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Background: Traditionally, scientists studied microbiology through the manner of batch cultures, to conclude the

dynamics or outputs by averaging all individuals. However, as the researches go further, the heterogeneities among

the individuals have been proven to be crucial for the population dynamics and fates.

Results: Due to the limit of technology, single-cell analysis methods were not widely used to decipher the inherent

connections between individual cells and populations. Since the early decades of this century, the rapid development

of microfluidics, fluorescent labelling, next-generation sequencing, and high-resolution microscopy have speeded up

the development of single-cell technologies and further facilitated the applications of these technologies on bacterial

analysis.

Conclusions: In this review, we summarized the recent processes of single-cell technologies applied in bacterial

analysis in terms of intracellular characteristics, cell physiology dynamics, and group behaviors, and discussed how

single-cell technologies could be more applicable for future bacterial researches.
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Author summary: This review briefs several prevalent single-cell technologies and their recent applications on bacterial

quantitative analysis, in terms of intracellular level, single-cell physiology, and group behaviors. And each part is coupled

with powerful technologies such as fluorescent labelling, single-cell sequencing, microfluidics, etc. This can provide a quick

reference to the researchers who are interested in this field.

INTRODUCTION

Bacteria are abundant everywhere in nature. They play
critical roles in our biosphere as cycling elements [1].
Through studying bacteria, many important principals of
life have been revealed. For example, the genetic central
dogma [2] that explains how the genetic information
flows to biosystems, and the Monod equation [3] that
provides an important relationship between bacterial
growth rate and culturing conditions. With in-depth
studies and the development of quantitative techniques,
researchers have found that cell-to-cell variabilities
prevalently exist, even if the environmental and genetic

variances are controlled as much as possible [4]. Actually,
recent studies, such as gene expression [5,6], cell growth
and division [7], genetic mutation [8] and dCas9 target
search [9], have started to focus on sing-cell snapshots
gaining more informative details than bulk averages from
the batch culture. The results indeed reflected deeper
mechanisms underlying the biological processes and
reinforced the sing-cell technologies to dissect the
heterogeneity among population samples.
In general, single-cell analysis technologies focus on

three levels of the cellular heterogeneity: (i) intracellular
components, (ii) individual cell dynamics, and
(iii) cellular group behaviors. Cellular heterogeneity
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arises from fluctuations in gene expression [10,11],
stochastic partition of molecules [12] or the random
processes within genetic regulatory networks [13]. To
figure out the mystery of heterogeneity, the first step is to
quantify the intracellular components regarding their
number and localization. Moreover, time autocorrelation
behaviors that are associated with cellular heterogeneities
are difficult to study within a population due to lacking
global synchronization, such as oscillation [14,15] and
DNA replication initiation [7,16]. Thus, monitoring
individual cells in a high-throughput manner is necessary
to depict single-cell dynamics and even population
behaviors. In fact, microbial behaviors, like chemotaxis,
migration, and communications, have already over-
stepped our intuition, thus, employing high-quality
single-cell data with mathematical models to explore
quantitative understanding is becoming more and
more important [17]. In this review, we present
recent applications of single-cell technologies on bacterial
analysis, organized by the aspects of cellular size, in

terms of intracellular, single-cell, and group levels
(Figure 1).

CHARACTERIZATION OF

INTRACELLULAR COMPONENTS

Intracellular components, including DNA, RNA, and
protein, etc., are the essential elements that drive the cell
to work orderly. These molecules have unique functions,
and they interact with each other forming a complex
interaction network. For systematically evaluating how
these molecules work, we should concern both their
properties (e.g., enzymatic activities) and their properties
in the network (e.g., quantities, locations, and interaction
relationships). Recently, more and more studies suggest
that it is incomprehensive to quantify these properties via
batch cultures because their variabilities are averaged out
in the population level [18]. In this section, two categories
of single-cell techniques (Figure 2), which are based on
fluorescent labelling and next-generation sequencing, will

Figure 1. Technologies at different scales for single-cell analysis.
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be depicted to show their potential in characterizing
intracellular components and uncovering the veil of
cellular heterogeneities.
In the bacterial analysis, two kinds of typical

fluorescent labelling are frequently quoted and explored,
which are oligonucleotide probes and fluorescent proteins
(FPs) (Figure 2A). Oligonucleotide probe is normally a
short sequence of nucleotides labelled with fluorescent
molecules or coupled with reporter molecules, such as
fluorescence labels in situ hybridization (FISH) and the
intrinsic cellular transcripts known as aptamer. In 1989,
Delong et al. [21] first used FISH in 16S ribosomal RNA
to identify single microbial cells and quantified the
changes of ribosome content over time. The variants of
oligonucleotide probes for different targets of FISH have
increased subsequently such as those for rRNA [22],
mRNA [23] and genomic DNA [24]. For example, using
single-cell mRNA counting FISH, Chong et al. [25]
found that the intracellular gyrase concentration is
responsible for the transcriptional bursting, which is a
major source of gene expression noise. Additionally,
FISH combined with flow cytometry could also be
applied for sorting and quantifying single cells in mixed
populations [26]. However, cells would have to be
damaged for permeating oligonucleotides when FISH
was deployed. Thus, another kind of nondestructive
fluorescent labels, aptamers [27], was proposed and
employed for labeling specific RNAs in living cells.
These labels were identified in the laboratory through the
systematic evolution of ligands by exponential enrich-
ment (SELEX). Among them, the first discovered
aptamer, named Spinach [27], which resembled the
green fluorescent protein (GFP), can be integrated into
5′-end of a transcript and form a genetic loop binding to
the cell-permeable fluorescent molecules, and then emit
green fluorescence. Nowadays, RNA labeling toolboxes,
including Spinach2 [28], Mango [29] and Broccoli [30],
have been provided for RNA quantification in vivo and
applied to analyze single bacterial cells successfully [31].
FPs are a group of proteins that contain chromophores

formed via the interactions among amino acid residues.
The most well-known one, GFP that comes from jellyfish
Aequorea victoria [32], is now widely used as a marker
for genetic characterizations. Owing to non-specific,
small size, noninterference, and cofactor-free, GFP
enables us to observe the dynamics of events in living
cells [33]. Up to date, FPs have been common tools for
characterizing cell physiology, genetic parts, gene
circuits, gene expression noises, and transcriptional
levels, etc. Using FPs to titrate the transcription level by
inserting into downstream parts of a specific promoter or
integrating into a genetic circuit can be used to quantify
properties of genetic objects or annotate cell physiology at
the single-cell level. Norman et al. [34] utilized two

different FPs, GFP and RFP to label different promoters
that are regulated via a particular genetic pathway to
indicate cell states, and revealed that a simple genetic
circuit confers cells a tight timing response ability
allowing cells to “cooperate”. Moreover, FPs based
ensemble strategy was also used to dissect temporal
regulation of diverse genetic effects at the single-cell
level, including SOS response [35], hysteretic response
[36], stochastic metabolic state shift [37], gene expression
noise [4,38] and bistability of positive feedback circuits
[39], etc. These researches improved our understanding of
the correlations between cellular phenotypes/genotypes
and intrinsic heterogeneities. Fusing FPs with other
functional proteins as a tandem form can not only
quantify the expression level of the genes of interest,
but also indicate mRNA levels and population structures.
For example, when cell tumble bias was measured by
controlling the expression of YFP fused CheYprotein that
is a motility associated protein, a steep response curve of
CheY protein versus tumble bias was revealed [40].
Similarly, these composite proteins can be applied to
indicate DNA damage events [41], track individual
replisomes [16], quantify specific RNA abundance
[11,42,43] at the single-cell level as well.
Another extremely useful tool for characterizing

intracellular components is next-generation sequencing
technology (Figure 2B). It enhances our ability to
decipher the nucleotide sequences. Traditionally,
researchers sequence the complex samples that are
obtained from the environment directly and then assemble
a large pool of sequencing results to dig out unabundant
genomic resources hidden in the microbial world [44].
Because of the serious imbalance in the distribution of
bacterial species and the highly complex sequencing
database, it is challenging to recognize the genomes of
low-abundance microorganisms. For addressing further
insights within complex microbial communities, more
researchers are seeking physical separation methods, such
as flow cytometry [45] and droplet-based microfluidics
[46], to isolate single cells from the population for
downstream DNA amplification and sequencing. This
method, so-called single-cell DNA sequencing (scDNA-
seq), could bypass the drawbacks of the traditional
sequencing methods and provide new information for
biological samples. For example, Rinke et al. [46] applied
scDNA-seq to target and sequence uncultivated bacterial
cells and found novel phyla that were missed by the
conventional methods. Moreover, their work also found
that a new purine synthesis pathway that was considered
belonging to archaea presented in bacterial species, which
indicated that there are lateral gene transfers between
bacteria and archaea. NGS can also be used to quantify
the real-time RNA information via counting the sequen-
cing reads of cDNA. This technology, so-called RNA
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sequencing (RNA-seq), was widely used to analyze
physiological states of live cells. For a decade, sing-cell
RNA sequencing (scRNA-seq) was broadly applied to
explore the physiology and internal gene expression
patterns of eukaryotic cells. However, reports of its
applications in prokaryotic cells are scarce up to now. One
of the reasons is that the small amount of RNA is
normally undetectable, as well as lacking polyadenylated
tails on mRNA and short half-life time of RNA [47]. To
our knowledge, the first study of prokaryotic single-cell
transcriptome analysis was reported by Kang et al.
[20,48]. In their work, Burkholderia thailendensis was
used for identifying the gene upregulation or down-
regulation in presence of subinhibitory concentrations of
glyphosate. Through acquiring the relative transcription
level of mRNAs at the single-cell resolution, physiologi-
cal states of cells were successfully depicted. Thus, this
method is quite ingenious in some scenarios, especially
for complex and scarce samples, such as bacterial
pathogens that have invaded mammalian cells, for
example, Salmonella entrica. These bacteria will exhibit
highly heterogeneities in physiology after infecting host
cells. Avital et al. [49] mapped the gene regulatory
patterns of intercellular pathogen Salmonella typhimur-

ium with transcriptomes of the host and found that three
different states of pathogens actually behaved in a linear
progression. This result generated new insights into the
host-pathogen interactions and might open up a new way
of antimicrobial treatments [49,50].

SINGLE-CELL BACTERIAL PHYSIOLOGY

Bacterial physiology is a classic and important topic in
microbiology [51]. It tries to explain all life processes in
an individual bacterium throughout the growth and
reproduction. Traditionally, the physiological character-
istics come from the batch culture, like grow rates, death
rates, and size distributions. Mathematically, the Monod
equation even provides a quantitative relation between
growth rate and the concentrations of growth-limiting
substrates [3]; While nutrient growth law emphasizes
correlations between balanced growth and cellular
chemical composition in any defined medium [52,53].
Scientists mostly validate these relations by population
experiments and employ the average values as the
fundamental parameters to represent that of single cells.
This can result in homogenization for cellular character-
istics, and cover up the heterogeneity among single cells
[54]. Every individual bacterial cell differs from another
to some extent, but this information is normally ignored
partially due to the insufficient understanding. However,
when researchers try to dive deeper into the mechanisms
underlying the observations, this heterogeneity or noise
from single cells can provide powerful supports. And

thus, single-cell technologies become more and more
attractive for bacterial physiology in recent years.
Time-lapse microscopy is a powerful method for

detecting physiological dynamics at the single-cell level
[55]. The microscopy platform could be easily coupled
with agarose pads for long-term monitoring of single cells
(Figure 3A). However, the nutrition quickly depletes due
to the fast growth of bacteria, then causing the uneven
growth conditions for different partitions on the same pad.
To solve this problem, microfluidic chips are comparably
ideal, which can provide sustainable nutrition by
continuous flow. It can then be used to address an
important status of bacterial cells, namely steady state,
related to the nutrient growth law [52,53]. Traditionally,
the main method to keep this steady state is serial dilution,
which is time consuming and labor intensive. In
comparison, microfluidics is easier to operate. Briefly,
bacteria are loaded into very tiny growing environments
on a microfluidic chip, the whole chip is set up with
specific culturing conditions and then monitored under a
microscope for hours, even a couple of days or weeks
depending on the experimental requirements. As reported,
there are two main categories of microfluidic designs,
which we name “Chamber” and “Mother Machine”
(MoMa), besides the other excellent works.
The Chamber design is normally a layout of micro-

fluidic traps that allows bacterial cells growing as a
monolayer (Figure 3B). For example, the Elf group
designed a typical chamber-like chip inspired by Mather
et al. [56]. A method combining microfluidics, time-
lapsed microscopy, and automated image analysis was
developed subsequently [57], which can analyze single-
cell intracellular dynamics like gene expressions with a
high-throughput manner. Campos et al. elaborated home-
ostasis mechanisms of bacterial cell size using the same
design from Elf group [58]. Wallden et al. studied the cell
size and cell cycle in a further step, and they found that
differences in growth rate resulted in cell-to-cell varia-
tions for both division timing and cell size; with a similar
device, Wehrens et al. [59] cultured long filamentous
Escherichia coli and argued that divisions are controlled
by the Min system and the adder principle, respectively.
Walkmoto group [60] proposed an empirical growth law
that constrains the maximal growth rate of E. coli by
analyzing the data from a narrower chamber that contains
only a few lines of cells.
For the MoMa chips, it is similar to the above chamber

design, but with a much smaller feature that allows only
one single line of bacterial cells to grow, as shown in
Figure 3C. Better than the chamber, MoMa chips can be
used to track one single cell, named as the mother cell, for
hundreds of generations. By increasing the number of
trapping lines, the throughput of mother cells can be
substantially promoted as well. This can then provide a
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large amount of data point combined with time-lapse
monitoring for statistical analysis, and reveal the
distribution of single-cell heterogeneities, including cell
size, growth rate, death rate, gene expression and so on.
For instance, Jun group [7] used the MoMa to investigate
robust growth of E. coli cells by hundreds of generations
for more than 60 hours. It is the first time to make it
possible to culture one individual bacterial cell at stable
states for a long period. MoMa is regarded as a powerful
tool to study bacterial cell-size control as well, due to its
high spatiotemporal resolution. Taheri-Araghi et al. [61]
cultured E. coli and Bacillus subtilis in MoMa and put
forward an adder principle to quantitatively explain the

cell-size control and homeostasis mechanism. Sauls et al.
[62] developed the adder principle and proposed a coarse-
grained approach. In contrast, Tanouchi et al. [63]
proposed a different regulating mechanism, the noisy
linear map theory, to explain the origins of cell-size
oscillations. MoMa has also been applied to the research
of gene expression [55], evolution [64] and cell cycle
[34,65]. Besides this, Yang et al. [66] systematically
characterized the E. coli growth dynamics within different
sizes of MoMa and provided further opinions about how
to choose or design appropriate MoMa chips. Their data
have strongly supported MoMa to be applied in the
studies of single-cell bacterial physiology. To facilitate the

Figure 3. Single-cell observation through microfluidic chips and time-lapse microscopy. (A) Diagram of bacterial time-

lapse mosaic. (B) Diagram of chamber design within a microfluidic device. Monolayer cells can be cultured within the chamber and

the fresh medium can be sustainably replenished. (C) Diagram of a mother machine (MoMa). Left: mother cells are trapped at the

end of the growth channels. Other cells will be pushed to the main channel and flushed out; Right: multiple positions time-lapse

imaging can make sure enough data for analysis.
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wide application of Moma, Jun group [67] has also
concluded a cultivation protocol for MoMa based on their
extensive experience, which is helpful to anyone in the
field that feels interested in.

GROUP BEHAVIORS

Group behavior is another important aspect of bacterial
analysis, which can provide collective information based
on single-cell behaviors. Intuitively, the single-cell data
are always stochastic and noisy, concluding the popula-
tional behavior is quite challenging. However, taking
advantage of single-cell technologies, more and more
group behaviors have been deciphered by individual cells,
and provide fundamentally new theory or answer
biological questions from a more statistical angle [68].
For example, despite heterogeneity on chemotaxis, E. coli
cells could still have spontaneous collective behaviors
when migrating, this has been a confusion between
single-cell and populational behaviors for a long time. Fu

et al. [69] resolved this conflict using a microfluidic
device consisting of a long channel (Figure 4A), on which
cells could perform the traveling bands and be observed
precisely (Figure 4B). Except for chemical gradients,
thermal gradients may also have strong influences
[71,72], and their interplays have been studied prelimi-
narily as well [73].
Another group behavior, bacterial surface adhesion, is

also appealing to many researchers. The characterizing
methods include microfluidic devices, cell-tracking
programs, atomic force microscopies, etc [74], which
can all be applied for single-cell analysis. Researchers
have ever tried to reduce the amount of bacterium in a
group behavior. However, for some studies, it may not be
suitable to separate every single cell from each other. For
example, Kim et al. cultured bacteria within microfluidic
wells at a density of 500–1000 live cells/well. They tested
a synthetic community comprising three kinds of bacteria.
And the results showed that the microscale spatial
structure plays an important role in coexistence [75].

Figure 4. Single-cell technology for bacterial group behaviors. (A) Cells are concentrated at the bottom of a microfluidic

channel originally and then travel in bands along the channel following the nutrition attractants (Adapted with permission from Ref.

[69]). (B) Cells (black dots) traveling in M9 glycerol medium from (A) to investigate the coordination of single cells for population

motility (Adapted with permission from Ref. [69]). (C) Schematics for a novel device to quantify microbial conjugations (Left). The

bacterial cells with OriTapparatus could be transferred with another kind of plasmid in the presence of antibiotic treatment, shown as

yellow cells (Right). While for the cells without OriT, they only appeared their own color, either red or green [70].
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Hence, microscale bacteria population seem to be the least
unit for studies on co-culture systems, but the single-cell
resolution method provided information about how the
community communicated and transported.
For the bacterial group analysis, one inevitable topic is

antibiotic resistance [76,77]. The alarming emergence of
multidrug resistance (MDR) of bacterial pathogens has
been recognized as a global issue. Thus, how to further
uncover the mechanism of the generation and prevalence
of MDR based on single-cell technologies can help the
society control the spread of MDR. One of the most
important pathways for resistance dissemination is the
bacterial conjugation, which delivers resistant genes from
one microorganism to the others. Lopatkin et al. [70]
developed a novel device that could gain single-cell
resolution, and surprisingly, they found that the conjuga-
tion efficiency is independent of antibiotic dosing for
almost all commercialized types of antibiotics (Figure
4C). Srimani et al. [78] utilized the same device to
investigate the postantibiotic effect (PAE). PAE refers to
the temporary suppression of bacterial growth following
transient antibiotic treatment. What they found is that
PAE can be explained by the temporal dynamics of drug
detoxification in individual cells after an antibiotic is
removed from the extracellular environment.

CONCLUSIONS

For a long time, people have to collect bacterial
information through macroscale cultivation, commonly
based on wells, tubes, flasks, or even larger containers.
The results indeed concluded many important biological
rules regarding bacterial physiology, gene expression, and
regulation etc [3,79–81]. However, deeper mechanisms
hidden by a large population have started to be dug out as
the rapid development of technologies, and one typical
example is the single-cell technologies. For example, the
flow cytometry can be applied for the high-throughput
detection of single cells [82], but it is not applicable for
real-time monitoring. Thus, microscopy can be proposed
to supplement the time-scale information. Combining
with microfluidics, the growth environments can be well
defined, and cultivating medium or stress can also be
flexibly controlled [83]. This can mimic more situations
in nature and obtain data with much higher resolution than
traditional methods. When going deeper into the single
cells, the cellular components can also be analyzed to
reveal the detailed information for genetic regulations and
protein interactions. Herein, we mainly introduced the
fluorescent labelling of oligonucleotides and proteins, and
next-generation sequencing. These two methods are so far
popular assisting tools for single-cell analysis [84].
Although the information has been substantially

increased from the current single-cell technologies, there

are still a lot of uncovered rules and information needed to
be figured out. We believed that more and more novel
technologies would be integrated for bacterial analysis,
for instance, CRISPR [85] for intracellular genetic
locations and super-resolution microscopy [86] for even
intracellular structures, to decipher the single cell
information [87,88] and then population behaviors and
community interactions. Many studies hereinbefore cited
have tried to answer bacterial fundamental questions
using single-cell technologies, but their potential is sought
to be further explored for expanding our understanding of
sophisticated life processes of bacteria.
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