
Applications of SAT Solvers to AES key Recovery from Decayed Key Schedule
Images

Abdel Alim Kamal and Amr M. Youssef
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada
{a kamala,youssef}@ciise.concordia.ca

Abstract—Cold boot attack is a side channel attack which ex-
ploits the data remanence property of random access memory
(RAM) to retrieve its contents which remain readable shortly
after its power has been removed. Given the nature of the cold
boot attack, only a corrupted image of the memory contents
will be available to the attacker. In this paper, we investigate
the use of an off-the-shelf SAT solver, CryptoMinSat, to
improve the key recovery of the AES-128 key schedules from
its corresponding decayed memory images. By exploiting the
asymmetric decay of the memory images and the redundancy
of key material inherent in the AES key schedule, rectifying
the faults in the corrupted memory images of the AES-128 key
schedule is formulated as a Boolean satisfiability problem which
can be solved efficiently for relatively very large decay factors.
Our experimental results show that this approach improves
upon the previously known results.

Keywords-AES; Cold-boot attacks; decayed memory; SAT
solvers

I. INTRODUCTION

Cold boot attack [1] is a side channel attack that exploits
the fact that data loss of a non-powered random access
memory can be retarded by cooling it down. In 2002,
Skorobogatov [2] performed some experiments to study the
temperature dependency of data retention time in static RAM
devices. The reported experimental results indicated that
many chips may preserve data for relatively long periods
of time at temperatures above −20◦C which contradicted
the common wisdom that was widely believed at that time.
The temperature at which 80% of the data remained for one
minute varied widely between devices. While some devices
required cooling to at least −50◦C, others, surprisingly,
retained data for this period at room temperature. Memory
retention time also varied between devices of the same type
from the same manufacturer, most likely, because controlling
data retention time is not a part of the chip manufacturing
quality process.

Thus, one way to launch a cold boot attack is to remove
the memory modules, after cooling it, from the target
system and immediately plug it in another system under the
adversary’s control. This system is then booted to access the
memory. Another possible approach to execute the attack is
to cold boot the target machine by cycling its power off
and then on without letting it shut down properly. Then a

lightweight operating system is, instantly, booted where the
contents of targeted memory are dumped to a file. Further
analysis can then be performed against the information
that is retrieved from memory in order to find sensitive
information such as cryptographic keys or passwords.

Because of the nature of the cold boot attack, it is realistic
to assume that only a corrupted image of the contents of
memory will be available to the attacker, i.e., a fraction
of the memory bits will be flipped. Halderman et al. [1]
observed that, within a specific memory region, the decay
is overwhelmingly asymmetric, i.e., either 0 → 1 or 1 →
0. When trying to retrieve cryptographic keys, the decay
direction for a region can be determined by comparing the
number of 0’s and 1’s since in an uncorrupted key, the
expected number of 0’s and 1’s should approximately be
equal.

Given this asymmetric decay, rectifying these faults can be
achieved by further exploiting the redundancy of key mate-
rial inherent in many widely used cryptographic algorithms.
For example, in [3], Heninger et al. showed that an RSA
private key with small public exponent can be efficiently
recovered given a 0.27 fraction of its bits at random. In [1],
Halderman et al. have developed a recovery algorithm for the
128-bit version of the Advanced Encryption Standard (AES-
128) that recovers keys from 30% decayed AES-128 Key
Schedule images in less than 20 minutes about half the time.
Tsow [4] further improved upon this proof of concept and
presented a heuristic algorithm that solved all cases at 50%
decay and less in under half a second. At 60% decay, Tsow
recovered the worst case in 35.500 seconds while solving
the average case in 0.174 seconds. At the extended decay
rate of 70%, recovery time averages grew to over 6 minutes
with the median time at about five seconds. Nearly half of
the 17.4 day run was consumed by solving the worst case
of the test suite; the second slowest case was over six times
faster.

It should be noted, however, that the algorithm developed
by Tsow is a bit complex and was certainly uneasy to
develop and fine tune. On the other hand, the relations
that have to be satisfied between the different subround key
bits in the AES key schedule can be easily formulated as
a Boolean satisfiability (SAT) problem which lends itself

naturally to SAT solvers. In this paper, we explore the use
the CryptoMiniSAT SAT solver [5] to the above problem,
i.e., to recover AES-128 keys from its decayed key schedule
images.

The rest of the paper is organized as follows. A very brief
introduction to the Boolean satisfiability (SAT) problem is
given in the next section where we also review some of
the previous work related to the application of SAT solvers
in cryptanalysis. The relevant details of the structure of the
AES-128 key schedule are described in the section III. Our
attack is then presented in section IV and the experimental
results are given in section V. Finally, the conclusion is
presented in section VI.

II. SAT SOLVERS AND ITS APPLICATIONS TO
CRYPTANALYSIS

The Boolean satisfiability (SAT) problem [6] is defined
as follows: Given a Boolean formula, check whether an
assignment of Boolean values to the propositional variables
in the formula exists, such that the formula evaluates to
true. If such an assignment exists, the formula is said to be
satisfiable; otherwise, it is unsatisfiable. For a formula with
m variables, there are 2m possible truth assignments. The
conjunctive normal form (CNF) is most the frequently used
for representing Boolean formulas. In CNF, the variables
of the formula appear in literals (e.g., x) or their negation
(e.g., x). Literals are grouped into clauses, which represent a
disjunction (logical OR) of the literals they contain. A single
literal can appear in any number of clauses. The conjunction
(logical AND) of all clauses represents a formula. For
example, the CNF formula (x1) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)
contains three clauses: x1, x2∨x3 and x1∨x3. Two literals
in these clauses are positive (x1, x3) and two are negative
(x2, x3). For a variable assignment to satisfy a CNF formula,
it must satisfy each of its clauses. For example, if x1 is true
and x2 is false, then all three clauses are satisfied, regardless
of the value of x3.

While the SAT problem has been shown to be NP-
complete [6], efficient heuristics exist that can solve many
real-life SAT formulations. Furthermore, the wide range of
target applications of SAT have motivated advances in SAT
solving techniques that have been incorporated into freely-
available SAT software tools (e.g., [7] [8] [9] [10] [11]. Also
see the international SAT Competitions web page [12].)

Given the versatility and effectiveness of SAT solving
techniques, the use of SAT solvers in cryptanalysis has
recently attracted the attention of many cryptanalysts. In
the area of cryptanalysis of block ciphers, Courtois et al.
[13] presented an attack on the KeeLoq block cipher. They
showed that when about 232 known plaintexts are available,
KeeLoq is very week and for 30% of all keys, the full key
can be recovered with complexity of 228 KeeLoq encryp-
tions. Erickson et al. [15] used the Grobner basis [14] attacks
on SMS4 equation system over GF(2) and GF(28) and used

the SAT solver over the GF(2) model. They implement their
design in Grobner basis by Magma tool and in SAT solver
by the MiniSAT tool. In [16], 6 rounds of DES are attacked
with only single plaintext-ciphertext pair.

SAT solvers have also been applied to the cryptanalysis of
stream ciphers. Eibach et al. [17] presented an experimental
results over a slightly modified version of Trivium (Bivium)
using a SAT solver, exhaustive search, a BDD based attack,
a graph theoretic approach, and Grobner basis. Their results
concluded that the initial state of the cipher is recovered and
the using of SAT solver is faster than the other attacks. The
full key of Hitage2 stream cipher is recovered in a few hours
by using MiniSat 2.0 [18]. In [19], the full 48-bit key of the
MiFare Crypto 1 algorithm was recovered in 200 seconds
on a PC, given 1 known IV (from one single encryption).

Mironov and Zhang [20] described some initial results
on using SAT solvers to automate certain components in
cryptanalysis of hash functions of the MD and SHA families.
They generated a full collisions for MD4 and MD5. De et
al. [21] presented heuristics for solving inversion problems
for functions that satisfy certain statistical properties similar
to that of random functions. They demonstrate that this
technique can be used to solve the hard case of inverting
a popular secure hash function and inverted MD4 up to 2
rounds and 7 steps in less than 8 hours.

In this work, we used the CryptoMiniSat [5], which is
an extension of MinSat (a state-of-the-art DPLL-based [22]
SAT solver), refined to understand the XOR operation, which
is common in cryptography, besides functions in CNF that
is native to many SAT solvers.

III. STRUCTURE OF THE AES-128 KEY SCHEDULE

In this section, we briefly review the relevant details of
the AES-128 key schedule [23] [24] . Bytes of initial key
are denoted by K0

i,j , where 0 ≤ i, j ≤ 3 stand for the row
index and column index, respectively, in the standard AES
state matrix representation.

These 16 intial key bytes are bijectively mapped to 10
additional round-keys denoted by Kr+1

i,j , where 0 ≤ r ≤ 9
stands for the number of the subkeys (rounds). The rth key
schedule round consists of the following transformations

Kr+1
0,0 ← S(Kr

1,3)⊕Kr
0,0 ⊕Rcon(r + 1)

Kr+1
i,0 ← S(Kr

(i+1)mod4,3)⊕Kr
i,0, 1 ≤ i ≤ 3

Kr+1
i,j ← Kr+1

i,j−1 ⊕Kr
i,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3,

(1)

where Rcon(·) is a round-dependent constant and S(·)
denotes the s-box (SubBytes) operation which is performed,
on each byte of the state, by first taking the multiplica-
tive inverse in GF (28) using the irreducible polynomial
x8+x4+x3+x+1 and then applying an affine transformation
over GF (2) .

Similar to any Boolean function, each one of the eight
coordinate of the s-box, Sl, l = 1 · · · 8, has a unique repre-
sentation as a polynomial over GF (2), called the algebraic
normal form (ANF) which is obtained by summing up
distinct products terms of x1, x2, . . . , xn, and can be written
as

Sl(x1, . . . , xn) = a0

n⊕

i=1

aixi

⊕

1≤i<j≤n

aijxixj

⊕
. . .

⊕
a123...nx1x2 . . . xn,

where a0, ai, . . . , a123...n ∈ GF (2).

IV. FORMULATING THE AES KEY SCHEDULE AS A SAT
PROBLEM

The AES key-schedule, described in the previous section,
is the primary source of redundancy utilized to rectify the
faults in the corrupted memory images of the AES-128
key schedule. The conversion from the key schedule to the
Boolean SAT problem proceeds as follows.

First, the system of equations of the AES-128 key sched-
ule are generated according to the pseudocode in (1). In
each round, the s-box equations in lines 2,3 of (1) are
represented in its ANF (e.g., see Appendix A for the ANF
of the first coordinate function of the s-box). Then, the terms
of quadratic and higher degree are handled by noting that
(for example) the logical expression

(x1∨T)(x2∨T)(x3∨T)(x4∨T)(T ∨x1∨x2∨x3∨x4) (2)

is tautologically equivalent to T ⇔ (x1 ∧ x2 ∧ x3 ∧ x4),
or the GF (2) equation T = x1x2x3x4. Similar expressions
exist for higher order terms.

Thus, the system of equations obtained in this step can
be linearlized by introducing new variables as illustrated by
the following toy example.

Example 1: Suppose we would like to find the Boolean
variable assignment that satisfies the following formula

x0 ⊕ x1x2 ⊕ x0x1x2 = 0

Using the approach illustrated in (2), we introduce two
linearization variables, T0 = x1x2 and T1 = x0x1x2. Thus
we have

x0 ⊕ T0 ⊕ T1 = 0,
(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,
(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧
(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

(3)

Since the CryptoMinSAT expects only positive clauses
and the CNF form does not have any constants, we need to
overcome the problem that the first line in (3) corresponds
to a negative, i.e., false, clause. Adding the clause consisting

of a dummy variable, d, or equivalently (d∧d · · ·∧d) would
require the variable d to be true in any satisfying solution,
since all clauses must be true in any satisfying solution.
In other words, the variable d will serve the place of the
constant 1.

Therefore, the above formula can be reexpressed as

d = 1,
x0 ⊕ T0 ⊕ T1 ⊕ d = 1,
(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,
(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧
(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

Figure 1 shows the CryptoMiniSat input corresponding to
the above example.

c Lines starting with ‘c’ are comments
c The first line in the SAT file is in the form:
c ‘p cnf # variables # clause’
c Each line should end with ‘0’
c Lines starting with ‘x’ denote XOR equations
c True variables are denoted by numbers
c False variables are denoted by negating these numbers
c In this example, d → 1, x0 → 2 (consequently x0 → −2)
c x1 → 3, x2 → 4, T0 → 5, T1 → 6
p cnf 6 9
1 0
x 2 5 6 1 0
-5 3 0
-5 4 0
5 -3 -4 0
-6 2 0
-6 3 0
-6 4 0
6 -2 -3 -4 0

Figure 1. CryptoMinSAT input corresponding to Example 1

In our AES-128 key schedule system, each s-box can
be represented by 8 XOR equations corresponding to its 8
Boolean coordinates; and 246 CNF equations corresponding
to 246 linearization variables. The total number of clauses
corresponding to these CNF equations is equal to 1254.
Since, each round in the AES-128 key schedule involves four
s-box look-up operations and 96 linear XOR equations (line
4 in (1)), then the total number of clauses (including XOR
clauses) in each round is equal to 4×(1254+8)+96 = 5144.
Thus, for the complete 10 rounds key schedule, we have
10×5144 clauses +1 dummy variable to present the constant
1.

V. EXPERIMENTAL RESULTS

Similar to the previous work in [1] [4], throughout our
experimental results, we assume an asymmetric decay model

Table I
RUN-TIME STATISTICS FOR DECAY FACTORS 30%, 40%, 50%, 60%,

AND 70%.

β 30% 40% 50% 60% 70%

T
hi

s
w

or
k Min 0.046 0.046 0.062 0.062 0.078

Max 0.593 0.140 0.187 0.593 207.171
Avg. 0.064 0.066 0.074 0.102 1.233
St.Dev 0.009 0.007 0.008 0.028 4.899
Med. 0.062 0.062 0.078 0.093 0.359

[4
]

Min 0.000a 0.000 0.000 0.000 0.000
Max 0.015 0.015 0.078 2.094 737,266.687
Avg. 0.009 0.009 0.014 0.174 300.897
St.Dev 0.007 0.008 0.015 0.772 10,677.913
Med. 0.015 0.015 0.015 0.031 4.938

a. The value 0.000 means that it less than 1/64

where bits overwhelmingly decay to their ground state rather
than their charged state. Using this model, only the bits
that remain in their charged state will be useful to the
cryptanalyst since one cannot be sure about the original
values of the 0 bits, i.e., whether they were originally 0’s
or decayed 1’s. Let β denote the fraction of decayed bits.
If the percentage of 0’s and 1’s in the original key schedule
bits is pz and 1 − pz , respectively, then the fraction, f , of
key bits that can be assumed to be known by examining the
decayed memory of the AES key schedule is given by

f = 1− (pz + β × (1− pz)) = (1− pz)× (1− β).

Since in an uncorrupted AES key schedule key, we expect
the number of 0’s and 1’s to be approximately equal, i.e.,
pz ≈ 1/2, then we have f ≈ (1− β)/2.

Table I shows a comparison between our work and the
results reported in [4] which recover the AES-128 key
schedule from its decayed memory images for a decay factor
up to 70%. In this table, for our work, all statistics were
generated using 10,000 runs for each decay factor.

It should be noted that the performance in [4] was
evaluated on Dell Precision Workstation 7400 running a
3.4 Ghz quad-core Xeon processor with 4GB of RAM. The
performance of our approach was evaluated on a slightly less
powerful machine: Dell Precision 370 Workstation running
a 3.0 GHz Intel Pentium 4 CPU with 1 GB of RAM.

Table II
RUN-TIME STATISTICS FOR DECAY FACTORS 72%, 74%, 76%, 78%,

AND 80%.

β 72% 74% 76% 78% 80%

Min 0.078 0.109 0.156 0.625 38.65b

Max 109794 126772 84819 19987 5523.8b

Avg. 22.271 62.404 799.327 6958.473 1901.95b

St.Dev 1155.83 1373.14 5423.73 25880.70 2119.58b

Med. 0.812 2.656 14.578 173.508 685.046b

Tests 10000 10000 1000 100 7

b. These statistics excludes the 8th case where the search did not terminate
for 10 days

While the algorithm in [4] runs slightly faster for small
values of β ≤ 50%, it is clear that our proposed SAT
approach outperforms the algorithm in [4] for large values
of β. In [4] with decay factor 70%, the recovery time for the
worst case was more than 8.5 days. The average time was
5 minutes and median time was about five seconds. In our
work, the worst case for the recovery time was obtained in
less than 3.5 minutes and 7968 cases were recovered in less
than one second. The average and median recovery times are
are 1.2, 0.36 seconds respectively. It should also be noted
that for small values of β, the difference in the run time
statistics between the two approaches is practically not very
significant because the run time is usually very short for
such small values of β.

Table II shows the time statistics of our work correspond-
ing to decay factors between 72%− 80%. For such a large
value of decay factors, the median is a better indication to the
performance of the algorithm than the average since some
few cases may take a relatively very long time while the
majority of the cases take a short time. At 72% and 74%
the results are promising, the 10,000 cases have been solved
in an average of 22.3 and 62.4 seconds, respectively. At
72% decay factor, 92% of the cases have been recovered
in less than 10 seconds, while similar percentage has been
recovered in less than one minute with 74% decay factor.
Due to the extended times for key recovery with decay
factors 76%, 78%, and 80%, less cases have been examined.
For β = 80%, the CryptoMiniSat search did not terminate
(at the time of submission, still running for 10 days) in
the 8th case. Furthermore, in one of other successfully
terminated 7 cases, the key returned by the SAT solver was
different from the original key. The original key could have
been easily found by re-running the SAT solver again after
adding some clauses to exclude the found key.

VI. CONCLUSIONS

In this work, we modelled the problem of key recovery of
the AES-128 key schedules from its corresponding decayed
memory images as a Boolean SAT problem and solved it
using the CryptoMiniSat solver. Our experimental results
confirm the versatility of our proposed approach which
allows us to efficiently recover the AES-128 key schedules
for large decay factors. The method presented in this work
can be extended in a straightforward way to AES-192,
AES-256 and other ciphers with key schedules that can be
presented as a set of Boolean equations and, hence, lend
themselves naturally to SAT solvers.

REFERENCES

[1] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W.
Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W.
Felten, Lest We Remember: Cold Boot Attacks on Encryption
Keys, in Proc. 17th USENIX Security Symposium (Sec 08),
San Jose, CA, July 2008.

[2] S. Skorobogatov, Low temperature data rema-
nence in static RAM, University of Cambridge,
Computer Laboratory, June 2002. Available at:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html,
accessed 10 Feb. 2010.

[3] N. Heninger, H. Shachan, Reconstructing RSA Private keys
from Random key Bits, In proc. of CRYPTO, LNCS 5677, pp.
1-17, Springer, 2009.

[4] A. Tsow, An Improved Recovery Algorithm for Decayed AES
Key Schedule Images, In Proc. of Selected Areas in Cryptog-
raphy, SAC 2009,pp. 215-230, LNCS, Springer-Verlag, 2009

[5] M. Soos, K. Nohl, and C. Castelluccia, Extending SAT Solvers
to Cryptographic Problems, In proc. of SAT, LNCS 5584, pp.
244-257, Springer, 2009.

[6] S. Cook, The complexity of theorem proving procedures, in
proc. of 3rd Annual ACM Symposium on Theory of Comput-
ing, pp. 151-158, 1971.

[7] N. Een and N. Sörensson, An extensible SAT-solver, in Proc. of
SAT 2003, Volume 2919, LNCS, Springer, pp. 502-518, 2004.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,
Chaff: Engineering an Efficient SAT Solver, Proc. of the 39th.
DAC, Las Vegas USA, 2001.

[9] E. Goldberg, Y. Novikov, BerkMin: a fast and robust SAT-
solver, In Design, Automation and Test in Europe (DATE02),
pp.142-149, 2002.

[10] SAT4J, a SATisfiability library for java. http://www.sat4j.org,
accessed 15 Jan. 2010.

[11] M. Heule and Hans van Maaren, Marchdl: Adding Adaptive
Heuristics and a New Branching Strategy, Journal on Satisfia-
bility, Boolean Modeling and Computation 2:47-59, 2006.

[12] The international SAT Competitions web page. Avilavle at
http://www.satcompetition.org/

[13] N. Courtois, G. Bard, W. David Algebraic and slide attacks
on KeeLoq, In proc. of FSE, LNCS 5086, pp. 97115, Springer,
2008.

[14] B. Buchberger, Grobner bases: An Algorithmic method in
Polynomial Ideal theory, in Multidimensional Systems Theory,
N.K. Bose, cd., D. Reidel Publishing Co., 1985.

[15] J. Erickson, J. Ding, C. Christensen Algebraic cryptanalysis
of SMS4: Grobner basis attack and SAT attack compared, In
proc. of ICISC, 2009.

[16] N. Courtois, G. Bard Algebraic Cryptanalysis of the Data
Encryption Standard, in proc. of Cryptography and Coding,
LNCS 4887, pp. 152-169, Springer, 2007.

[17] T. Eibach, E. Pliz, G. Volkel, Attacking Bivium Using SAT
solvers, In proc. of SAT, LNCS 4996, pp. 63-76, Springer,
2008.

[18] N. Courtois, S. O’Neil, J. Quisquater Practical Algebraic
Attacks on Hitage2 Stream Cipher, In proc. of ISC, LNCS
5735, pp. 167176, Springer, 2009.

[19] N. Courtois, K. Nohl, S. O’Neil Algebraic Attacks on the
Crypto-1 Stream Cipher in MiFare Classic and Oyster Cards,
Cryptology ePrint archive, report 166, 2009.

[20] I. Mironov and L. Zhang, Applications of SAT Solvers to
Cryptanalysis of Hash Functions, in proc. of International
Symposium on the Theory and Applications of Satisfiability
and Testing (SAT), LNCS 4121, pp. 102115, Springer, 2006.

[21] D. De, A. Kumarasubramanian, R. Venkatesan, Inversion
Attacks on Secure Hash Functions Using SAT Solvers, in proc.
of International Symposium on the Theory and Applications
of Satisfiability and Testing (SAT), LNCS 4501, pp. 377382,
Springer, 2007.

[22] M. Davis, H. Putnam, A Computing Procedure for Quantifica-
tion Theory, Journal of the ACM Vol. 7, Issue 3, pp. 201-215,
1960.

[23] J. Daemen, V. Rijmen, The Design of Rijndael AES - The
Advanced Encryption Standard, Springer-Verlag, 2002.

[24] Federal Information Processing Standards Publication (FIPS
197), Advanced Encryption Standard (AES) , Nov. 26, 2001.

APPENDIX

S1 = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x1x3 ⊕ x1x7 ⊕ x1x8 ⊕ x2x4 ⊕
x2x6 ⊕ x2x8 ⊕ x3x5 ⊕ x4x6 ⊕ x6x7 ⊕ x6x8 ⊕
x1x2x4 ⊕ x1x2x6 ⊕ x1x2x8 ⊕ x1x3x4 ⊕ x1x3x5 ⊕
x1x4x7 ⊕ x1x5x8 ⊕ x1x6x8 ⊕ x2x3x4 ⊕ x2x3x6 ⊕
x2x3x8 ⊕ x2x4x6 ⊕ x2x5x7 ⊕ x2x5x8 ⊕ x2x6x7 ⊕
x2x7x8 ⊕ x3x4x5 ⊕ x3x4x8 ⊕ x3x5x6 ⊕ x3x5x7 ⊕
x3x5x8 ⊕ x3x6x8 ⊕ x3x7x8 ⊕ x4x7x8 ⊕ x5x6x7 ⊕
x5x6x8 ⊕ x1x2x3x4 ⊕ x1x2x3x6 ⊕ x1x2x3x7 ⊕
x1x2x4x6 ⊕ x1x2x4x7 ⊕ x1x2x4x8 ⊕ x1x2x5x7 ⊕
x1x2x5x8 ⊕ x1x3x4x7 ⊕ x1x3x5x8 ⊕ x1x4x5x6 ⊕
x1x4x5x7 ⊕ x1x4x5x8 ⊕ x1x4x6x8 ⊕ x1x4x7x8 ⊕
x1x5x6x7 ⊕ x1x5x6x8 ⊕ x1x6x7x8 ⊕ x2x3x4x5 ⊕
x2x3x5x8 ⊕ x2x4x5x8 ⊕ x2x4x6x7 ⊕ x2x4x6x8 ⊕
x2x5x6x8 ⊕ x2x5x7x8 ⊕ x3x4x6x7 ⊕ x3x5x6x7 ⊕
x3x5x6x8 ⊕ x3x6x7x8 ⊕ x4x5x6x7 ⊕ x4x5x7x8 ⊕
x4x6x7x8⊕x5x6x7x8⊕x1x2x3x4x5⊕x1x2x3x4x7⊕
x1x2x3x5x7 ⊕ x1x2x3x5x8 ⊕ x1x2x3x6x7 ⊕
x1x2x3x7x8 ⊕ x1x2x4x5x8 ⊕ x1x2x4x6x7 ⊕
x1x2x6x7x8 ⊕ x1x3x4x7x8 ⊕ x1x3x6x7x8 ⊕
x1x4x5x6x8 ⊕ x1x4x5x7x8 ⊕ x2x3x4x5x6 ⊕
x2x3x4x5x8 ⊕ x2x3x4x6x7 ⊕ x2x3x4x7x8 ⊕
x2x3x5x6x7 ⊕ x2x4x5x6x8 ⊕ x2x4x6x7x8 ⊕
x2x5x6x7x8 ⊕ x3x4x5x6x8 ⊕ x3x4x5x7x8 ⊕
x4x5x6x7x8 ⊕ x1x2x3x4x5x7 ⊕ x1x2x3x4x6x8 ⊕
x1x2x3x5x6x8 ⊕ x1x2x3x5x7x8 ⊕ x1x2x4x5x6x8 ⊕
x1x2x4x5x7x8 ⊕ x1x2x5x6x7x8 ⊕ x1x3x4x5x6x8 ⊕
x1x3x4x5x7x8 ⊕ x1x3x4x6x7x8 ⊕ x2x3x4x5x6x8 ⊕
x1x2x3x4x5x6x8 ⊕ x1x2x3x4x5x7x8

