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Research on rivers has traditionally involved concentration and flux measurements to better understand
weathering, transport and cycling of materials from land to ocean. As a relatively new tool, stable isotope
measurements complement this type of research by providing an extra label to characterize origin of the
transported material, its transfer mechanisms, and natural versus anthropogenic influences. These new stable
isotope techniques are scalable across a wide range of geographic and temporal scales. This review focuses on
three aspects of hydrological and geochemical river research that are of prime importance to the policy issues
of climate change and include utilization of stable water and carbon isotopes: (i) silicate and carbonate
weathering in river basins, (ii) the riverine carbon and oxygen cycles, and (iii) water balances at the
catchment scale. Most studies at watershed scales currently focus on water and carbon balances but future
applications hold promise to integrate sediment fluxes and turnover, ground and surface water interactions,
as well as the understanding of contaminant sources and their effects in river systems.
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1. Introduction

Rivers are the veins of our continents and studies of river water
and sediments help to understand and quantify biogeochemical
dynamics in their basins as well as the their ecological and envi-
ronmental impacts. In this context, river watersheds are important
because, more than ever, anthropogenic factors increasingly threaten
the availability and quality of clean water supplies. Considering
that more than one half of the accessible freshwater runoff globally
is already appropriated for human use (e.g., Postel et al., 1996;
Jackson et al., 2001), and that two-thirds of all Earth's rivers are
impacted by regulations (e.g., Vitousek et al., 1997), such research is
important in view of its geoscientific, ecological, and environmental
context.

Initially, hydro-bio-geochemical work on rivers focused mostly on
the concentrations of dissolved and particulate constituents and,
when discharge rates were available, enabled calculations of fluxes
and mass balances for entire catchments (e.g., Paces, 1985; Probst,
1986; Probst et al., 1992, 1995; Ramanathan et al., 1994; Jing, 1995;
Guieu et al., 1998; Chiffoleau et al., 1999; Freyssinet and Farah, 2000;
Vörösmarty et al., 2000; Anderson and Dietrich, 2001; Grosbois et al.,
2001; Oliva et al., 2004; Lafrenière and Sharp, 2005; Zakharova et al.,
2005).

Over the last few decades, the data on inorganic and organic
constituents and ionic fluxes in river basins were complemented by
isotope tracers, including stable water and carbon isotopes (Hitchon
and Krouse, 1972; Négrel et al., 1993; Pawellek and Veizer, 1994;
Flintrop et al., 1996; Gaillardet et al., 1997; Barth et al., 1998; Kendall
andMcDonnell, 1998; Amiotte-Suchet et al., 1999; Aucour et al., 1999;
Barth and Veizer, 1999; Telmer and Veizer, 1999; Farah et al., 2000;
Karim and Veizer, 2000; Telmer and Veizer, 2000; Kendall and Coplen,
2001; Hélie et al., 2002; Karim and Veizer, 2002; Barth et al., 2003;
Darling et al., 2003; Lee and Veizer, 2003; Négrel et al., 2003; Barth
and Veizer, 2004; Lambs, 2004; Brunet et al., 2005; Das et al., 2005;
Diefendorf and Patterson, 2005; Lambs et al., 2005; Rodgers et al.,
2005; Stephens and Rose, 2005; Barth et al., 2006; Amiotte-Suchet
et al., 2007; Ferguson et al., 2007; Ferguson and Veizer, 2007; Doctor,
2008; Freitag et al., 2008; Stögbauer et al., 2008; Brunet et al., 2009;
Lambs et al., 2009; Dubois et al., 2010; Ferguson et al., 2011; Karim
et al., 2011). The main purpose of most of these studies was to
constrain the sources and cycling ofwater and solutes in river systems.

In this reviewwewill summarize three aspects of hydrological and
geochemical research that are of prime importance to the policy
issues of climate change and include utilization of stable isotopes:

(i) Silicate and carbonate weathering
(ii) Riverine carbon and oxygen cycles
(iii) Water balances at the catchment scale.

Sediment transport and turnover impacted by agriculture and
urbanization, investigation of the aquatic communities, and nutrient
cycling are additional important applications of stable isotopes in
riverine research. However, they are not discussed here to keep the
review concise.

2. Silicate and carbonate weathering

River water chemistry is to a large extent a product of chemical
rock weathering, dissolution/hydrolysis, and precipitation of min-
erals. Chemical weathering processes involve interactions between
hydrological and biogeochemical cycles that are among the major
controls of terrestrial and seawater chemistry, factors that ultimately
control the CO2 sequestration in terrestrial and marine environments.
This occurs at various timescales and happens at three major
interfaces: (1) The atmosphere–lithosphere interface: Dissolution
of carbonates in the terrestrial realm is usually considered to be
balanced by carbonate precipitation in the oceans. Weathering of
continental silicate rocks, on the other hand, consumes atmospheric
CO2, and this negative feedback effect may thus control the long-term
(N104 a) evolution of the global climate (e.g., Amiotte-Suchet and
Probst, 1993a, 1993b; Probst et al., 1994; Amiotte-Suchet and Probst,
1995; Boeglin and Probst, 1998; Ludwig et al., 1998; Gaillardet et al.,
1999; Galy and France-Lanord, 1999; Kump et al., 2000; Amiotte-
Suchet et al., 2003; Dupré et al., 2003; Mortatti and Probst, 2003;
Hartmann et al., 2009). Additional impacts on the weathering regime
may arise from human activities that can lead, for example, to acid
rain or to a modification of the atmospheric CO2 budget (Paces, 1985;
Thompson et al., 1986; Probst et al., 1992; Sverdrup et al., 1992;
Amiotte-Suchet et al., 1995; Semhi et al., 2000a; Li et al., 2008; Perrin
et al., 2008; Pierson-Wickmann et al., 2009; Raymond and Ho, 2009;
Gandois et al., 2011). (2) The biosphere–lithosphere interface: The
type and productivity of vegetation strongly influences the rate of
weathering via decomposition of organic matter by micro- and
macro-organisms. This usually decreases the pH and produces CO2,
while the release of organic acids further enhances the dissolution
and hydrolysis of minerals by (Ochs et al., 1993; Welch and Ullman,
1993; Hinsinger, 1998). This, in turn, releases cations, such as Na+,
K+, Ca2+, Mg2+, and Fe3+ that are essential for plant growth
(Warfvinge et al., 1993; Quideau et al., 1996; Dambrine et al., 1998;
Reynolds et al., 2000; Williams et al., 2003; Moncoulon et al., 2004;
Karyotis et al., 2005). As a consequence, climate, chemical weathering
rates, nutrient levels, and vegetation communities are strongly
interdependent variables. It is this complex system that directly
controls surface and groundwater chemistry and that also responds to
climate changes and anthropogenic impacts, ranging from the
human release of CO2 into the atmosphere to dispersal of agricultural,
domestic, and industrial pollutants. (3) The river–ocean interface:
Rivers and near-shore aquifers deliver the products of continental
weathering to estuarine and coastal zones and the open ocean, thus
influencing the productivity of these ecosystems (e.g., Justic et al.,
1997; Rabalais et al., 2009). This topic is of lesser interest here because
our review focuses on riverine processes and on the ground and
surface water interaction. This implies cycling of water and elements
before they reach the ocean.

2.1. Weathering and stable isotopes of water and carbon

While weathering processes directly influence the geochemistry
of groundwater (e.g., Drever, 1982; Dupré et al., 1996; Semhi et al.,
2000a, 2000b; Barth et al., 2003; Zakharova et al., 2007), the
attribution of major ion supply to distinct lithologies cannot be easily
quantified for large catchments (Meybeck, 1979; Stallard and
Edmond, 1987; Négrel et al., 1993; Probst et al., 1994; Gaillardet
et al., 1999). This is due to the diversity of watershed lithologies
coupled with difficulties in estimating their relative subsurface spatial
distributions andweathering rates (Amiotte-Suchet et al., 2003). Such
estimates are primarily based on a combination of river classification
schemes complemented by most common mineral weathering
reactions (Meybeck, 1987). However, this approach still ignores
anthropogenic impacts on major ion chemistry and the potentially
significant role of trace mineral dissolution (Anderson et al., 1997;
Probst et al., 2000; Aubert et al., 2004; Oliva et al., 2004).

Stable isotopes may help to constrain the inputs from dissolution
of various minerals and rock types. For example, carbonates dominate
surface and groundwater chemistry due to their ubiquity and high
solubility. When dealing with the aqueous carbonate system it is
instructive to consider pH-dependency of the speciation of dissolved
inorganic carbon (DIC) as shown in the Bjerrum plot (Fig. 1; Drever,
1982). The carbon isotopic composition of DIC is a function of relative
abundance of the species CO2(aq), H2CO3

−, HCO3
− and CO3

2− and
is defined by their corresponding temperature-dependent fraction-
ation factors (e.g., Zhang et al., 1995). This means that for any pH
the equilibrium isotopic composition of the DIC can be predicted if
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the isotope values of the soil CO2 and carbonates are known (Figs. 2
and 3).

The isotope values of these two end-members are usually known
within narrow ranges. The δ13C values for most marine carbonates
average at ~0‰ (Clark and Fritz, 1997). Carbonates then react with
carbonic acid derived mostly from higher CO2 levels in soils. The
isotopic composition of this soil CO2 is inherited from decaying
organic matter and depends on the photosynthetic pathway of the
precursor vegetation with values of about −27‰ for C3 plants and
about−12.5‰ for C4 plants (Vogel, 1993). Subsequently, the soil CO2

may become enriched, by about 4.4‰, due to diffusion processes
(Cerling et al., 1991), thus yielding isotope values around −23‰
for the globally dominant C3 ecosystems, or as high as −10‰ for
landscapes dominated by C4 plants, such as corn, salt marshes, or
savannah ecosystems (e.g., Meyers, 1994; Sifeddine et al., 2004).

In any case, this combination of stable isotopes with pH and DIC
provides a tool for quantification of the degree of carbonate
dissolution versus silicate weathering. This technique is summarized
in Fig. 3 and further applications are shown in Clark and Fritz (1997)
and Cronin et al. (2005). A comprehensive case study on the use of
stable water and carbon isotopes from the Lagan River in Northern
Ireland (Barth et al., 2003) is outlined in the following inset.
2.2. Case study on the Lagan River (Northern Ireland)

This study investigated the chemistry and δ13CDIC of the Lagan
River that flows through Northern Ireland's most densely populated
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area and discharges to the Irish Sea at the city of Belfast. The Lagan
catchment covers an area of 609 km2. Annual rainfall varies from
950 mm at Belfast to 1200 mm in the source region. Mafic igneous
rocks in addition to sandstones, greywackes, and mudstones are the
main rock types in the source region with only about 5% limestones.
Yet, carbonates were shown to play the dominant role in the river
carbon cycle (Barth et al., 2003). The pH values increased down-river,
accompanied by δ13CDIC approaching values expected for dissolution
of sedimentary carbonates (Fig. 4A). The latter trend, however, was
observed only in the river itself, but not in the groundwater samples
across the catchment. The ground water point sources usually missed
the minor carbonates and reflected mostly weathering of silicates.
This observation shows that rivers are a better integration medium of
dominant weathering processes than the localized groundwater
sampling protocols. These observations also show a disproportionate
impact of carbonate weathering processes on watershed scales. This
should be even more pronounced for large rivers where carbonates
frequently account for a larger proportion of the catchment lithology.
A complementary control on the carbon cycle in the Lagan River was
silicate weathering and the respiratory turnover of organic material
that was mainly of anthropogenic origin. The latter resulted in a
~26% increase of DIC concentration from the source to the river
mouth. Stable isotope analyses of DIC confirmed this transition, from
mainly natural controls of the carbon cycle near the river source to
anthropogenic ones closer to its mouth. A recently installed weir near
the river discharge to the sea, at Belfast Lough, added an additional
complication. The resulting influx of stagnant seawater, accounting
for 53 to 92% of the water mass up to next upstreamweir near the city
of Belfast, caused poor vertical mixing of water bodies and the loss of
dissolved oxygen due to anaerobic activities that generated methane.
The decline in pCO2 as well as the 13C-enriched DIC values at the
sediment-water interface reflects this scenario. Installations of such
weirs in estuaries of other rivers could result in similar anoxic effects
and associated biogeochemistry.

3. The riverine carbon cycle

Since rivers are potential sites for pollutant disposal, growing
environmental concern led to investigations of their ecology and
biogeochemistry (e.g., Barth et al., 2009). The understanding of the
riverine carbon cycle is of particular interest because it reflects the
state of aquatic life and its biodiversity, both within the rivers and in
their catchments. Furthermore, the quantification of carbon transport
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by rivers, as particulate and dissolved organic and inorganic loads,
is important for closure of the global carbon cycle budget. While
concentration measurements alone are helpful in constraining the
carbon fluxes (Degens et al., 1984), their combination with stable
isotope measurements helps to delineate the sources, internal
riverine cycling, and the interactions with the biosphere and the
atmosphere (Pawellek and Veizer, 1994; Flintrop et al., 1996; Yang
et al., 1996; Barth et al., 1998; Amiotte-Suchet et al., 1999; Aucour
et al., 1999; Barth and Veizer, 1999; Telmer and Veizer, 1999;
Pawellek et al., 2002; Barth et al., 2003; Das et al., 2005; Ferguson
et al., 2007; Hori et al., 2008; Brunet et al., 2009; Dubois et al., 2010;
Ferguson et al., 2011; Karim et al., 2011).

A prominent feature of most rivers is their significantly higher
partial pressure of CO2 (“pCO2”, [bar]) in the water column compared
to the atmosphere (Kempe, 1982; Telmer and Veizer, 1999). This
excess CO2 may arise from enhanced dissolved organic carbon load
from natural or anthropogenic sources and its respiratory turnover to
CO2 and/or from groundwater input that usually has much higher
CO2 concentrations due to its link to weathering and the soil zone.
Regardless of the origin of this CO2 overpressure, most rivers degas
the CO2 to the atmosphere, which leads to a positive shift in δ13CDIC
(e.g., Amiotte-Suchet et al., 1999). Because of this CO2 evasion, the
most common pattern is a pCO2 decline downriver, as seen for
example for the Amazon (Richey et al., 2002) or the Nyong River in
Cameroon (Brunet et al., 2009). An exception to this pattern is rivers
originating from or flowing through large lakes, these being largely
degassed due to the prolonged residence time of their water bodies.
Rivers discharging from such lakes have low CO2 levels, close to
equilibrium with the atmosphere (Karim et al., 2011). This is the
case, for example, for the St. Lawrence River that emerges from the
Great Lakes (Yang et al., 1996; Barth and Veizer, 1999), the Upper
Rhine below Lake Constance (Kempe, 1982; Buhl et al., 1991), the
Rhone below Lake Leman (Aucour et al., 1999), or the reservoir lakes
of Patagonian rivers (Brunet et al., 2005). In this case, the riverine
pCO2 may even increase down-river, with the rate of increase
proportional to the relative volume of water originating from the
tributaries with their high pCO2 levels. If the proportion of tributary
water in the main stem river is small, such as the St. Lawrence River,
the down-river pCO2 rise is also subdued. On the other hand, such
pCO2 increases may be more pronounced if tributaries exert stronger
influences on the main river such as for instance in the Rhine. Note
that this observation for the Rhine was initially attributed to down-
river increase in pollution and its respiratory turnover to CO2

(Kempe, 1982; Buhl et al., 1991) while more recent studies revealed
that it is mostly a reflection of an increasing proportion of water
from the poorly degassed tributaries (Flintrop et al., 1996). Another
example of a down-river pCO2 change may arise when the upstream
watershed that is composed of silicate lithologies evolves into a



carbonate watershed downstream, such as for instance in the Ottawa
River (Telmer and Veizer, 1999). Overall, terrestrial water bodies
(rivers and lakes) likely serve as conduits for dissipation of CO2

generated by biogenic activity in soils of the watershed (Amiotte-
Suchet et al., 1999; Dubois et al., 2009; 2010) and the flux of CO2 to
the atmosphere may be comparable to that discharged annually to
the oceans (Brunet et al., 2009; Dubois et al., 2010). It is therefore
essential to understand the sources and sinks of carbon in aquatic
systems (Kempe, 1979) in order to establish a closure of the
terrestrial carbon budget.

In most cases, the dominant source of CO2 in rivers is groundwater
input, followed by processes within rivers, such as CO2 increase by
respiration or decline due to photosynthesis, and equilibrationwith or
evasion to the atmosphere. The initial δ13CDIC for groundwater from
C4 plant ecosystems that dominate globally is about −23‰ if no
carbonate weathering is involved (Fig. 4). Photosynthesis in the
water column preferentially selects the lighter carbon, thus enriching
the remaining DIC in 13C. The third process, exchange with the
atmosphere, involves equilibration between gaseous CO2 and
HCO3

−
(aq), the dominant species of DIC at the pH range commonly

found in rivers (Fig. 1). Although temperature-dependent, the isotopic
fractionation for this equilibration is about +8‰ (Mook et al., 1974;
Zhang et al., 1986). With the δ13C of the atmosphere of −7.7‰ (Ciais
et al., 1995) this results in a value of ~0‰ for atmospherically
equilibrated DIC.

In the upper St. Lawrence River, where most water originates from
the isotopically equilibrated Great Lakes, with water residence time
of more than 100 years (Yang et al., 1996; Barth and Veizer, 1999), the
δ13CDIC is about −1‰ and decreases down-river to about −4‰ due
to the increasing proportion of soil CO2 from the tributaries. In
watersheds with ubiquitous carbonates, such as the lower Rhine,
Rhone, or Danube, the δ13CDIC is about −10±2‰ reflecting the 1:1
mixture of carbon of bacterial and carbonate origin (Fig. 4A; Pawellek
et al., 2002; Hartmann et al., 2007). Carbon from dissolution of
carbonate rocks tends to dominate even in watersheds where
carbonates are present only in trace amounts and sulfate loads are
high (Das et al., 2011). Nevertheless, should weathering by sulfur-
oxidation play a significant role, the proportion of carbonate carbon in
the mixture can diminish (Calmels et al., 2007). Rivers draining
silicate watersheds, such as the Amazon (Richey et al., 2002) or the
upper Nyong in Cameroon (Brunet et al., 2009) that derive their
carbon entirely from organic sources, have more negative δ13CDIC
values, down to −26‰ (Fig. 4A), typical of ecosystems with a
dominant C3 plant metabolism.

Fig. 4A also demonstrates the complexity of processes that
influence the isotopic composition of DIC. For instance, it is difficult
to decide whether equilibration with the atmosphere (e.g., degassing
of CO2 or uptake during phytoplankton blooms), carbonate dissolu-
tion, or photosynthesis is responsible for positive δ13CDIC shifts
frequently observed down-river (Doctor et al., 2008; Brunet et al.,
2009). To further constrain sources, sinks, and turnover of carbon, the
stable isotopic compositions of complementary species may therefore
be useful. One application is the combination of the isotopic
composition of the DIC with that of the particulate organic carbon
(POC) and the dissolved organic carbon (DOC) in order to better
understand the in situ production of algae (Barth et al., 1998; Hellings
et al., 1999; Kao and Liu, 2000; Raymond and Bauer, 2001; Savoye
et al., 2003; Wang et al., 2004). This may help in quantification of
relative inputs from allochthonous and autochthonous carbon
production, enabling us to outline the ecologically most fragile
sections of rivers.

Another complementary tool to constrain the riverine carbon cycle
is the isotopic composition of the dissolved oxygen (δ18OO2(aq)). This
innovative technique (Wassenaar, in press) adds additional informa-
tion to concentration measurements of dissolved oxygen, the latter
being one of the most commonly measured parameters in marine and
freshwater studies. The present dearth of such data is due to difficult
analytical techniques that require molecular oxygen to be turned
into CO2 on graphite in the presence of a platinum catalyst with
water requirement in excess of 1 l (Quay et al., 1993). The few
studies that have investigated the isotopic composition of dissolved
oxygen already provided insights into the dissolution of atmospheric
gases, respiration, and photosynthesis in aqueous systems. These
studies also brought to light new information for our understanding
of oxygen turnover and the operation of the carbon cycle in the deep-
sea (Kroopnick and Craig, 1976), surface ocean (Quay et al., 1993;
Luz and Barkan, 2000), groundwater (Aggarwal and Dillon, 1998),
fresh surface waters (Quay et al., 1995; Aggarwal and Dillon,
1998; Wassenaar and Koehler, 1999; Wang and Veizer, 2000;
Venkiteswaran et al., 2007; Dubois et al., 2009), and estuaries (Ahad
et al., 2008). Other studies have focused on oxygen isotope effects and
their associated physical aspects, such as equilibrium dissolution
(Benson and Krause, 1984; Aregbe et al., 2002). An overview and
recent improvements of this technique for bulk measurements on
small sample volumes is provided by Barth et al. (2004). The oxygen
isotope method nicely complements carbon isotope studies because
photosynthesis and respiration cause isotope effects opposite to those
of DIC. Respiration, photosynthesis, and atmospheric exchange can
thus be better quantified (Fig. 4B).
4. Water fluxes in river catchments

4.1. Water transport and mixing

Water has two elements, oxygen and hydrogen, the stable isotope
systems isotope ratios of which can be readily measured without
much concern for storage and preservation, providing evaporation
after sampling is avoided and samples are stored in suitable sample
containers (preferably made from glass or high-density polyethylene;
cf. Clark and Fritz, 1997; Mook, 2000; Spangenberg and Vennemann,
2008). Specifically, stable water isotopes can serve as a conservative
tracer as long as their ratios have not been influenced by evaporation
in water bodies or by water rock interaction at elevated temperatures
(e.g., Gat, 1996). For instance, stable water isotopes can help to
determine mixing of water masses with distinct isotopic composi-
tions. In the case of two component mixing, the formula of weighted
averages is:

C ¼ ðA⁎M1 þ B⁎M2Þ=ðM1 þM2Þ

where M1 and M2 are the proportions of the water masses involved
and A, B, and C are the isotope compositions of the so called end-
members and the mixture, respectively. When all isotope composi-
tions are known this equation can easily be solved to quantify the
proportions of the water masses originating from different tributaries
or from different flow components (Ladouche et al., 2001; Winston
and Criss, 2003).

While such techniques are frequently applied to groundwater
flowpath and provenance analysis (e.g., Vennemann and Angloher-
Reichelt, 2005), they can also be useful also for mass balances in rivers
if the end members are known. However, when more than two end
members are involved, other conservative tracers, such as dissolved
chloride, have to be included in the system of equations (Barth
and Veizer, 2004). Indeed, the composition of the “end-members” can
vary during hydrological events depending on various contributions.
A combination of multiple tracers, such as stable water isotopes and
major and trace elements, is recommended to constrain the processes
and the types of water involved (Ladouche et al., 2001). Such mixing
calculations are useful for understanding ground and surface water
interactions as well as for associated transport of water and its
dissolved and particulate constituents.



4.2. Runoff and evapotranspiration

Water isotopes have been also utilized for investigation of global
runoff patterns and climate (e.g., Kayser et al., 1990; Tardy et al., 1995;
Berner and Berner, 1996; Lambs et al., 2005). However, in this
context relatively little is known about the processes that govern the
evapotranspirative loss from continents. In most cases, less water
leaves watersheds via river discharge than provided by precipitation,
the difference being accounted for by evapotranspiration (ET). ET
describes the sum of the evaporative and plant transpiration fluxes
from the Earth's land surface to the atmosphere. Evaporation accounts
for the movement of water to the air from sources such as the soil,
canopy interception, and water bodies. Transpiration accounts for the
movement of water within a plant and the subsequent loss of water as
vapor through stomata in its leaves. Thus, evaporation and transpi-
ration have to be quantified if a detailed water balance for a large
area needs to be investigated. Such knowledge may be required for
example for water husbandry related to application of selected
vegetation schemes.

Traditional separations of evaporation and transpiration rely on
empirical estimates, such as the Pennman, Thornthwaite, or Haude
methods, or on lysimeter measurements (for a review see Domenico
and Schwartz, 1998, and references therein). These methods,
appropriate for small catchments, either require an estimate of a
large number of parameters, such as wind speed, sunshine intensity,
and duration (Viville et al., 1993), or have to be scaled up from point
measurements to larger geographic areas, resulting in considerable
uncertainties when dealing with large and variable catchments.
In contrast, the stable isotope method presented below has the
advantage of yielding integrated information that is valid for entire
river basins (Lee and Veizer, 2003; Barth et al., 2006; Ferguson and
Veizer, 2007; Freitag et al., 2008; Karim et al., 2008). This method
relies on the fact that among interception, transpiration, and
evaporation, only evaporation causes isotope fractionation of water
molecules (e.g., Pate, 2001). By sampling the tributaries, the sub-
catchments of river basins can also be characterized with this
technique.

The general hydrologic balance of a watershed (Braud et al., 1995;
Leopoldo et al., 1995) can be expressed as follows:

ET ¼ P−ðQDS þ QBFÞ � ΔS ¼ P−Qt � ΔS

where ET is water lost to evapotranspiration, P represents precip-
itation, QDS is direct surface runoff, QBF is the base flow, Qt

corresponds to the total runoff, and ΔS is the change in groundwater
storage.

Over time intervals of at least one hydrological year or longer, it
can be assumed that the groundwater storage is homogeneous and
thus ΔS becomes negligible. Then the equation simplifies to:

ET ¼ P−Qt

P and Qt are directly measurable, and such data are often freely
available from public databases. The evapotranspiration term (ET) can
then be separated into its components evaporation (E) and transpi-
ration (T) (Gibson and Edwards, 2002; Gibson et al., 2005; Ferguson
and Veizer, 2007). As a first step, (E) can be calculated with an isotope
balance equation developed by Gonfiantini (1986):

X ¼ ðδS−δIÞð1−h þ δεÞ=ðδSþ 1Þðδε þ ε=αÞ þ h�ðδa−δSÞ
with
X=proportion of precipitation that is lost to evaporation (usually
expressed in %)
δS=mean value of δ18O (or δD) of the river water at the outflow
δI=average isotope composition of incoming precipitation
δa=mean δ18O (or δD) value of the water vapor
α=equilibrium fractionation factor for oxygen or hydrogen isotopes
ε=α−1
δε=kinetic enrichment factor for oxygen
h=average relative humidity that can be calculated by average δD
and δ18O values (0.015⁎(δDp−(8⁎δ18Op))+1) with the subscripts
“p” meaning the average values for precipitation (Clark and Fritz,
1997).

Note that the isotope ratios in the above equation have to be
converted from per mille (‰) values.

In the above equation, one difficulty arises from the average
isotope composition of the incoming precipitation, because water-
sheds often contain only few sampling stations that also provide
the isotope values for precipitation. For a small river basin, it can be
assumed that the isotopic composition of precipitation over the entire
basin equals that of this single station. In this case, the average isotope
composition can be obtained from the measured isotope values of
the individual events that have to weighted by their intensity. For
example in the Vosges mountains (northeastern France), the δ18O
deviation with elevation during two rain events was found to be 0.13
and 0.17‰ per 100 m. This is negligible compared to the variation
during the rainfall events (between 7 and 1.5‰, respectively;
Ladouche et al., 2001). Alternatively, the average isotopic composition
of precipitation can be obtained with the help of the meteoric water
line. This is a cross-plot of the measured δ18O versus δD values of
precipitation events that is very systematic. Following Craig (1961)
and Rozanski et al. (1993), the linear relationship on a global scale is
about:

δD ¼ 8⁎δ18O þ 10

The linear regression of the data points of this equation is known
as the Global Meteoric Water Line (GMWL). Note, however, that
precipitation series in individual catchments often exhibit different
slopes and intercepts, reflecting the local hydroclimatic factors,
such as origin of vapor mass, secondary evaporation during rainfall,
temperature, humidity and seasonality of precipitation. These
are termed the Local Meteoric Water Lines (LMWL). As a result of
evaporation, the residual water in surficial water bodies that was
subject to evaporation will also plot along a linear relationship in
the δ18O–δD crossplot, but with a lower slope; a consequence of
preferential non-equilibrium enrichment due to molecular diffusion
during evaporation. This enrichment is larger for the lighter H2

16O than
for the heavier 2D16O and H2

18O, causing a lower slope than that of the
LMWL (for a review see Clark and Fritz, 1997). When plotting the
LMWL and the evaporation line of the remaining water, the crossover
point of both lines establishes the average isotopic composition of the
incoming water (Fig. 5). When the evaporation line is constructed for
the mouth of a river, it represents an integrated evaporative signal for
the entire basin (Telmer and Veizer, 2000). An application of this
stable isotope method for river systems draining the Pyrenees
mountains in northern Spain and southern France in comparison to
coastal lowlands of the Mediterranean Sea is outlined in the following
section.
4.3. Case study of stable isotope application in the Ebro Basin

Variations in the stable-isotope composition in a catchment water
balance are mainly caused by natural variations in the isotopic
composition of rainfall, by mixing with pre-existing waters, and by
evaporation. Taking into account the temperatures generally encoun-
tered in catchment studies, the stable isotopes of water can be
considered as conservative with no impact from exchanges with soil
or rock.

Stable isotopes in the surface waters along the course of the Ebro
River and its main tributaries are illustrated in Fig. 6 together with
other rivers draining the French side of the Pyrenees (the Garonne
River: Lambs, 2004; Lambs et al., 2009) or along the Mediterranean
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Fig. 6. (A) Compilation of stable water isotope ratios of the surface waters along the
course of the Ebro River and its tributaries (locations given in part B) and comparison
with the Garonne River (Lambs, 2004; Lambs et al., 2009), the Herault River (Petelet,
1998), and the local rainwater signal (IAEA/WMO, 2001). (B) Map of northern Spain
and southern France with the location of the river and rainwater sampling stations
along the Ebro River as well as the Garonne River and the Herault River.
coast (the Herault River: Petelet, 1998). The Global Meteoric Water
Line (GMW) is shown together with the Local Meteoric Water Lines
(LMWLs) for the stations Gerona and Burgos that surround the Ebro
catchment, as well as the mean weighted rain values of Barcelona and
Tortosa (IAEA/WMO, 2001). All river samples on this δ2H versus δ18O
diagram clearly plot close to the global and local meteoric-water lines,
indicating only minor impact of evaporation in the studied water-
sheds. Among the tributaries of the Ebro River with large variations in
their δ18O and δ2H signatures, only the sample from the Guadalope
tributary shows a clear evaporative signal. The most depleted δ18O
and δ2H values are observed for the tributaries draining the southern
Pyrenees (Cinca, Gállego, and Segre) and are similar to the Garonne
River that drains the northern side of the Pyrenees. Note, however,
that all Ebro tributaries have more depleted values than the mean
rainwater signal for the Ebro catchment as given by the rain-survey
stations. If the Burgos precipitation sampling is considered as
representation of long-range continental transport, the depleted
values in the tributaries of the Ebro River originate from depleted
rainwater from the Pyrenees. In contrast, low altitude rains from
the Mediterranean coastal area result in enriched δ18O and δ2H
values as observed for the Barcelona, Gerona and Tortosa rain
sampling stations, and are in full agreement with values analyzed
for Mediterranean coastal river as illustrated by the Herault River in
southern France (Fig. 6).

4.4. Evaluation of transpiration fluxes

Subtracting the evaporative loss (E) from the precipitation input
(P) yields the biological water flux composed of transpiration (T) and
interception (I). As an example, globally the annual evapotranspira-
tion is reduced by about 4% (~3000 km3) due to deforestation, a
decrease that is quantitatively as large as the increased vapor flow
resulting from irrigation (~2600 km3; Gordon et al., 2005). Most of
these changes in the regional ET patterns are related to changes in (T)
and (I), and thus their quantification is of considerable importance in
the management of vegetation schemes in agriculture and forestry.
The interception term can be isolated by taking the leaf area index for
different vegetation types and estimating their proportions in a given
watershed using a geographic information system (GIS) (Lee and
Veizer, 2003). Such data are for instance available from the global map
of vegetation cover (DeFries et al., 2000).

With quantification of (E) and (I), the transpiration term (T) is the
residual difference. The transpiration process involves also CO2
diffusion into the plant and O2 and H2O release via leaf stomata.
Biological water and carbon cycles are inherently coupled at a specific
H2O/CO2 ratio, known as the Water Use Efficiency (WUE) simply
defined as the net carbon uptake per unit of water transpired. This
term quantifies the number of moles of H2O that are transpired to
enable the uptake of one mole of CO2. Different plant species show
large differences in WUE that are mainly related to their photosyn-
thetic pathways. Average long term WUE for C3 plants is 1 mol CO2

to 925±506 mol H2O (Jones, 1992) and for C4 plants 1 mol CO2 per
425±96 mol H2O (Molles, 2002). The value of the WUE is important
because it enables a first order calculation of the Net Primary
Productivity (NPP) for a given catchment:

NPP ¼ T=WUE

With NPP representing the Net Primary Productivity in moles C
a−1, T is transpiration given in moles H2O a−1, and WUE is given in
moles H2O/moles CO2.



The knowledge of (T) obtained via the above isotope and GIS
methods, enables us not only to estimate the water balance for a given
catchment but also provides a first order evaluation of the large scale
biological uptake of CO2. Further details of this type of basin wide
water and carbon balance studies can be found in Telmer and Veizer
(2000), Lee and Veizer (2003), Ferguson et al. (2007), Freitag et al.
(2008), Karim et al. (2008), and Brunet et al. (2009). As an example, a
detailed case study by Ferguson and Veizer (2007) is outlined in the
following.
4.5. Case studies of water and carbon transpiration fluxes on watershed
scales

The above methodology was applied to 15 large watersheds in the
Americas, Africa, Australia and New Guinea (Ferguson and Veizer,
2007) and the calculated transpiration fluxes of water and CO2 were
compared to a global dataset of precipitation and biological estimates
of Net Primary Productivity (NPP), the latter reproduced from the
Global Primary Production Data Initiative (GPPDI) grid cells NPP data
set (Zheng et al., 2001). This NPP database is a collection of world-
wide multibiome productivities, mostly established by biological
methods. The shaded pattern in Fig. 7 is that of the biologically
estimated pattern of NPP versus precipitation. The tropical biomes
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(see Nyong) show a rather flat pattern, independent of the amount of
precipitation, due to the fact that the biological system operates at
about 6 to 8% capacity with respect to the input of solar energy. At
higher latitudes, on the other hand, the NPP appears to be limited by
the available moisture. An interesting observation is that the flux
of transpiration water established by the above described isotope
approach for the 15 watersheds shows exactly the same pattern.
Moreover, the ratio of CO2 sequestration (in g C m−2 a−1) to the
amount of transpired water (in 103 g H2O m−2 a−1) is close to 1000
to 1, the WUE value within the range of C3 vegetation ecosystems
(Jones, 1992) as outlined above.

5. Conclusions and challenges for future work

Our outline of selected applications of stable isotopes in river
research shows the usefulness and growing importance of this
technique. In this context it is particularly worthwhile to combine
isotope applications with other modern biogeochemical methods of
quantification, such as element concentrations, runoff, precipitation,
and flux measurements. It will become increasingly important to
couple water balances with other modern biogeochemical methods
including ecological indicators microbial and plant activities, sedi-
ment transport, and sediment water interactions, if we are to develop
an integrated understanding of material cycling with the biogeo-
chemistry of rivers and their basins. Recently, new transportable
laser-based water isotope mass spectrometers became available (e.g.,
Lis et al., 2008; Gupta et al., 2009). These instruments will decrease
analytical costs and make onsite isotope analysis available to explore
trends in river systems at higher spatial and temporal resolution.

Most stable isotope applications within river research so far
have focused on the water molecule itself and/or on its inorganic
constituents such as the dissolved inorganic carbon. In the future it
will likely become increasingly important to target also other
dissolved and particulate loads with these isotope methods with
emphasis on organic materials. These can be separated into natural
(e.g., humic and fulvic acid compounds or natural lipids) and man-
made organic compounds such as various pollutants. Isotope
considerations for the latter can become particularly important for
studies of groundwater-surface water interactions.

New stable isotope investigations in river systems will likely face
the challenge of compound specific stable isotope analysis (CSIA) (for
a review see Giger et al., 2003; Schmidt et al., 2004). For surface water
systems the organic isotope techniques probably hold additional
complications, compared to groundwater studies, because solar
radiation and resulting photosynthesis will further enhance degrada-
tion processes, either directly through substrate competition or
indirectly via reduction of CO2. The generated additional O2 may
turn the system to be more aerobic which in turn may accelerate
degradation of pollutants (see Fig. 8 as an example). Further
difficulties may arise from the fact that concentrations of organic
compounds in river systems are usually very low. This increases the
challenge for compound specific isotope work because most com-
pound specific stable isotope ratio mass spectrometers work under
high vacuum and need extra splitting units in order to dilute the
carrier gas stream.

Finally, a new development in the field is the advent of multiple
collector stable isotope inductively coupled plasma mass spectrom-
etry (MC-ICP-MS). This instrumentation is applied for instance for
the uranium and thorium series (Fietzke et al., 2005) and for
iron (Schoenberg and von Blanckenburg, 2005), silicon (Henderson,
2002), and chromium isotopes (Ellis et al., 2002), to name only a few.
In most of these studies, these isotope systems serve as proxies for
temperature, pH, and nutrient reconstructions in terrestrial and
marine environments or as tracers of redox changes. Unfortunately, to
date only a very few of these applications have focused on terrestrial
water systems (e.g., Martin et al., 2001; Rauch et al., 2004; Scrivner
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et al., 2004; Nielsen et al., 2005). Clearly, these novel techniques –

together with stable isotope measurements of the lighter elements
and concentration and flux estimates – hold huge promise for river
research, for better understanding of elemental transport and for
cycling by natural as well as anthropogenic processes (Vigier et al.,
2009; Millot et al., 2010).
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