska et al. in 2012 examined patient-matched

normal and cancerous breast tissue using Raman spectroscopy

with a 532-nm excitation source. They reported that regions

characteristic for the vibrations of carotenoids, lipids, and pro-

teins are the most important feature for differentiating normal

breast tissue from cancerous breast tissue [142].

Abramczyk et al. in 2011 studied cancerous and noncan-

cerous breast tissue from 146 patients using Raman spectros-

copy (532 nm excitation source). They observed that lipid and

carotenoids and fatty acid composition of cancerous breast

tissue is markedly different from surrounding noncancerous

breast tissue. The cancerous breast tissue was rich with meta-

bolic products of arachidonic acid, whereas noncancerous

breast tissue was rich with monounsaturated oleic acid and

its derivatives [143]. They observed similar results in lipid

droplets in breast cancer cells MCF-10A, MCF-7, and

MDA-MB-231. The aggressiveness of cancer appeared to

positively correlate with the amount of lipid droplets [144].

Surmacki et al. in 2013 studied normal and cancerous

breast tissue from 200 patients using Raman spectroscopy

(513 nm excitation source). They reported that specific pro-

tein–lipid–carotenoid profile and cell hydration are factors in

the differentiation of cancerous and noncancerous breast tis-

sue. The noncancerous breast tissue is rich with triglycerides

(from adipose tissue) and fatty acids (from cell and nuclear

membrane). The cancerous tissue was rich with protein con-

tent and had a greater amount of water [145].

5.5.2 Raman spectroscopy of breast cancer cell lines

Matthews et al. in 2011 used single-cell Raman spectroscopy

(785 nm excitation source) to examine the effect of radiation

on breast cancer cells MDA-MB-231 and MCF-7. PCA
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analysis of the Raman spectra identified radiation-induced

biomolecular changes at the single-cell level independent of

spectral variability arising from simultaneous processes such

as cell cycle or cell death [146].

Marro et al. in 2018 studied metabolomic changes required

for metastasis of triple negative breast cancer cell lines, MDA-

MB-231 and MDA-MB-435. Raman spectra (532 nm excita-

tion source) were analyzed using a multivariate curve resolu-

tion (MCR) method. It was determined that increased levels of

tropism were associated with amino acids and lower levels of

mitochondrial signals, whereas in lung tropism, both lipid and

mitochondria (cytochrome c and RNA) levels are elevated

[147].

Sialylation of glycolipids and glycoproteins on cancer cell

surfaces (hypersialylation) is correlated with tumor

metastaticity. Shashni et al. in 2017 used SERS to study

hypersialylation of tumors with the aim of early detection of

metastatic cancers. Phenylboronic acid-installed PEGylated

gold nanoparticles was coupled with Toluidine blue O

(T/BA-GNP) as SERS probe and measured surface sialic acid

in metastatic cancer cell lines (MDA-MB-231) and on

nonmetastatic cancer cell line (MCF-7). Strong SERS signals

from metastatic cancer cell lines were observed, contrary to

nonmetastatic cell lines. The detected SERS signals from var-

ious cancer cell lines correlated with their reported metastatic

potential, implying that their SERS system can distinguish the

metastaticity of cells based on the surface Neu5Ac density.

The T/BA-GNP–based SERS system could also significantly

differentiate between hypersialylated tumor tissues and

healthy tissues with high SERS signal-to-noise ratio, due to

plasmon coupling between the specifically aggregated func-

tionalized GNPs [148].

Bi et al. in 2014 used Raman spectroscopy to study the

human epidermal growth factor receptor 2 (HER2) amplifica-

tion status and acquisition of drug resistance in breast cancer

cells. HER2 overexpression is associated with increased

breast cancer recurrence and worse prognosis. Lapatinib, the

tyrosine kinase inhibitor, blocks HER2 signaling, but its ac-

tivity is limited due to acquired drug resistance. The authors

studied HER2 amplification and drug resistance of lapatinib

using Raman spectroscopy in BT474 (HER2+ breast cancer

cell), MCF-10A (HER2− control), and HER2+ MCF-10A

(HER2+ control) cell lines. With 99% sensitivity and speci-

ficity, the authors observed HER2 overexpression. In Her2+

cells, lipid content was enhanced, and proteome was de-

creased. Lapatinib-resistant breast cancer cells retained lipo-

genesis even after lapatinib treatment [149].

Manciu et al. in 2016 used Raman spectroscopy (532 nm

excitation source) to evaluate the biological activity of epider-

mal growth factor receptors on the surface of breast cancer

cells with the goal of diagnosing breast cancer using specific

receptor activity. Human epidermal growth factor receptor 1

(EGFR) overexpression is associated with cancer

proliferation, and cancer treatments that are centered in

targeting EGFR for therapy have shown to be effective.

EGFR is present in very low concentrations making it difficult

to detect using Raman. To overcome this problem, many tag

EGFR with metallic nanoparticles and use SERS for detec-

tion. However, the authors wanted to develop a label-free

method to observe changes in EFGR in nontumorigenic

MCF-10A and tumorigenic MCF-7 breast epithelial cells

using confocal Raman spectroscopy. They reported successful

identification of EGFR using distinct Raman profiles relating

to dominant changes in protein content and DNA/RNA char-

acteristics. EGF addition resulted in modifications in lipid

pool and DNA/RNA and vibrations from phosphorylated

threonine and serine suggesting phosphorylation of signaling

molecules upon addition of EFG to MCF-7 cells. This was

confirmed by gel electrophoresis [150].

Hedegaard et al. in 2010 looked at two isogenic breast

cancer cell lines (M-4A4 and NM-2C5) derived from the

MDA-MB-435 cell line. Both are equally carcinogenic but

M-4A4 is metastatic and NM-2C5 is nonmetastatic. Using

Raman spectroscopy (785 nm excitation source), the authors

observed that the metastatic cell line had polyunsaturated fatty

acid content [151].

Abramczyk et al. in 2016 looked at MCF-10A, MCF-7,

and MDA-MB-231 cells using Raman spectroscopy

(532 nm excitation source). They specifically targeted epige-

netic modifications—acetylation or methylation of lysine in

cell nucleoli within the nucleus and lipid droplets in the cyto-

plasm. They reported overall increase in histone acetylation in

the nucleoli of the cells with increase in aggressiveness of

epithelial breast cancer cells. They observed that the stretching

vibration of the methyl group blue-shifted in cancer cells from

2933 cm−1 for nonmalignant cells of MCF-10A to 2936 cm−1

for mildly malignant cells of MCF-7 and 2939 cm−1 for the

aggressively malignant cells of MDA-MB-231 [152].

Medeiros et al. in 2016 studied the impact of dietary anti-

oxidant isoflavone daidzein (DAID) on human breast cancer

cells, MCF-7 (estrogen-dependent, ER+) and MDA-MB-231

(estrogen-independent, ER−), using Raman spectroscopy

(785 nm excitation source). DAID is the second most abun-

dant component of soybean and exhibits structural and func-

tional similarities to the endogenous hormone estrogen. DAID

may compete with natural estrogen in estrogen-dependent

(ER+) breast cancers and, along with its high antioxidant

property, could inhibit cancer cell growth or trigger cell death.

Both MCF-7 and MDA-MB-231 cells exhibited a decrease in

cell growth and proliferation in a dose-dependent manner. Its

effect varied between estrogen-dependent and estrogen-

independent cells. In MDA-MB-231 cells, cellular protein

content was affected, and in MCF-7 cells, DNA and lipids

were affected compared to control cells [153].

Mignolet et al. in 2017 studied differential effects of four

polyphenols (epigallocatechin gallate (EGCG), gallic acid,
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resveratrol, and tannic acid) on MCF-7 breast cancer cells.

Using a 532-nm excitation source, they obtained Raman spec-

tra from each polyphenol-treated (for 24 h) MCF-7 cell. The

spectra revealed that all four treatments led to increased lipid

accumulation. Furthermore, there was an increase in cyto-

chrome c into the cytosol in EGCG-treated cells that implies

caspase activation and onset of apoptotic progress [154].

5.6 Circulating tumor cell

Although the majority of cancer deaths result from cancer

metastasis in a localized area (tumor), there is another impor-

tant focus in current cancer research. Once a tumor reaches a

stable size and growth, some cells separate and enter the

bloodstream of the patient. These cells are referred to as cir-

culating tumor cells (CTCs) [155–157]. Initial research in

1869 into cancer discovered not only the existence of CTCs

but a possible relationship between CTCs and metastasized

cancer [157]. Through research, CTCs have indicated infor-

mation about cancer type, cancer progression, and patient re-

sponse before, during, and after treatment [156, 158, 159].

During diagnosis, CTCs can assist in locating a cancer tumor,

by indicating cancer type. This is done by growing a new

tumor in a xenograft and identifying the cancer [156]. While

the concentration of CTCs does not appear to reflect the actual

size of an existing tumor, the presence of CTCs is a viable

independent prognostic indicator for several cancers, includ-

ing breast, prostate, and colon [157, 160, 161]. Additionally,

regardless of initial levels, changes in concentration of CTCs

in the patient do correspond to changes in the cancer tumor

throughout treatment including re-occurrence after treatment

is concluded [156].

There are several types and categories in CTC research;

however, two categories have received attention beyond gen-

eral CTC research. Cancer stem cells (CSCs) are a specific

type of CTC with high metastatic activity, motility, and resis-

tance to apoptosis. While CTCs can originate from benign

tumors and are thus not necessarily pathogenic, CSCs are

considered more likely to metastatic [156, 162]. Another topic

of research is circulating tumor microemboli (CTM). CTM are

multicellular aggregates of epithelial-like tumor cells and may

also contain information about their tumor of origin [163].

There are currently three main detection research paths for

CTCs: antibody capture, using cancer-derived DNA, and cy-

topathology. Each of these approaches has limitations that

interfere with using the wealth of information CTCs may be

able to provide. The most common current method in use with

patients uses antibody capture based on epithelial marker ep-

ithelial cell adhesion molecule (EpCAM) on the CTCs. This

method has an underlying assumption that is currently debat-

ed: CTCs have not undergone epithelial–mesenchymal transi-

tion [156, 157]. If this assumption is false, then not only will

the result significantly underestimate the population of CTCs

but miss a subpopulation of CTCs completely. Furthermore,

certain cancers like carcinoma show partial mesenchymal

properties. These properties appear to increase a cell’s meta-

static potential, suggesting a greater correlation with the as-

pects of the tumor more relevant to treating the patient [156].

Another current method of detection involves isolating

cancer-driven DNA in the plasma of the patient. This has the

advantage of not requiring whole cells which would include

CSCs and CTM.Various gene families including cytokeratins,

prostate-specific antigens, and others studied through PCR

showed correlation to metastasized cancer. While this method

has its advantages, there are still too many issues with speci-

ficity and sensitivity of the results to use routinely [157].

The third method is not currently in use, but a proposed

method. This approach relies on cytopathology, which is al-

ready used in screenings for other cancers such as PAP

smears. Although this method innately has a higher specific-

ity, due to the low concentration of CTCs in samples, the lack

of sensitivity makes this approach impractical. Enrichment

methods such as density gradient separation and filtration

were unsuccessful in increasing the sensitivity of the tests

because the multiple steps damaged or degraded the cells

resulting in a loss of sensitivity and specificity [163].

Raman spectroscopy could provide increased specificity

and sensitivity compared to the techniques described above.

There have been three studies on applying Raman spectrosco-

py, mostly SERS, to CTC research. In 2008, SERS success-

fully detected CTC resulting from breast cancer using the

same epithelial markers commonly used in CTC detection.

Due to the specificity of SERS, the detection limit was 10

cells/ml with 99.7% confidence in buffer solution. This pro-

cess had the advantage of needing very little sample prepara-

tion. Although there was no follow-up done with patients, this

experiment provided proof of concept for Raman spectrosco-

py and CTCs [164, 165].

The next Raman experiment involved spiked blood serum.

Microscopic Raman spectroscopy identified MCF-7 (breast

cancer), BT-20 (breast cancer), OCI-AML3 (acute myeloid

leukemia), leukocytes, and erythrocytes in suspension tomim-

ic a clinical test. The results showed a prediction accuracy of

92.4% with a false positive less than 0.5%. This compares to

the false positive of the cytopathology above of 1–3% [166].

Wang et al., using epidermal growth factor (EGF), detected

CTCs at a concentration 50 tumor cells/ml of blood by detect-

ing the expression of epidermal growth factor expression

(EGFR) using SERS. Positive results for Tu212 SCCHN cells

and H292 lung cancer cells (high EGFR expression), DA-

MB-231 breast cancer cells (moderate EGFR expression),

and H460 lung cancer cells (low EGFR expression) showed

that even with a variation in expression, the system detected

the cell’s existence. Further testing on 19 cancer patients with

confirmed SCCHN showed that 17 out of 19 patients had

CTCs (confirmed by filtration). Later, it was confirmed that
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the remaining two patients had localized instead of metastatic

disease. Three control cancer-free patients showed no CTCs in

the SERS. One research participant with a confirmed tumor

was tested prior and following treatment. In this case, SERS

appropriately indicated the presence of CTCs before treatment

and their absence following treatment [165, 167]. Although

this is a small sample size, the research indicates that SERS is

a viable detection method for CTCs. Furthermore, this process

has the additional advantage of not depending on epithelial

cell markers. In addition to its increased accuracy, this ap-

proach may be used to detect CSCs or other CTCs that have

undergone epithelial–mesenchymal transition.

5.7 Other cancer

5.7.1 Raman spectroscopy of ocular tissue

On its way to the retina, light must travel through several

transparent components [168]. The transparent properties pro-

vide a great opportunity for light-based detection techniques,

including noninvasive use of Raman spectroscopy [168]. In

ophthalmology, accurate readings of intraocular drug concen-

trations aid ophthalmologists in delivering optimal amounts of

drugs in a patient’s eyes [169]. An important aspect of oph-

thalmology is ocular pharmacokinetic studies, which examine

how drugs interact with the eye, such as how fast they metab-

olize and how quickly it diffuses over time [170]. These stud-

ies rely heavily on animal models, and the invasive techniques

normally employed only allow for a single test subject to be

used per time point [170]. As a result, ocular pharmacokinetic

studies require many animals to serve as test subjects to prop-

erly assess an ophthalmic drug [170]. Due to its noninvasive

nature, Raman spectroscopy could have significant advantage

in studies and office use.

Bauer et al. in 1999 used laser scanning confocal Raman

spectroscopy (LSCRS) to perform noninvasive pharmacoki-

netic assessments in live rabbits. They applied 25 μl of

Trusopt 2%™ (a topical ocular drug) and measured changes

in its signal amplitude over time in the tear film and corneal

epithelium of six rabbits, successfully demonstrating the po-

tential of Raman spectroscopy in ocular pharmacokinetics.

They also speculated on the possibility of assessing drug–

tissue interactions using resonance Raman spectroscopy and

that drug-induced metabolic activity could be identified in

tissue [170].

5.8 Oral cancer

Oral cancer is a global issue with as many as 275,000 new

cases arising each year [171]. The ability to diagnose oral

cancer the first time it occurs and when it relapses has a direct

impact on the 5-year survival rate, which currently stands at

about 50% [172]. The prevalence of oral cancer on a national

scale illustrates that it is more common in men than in women,

most likely due to tobacco use habits [171]. In the USA and

Europe, around 50% of oral cancers affect the tongue, though

the floor of the mouth, gingivae, and palate are also sites for

tumor growth [171]. For many patients, early diagnosis is the

key to survival. Current methods of diagnosis often fail to

detect precancerous and cancerous lesions at early stages

[172]. These diagnoses of oral cancers are typically performed

using a biopsy and histopathology of tissue, which can often

be invasive. Another issue is this method relies on visual in-

spection, something found to only be useful in situations

where a patient is at higher risk [172].

Barroso et al. examined specimens removed during a

tongue resection on 14 patients with oral squamous cell car-

cinoma and determined their water content with high-

wavenumber Raman spectroscopy. Measuring values from

OH-stretching vibrations (3350–3550 cm−1) and CH-

stretching vibrations (2910–2965 cm−1), they found that squa-

mous cell carcinoma had significantly higher water content

than the normal tissue nearby [173].

Singh et al. recorded in vivo Raman spectra using a high

efficiency spectrograph and an excitation wavelength of

785 nm on 50 subjects with buccal mucosa. They took 215

spectra of normal tissue and 225 spectra of cancerous tissue.

Analyzing in the region between 1200 and 1800 cm−1, they

were able to achieve ~ 90–95% prediction efficiency with a

model they created from the spectra [174].

6 Conclusion and future direction

Raman spectroscopy can assist in uncovering the molecular

basis of disease and provide objective, quantifiable molecular

information for diagnosis and treatment evaluation. Numerous

experimental studies have shown the capability of Raman

spectroscopy for tissue characterization. The translation for

clinical use involves the development of comprehensive spec-

tral databases and tissue classification methodologies that can

be compared with current gold standards. Best-practice tech-

niques for data processing, acquisition, and classification need

to be developed and adopted. Various interferents, such as

fluorescence, a process that usually Bcompetes^ with Raman

scattering, can hamper the interpretation of Raman spectra of

biological samples. Preprocessing the raw data helps eliminate

unwanted signals, enhances Raman spectral features, and al-

lows more reproducible data for qualitative and quantitative

analysis. However, it has been demonstrated by us and others

that the choice of preprocessing strategy can greatly influence

tissue classification results. In addition to developing best-

practice techniques for spectral preprocessing, care must be

taken when developing classification algorithms for diagnos-

tic evaluation. Validation studies need to be performed to con-

firm that algorithms developed on ex vivo specimens are
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applicable to in vivo tissues.Machine learning algorithms hold

the promise of automating the identification and diagnosis of

cancer. Deep learning training, using large numbers of spectra,

may also identify molecular patterns among cancer types, aid

in margin detection, and become predictors of the aggressive-

ness of the cancer.

In addition to algorithm development, laser tissue interac-

tions that might result in tissue damage need to be investigated

to translate the technology to clinical application. Raman scat-

tering strength is proportional to the inverse of excitation

wavelength to the fourth power and proportional to intensity

of the incident light. Even thoughmore light translates to more

signal, tissue has a damage threshold.

The continued development of Raman spectral databases,

tissue classification methodologies, and instrument designs

trending toward obtaining data with greater resolution, shorter

collection times, and higher accuracy will ensure that Raman

spectroscopy becomes a powerful tool in clinical application.
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