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Abstract - This paper deals with the Security-

Constrained Optimal Power Flow (SCOPF) problem.

We first revisit both preventive and corrective variants

of the SCOPF problem. Then we present the nonlin-

ear Interior-Point Method (IPM) which we use for the

solution of the SCOPF problem. Next, we provide nu-

merical results, on a 60-bus test system, for three main

SCOPF applications, namely: minimum overall cost of

generation, minimum cost of removing congestion and

maximum power transfer computation. We finally dis-

cuss some critical issues related to the SCOPF prob-

lem.

Keywords: optimal power flow, security-constrained

optimal power flow, interior-point method.

1 INTRODUCTION

The Optimal Power Flow (OPF) problem was intro-

duced in the 60’s [1, 2]. The main limitation of OPF for-

mulation is that it focuses on the optimization of a single

system configuration at the time while the System Oper-

ator (SO) needs to know: (i) how robust the system is

with respect to various credible contingencies and (ii) how

(much costs) to meet also operating constraints for these

contingencies, beside the pre-contingency ones. While the

item (i) can be tackled by a mere security analysis per-

formed at the OPF solution, the item (ii) requires the de-

velopment of new tools. That led to the formulation of

the Security-Constrained Optimal Power Flow (SCOPF)

problem [3] as a natural extension of the OPF which takes

into account pre-contingency (base case) constraints and

also (steady-state) post-contingency constraints together.

Nowadays, modern SCOPF software handle also (voltage

or transient) stability constraints, most often expressed as

surrogate power flow limits for some interfaces [4, 5].

The SCOPF problem is formulated in its general form

as nonlinear, non-convex, large-scale, static optimization

problems with both continuous and discrete variables. It

aims at optimizing some objective by acting on available

control means while satisfying some equality constraints

(e.g., network power flow equations) and inequality con-

straints (e.g., physical and operational limits of equip-

ments). These constraints relate to both base case and

some plausible (mainly “N-1”) post-contingency states.

As regards the SCOPF problem formulation two ap-

proaches can be distinguished: “preventive” [3] and “cor-

rective” [6]. The difference between these variants is that,

in the preventive SCOPF, the re-scheduling of control vari-

ables in post-contingency states is not allowed, except of

those with automatic response to contingencies (e.g., the

active power of generators participating at primary or sec-

ondary frequency control, transformers controlling some

voltages, etc).

Nowadays (SC)OPF computations are essential in

power systems planning, operational planning and real-

time operation, both in an integrated and a deregulated

electricity industry [7, 8]. This paper presents some

key SCOPF applications in such environments: minimum

overall generation cost [3, 7], minimum cost of removing

congestion [6, 9] and maximum power transfer computa-

tion [10].

Among the above mentioned SCOPF objectives, the

determination of the security-constrained (economic) gen-

eration dispatch is no doubt the most important (SC)OPF

application in both deregulated and vertically integrated

environments. In particular, OPF or SCOPF are used,

admittedly mostly still based on the DC approximation,

in some deregulated environments to compute locational
marginal prices (or nodal prices) for electricity [8].

In a deregulated environment the SO is responsible

to remove (generally at the least cost) congestion in both

day-ahead market and real-time. A system is said to be

“congested” when some predefined operating and/or secu-

rity constraints (e.g., thermal, voltage magnitude, voltage

stability, angle stability, etc.) are violated in the current

or in a foreseen operating state. Security constraints refer

to “N” and some plausible “N-K” system configurations.

Congestion management consists in controlling the sys-

tem such that all security constraints are satisfied. Clearly,

power systems were confronted to congestions also in a

vertically integrated environment. In such an environment

the congestion management most often consists in modi-

fying the economic dispatch at the least cost such that no

security constraint is violated.

Finally, the computation of maximum power transfer

(loadability margin) between two (“source”-”sink”) areas

of a power system is extremely important, especially in

a deregulated environment where one has to allocate in a

fair manner transmission capacity among various simulta-

neous power transactions. In a deregulated environment

such loadability margin is called Total Transfer Capability

(TTC) and is, in turn, the major component for the deter-

mination of Available Transfer Capability (ATC) between

areas.

We solve the SCOPF problem by the Interior-Point

Method (IPM) [11]. The latter is a very appealing method

mainly due to its speed of convergence and ease of han-

dling inequality constraints.

The remaining of the paper is organized as follows.



Section 2 introduces successively the preventive and the

corrective approaches to the SCOPF problem. Section 3

presents the basics of the IPM. Section 4 provides numeri-

cal results for three main SCOPF applications. Some crit-

ical issues relative to the SCOPF problem are discussed in

Section 5. Finally, some conclusions and future works are

presented in Section 6.

2 STATEMENT OF THE SCOPF PROBLEM

2.1 The Preventive Approach

The benchmark of the Preventive Security-

Constrained Optimal Power Flow (PSCOPF) problem can

be compactly formulated as follows:

min
x0,...,xc,u0

f(x0,u0) (1)

s.t. gk(xk,u0) = 0 k = 0, . . . , c (2)

hk(xk,u0) ≥ 0 k = 0, . . . , c (3)

where f is a (real-valued) function representing the objec-

tive to optimize, gk (resp. hk) is the set of equality (resp.

inequality) constraints for the k-th system configuration

(k = 0 corresponds to the base case, while k = 1, . . . , c
corresponds to the k-th post-contingency state, c being the

number of contingencies considered), xk is the vector of

state variables (i.e., real and imaginary part of voltage at

all buses1) for the k-th system topology and u0 is the vec-

tor of base case control variables (e.g., active and reactive

generator powers, controllable transformer ratio, shunt el-

ement reactance, load apparent power, etc.).

Equations (2) mainly refer to base case and post-

contingency network power flow equations. Inequality

constraints (3) concern physical limits of equipments (e.g.,

bounds on active and reactive generator powers, control-

lable transformer ratio, shunt element reactance, etc.),

(steady-state) security operational limits (e.g., mainly lim-

its on branch currents and voltage magnitudes) and possi-

bly transient and/or voltage stability limits [4, 5].

Incidentally, the OPF problem may be stated as (1-3)

where equality and inequality constraints (2) and (3) are

written for the base case only (k = 0). Thus, the size of

the PSCOPF problem is (c + 1) times greater than that of

the OPF.

Observe that in PSCOPF one acts only on the base case

control means u0 while trying to satisfy both base case and

post-contingency (equality and inequality) constraints. In-

deed, in the preventive SCOPF the re-scheduling of con-

trol variables in post-contingency states is not allowed,

except of those with automatic response to contingen-

cies, e.g., the active power of generators participating

at primary or secondary frequency control, transformers

controlling some voltages, etc. These control variable

changes between base case and post-contingency have not

be shown explicitly in the PSCOPF model (1-3) to lighten

the presentation.

Since the SO actions and/or some corrective schemes

are not modeled in post-contingency states, PSCOPF may

lead to (very) high operating costs and can hence be seen

as a bit conservative [6, 9]. In addition, especially under

stressed operating conditions, there could be no feasible

solution to the PSCOPF problem or the latter could be

very constrained, and consequently more difficult to ob-

tain [5]. On the other hand, post-contingency limits (e.g.,

on branch currents and voltage magnitudes) can be some-

what relaxed with respect to the base case ones, hence ex-

panding the feasible region. Anyway, the PSCOPF indi-

cates the price to pay for ensuring system security with

respect to a set of plausible contingencies.

2.2 The Corrective Approach

The corrective approach to the SCOPF problem relies

on the fact that some post-contingency constraint violation

(e.g., thermal, bus voltage magnitude, etc.) can be endured

up to (at least) several minutes without damaging the cor-

responding equipment, which lets enough time for some

(automatic or not) corrective actions to be implemented.

The benchmark of the Corrective Security-

Constrained Optimal Power Flow (CSCOPF) problem

can be compactly stated as follows [9]:

min
x0,...,xc,u0,...,uc

f(x0,u0) (4)

s.t. gk(xk,uk) = 0 k = 0, . . . , c (5)

hk(xk,uk) ≥ 0 k = 0, . . . , c (6)

|uk − u0| ≤ ∆umax
k k = 1, . . . , c (7)

The main difference with respect to the preventive

SCOPF approach (1-3) stems from the allowing of post-

contingency control variables rescheduling in order to re-

move contingent constraints violation. However, in order

to prevent unrealistic variations of control variables un-

der the effect of a contingency, “coupling” constraints be-

tween the base case and post-contingency values of con-

trol variables are included (7). ∆umax
k represents the vec-

tor of maximal allowed variation of control variables be-

tween the base case and k-th post-contingency state. This

maximal bound is determined by both the time allowed

for correction and control variables rate of changes in re-

sponse to a contingency.

Note that, the PSCOPF can be seen as a particular case

of a CSCOPF, obtained for ∆umax
k = 0, ∀k = 1, . . . , c.

Observe also that the value of the objective of a CSCOPF

is lower (resp. upper) bounded by the value of the objec-

tive of a OPF (resp. PSCOPF).

3 INTERIOR-POINT METHOD

3.1 Obtaining the Optimality Conditions

The SCOPF formulations (1-3) and (4-7) can be com-

pactly written as a general nonlinear programming prob-

lem:

min
y

f(y) (8)

s.t. g(y) = 0 (9)

h(y) ≥ 0 (10)

1we have used a rectangular model to express (complex) bus voltages



where f(y), g(y) and h(y) are assumed to be twice con-

tinuously differentiable, y is an m-dimensional vector that

encompasses both control variables (uk) and state vari-

ables (xk), g is a p-dimensional vector of functions and h

is a q-dimensional vector of functions.

The IPM encompasses four steps to obtain optimal-

ity conditions. One first adds slack variables to inequal-

ity constraints, transforming them into equality constraints

and non-negativity conditions on slacks:

min
y

f(y)

s.t. g(y) = 0

h(y) − s = 0

s ≥ 0

where the vectors y and s = [s1, . . . , sq]
T are called pri-

mal variables.

The inequality constraints are then eliminated by

adding them to the objective function as logarithmic bar-

rier terms, resulting in the following equality constrained

optimization problem:

min
y

f(y) − µ

q
∑

j=1

ln sj

subject to: g(y) = 0

h(y) − s = 0

where µ is a positive scalar called barrier parameter
which is gradually decreased to zero as iterations progress.

Let us remark that at the heart of IPM is the main theorem

from [11], which proves that as µ tends to zero, the so-

lution y(µ) converges to a local optimum of the problem

(8-10).

Next, one transforms the equality constrained opti-

mization problem into an unconstrained one, by defining

the Lagrangian:

Lµ(z) = f(y) − µ

q
∑

j=1

ln sj − λ
Tg(y) − π

T [h(y) − s]

where the vectors of Lagrange multipliers λ and π are

called dual variables and z = [s π λ y]T .

Finally, the perturbed KKT first order necessary op-

timality conditions of the resulting problem are obtained

by setting to zero the derivatives of the Lagrangian with

respect to all unknowns [11]:
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where S is a diagonal matrix of slack variables, e =
[1, . . . , 1]T , ∇f(y) is the gradient of f , Jg(y) is the Jaco-

bian of g(y) and Jh(y) is the Jacobian of h(y).

3.2 The Primal Dual Interior Point Algorithm

We briefly outline the primal dual interior point (PDIP)

algorithm to solve the perturbed KKT optimality condi-

tions:

1. Set iteration count i = 0. Chose µ0 > 0. Ini-

tialize z0, taking care that slack variables and their

corresponding dual variables are strictly positive

(s0, π0) > 0.

2. Solve the linearized KKT conditions for the Newton

direction ∆zi:

H(z
i
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∆π
i

∆λ
i

∆yi
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µie− Si
π

i

h(yi) − si

g(y
i
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i
)T

λ
i + Jh(y

i
)T

π
i









where H(z
i
) is the second derivative Hessian ma-

trix (∂2Lµ(zi)/∂z2).

3. Determine the maximum step length αi ∈
(0, 1] along the Newton direction ∆zi such that

(si+1, πi+1) > 0:

αi = min

{

1, γ min
∆si

j
<0

−si
j

∆si
j

, γ min
∆πi

j
<0

−πi
j

∆πi
j

}

(11)

where γ ∈ (0, 1) is a safety factor aiming to en-

sure strict positiveness of slack variables and their

corresponding dual variables. A typical value of the

safety factor is γ = 0.99995. Update solution:

si+1 = si + αi∆si
π

i+1 = π
i + αi∆π

i

yi+1 = yi + αi∆yi
λ

i+1 = λ
i + αi∆λ

i

4. Check convergence. A (locally) optimal solution

is found and the optimization process terminates

when: primal feasibility, scaled dual feasibility,

scaled complementarity gap and objective function

variation from an iteration to the next fall below

some tolerances [12]:

max

{

max
j

{

−hj(y
i)

}

, ||g(y
i
)||∞

}

≤ ǫ1

||∇f(yi) − Jg(y
i
)T

λ − Jh(y
i
)T

π
i||∞

1 + ||yi||2 + ||λi||2 + ||πi||2
≤ ǫ1

ρi

1 + ||yi||2
≤ ǫ2

|f(yi) − f(yi−1)|

1 + |f(yi)|
≤ ǫ2

where ρi = (si)T
π

i is called complementarity gap.

5. If convergence was not achieved, update the barrier

parameter:

µi+1 = σi ρ
i

q

where usually σi = 0.2. Set i = i + 1 and go to

step 2.



4 NUMERICAL RESULTS

In this section we present numerical results, on a mod-

ified variant of the “Nordic32” system [13], for three

(SC)OPF applications. A summary of this test system is

given in Table 1, where: n, g, d, b, l, t, o and s denote

the number of: buses, generators, loads, branches, lines,

all transformers, transformers with controllable ratio and

shunt elements, respectively.

Table 1: Nordic32 test system summary

n g d b l t o s
60 23 22 81 57 31 4 12

The (SC)OPF has been coded in C++ and runs un-

der Cygwin or Linux environments. All tests have been

performed on a PC Pentium IV of 2.8-GHz and 512-Mb

RAM.

The convergence tolerances, appearing at the step 4 of

the PDIP algorithm, are set to ǫ1 = 10−4 and ǫ2 = 10−6.

For all SCOPF problems that follow, we consider a set

of 12 contingencies, typically the loss of significant trans-

mission branches that do not create islands. We also con-

sider the same limit for every type of inequality constraint

(e.g., relative to: branch current, voltage magnitude, etc.)

in both pre- and post-contingency states.

4.1 Minimizing Overall Generation Cost

We first focus on minimizing the overall generation

cost by three different approaches: OPF (no contingency

constraints), PSCOPF (1-3) and CSCOPF (4-7).

We also consider two types of optimization problems:

problem A and problem B. Problem A corresponds to

a classical security-constrained economic dispatch. The

control variables used are: generator active and reactive

powers. The equality constraints are the bus active and

reactive power flow equations. The inequality constraints

include bounds on generator active and reactive powers

and limits on branch currents. Problem B corresponds to

a “full” (SC)OPF. One acts thus on the following control

variables: generator active and reactive powers, control-

lable transformer ratio and shunt reactance. The equal-

ity constraints are again the bus active and reactive power

flow equations. The inequality constraints include bounds

on all above mentioned control variables as well as limits

on bus voltage magnitudes and branch currents. The bus

voltage magnitudes are allowed to vary between 0.95 pu

and 1.05 pu. Finally, for both problems, when using the

CSCOPF approach the coupling constraints of type (7) are

included. In the latter constraints, the maximal allowed

variation of control variables between the base case and

every k-th post-contingency state, ∆umax
k has been cho-

sen as a fraction p of the physical range of variation of

control variables (umax − umin). We have used the value

p = 0.1 for every generator active power, and p = 0.5 for

every shunt reactance or controllable transformer ratio.

Table 2 yields the value of the objective (the overall

generation cost) for problems A and B and for the three

optimization approaches. As expected, for both problems

the value of the objective increases when adding contin-

gency constraints to the basic OPF, as one can observe

when comparing the columns labelled OPF and PSCOPF

as well as OPF and CSCOPF. One can also observe that

the value of the objective is lower for CSCOPF than for

PSCOPF (see the last two columns of the table), since

post-contingency controls are allowed to vary.

Table 2: Value of the objective (in $/h)

problem OPF PSCOPF CSCOPF

problem A 9560 10126 9619

problem B 9557 10153 9615

Table 3 provides the number of iterations to conver-

gence and the CPU times2 (in seconds) for different prob-

lems and optimization approaches. Note that, a great ad-

vantage of using the IPM is that the number of iterations

to convergence is generally little influenced by the size of

the problem.

Table 3: Number of iterations to convergence and CPU times

problem OPF PSCOPF CSCOPF

iters time iters time iters time

problem A 23 0.39 39 7.4 29 3.5

problem B 31 0.58 56 13.2 51 16.3

Tables 4 and 5 show the number and the type of bind-

ing constraints at optimum for problems A and B, respec-

tively. In these tables columns labelled with Pg , Qg, I , V ,

r, x, and cpl refer to constraints relative to generator ac-

tive power, generator reactive power, branch current, bus

voltage magnitude, controllable transformer ratio, shunt

reactance and coupling constraints, respectively. The high

number of active power generator constraints binding at

optimum is due to the fact that we have considered a linear

cost curve for all generators participating in the optimiza-

tion.

Table 4: Number and type of active constraints for problem A

approach Pg Qg I cpl total

OPF 13 0 4 - 17

PSCOPF 12 1 4 - 17

CSCOPF 34 0 3 23 60

Table 5: Number and type of active constraints for problem B

approach Pg Qg I V r x cpl total

OPF 15 0 3 20 0 2 - 40

PSCOPF 13 1 5 190 0 7 - 216

CSCOPF 28 0 4 40 0 7 9 88

Table 6 yields the number of binding contingencies at

the optimum, i.e., those contingencies that lead to active

post-contingency constraints different than the base case

ones. Obviously, when performing the SCOPF computa-

tion subject only to the binding contingencies one obtains

the same optimum as when considering the full contin-

gency set.

Table 6: Number of binding contingencies at the optimum

problem PSCOPF CSCOPF

problem A 3 2

problem B 5 1

2CPU time concerns the optimization process only.



Note finally that, the dual variable (Lagrange mul-

tiplier) at the optimal solution associated with each ac-

tive power flow equation (representing the variation of the

overall generation cost for an increment of the active load

at that bus) is called locational marginal price (or nodal

price) at that bus and could be used to price electricity in

some liberalised electricity markets [8].

4.2 Minimizing Congestion Cost

We now consider the problem of minimizing the con-

gestion cost by the same approaches: OPF, PSCOPF

and CSCOPF. The objective function is expressed as:

min

g
∑

i=1

(c+
i ∆Pg+

i − c−i ∆Pg−i ), where, for the i-th gen-

erator, c+
i (resp. c−i ) is its incremental (resp. decremental)

price [8] and ∆Pg+
i ≥ 0 (resp. ∆Pg−i ≥ 0) is its active

power increase (resp. decrease) with respect to the base

case.

In order to assess the robustness of these optimization

approaches to remove severe (thermal) congestions we

choose a very “congested” base case, with 7 branches be-

ing overloaded up to 147 %. Obviously, when simulating

(by an AC power flow software) the contingency impact at

the base case, at the corresponding post-contingency state

most of these branches are (even higher) overloaded, while

new branches becoming also overloaded.

As in the previous example, we also consider two

types of optimization problems: problem C and problem

D. The control variables allowed in problem C are: gener-

ator active and reactive powers. The equality constraints

are the bus active and reactive power flow equations. The

inequality constraints include bounds on generator active

and reactive powers and limits on branch currents. For

problem D one acts on the following control variables:

generator active and reactive powers, controllable trans-

former ratio and shunt reactance. The equality constraints

are again the bus power balances. The inequality con-

straints include bounds on all above mentioned control

variables as well as limits on branch currents and bus volt-

age magnitudes. The latter are allowed to vary between

0.95 pu and 1.05 pu. Note that, for problem D, at the

base case as well as at all post-contingency states some

voltages are out of the allowable variation range, which

creates voltage congestion.

Tables 7 and 8 provide the value of the objective

(the congestion cost) and the total amount of generation

rescheduled to remove the congestion, respectively. The

effort of removing the thermal/and or voltage congestion

is shared for problem C (resp. D) among 6 (resp. 7) gen-

erators for the OPF, 7 generators for the PSCOPF and 6

generators for the CSCOPF. Note that, if a congestion can

not be removed by rescheduling generation only, load cur-

tailment can also be taken into account.

Table 7: Value of the objective (in $/h)

problem Value of the objective (in $/h)

OPF PSCOPF CSCOPF

problem C 599 884 643

problem D 620 895 659

Table 8: The total amount of generation rescheduling (MW)

problem MW rescheduled

OPF PSCOPF CSCOPF

problem C 1210 1638 1304

problem D 1250 1674 1334

Table 9 provides the number of iterations to conver-

gence and the CPU times for different problems and opti-

mization approaches.

Table 9: Number of iterations to convergence and CPU times

problem OPF PSCOPF CSCOPF

iters time iters time iters time

problem C 21 0.34 28 4.5 36 5.4

problem D 23 0.44 53 12.1 55 15.4

Tables 10 and 11 show the number and the type of

binding constraints at optimum for problems C and D, the

meaning of the columns label being the same as in the pre-

vious Section. Note that, the high number of active power

generation active constraints at the optimum is owing to

the fact that, for this objective function, each generator

power shift with respect to its base case value is split into

two positive variables, ∆Pg+
i and ∆Pg−i .

Table 10: Number and type of active constraints for problem C

approach Pg Qg I cpl total

OPF 40 0 5 - 45

PSCOPF 63 1 25 - 89

CSCOPF 41 0 11 16 68

Table 11: Number and type of active constraints for problem D

approach Pg Qg I V r x cpl total

OPF 40 1 5 23 0 1 - 70

PSCOPF 63 2 5 268 0 4 - 342

CSCOPF 41 1 9 48 0 6 18 123

All three optimizers succeed to remove the thermal

and/or voltage congestion, despite a significant number

of branch currents and voltage magnitudes binding con-

straints at the optimum, in both pre- and post-contingency

states. This proves once more the efficiency of the IPM to

solve optimization problems with a large number of con-

straints active at the optimum.

Finally, Table 12 yields the number of binding contin-

gencies at the optimum.

Table 12: Number of binding contingencies at the optimum

problem PSCOPF CSCOPF

problem A 4 1

problem B 5 1

4.3 Computing Maximum Power Transfer

We finally tackle the problem of determining the max-

imum power transfer (the TTC) between two (“source”-

”sink”) areas of a power system, by means of two ap-

proaches: OPF and PSCOPF. We assume that all loads in

the sink area are increased proportionally to their base case

consumptions, and that increase is covered (for simplic-

ity) by a single “slack” generator in the source area. The

control variables considered are: the value of the power

transfer and slack generator active output. The equality



constraints concern buses active and reactive power bal-

ance. The inequality constraints include limits on: gener-

ator reactive power, branch current and bus voltage magni-

tudes. The latter are allowed to vary between 0.90 pu and

1.10 pu. More details about loadability limit computation

are available in [14].

Note that, a power transfer (loadability) limit com-

puted with the (SC)OPF static models (1-3) or (4-7) can

correspond to a voltage stability limit, a thermal limit, a

voltage magnitude limit or any combination of those.

The loadability margin is 807 MW (resp. 173 MW)

when using the OPF (resp. the PSCOPF). In both ap-

proaches one branch attaining its maximum current, in

the base case (resp. in a post-contingency state) when us-

ing the OPF (resp. the PSCOPF), prevents us to obtain a

larger power transfer. These margins indicate, obviously,

that base power transfer can be considerably limited when

adding supplementary contingency constraints. Now, if

one takes off branch current constraints from the above

computation model, the new loadability margin increases

to 821 MW (resp. 616 MW) when using the OPF (resp.

the PSCOPF). These margins are now limited by one volt-

age reaching its minimal bound (0.90 pu), in the base case

(resp. in a post-contingency state).

5 CRITICAL ISSUES IN SCOPF

The major drawback of the (brute force) approach to

the SCOPF benchmark adopted in this paper is the high

dimensionality of the problem, especially for large power

systems and/or when many contingent cases have to be

considered. A first limitation stems from the memory ca-

pacity of current computers. Secondly, although in real

life applications most postulated contingencies do not con-

strain the optimum, including them into the SCOPF in-

creases the complexity of the computations, due to shrink-

ing the feasible region, and can hence lead to algorith-

mic/numerical problems. This is especially true under

stressed operating conditions.

As regards the PSCOPF, a widely used approach to

mitigate these drawbacks combines three modules: a

PSCOPF which considers a subset of potentially active

contingencies, a (steady-state) security analysis and a con-

tingency filtering technique [3, 7, 16]. This approach

requires to iterate between these modules until all post-

contingency constraints are satisfied. The PSCOPF can

be further simplified by adding to the base case con-

straints only relevant post-contingency inequalities, lin-

earized around the base case optimized operating point,

while dropping all post-contingency equality constraints

(which are checked at the optimal solution) [4, 5, 6, 7].

This approach requires iterating between the solution of

the PSCOPF and the linearization of post-contingency in-

equality constraints until some convergence criteria are

met.

Contingency filtering is an essential step in the sequen-

tial PSCOPF solution. Its goal is to efficiently identify

an as small as possible subset, of the initial contingency

set, containing all the binding contingencies at the bench-

mark PSCOPF solution. Most such contingency filtering

schemes rank various contingencies according to a sever-

ity index, which accounts for post-contingency constraints

violation [6]. Another interesting alternative consists in

identifying a set of “umbrella” contingencies to be finally

included in the PSCOPF computation [15]. Such umbrella

contingencies are identified by solving relaxed PSCOPF

formulations, which take into account only the contin-

gency of concern and base case constraints. Are consid-

ered as umbrella, those contingencies having the highest

Lagrange multipliers (according to some norm Li, e.g.,

i = 1, 2, . . . ,∞) corresponding to the post-contingency

bus active power balance.

Another technique to further reduce the size of a

PSCOPF and to speed-up computations consists in decom-

posing and distributing the problem among several proces-

sors, each one solving (asynchronously) only a limited

subset of post-contingency states [16, 17].

The contingency filtering for the CSCOPF is a delicate

task due to the difficulty to implement time-varying ac-

tions into a classical power flow software. The CSCOPF

is usually delt with by Benders decomposition [4, 5, 9, 10].

In this approach the original CSCOPF problem is decom-

posed into a master problem and several slave problems,

each corresponding to a harmful contingency case. Thus,

a slave problem encompasses mainly the post-contingency

constraints relative to a contingency and provides a linear

constraint (Benders cut) to the master problem. The latter

contains base case constraints and Benders cuts stemming

from slave problems. At each iteration the slave problems

fed the master problem with improved Benders cuts until

convergence is reached. Clearly, the simultaneous solution

of slave problems is possible; it can significantly speed-up

computations. Although good results have been reported

with this approach, note, however, that Benders decompo-

sition requires the convexity of the feasible region which

can not be guaranteed in SCOPF.

Since in a the deregulated context, the “N-1” criterion

is felt as an obstacle to competition, the PSCOPF variant

may be deemed too conservative. On the other hand, rely-

ing too much on corrective actions, the CSCOPF variant

increases considerably the risk of blackouts. Whereas the

cost of preventive actions is easy to calculate, getting a

reliable estimate of the corrective actions cost is a chal-

lenging problem, especially when post-contingency load

curtailment is allowed. The future is most probably in

a careful tradeoff between both preventive and corrective

SCOPF variants, with the objective to minimize the over-

all cost of pre- and post-contingency control actions [18].

The SCOPF problems considered in this work are for-

mulated deterministically. One of their main limitation is

that they do not take into account the likelihood of the var-

ious contingencies, but rather treats them all as equiprob-

able, which may lead to (very) high operation costs for

(very) low probable events. It may thus be more advan-

tageous to formulate the SCOPF problem stochastically

to better reflect the occurrence probability of each contin-

gency, as proposed in [15, 18].



6 CONCLUSION

This paper has presented our recent developments in

the field of SCOPF. We have implemented both SCOPF

variants: the preventive one and the corrective one. They

have been successfully tested, on a 60-bus system, for

three key SCOPF applications: minimum overall genera-

tion cost, minimum congestion cost and maximum power

transfer computation. We have also discussed some criti-

cal issues related to the SCOPF problem.

The IPM succeeds to solve all SCOPF problems con-

sidered in this work. Expectedly, in IPM, the number of

iterations to convergence is little influenced by the size of

the problem, but rather by its difficulty, often revealed by a

high number of constraints that are active at the optimum.

As it is known that the IPM is highly sensitive to the choice

of the starting point, some future work has to be devoted

to the choice of a more robust initial point. Admittedly,

this topic is even more stringent in SCOPF than in OPF

applications, due to the effect of various contingencies on

equality and inequality constraints.

A future natural extension of this work is the sequen-

tial solution of the PSCOPF problem, with a particular fo-

cus on the finding of robust and efficient heuristic tech-

niques to quickly identify binding contingencies at the

benchmark PSCOPF solution.
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