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Notation and conventions

The outline throughout this thesis relies on notation and conventions that are in common

use. The numerous mathematical symbols introduced in the theoretical part of this

thesis are based on the standard Greek and English alphabets. As a consequence, the

same symbol might have different connotations. By defining all employed symbols and

abbreviations in the text, the different meaning should generally become obvious from

the context. The following notation and conventions are adopted:

� Vectors, denoted by lower-case letters, and matrices, denoted by upper-case letters,

are printed in bold type.

� If a vector x is identically and independently distributed (IID) with mean µ and

variance matrix H, we write x ∼ IID(µ,H).

� The expression “log” generally refers to the natural logarithm.

� Phrases printed in italics are particularly important in the context of the respective

section.

� Expressions either referring to software packages, to web links or to mnemonics

are printed in typewriter style.

� In connection with the use of trade and service marks, the
✁

and
�

symbols are

placed in the top right-hand corner of the mark, respectively.

� Throughout this thesis, the symbol “
✂
” is used as a reference to a chapter, a section

or a subsection.

� In the list of references, any links to the internet are given together with their

respective access date (reported in parentheses).
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ARIMA autoregressive integrated moving average
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BIC Bayesian information criterion
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CAPM Capital Asset Pricing Model
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cf. compare (Latin: confer)
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IGARCH integrated GARCH
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IR information ratio

JB Jarque-Bera

KF Kalman filter
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ξ
†
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ψ∗ concentrated vector of unknown parameters
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Other letters
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at mean state vector

a1 mean vector of the initial state vector
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at location parameter

B matrix of unconditional factor loadings
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ku kurtosis of a series
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M number of draws from a simulation

m dimension of the state vector;

number of components in a mixture model

mt+1 stochastic discount factor

N t variance matrix of the weighted sum of future innovations
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N dimension of a time series vector

OILt oil factor

P 1 covariance matrix of the initial state vector

P ∗, P∞ elements of the covariance matrix of the initial state vector

P t covariance matrix of the state vector

P̄ steady-state value of P t

p∗ likelihood of the most probable path in the Viterbi algorithm

p number of lagged conditional variance terms of a GARCH model
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Qt variance-covariance matrix of state errors;

variance-covariance matrix of standardized residuals

Q0 initial variance-covariance matrix of state errors

Q
†
t variance-covariance matrix of state errors (extended state vector)
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Q
β
t block matrix determining the nature of regression coefficients

Qsq Box-Ljung test statistic based on squared (excess) returns

q row dimension of diffuse vector δ;

the order of an ARCH process

Rt system matrix in state equation;

multivariate vector of excess returns

R0 selection matrix

R̃ matrix of unconditional variances of standardized residuals

R0,t excess log-return of the market proxy

Ri,t excess log-return of sector i

R2 coefficient of determination

R̄2 adjusted coefficient of determination

ri,t log-return of sector i

rt vector of weighted sum of future innovations

rf
t risk-free interest rate

r column dimension of the system matrix Rt

S−
t−1, S

+
t−1 measures of asymmetry in tests for asymmetric GARCH effects

St Markov chain

S(t) history of the Markov chain St up to time t

s2 p.e.v. for models with time-varying regression coefficients

s2∗ ML estimator of σ2
∗ depending on generalized recursive residuals

SIZt size factor

sk skewness of a series

T t system matrix in state equation

T number of dates included in the sample

TSt term structure factor

ut smoothing error

V t smoothed state variance matrix

vt one-step ahead prediction error

v†t recursive residuals

ṽ†t generalized recursive residuals

v+
t least squares residuals

ṽ+
t generalized least squares residuals

V GSt value growth spread factor

wt sum of forward probabilities;

weighting factor in the context of WLS

w dimension of ψ

Xt sequence of observations

X(t) history of the sequence of observations Xt up to time t

X(−u) sequence of random variables Xt with Xu being excluded

x(−u) observations xt with xu being excluded

xt realized observation at time t;

asset payoff at time t

Y t set of observations up to time t
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yt multivariate time series vector of observations

y stacked vector of observations with y = (y′
1, . . . ,y

′
T )′

ȳT+l minimum MSE forecast of yT+l given y

yt time series of observations

ȳ unconditional mean of yt

y∗t mean-corrected univariate time series

zt IID process with mean zero and variance unity

Zt system matrix in observation equation

Mathematical symbols

Corr(X,Y ) correlation between X and Y

Cov(X,Y ) covariance between X and Y

diag(·) diagonal matrix operator

exp(x) the number e raised to the x power

F (·) empirical cumulative distribution function

E(X) expectation of X

f(·) probability density function

g gradient vector

g(·) conditional Gaussian density function

⊙ Hadamard product (element-by-element multiplication)

H Hessian matrix

∞ infinity

In n-dimensional identity matrix

I(·) indicator function

L(·) likelihood function;

lag operator with L(xt) := xt−1

Lc(·) concentrated likelihood function

Ld(·) diffuse likelihood function

log(x) natural logarithm of x

N(·) normal density function

P (A) probability that event A occurs

p(·) probability function

R the set of all real numbers

S discrete random variable

U(·), u(·) utility function

V ar(X) variance of X

vech(·) vech operator

X random variable (discrete or stochastic)

X ′ transpose of the matrix X

(X)•j j-th column of the matrix X





Preface

The work on this book began in 2004, when equity markets had just overcome the

burst of the dotcom bubble and entered a very different market regime, characterized

by high returns and low volatility. The idea to have a closer look at applications of state

space models in finance grew out of my experience as portfolio manager and strategist for

European equities. While conducting research on a quantitative sector allocation model,

it soon became obvious that traditional time series models with constant coefficients are

not able to capture the dynamics of financial markets.

The key to handling models with time-varying sensitivities is the state space repre-

sentation of a dynamic system. The interest in using state space models in fields away

from control engineering and speech recognition, where techniques such as the Kalman

filter and Markov regime switching have originated, has increased in recent years. How-

ever, a transportation of these techniques from theoretical work into applied research in

the context of widely used concepts in finance is still underdeveloped. The presented

material will be useful for financial economists and practitioners who are interested

in taking time-variation in the relationship between financial assets and key economic

factors explicitly into account. As a distinctive feature, the empirical part includes a

comprehensive analysis of the ability of time-varying coefficient models to explore the

conditional nature of systematic risks for European industry portfolios.

This book has been accepted as doctoral thesis by the Faculty of Economics and

Business Administration of the Georg-August-Universität Göttingen for award of the

degree Doctor of Economics in 2008. The original title “Applications of Advanced

Time Series Models to Analyze the Time-varying Relationship between Macroeconomics,

Fundamentals and Pan-European Industry Portfolios” was changed upon publication via

the Göttingen University Press.

Sascha Mergner
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Chapter 1

Introduction

“Economists study the economy both for the sheer intellectual

pleasure of trying to understand the world in which they live

and with the hope that improved knowledge will lead to better

economic policy and performance.”

Blanchard and Fischer (1989, p. 614)

A central conception of finance is the generally accepted trade-off between risk and ex-

pected return. The assessment of risk and the required risk premium is usually modeled

by an asset pricing model, in which the common variation in returns is accounted for by

a possibly multivariate set of risk factors. The first and still widely used pricing model

is the single-factor Capital Asset Pricing Model (CAPM), proposed by Sharpe (1964)

and Lintner (1965). It implies a linear relationship between an asset’s expected return

and its systematic risk, also referred to as beta.1 In testing the validity of the static

CAPM, various studies have demonstrated the possibility to earn risk-adjusted excess

returns by forming portfolios according to fundamental attributes, such as firm size or

valuation. These market anomalies, so-called because the abnormal returns related to

these patterns cannot be explained under the CAPM, motivate the alternative use of

pricing models that allow for multiple sources of risk. Depending on the choice of vari-

ables, important variants include fundamental and macroeconomic multifactor models.

Irrespective of the number of considered systematic factors, all of these pricing mod-

els share one common property: in their basic representation, the beta coefficients are

assumed to be constant over time.

In an inherently dynamic world that is characterized by changing relationships be-

tween economic agents over time (cf. Chow 1984) the paradigm of beta constancy has

to be questioned. Given theoretical arguments and empirical stylized facts of financial

return series, the true degree of beta can be assumed to depend on the available infor-

mation at any given date. This thesis addresses the explicit modeling of time-varying

1As the focus of this thesis is on the econometric modeling of time-varying financial sensi-
tivities and not on portfolio theory, it is not intended to provide a comprehensive derivation of
factor pricing models and their assumptions. For a summary of the basic foundations of asset
pricing theory and further references, see Appendix A.
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sensitivities in financial markets by application of advanced contemporary time series

techniques. It contributes an empirical analysis of the time-varying relationship between

macroeconomics, fundamentals and pan-European industry portfolios.

1.1 The modeling of change

Motivated by theoretical arguments that systematic risks depend on micro- and macroe-

conomic factors, the assumption of beta stability over time has been rejected, among

others, by Fabozzi and Francis (1978), Bos and Newbold (1984) and Collins et al. (1987).

Jagannathan and Wang (1996) demonstrated that a conditional CAPM is better able

to explain the cross-section of returns than a specification with constant coefficients;

anomalies are left with little explanatory power. According to Leusner et al. (1996) this

might be due to omitted variables whose impact can be captured by the conditionality

of beta. It is well recognized that parameters in economic and financial settings change

over time and that “the case for modeling change is compelling” (Kim and Nelson 1999,

p. 4). Nevertheless, only minor efforts have been made to explicitly model systematic

risk as a stochastic process and to systematically compare different modeling techniques

to carry out the task. In this respect applied finance, with a focus on time-varying

second moments and conditional heteroskedasticity models, is broadly lagging other dis-

ciplines, where the modeling and forecasting of conditional sensitivities has long been

established.

Since the 1960s control engineers and physicists have been modeling the continuous

change attached to a regression coefficient by means of an unobserved state variable

as part of a so-called state space model. The unknown parameters in such a system of

equations can be estimated via the Kalman filter, a very powerful and flexible recursive

algorithm, named after Kalman (1960, 1963), which plays a central role in the modeling

and estimation of change throughout this thesis. Engineering applications also led to

the introduction of Markov regime switching, another class of latent variable time series

models, where the observation-generating distribution depends on unobserved, discrete

states modeled as a Markov chain. In economics and financial applications we are also

regularly confronted with gradually or structurally shifting time series without actually

observing the time-varying dynamics. However, it was not until the works of Harvey

(1981), Meinhold and Singpurwella (1983) and Hamilton (1988) that applied economists

and financial econometricians began to apply the Kalman filter and the Markov regime

switching framework, respectively. The reason for this hesitation is twofold: notational

discomfort and computational complexity. Hence, the presentation of these concepts

in a “language, notation and style” (Meinhold and Singpurwella 1983, p. 123) that is

familiar to economists can be considered as the most important contribution of the

pioneering authors cited above. With the computational capacities nowadays offered by

personal computers in combination with powerful statistical software, the computational

complexity required for implementing modern time series techniques can be handled.
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1.2 Research objectives

Although these advances spurred the interest in applying advanced time series tech-

niques such as the Kalman filter and Markov regime switching models in economic and

financial analysis in recent years, a transportation of these concepts from theoretical

work into applied research on a broader scale is still underdeveloped. Inspired by the

quote at the beginning of this chapter, this thesis analyzes the relative merits of se-

lected elaborate econometric methods to model change in the context of widely used

concepts in finance. The exploration of the dynamics of financial markets is aimed at

an improved understanding and modeling of real-world phenomena. The following three

research objectives are addressed:

1. Provide a notationally conformable introduction of Gaussian state space models,

the Markov regime switching framework and conditional heteroskedasticity models.

2. Analyze which modeling technique is best able to model and forecast time-varying

systematic beta risk as a stochastic process.

3. Evaluate the practical relevance of taking time-variation in factor sensitivities ex-

plicitly into account.

As the different contemporaneous time series models originate from different disciplines,

very different notation and terminology is commonly employed to outline the respective

theory behind these concepts. The first objective of this thesis is to introduce the theory

of the different models at hand in a unified notational framework: linear Gaussian state

space models and the Kalman filter, the Markov regime switching framework, as well

as two of the most prominent models for time-varying volatility, namely autoregressive

conditional heteroskedasticity (ARCH) and stochastic volatility models. This will allow

the applied researcher to adopt the various concepts without having to deal with different

notation that is typical for the disciplines in which the models were originally employed.

It is intended to provide the methodology for the modeling of time-varying relationships

in a way that is as compact and intuitive as possible and as comprehensive as necessary.

The outline of the respective basic ideas and estimation procedures in Chapters 3–

5 illustrates that both Markov regime switching and stochastic volatility models are

closely related to the linear Gaussian state space framework and the Kalman filter.

The second contribution of this thesis is a systematic and comprehensive analysis of

the ability of the different techniques under consideration to model and forecast the time-

varying behavior of systematic market risk. The rationale behind starting the empirical

analysis with an application of the selected time series techniques to the single-factor

CAPM, is motivated by the fact that the CAPM beta is widely established in practice.

It is used, for example, to calculate the cost of capital, to identify mispricings and to

estimate an asset’s sensitivity to the broad market. As discussed by Yao and Gao (2004)

betas, while traditionally employed in the context of single stocks, are particularly useful

at the sector level. However, in spite of various studies dealing with the modeling of

conditional sector betas in other regions of the world, similar work in a pan-European

context, where the advancement of European integration and the introduction of a sin-

gle currency increased the importance of the sector perspective over recent years, is still
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missing. Chapter 6 aims to close this gap by investigating the time-varying behavior of

systematic risk for eighteen pan-European sectors, also referred to as industry portfolios.

Using weekly data over the period 1987–2005, time-variation in beta is modeled by a

bivariate t-GARCH(1,1) model, a bivariate stochastic volatility model estimated via effi-

cient Monte Carlo likelihood, four Kalman filter based approaches as well as two Markov

switching models. The main purpose of the chapter is to compare the performance of

these modeling techniques including non-standard procedures such as Markov switch-

ing and stochastic volatility. Overall, the respective ex-ante forecast performances of

the various modeling approaches indicate that the random walk process combined with

the Kalman filter is the most accurate in describing and forecasting the time-varying

behavior of sector betas in a European context.

The analysis of the dynamics in the relationship between financial variables represents

an exciting area of research, motivated by both economic arguments and empirical find-

ings. However, it is not yet clear to what degree the modeling of change is relevant in

practice. The third contribution of this thesis is an empirical analysis of the practical

relevance of taking time-variation in factor loadings explicitly into account. A multi-

factor pricing framework that relates pan-European industry portfolios to systematic

macroeconomic and fundamental risks is considered. Chapter 7 focuses on the question

whether an explicit consideration of the changing importance of macroeconomics and

fundamentals on European sectors can be exploited in a profitable way, either from a risk

management or from a portfolio management perspective. The selection of common fac-

tors is based on the latest findings of the anomalies literature. Covering an out-of-sample

period of ten years, the proposed conditional multifactor pricing model employs a market

factor, three macroeconomic factors and two fundamental factors, which are motivated

by the well-known three-factor model by Fama and French (1993). The stochastic pro-

cess of conditional betas is modeled as individual random walks. Estimation of the model

over time using the Kalman filter yields series of estimated conditional factor loadings.

These are used as explanatory variables in a cross-sectional regression approach that

follows Fama and MacBeth (1973). Traditionally, the Fama-MacBeth approach utilizes

constant coefficients as instruments. In order to get an indication of the importance

of conditional betas for the pricing of risk, in this thesis a modified formulation with

time-varying sensitivities as instruments is employed. The question whether employing

conditional factor loadings to derive return forecasts leads to more profitable portfolios

is examined based on a series of backtests. The main results of this chapter indicate

that time-varying betas carry implications for the prediction of returns, and less so for

the analysis of risk.

1.3 Organization of the thesis

This thesis deals with the modeling of change in the context of widely used concepts in

finance. To link the theoretical and practical parts, Chapter 2 introduces the set of sec-

tor return series and reviews their major empirical properties. The stylized facts reveal

that the paradigm of stable sensitivities has to be questioned. This motivates the use

of more advanced time series concepts to analyze the time-varying importance attached
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to common systematic risks for pan-European industry portfolios. The stylized facts

serve as a guide toward selecting the modeling techniques to be employed in the course

of this thesis. Chapter 3 gives a general treatment of the class of linear Gaussian state

space models and introduces the Kalman filter and smoother. Chapter 4 introduces the

theoretical conception of Markov regime switching, in which the hidden dynamics are

modeled as being discrete. Both modeling approaches, Kalman filtering and Markov

switching, are employed to model changing coefficients directly. Chapter 5 reviews the

two most important concepts of capturing conditional heteroskedasticity, which are used

to derive indirect estimates of conditional betas: ARCH and stochastic volatility. Vari-

ous simulation-based procedures to estimate the latter are discussed. Chapter 6 applies

the selected time series concepts to model and forecast time-varying market betas for

pan-European industry portfolios. Chapter 7 analyzes the practical relevance of ex-

plicitly considering conditionality in factor loadings by applying the Kalman filter to a

multifactor pricing model with macroeconomic and fundamental variables. The chap-

ter introduces a synthesis of the classical Fama-MacBeth approach with time-varying

betas and conducts a series of backtests on which the evaluation is based. Chapter 8

summarizes the main results and offers suggestions for future research.





Chapter 2

Some stylized facts of weekly sector return

series

A sound theoretical background of how advanced time series concepts can be applied to

model changing relationships over time constitutes a prerequisite to conduct empirical

research on the modeling of change. As a wide spectrum of modeling techniques is

available, the first step in carrying out research is to decide how a problem should

be approached. In this respect, the selection and specification of a model is generally

driven by empirical stylized facts of the series at hand. This chapter reviews some

of the properties that are inherent to the sector return series to be used throughout

this thesis. Describing the characteristics of the data will emphasize the necessity of

applying appropriate time series techniques that are capable of modeling the series’

empirical distributional and temporal regularities.

In the financial econometrics literature, it is well documented that financial time series

share a number of common features; see, for example, Ghysels et al. (1996) or Pagan

(1996) for an overview. In particular, following Palm (1996), these include the following

issues:

� Asset prices are usually nonstationary while returns are usually stationary.

� Returns tend to show an erratic behavior with large outlying observations occur-

ring more frequently than may be expected under the assumption of a normal

distribution.

� Returns are usually not autocorrelated, but squared returns are autocorrelated, a

phenomenon known as volatility clustering.

� Some return series exhibit the so-called leverage effect, where large negative returns

are followed by periods of high volatility.

� Volatilities of different assets often move together indicating potential linkages.

By employing standard statistical and graphical methods, these properties are illustrated

for some selected weekly return series.

This thesis aims to analyze the time-varying importance of market, macroeconomic

and fundamental factors for pan-European industry portfolios. The two major objectives
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of this chapter are to motivate the modeling of change and to link the theoretical and

empirical parts. The stylized empirical properties are expected to point toward the

modeling techniques from the available econometric toolbox that our attention should

be focused upon.

2.1 The data

The empirical analyses throughout this thesis are based on pan-European sector return

series. Over the last few years, the level of integration in European equity markets highly

increased. This development was spurred by the general trend toward deregulation of

security markets, a growing harmonization of economic, fiscal and monetary policies as

well as technical advances in information technology. The practice of top-down asset

allocation experienced a radical change: to add alpha to their equity portfolios, European

investors shifted their focus away from countries toward selecting sectors. The general

emergence of a sector approach is reflected by the fact that many brokerage firms and

institutional investors reorganized their research departments and investment processes

toward sectors. The volumes traded in cross-country investment funds, sector exchange

tradable funds and sector futures increased sharply in recent years (cf. Isakov and Sonney

2004).

In spite of the recent coherence of sectors across international markets and the emerg-

ing role of sector allocation in the investment process of an institutional investor, so far

only relatively little work has been done analyzing European industry portfolios. This

thesis contributes toward filling this gap by introducing a new data set of pan-European

sectors to the literature. The main motivation to employ sector data in the empirical

parts of this thesis is of statistical nature. The use of returns on aggregated sector

data instead of individual stock returns largely eliminates idiosyncratic variation (cf.

Moskowitz and Grinblatt 1999). This is likely to lead to a reduction of potential errors-

in-variables problems, which should result in better estimates of (conditional) betas; see,

for example, Chen et al. (1986). Besides, following Lo and MacKinlay (1988) systematic

influences can be expected to be uncovered more readily in the context of grouped data

with idiosyncratic noise being subdued.

The data set consists of weekly excess return series calculated from the total return

indices for eighteen pan-European industry portfolios. The choice of a weekly frequency

represents a compromise between too noisy daily data and too sluggish monthly data.

All sector indices are from Stoxx Ltd. (2004), a joint venture of Deutsche Boerse AG,

Dow Jones & Company and the SWX Group that develops a global free-float weighted

index family, the Dow Jones (DJ) Stoxx
�

indices. The DJ Stoxx
�

Broad return index,

which consists of the 600 largest European stocks by market capitalization, serves as a

proxy for the overall market. All indices are expressed in Euros as common currency.

With the exception of three sectors, the sample period runs from 2 December 1987 until

2 February 2005 (897 weekly observations). In September 2004, Stoxx Ltd. switched its

sector definitions from the DJ Stoxx
�

Global Classification Standard to the Industry

Classification Benchmark (ICB). The sectors Cyclical Goods & Services, Non-Cyclical

Goods & Services and Retail (old) were replaced by the new sectors Travel & Leisure,
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Table 2.1: The DJ Stoxx � sector classification.

Industries Supersectors

Basic Materials Basic Resources

Chemicals

Consumer Goods Automobiles and Parts

Food and Beverages

Personal and Household Goods

Consumer Services Media

Retail

Travel and Leisure

Financials Banks

Financial Services

Insurance

Health Care Health Care

Industrials Construction and Materials

Industrial Goods and Services

Oil and Gas Oil and Gas

Technology Technology

Telecommunications Telecommunications

Utilities Utilities

Personal & Household Goods and Retail (new), respectively. The history for the newly

formed sectors begins 31 December 1991, such that for these three series only 683 weekly

return observations are available. Table 2.1 presents the first two tiers of the ICB sector

structure.

Weekly returns, ri,t, between period t and t− 1 for index i are compounded continu-

ously as

ri,t = log(pi,t) − log(pi,t−1), (2.1)

for t = 1, . . . , T , and i = 0, . . . , 18, where i = 0 refers to the market proxy and i > 0

refers to the sector series; pi,t is Wednesday’s index closing price in week t and log is the

natural logarithm. Returns in excess of a risk-free interest rate, so-called excess returns,

denoted as Ri,t, are defined as

Ri,t = ri,t − rf
t , (2.2)

where rf
t is the risk-free rate of return, which is calculated from the 3-month Frankfurt

Interbank Offered Rate (FIBOR). As the FIBOR yields (fibt) are in percentage per

annum, they are converted to weekly rates as rf
t = (1 + fibt/100)

1/52 − 1. All data are

obtained from Thomson Financial Datastream.

In order to get a better understanding of the segmentation of the European equity mar-

ket, Figure 2.1 displays a hierarchical cluster dendrogram for the given sample of excess

sector returns. The purpose of the cluster analysis is to divide the dataset into groups —
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Figure 2.1: Hierarchical cluster dendrogram for the set of excess sector returns.

or clusters — of observations with similar characteristics. Hierarchical methods like the

one employed here do not require the number of clusters to be predetermined.2

From top to bottom three major clusters can be identified. The outer left cluster

consists of the three sectors Technology, Media and Telecommunications (TMT). The

chart suggests that the TMT cluster is isolated from the rest of the market. This reflects

the sectors’ outstanding role during the dotcom bubble at the end of the 1990s. The

center group of sectors ranges from Oil & Gas to Healthcare and represents the defensive

end of the market. The remaining sectors constitute the cyclical part of the market. By

moving the corresponding subtree one level further down, one can differentiate between

financial and non-financial cyclicals.

2.2 Empirical properties

Figure 2.2 displays the time series of original prices, of excess returns as defined by (2.2)

and of squared excess returns for the overall market and the two sectors Insurance and

Food & Beverage. An informal first look at these graphs suggests that the original sector

series in levels are trending. Formally, the existence of a unit root can be confirmed by

an augmented Dickey-Fuller test or the Phillips-Perron test. As the existence of unit

roots in financial price series is extensively discussed in the empirical literature, the

corresponding results are not reported here; for a detailed outline of unit root tests,

see, for example, Pagan (1996). In the following, only excess returns will be considered.

2The dendrogram has been generated using the hclust() function of the open-source sta-
tistical software package R 2.1.1 (R Development Core Team 2005) which can be downloaded
from www.r-project.org. For an introductory outline of cluster analysis and its implementa-
tion, see, for example, Struyf et al. (1996) and Kaufman and Rousseeuw (2005).
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Figure 2.2: Summaries of the weekly returns on the (i) broad market, (ii) the Insurance
sector and (iii) Food & Beverages. Summaries from top to bottom are time series of
original prices, excess returns and squared excess returns.

Another obvious property illustrated by the returns and squared return series is that

weeks of large absolute movements are followed by weeks with the same characteristics.

This phenomenon, commonly referred to as volatility clustering, can be particularly

observed in the second half of the sample, which includes the Asian crisis (1997), the

Russian debt crisis (1998) and the boom and bust of the dotcom bubble (1998–2003).

Univariate descriptive statistics for the data and some standard test statistics, which

are referred to in the following subsections, are provided in Table 2.2. It can be seen

that over the entire sample, the highest average weekly excess returns are offered by

Healthcare (0.17%), Oil & Gas (0.15%) and Utilities (0.15%). The lowest are realized

for Automobiles & Parts (0.02%), Insurance (0.04%) and Retail (0.06%). The risk, as

measured by the annualized standard deviation, ranges from 14.64% for the defensive

Utilities to 30.45% for the high risk sector Technology.

2.2.1 Thick tails

The observed degree of kurtosis (ku) of market and sector returns reported in Table 2.2

generally exceeds the normal value of three. Compared to a normal distribution, the

peaks are higher and the tails are heavier, which reflects that large outlying observations

occur more often than can be expected under the assumption of normality. According
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Table 2.2: Summary statistics of weekly excess returns.

Sector T µa σb skc kud JBe Qsqf levg ρ0i
h

Broad 897 0.10 16.62 −0.30 6.83 560 332 −0.20 –

Automobiles 897 0.02 23.77 −0.56 6.30 453 220 −0.15 0.80

Banks 897 0.14 19.47 −0.28 7.49 766 451 −0.18 0.91

Basics 897 0.12 20.47 −0.24 5.13 177 153 −0.13 0.73

Chemicals 897 0.09 18.52 −0.19 7.87 890 147 −0.14 0.81

Construction 897 0.08 17.69 −0.32 4.97 160 215 −0.14 0.83

Financials 897 0.07 18.69 −0.63 8.73 1287 378 −0.18 0.89

Food 897 0.10 15.29 −0.27 5.86 318 122 −0.14 0.70

Healthcare 897 0.17 18.23 0.18 5.52 243 146 −0.16 0.71

Industrials 897 0.07 17.86 −0.47 5.69 303 272 −0.19 0.91

Insurance 897 0.04 24.09 −0.85 13.97 4607 431 −0.18 0.88

Media 897 0.07 24.69 −0.62 9.89 1832 291 −0.09 0.82

Oil & Gas 897 0.15 19.22 −0.02 5.56 246 296 −0.16 0.66

Personal 683 0.09 18.57 −0.22 4.95 114 108 −0.22 0.86

Retail 683 0.06 21.50 −0.78 10.32 1594 49 −0.12 0.78

Technology 897 0.07 30.45 −0.55 6.68 553 603 0.01 0.81

Telecom 897 0.13 24.81 −0.18 5.36 213 325 −0.07 0.80

Travel 683 0.07 16.90 0.10 6.36 322 118 −0.19 0.80

Utilities 897 0.15 14.64 −0.45 5.15 203 171 −0.13 0.79

aThe mean is expressed in percentage terms.
bThe standard deviation is expressed in annualized percentage terms.
csk denotes the skewness of the return series.
dku denotes the kurtosis of the return series.
eJB is the Jarque-Bera statistic for testing normality. The test statistic is asymptotically

χ2 distributed with 2 degrees of freedom. The relevant critical value at the 99% level is 9.21.
fQsq is the Ljung-Box portmanteau test for the null of no autocorrelation in the squared

excess returns up to order 12. The test statistic is asymptotically χ2 distributed with 12 degrees
of freedom. The relevant critical value at the 99% level is 26.22.

glev is the unconditional correlation between the squared excess return at date t and the
excess return at date t − 1 for index i. Negative values for lev indicate that large volatility
tends to follow upon negative returns.

hρ0i is the unconditional correlation between sector i and the overall market.

to the stated values of skewness (sk), the overall market as well as all sectors, except for

Healthcare and Travel & Leisure, are negatively skewed. This might be an indication

that large negative returns occur more often than large positive returns. The Jarque-

Bera test statistics, as reported in column JB, confirm the departure from normality

for all return series at the 1% significance level. Since the seminal works by Mandelbrot

(1963) and Fama (1965) it is well known that many asset returns follow a leptokurtic

distribution. The shortcomings related to the regularly made normality assumption are

commonly addressed either by employing a fat-tailed distribution, such as Student-t, or

by relying on a mixture of normals; for an overview of references on the subject, see

Bollerslev (1987) or, more recently, Gettinby et al. (2004).
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2.2.2 Volatility clustering

It appeared from Figure 2.2 that quiet periods, characterized by relatively small returns,

alternate with relatively volatile periods, where price changes are rather large. This can

be confirmed by looking at the first-order autocorrelation (AC) function of returns and

squared returns in Figure 2.3. While the autocorrelations of the return series only

show minor activity, the autocorrelation function of squared returns show significant

correlations up to an extended lag length. The corresponding Box-Ljung statistics,

reported in column Qsq of Table 2.2, confirm significant correlations for the squared

returns at the 1% level for all series.

The phenomenon of persistently changing volatility over time has been first recognized

by Mandelbrot (1963) and Fama (1965) who related volatility clustering to the observa-

tion of fat-tailed returns. The two most important concepts to deal with time-varying

volatility are (i) the autoregressive conditional heteroskedasticity (ARCH) model by En-

gle (1982) together with the generalized ARCH (GARCH) model by Bollerslev (1986),

and (ii) the stochastic volatility (SV) model by Taylor (1982, 1986). An alternative way

to deal with conditional volatility is to employ a Markov regime switching model: the

generation of excess returns under different volatility regimes is governed by different

states, each driven by a first-order Markov chain. Leading papers on the subject include

Hamilton and Susmel (1994) and Turner et al. (1989).

2.2.3 Leverage effects

Another common property of financial return series is the so-called leverage effect, where

future volatility depends negatively on the sign of past returns (Black 1976). Column lev

of Table 2.2 reports the estimated correlation coefficients between squared excess returns

at date t and excess returns at date t − 1 for all sectors and the overall market. With

the exception of Technology, all estimates are negative. This gives a first indication that

negative sector returns are followed by a pick-up in volatility.

2.2.4 Volatility co-movements

From the squared excess returns shown in the bottom row of Figure 2.2, it can be seen

that volatility peaks tend to occur at the same time for all three series (August 1990,

January 1999, period between July 2002 and March 2003). This is a common observa-

tion as certain newsflow usually affects the volatility of different assets simultaneously.

This phenomenon might lead to a failure of joint stationarity of two return series even

though stationarity for the individual series holds. A possible solution to this problem is

to employ a multivariate GARCH or a multivariate SV framework to deal with volatil-

ity co-movements by modeling conditional covariances. Important papers dealing with

multivariate conditional heteroskedasticity include Diebold and Nerlove (1989), Harvey

et al. (1992) and Harvey et al. (1994).
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Figure 2.3: Autocorrelation functions (first 30 lags) of the broad market, the Insurance
sector and Food & Beverages. The top row displays correlograms of excess returns, the
bottom row displays correlograms of the corresponding squares.

2.3 Implications

The last column of Table 2.2 reports the unconditional correlation between the chosen

market proxy and sector i for i = 1, . . . , 18, denoted as ρ0i. Correlations between an asset

and the overall market play an important role in financial markets. They are widely used

in portfolio and risk management applications. For the sample under consideration, all

estimated values of ρ0i are higher than 0.65. This indicates a strong linear association

between the respective sectors and the market index over the entire sample. However,

given the empirical properties described above, especially with regard to the observed

time-variation of volatilities and covariances, it is reasonable to assume that the true

degree of correlation is not constant but changing over time.

This is illustrated by considering the following regression relationship between sector i

and the market proxy:

Ri,t = αi + βiR0,t + ǫi,t, t = 1, . . . , T. (2.3)

The ordinary least squares (OLS) estimator of the slope coefficient in this regression

represents the usual estimator of an asset’s beta in the context of the CAPM, which will

be dealt with in more detail in the empirical part of this thesis. Under the assumption

that the true value of beta is constant, it is defined as

βi =
Cov(R0, Ri)

V ar(R0)
, (2.4)

where Cov(R0, Ri) is the unconditional covariance of the return of the market proxy

with the return of sector i, and V ar(R0) is the unconditional variance of market returns.

Taking the observed stylized facts of volatility clustering and volatility co-movements
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Figure 2.4: CUSUMSQ tests with 5% confidence intervals for the excess return series of
(a) Insurance and (b) Food & Beverages.

into account, the numerator and denominator of (2.4) should be replaced by the con-

ditional covariance and conditional variance, respectively, to allow the true beta to be

time-varying.

Based on the cumulative sum of squares (CUSUMSQ) of recursive residuals, Figure 2.4

demonstrates the instability of beta at the example of the two sectors Insurance and

Food & Beverages. The CUSUMSQ test, as proposed by Brown et al. (1975), detects

instability in the regression coefficients caused by time-varying second moments if the

cumulative sum of squares moves outside two critical lines. For both sectors, the signal

line moves outside the lower critical bound. This indicates instability in the relationship

between the respective sector and the overall market during the sample period. Similar

observations leading to the same conclusion have been made for all sectors (not reported

here). The test statistics and the significance lines have been computed using the object-

oriented matrix programming language Ox 3.30 by Doornik (2001) together with the

package SsfPack 2.3 by Koopman et al. (1999).

The findings above contradict the assumption of beta constancy and further motivate

the scope of this thesis to deal with time-varying sensitivities in financial markets. Given

previous evidence in the literature and economic arguments, which contradict the as-

sumption of beta constancy, the focus throughout this thesis will be on the modeling of

change, and not on testing the paradigm of beta stability. For an overview of alternative

parameter stability tests in the context of beta, see, for example, Wells (1996,
✂
2).

With regard to the modeling of conditional relationships in financial markets, the

literature distinguishes between two different approaches: time-varying sensitivities can

be modeled as linear functions of observable state variables as proposed, for example,

by Shanken (1990). However, as it is not clear which instrumental variables should

be included, any choice may exclude relevant conditioning information. An alternative

procedure is to rely on advanced time series techniques to model time-varying betas

as stochastic, possibly hidden processes. As demonstrated by Leusner et al. (1996) a

stochastic process may capture the impact of the complete set of potential determinants

of systematic risk, thus avoiding the omitted variables problem. Following this route,
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throughout this thesis conditionality is dealt with by employing time series models. As

it is typically not possible to model all distributional and temporal properties of return

series simultaneously, different models are typically used to capture different empirical

regularities (cf. Ghysels et al. 1996).

Time-varying relationships can be constructed either directly or indirectly. The direct

approach will be implemented by employing a state space framework, where beta can be

allowed to emerge either as a continuous process estimated via the Kalman filter, or as

a discrete process in a Markov regime switching framework. Alternatively, indirect esti-

mates of conditional sensitivities can be derived by capturing the underlying conditional

variance and covariance components by a conditional heteroskedasticity model. Be-

fore applying these different concepts to analyze the time-varying relationship between

macroeconomics, fundamentals and pan-European industry portfolios, the theoretical

groundwork is made available in the subsequent theoretical part of this thesis.



Chapter 3

Linear Gaussian state space models and the

Kalman filter

This chapter introduces the class of linear Gaussian state space models from the classi-

cal perspective of maximum likelihood estimation. The first section outlines the basic

ideas behind state space modeling. Section 3.2 presents the general state space form of a

dynamic system. Section 3.3 develops the Kalman filter and smoother, the basic tools to

estimate models in state space form. Section 3.4 describes maximum likelihood estima-

tion procedures for the unknown parameters. Section 3.5 extends the general state space

model to allow for the incorporation of explanatory variables with constant as well as

time-varying parameters. Model diagnostics and measures to assess the goodness of fit

are described in Section 3.6. The chapter finishes with an illustration of how to specify

state space models using the software package SsfPack.

3.1 Basic ideas of state space modeling

The state space form of a dynamic system with unobserved components is a very powerful

and flexible instrument. A wide range of all linear and many nonlinear time series models

can be handled, including regression models with changing coefficients, autoregressive

integrated moving average (ARIMA) models and unobserved component models. A state

space model consists of a state equation and an observation equation. While the state

equation formulates the dynamics of the state variables, the observation equation relates

the observed variables to the unobserved state vector. The state vector can contain trend,

seasonal, cycle and regression components plus an error term. Models that relate the

observations over time to different components, which are usually modeled as individual

random walks, are referred to as structural time series models. The stochastic behavior

of the state variable, its relationship to the data and the covariance structure of the

errors depend on parameters that are also generally unknown. The state variable and

the parameters have to be estimated from the data. Maximum likelihood estimates of

the parameters can be obtained by applying the Kalman filter. Named after Kalman

(1960, 1963) the Kalman filter is a recursive algorithm that computes estimates for the

unobserved components at time t, based on the available information at the same date.



18 3 Linear Gaussian state space models and the Kalman filter

The Kalman filter has originally been applied by engineers and physicists to estimate

the state of a noisy system. The classic Kalman filter application is the example of

tracking an orbiting satellites whose exact position and speed, which are not directly

measurable at any point of time, can be estimated using available data and well es-

tablished physical laws. A discussion of engineering-type applications of the Kalman

filter is provided by Anderson and Moore (1979). In economics and finance, we are

regularly confronted with similar situations: either the exact value of the variable of

interest is unobservable or the possibly time-varying relationship between two variables

is unknown. Nevertheless, the propagation of the Kalman filter among econometricians

and applied economists only really began with the introductory works of Harvey (1981)

and Meinhold and Singpurwella (1983).

In contrast to the Box-Jenkins methodology, which still plays an important role in

teaching and practicing time series analysis, the state space approach allows for a struc-

tural analysis of univariate as well as multivariate problems. The different components

of a series, such as trend and seasonal terms, and the effects of explanatory variables

are modeled explicitly. They do not have to be removed prior to the main analysis as

is the case in the Box-Jenkins framework. Besides, state space models do not have to

be assumed to be homogeneous, which results in a high degree of flexibility. This allows

for time-varying regression coefficients, missing observations and calendar adjustments.

Transparency is another important feature of structural models as they allow for a vi-

sual examination of the single components to check for derivations from expectations;

see Durbin and Koopman (2001,
✂
3.5) for a comparison of the state space framework

and the Box-Jenkins approach.

Early applications of state space models and the Kalman filter to economics include

Fama and Gibbons (1982) who model the unobserved ex-ante real interest rate as a state

variable that follows an AR(1) process. Clark (1987) uses an unobserved-components

model to decompose quarterly real GNP data into the two independent components of a

stochastic trend component and a cyclical component. Another important contribution

is the work of Stock and Watson (1991) who define an unobserved variable, which repre-

sents the state of the business cycle, to measure the common element of co-movements

in various macroeconomic variables. Surveys on the applicability of the state space ap-

proach to economics and finance can be found in Hamilton (1994a) and Kim and Nelson

(1999).

The state space approach offers attractive features with respect to their generality,

flexibility and transparency. The lack of publicly available software to estimate these

models has been the main reason why only relatively few economic and finance related

problems have been analyzed in state space form so far. The subsequent sections aim at

providing a presentation of the Gaussian state space model that is as compact and intu-

itive as possible, while being as comprehensive as necessary to render the employment

of this versatile framework by applied researchers possible. More detailed treatments

of state space models are given by Harvey (1989), Harvey and Shephard (1993) and

Hamilton (1994a), among others. An outline with a focus on applications can be found

at Kim and Nelson (1999). If not indicated otherwise, Durbin and Koopman (2001,
✂
4–7) serve as standard reference for this chapter.
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3.2 The state space form of a dynamic system

Let yt denote a N×1 multivariate time series vector of observations whose development

over time can be characterized in terms of an unobserved state vector ξt of dimension

m × 1, each at date t. A general linear Gaussian state space model that describes the

dynamics of this system can be written as

ξt+1 = T tξt + ct +Rtηt, ηt ∼ N(0,Qt), (3.1)

yt = Ztξt + dt + ǫt, ǫt ∼ N(0,Ht), (3.2)

for t = 1, . . . , T . Equation (3.1) is known as the state or transition equation and (3.2)

is referred to as the observation or measurement equation. The deterministic parameter

matrices T t, Rt and Zt are of dimension m×m, m×r and N×m, respectively, with Rt

being simply the identity.3 Unobserved structural components such as trend, seasonal

and cycle may be modeled by an appropriate definition of Zt and ξt. The m × 1 and

N × 1 vectors ct and dt can be used to represent known effects to the expected value of

the observations and states by including dummy variables, or to incorporate explanatory

variables with fixed coefficients. If not mentioned otherwise, ct and dt are set to zero in

the following.

The r× 1 and N × 1 vectors ηt and ǫt are serially uncorrelated, normally distributed

error terms with mean zero and positive definite covariance matrices Qt and Ht of

dimensions r × r and N ×N , respectively:

E(ηtη
′
τ ) =

{
Qt for t = τ

0 otherwise,
(3.3)

E(ǫtǫ
′
τ ) =

{
Ht for t = τ

0 otherwise.
(3.4)

The state and observation disturbances are further assumed to be uncorrelated with

each other at all lags:4

E(ητǫ
′
t) = 0, for all τ, t = 1, . . . , T, (3.5)

and to be independent from the initial state vector ξ1:

E(ηtξ
′
1) = 0, E(ǫtξ

′
1) = 0, t = 1, . . . , T. (3.6)

The initial state vector, which is of dimension m × 1, is assumed to be normally dis-

tributed with the m× 1 mean vector a1 and the m×m covariance matrix P 1:

ξ1 ∼ N(a1,P 1), (3.7)

3In alternative specifications of the general state space model, the disturbances in the state
equation are often defined as η∗

t = Rtηt with the corresponding covariance matrix RtQtR
′

t.
However, in case where Qt is singular and r < m, it is useful to include Rt in front of the
state disturbance term to work with nonsingular ηt rather than singular η∗

t ; see Durbin and
Koopman (2001,

�
3.1) for details.

4Assumption (3.5) can be relaxed by allowing for correlated observation and state distur-
bances; see, for example, Anderson and Moore (1979,

�
5.3) or Harvey (1989,

�
3.2.4).
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where a1 and P 1 are assumed to be known for now. The initialization of the state vector

will be discussed in
✂
3.3.6.

The matrices T t, ct, Rt, Zt, dt, Qt and Ht are called system matrices. Unless

stated otherwise, they are assumed to be non-stochastic, i.e. they change over time in

a predetermined way. This leads to a system in which yt can be expressed as a linear

combination of ξ1 and past and present state and observation disturbances. A state space

model with constant system matrices over time is referred to as being time-homogeneous.

Usually, at least some of the elements of the system matrices T t and Rt in the state

equation and Zt, Qt and Ht in the observation equation depend on a vector ψ of

unknown parameters, which are referred to as hyperparameters. While the hyperparam-

eters control for the stochastic characteristics of the model, the parameters related to

the vectors ct and dt have a deterministic impact on the observations and the expected

state value. The values of the system matrices are typically unknown. Their estimation

on the basis of the available observations will be the subject of
✂
3.4. For now, the system

matrices are assumed to be known.

Throughout this thesis, the software package SsfPack 2.3 by Koopman et al. (1999)

is employed to apply the Kalman filter to estimate models in state space form. SsfPack is

a comprehensive collection of C routines for estimating models in state space form with

general routines for smoothing, filtering, likelihood evaluation and forecasting linked

to the computing environment Ox 3.30 by Doornik (2001). With regard to the use of

SsfPack, it will prove useful to represent the state space model introduced by (3.1)–(3.7)

in compact form as

[
ξt+1

yt

]

= Φtξt + δt + υt, υt ∼ N(0,Ωt), t = 1, . . . , T, (3.8)

with

Φt =

[
T t

Zt

]

, δt =

[
ct

dt

]

, υt =

[
Rtηt

ǫt

]

, Ωt =

[
Qt 0

0 Ht

]

, (3.9)

where Φt is of dimension (m+N)×m, δt is (m+N)× 1, υt is (m+N)× 1 and Ωt is

(m+N)× (m+N). The initial values are collected in the (m+ 1)×m matrix Σ which

is defined as

Σ =

[
P 1

a′
1

]

. (3.10)

For a survey on using SsfPack for state space modeling in macroeconomics and finance,

see Zivot et al. (2002).

3.3 The Kalman filter and smoother

Once a model is put into state space form, the Kalman filter can be employed to compute

optimal forecasts of the mean and covariance matrix of the normally distributed state

vector ξt+1, based on the available information through time t. This section outlines

how the Kalman filter can be used for estimation by filtering and smoothing: filtering

bases an inference about the state vector only on the information up to time t; smoothing
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incorporates the full set of information in the sample, where one distinguishes between

state smoothing and disturbance smoothing. Subsection 3.3.4 shows how the Kalman

filter deals with missing observations, which serves as a basis for the subsequent outline

of using the Kalman filter for forecasting purposes. The initialization of the Kalman filter

will be discussed in
✂
3.3.6. The section closes with an interpretation of the Kalman filter

when used in combination with non-Gaussian disturbances. The results in this section

are given without proof and are primarily taken from Durbin and Koopman (2001,
✂
4)

where derivations can be found.

3.3.1 Filtering

The purpose of filtering is to update our knowledge of the state vector as soon as a new

observation yt becomes available. Reconsidering the state space model given by (3.1)

through (3.7), the Kalman filter can be derived under the assumption that a1 and P 1

are known. The objective is to get the conditional distribution of ξt+1 for t = 1, . . . , T ,

based on Y t, the set of observations up to time t, i.e. Y t = {y1, . . . ,yt}.

3.3.1.1 The general form of the Kalman filter

Given the assumption of normality in all distributions of the system, all conditional

distributions related to subsets of variables based on other subsets also have to be

normally distributed. The required conditional distribution of ξt+1 can be characterized

by its mean at+1 and covariance P t+1:

at+1 = E(ξt+1|Y t), (3.11)

P t+1 = V ar(ξt+1|Y t), (3.12)

where the mean of the conditional distribution of ξt+1 represents an optimal estimator

of the state vector at time t + 1: it minimizes the mean squared error (MSE) matrix,

E((ξt+1 − at+1)(ξt+1 − at+1)
′|Y t), for all ξt+1.

Under the assumption that ξt given Y t−1 is normally distributed with mean at and

covariance P t, it can be shown that at+1 and P t+1 can be calculated recursively from

at and P t as

at+1 = T tat +Ktvt, (3.13)

and

P t+1 = T tP tL
′
t +RtQtR

′
t, (3.14)

with

vt = yt −E(yt|Y t−1) = yt −Ztat, (3.15)

F t = V ar(vt) = ZtP tZ
′
t +H t, (3.16)

Kt = T tP tZ
′
tF

−1
t , (3.17)

Lt = T t −KtZt, (3.18)

for t = 1, . . . , T . The m×N matrix Kt is referred to as the Kalman gain matrix. The

N × 1 vector vt is the one-step ahead prediction error of yt given Y t−1. It represents
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the new information contained in the latest observation. This innovation term with

E(vt|Y t−1) = E(vt) = 0 and Cov(yτ ,vt) = 0 for τ = 1, . . . , t− 1, has a major impact

on the updating process for the estimator of ξt+1. The matrices F t and Lt are of

dimensions N ×N and m×m, respectively. F t is assumed to be nonsingular.

The system of recursions (3.13) through (3.18) is called the Kalman filter. For more

details, see Durbin and Koopman (2001,
✂
4.2) who base the derivation of the filter on

the application of standard properties of the multivariate normal distribution.5

3.3.1.2 The steady-state Kalman filter

For time-homogeneous state space models, it can be shown that the Kalman recursions

for P t+1 and Kt converge to fixed matrices:

lim
t→∞

P t+1 = P̄ , (3.19)

lim
t→∞

Kt = K̄. (3.20)

The Kalman filter solutions that are reached after convergence to K̄ and P̄ are called

steady-state solutions. The computational costs related to filtering can be considerably

reduced by replacing P t+1 and Kt by the steady-state solutions; see Hamilton (1994b,
✂
13.5) for details.

3.3.2 State smoothing

State smoothing denotes the estimation of ξt based on Y T , the full set of observations.

For convenience, Y T can be represented as a stacked vector y with y = [y′
1 · · ·y′T ]′. As

the system’s distributions are all normal, ξt given y is conditionally normal distributed

with mean ξ̂t and covariance V t:

ξ̂t = E(ξt|y), (3.21)

V t = V ar(ξt|y), (3.22)

where ξ̂t is the smoothed state and V t is the smoothed state variance. The notion of state

smoothing refers to the process of computing ξ̂1, . . . , ξ̂T . The objective is to compute

ξ̂t and V t by recursion under the assumption of (3.7) with a1 and P 1 being assumed

to be known. As the smoothed state estimator is based on more information than the

filtered estimator, its MSE is generally smaller.

It can be shown that the smoothed state vector can be obtained by the following

backwards recursion:

ξ̂t = at + P trt−1, (3.23)

with

rt−1 = Z ′
tF

−1
t vt +L′

trt, (3.24)

5Alternative derivations have been proposed; see, for example, Kalman (1960) who uses
orthogonal projections to derive the filter.
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for t = T, . . . , 1, where the m × 1 vector rt−1 is constructed as a weighted sum of

future innovations. As no innovations are available beyond time T , rT equals zero. The

smoothed state variance matrix V t can be calculated recursively for t = T, . . . , 1 as

V t = P t − P tN t−1P t, (3.25)

with

N t−1 = Z ′
tF

−1
t Zt +L′

tN tLt, (3.26)

where N t is the m×m variance matrix of rt.

Taken together, recursions (3.23) through (3.26), initialized by rT = 0 and NT = 0,

provide an efficient algorithm for state smoothing, denoted as state smoothing recursion.

It has been introduced to the econometrics literature by de Jong (1988a) and Kohn and

Ansley (1989). While smoothing is performed by proceeding backwards through the

observations using the state smoothing recursion, filtering is done by moving forwards

applying the Kalman filter. During the filtering process vt, F t, Kt, at and P t have

to be stored for t = 1, . . . , T . Together, the Kalman filter and the state smoothing

recursion are called Kalman filter and smoother.

3.3.3 Disturbance smoothing

Disturbance smoothing refers to the recursive estimation of the smoothed estimates of

the state and observation disturbances, E(ηt|y) and E(ǫt|y), given all the observations

y1, . . . ,yT . It represents an alternative and computationally more efficient way to cal-

culate the path of the state vector. The smoothed estimates offer interesting features

with respect to parameter estimation and diagnostic checking.

3.3.3.1 Disturbance smoothing recursion

Conditional on y, the smoothed disturbances can be computed recursively as

ǫ̂t = E(ǫt|y) = Htut, (3.27)

η̂t = E(ηt|y) = QtR
′
trt, (3.28)

for t = T, . . . , 1. The N × 1 smoothing error ut is given by

ut = F−1
t vt −K ′

trt, (3.29)

where rt, as obtained from (3.24), can be reformulated as

rt−1 = Z ′
tut + T ′

trt. (3.30)

The corresponding smoothed disturbance variance matrices can be derived as

V ar(ǫt|y) = Ht −HtDtHt, (3.31)

V ar(ηt|y) = Qt −QtR
′
tN tRtQt, (3.32)

with the N ×N matrix Dt defined as

Dt = F−1
t +K′

tN tKt. (3.33)
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The matrix N t−1 can be obtained from the backwards recursion given in (3.26) or

alternatively as

N t−1 = Z ′
tDtZt + T ′

tN tT t −Z ′
tK

′
tN tT t − T ′

tN tKtZt, (3.34)

which is computationally less intense as it relies directly on the sparse system matrices

T t and Zt. The system of (3.27) through (3.34), for t = T, . . . , 1, initialized with rT = 0

and NT = 0, is denoted as disturbance smoothing recursion.

3.3.3.2 Fast state smoothing

The smoothing recursion for the state disturbance term can also be used for fast state

smoothing as introduced by Koopman (1993). The idea is to calculate ξ̂t for t = 1, . . . , T ,

without the necessity to store at and P t. This procedure results in lower computational

costs.

Following the outline in Durbin and Koopman (2001,
✂
4.4.2) the necessary recursion

can be derived from the state equation in (3.1) which implies

ξ̂t+1 = T tξ̂t +Rtη̂t. (3.35)

Substituting (3.28) into (3.35) yields

ξ̂t+1 = T tξ̂t +RtQtR
′
trt, t = 1, . . . , T, (3.36)

which is initialized for t = 1 by (3.23) together with (3.24). In contrast to the state

smoothing recursion presented in
✂
3.3.2, this recursion allows for the computation of

smoothed states ξ̂t without getting at and P t involved.

The process of disturbance smoothing is comparable to that of state smoothing: while

the Kalman filter is employed to proceed forwards, backwards proceeding through the

data is done using the disturbance smoother. Due to its computational advantage, the

disturbance smoother will be used whenever the only objective is to form an inference

on the state vector and V t is not required.

3.3.4 Missing observations

Within the state space framework, missing observations can be easily dealt with. Durbin

and Koopman (2001,
✂
4.8) show that for a missing set of observations, denoted as

yτ , . . . ,yτ∗−1, the original filter and smoothing recursions can be used for all t. The

one-step ahead forecast error vt and the Kalman gain matrix Kt are simply set to zero

for all missing data points. With vt = 0 and Kt = 0 the filter recursions in (3.13) and

(3.14) become

at+1 = T tat, (3.37)

P t+1 = T tP tT
′
t +RtQtR

′
t, t = τ, . . . , τ∗ − 1. (3.38)

The smoothing recursions in (3.24) and (3.26) can be written as

rt−1 = T ′
trt, (3.39)

N t−1 = T ′
tN tT t, t = τ∗ − 1, . . . , τ, (3.40)

while the other relevant smoothing steps remain unaffected.
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3.3.5 Forecasting

The discussion related to missing observations serves as a basis to use the Kalman filter

for forecasting purposes. The objective is to generate forecasts for y1, . . . ,yT , denoted

as yT+l, for lead time l = 1, . . . , L. Let ȳT+l be the minimum MSE forecast of yT+l

given y, i.e. ȳT+l has a minimum MSE matrix

F̄ T+l = E((ȳT+l − yT+l)(ȳT+l − yT+l)
′|y), (3.41)

for all yT+l. Given the standard result that E((X−λ)(X−λ)′) is minimized for λ = µ,

where µ is the mean of a random variable X , it follows immediately that the conditional

mean of yT+l given y represents the minimum MSE forecast:

ȳT+l = E(yT+l|y). (3.42)

From observation equation (3.2) we have yT+l = ZT+lξT+l +ǫT+l. Together with (3.42)

and

āT+l = E(ξT+l|y), (3.43)

P̄ T+l = E((āT+l − ξT+l)(āT+l − ξT+l)
′|y), (3.44)

the MSE forecast is given by

ȳT+l = ZT+lE(αT+l|y) = ZT+lāT+l, (3.45)

with the MSE variance matrix

F̄ T+l = ZT+lP̄ T+lZ
′
T+l +HT+l. (3.46)

Recursions for computing āT+l and P̄ T+l for l = 1, . . . , L− 1 can be derived as

āT+l+1 = T T+lāT+l, (3.47)

P̄ T+l+1 = T T+lP̄ T+lT
′
T+l +RT+lQT+lR

′
T+l, (3.48)

which are identical to the Kalman filter recursions for aT+l and P T+l in (3.13) and (3.14)

with vT+l = KT+l = 0. As these are the same conditions that allow the Kalman filter

to deal with missing observations in
✂
3.3.4, an l-period-ahead forecast, denoted as ȳT+l,

can be calculated routinely by interpreting yT+1, . . . ,yT+L as missing observations and

by employing the Kalman filter beyond time t = T with vt and Kt set to zero (cf.

Durbin and Koopman 2001,
✂
4.9).

3.3.6 Initialization of filter and smoother

So far the distribution of the initial state vector ξ1 has been assumed to be N(a1,P 1)

with known mean and covariance. In practice, however, at least some elements of the

distribution of ξ1 are unknown. In the literature, three ways of initializing non-stationary

state space models are discussed.
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The first is to employ a diffuse prior that fixes a1 at an arbitrary value and allows

the diagonal elements of P 1 to go to infinity. Following Durbin and Koopman (2001,
✂
5.1) a general specification for the initial state vector is given by

ξ1 = a+Aδ +R0η0, δ ∼ N(0, κIq), η0 ∼ N(0,Q0), (3.49)

where the m× 1 vector a can be treated as a zero vector whenever none of the elements

of of ξ1 are known constants. The m× q matrix A and the m× (m− q) matrix R0 are

fixed and known selection matrices with A′R0 = 0. The initial covariance matrix Q0 is

assumed to be known and positive definite. The q × 1 vector δ is treated as a random

variable with infinite variance and is called the diffuse vector as κ→ ∞. This leads to

P 1 = P ∗ + κP∞, (3.50)

with P ∗ = R0Q0R
′
0 and P∞ = AA′. With some elements of ξ1 being diffuse, the

initialization of the Kalman filter is referred to as diffuse initialization. However, in

cases where P∞ is a nonzero matrix, the standard Kalman filter cannot be employed

as no real value can represent κ as κ → ∞. It is necessary to find an approximation

or to modify the Kalman filter in an appropriate way. The technique that will be

used throughout this thesis is based on Harvey and Phillips (1979). The two authors

propose to replace κ by a large but finite numerical value, which enables the use of the

standard Kalman filter. They showed that this will yield a good approximation, where

the remaining rounding errors are small.

As an alternative to the large κ approximation, exact initialization techniques have

been developed for κ → ∞. However, exact treatments turn out to be difficult to

implement and cannot deal with the general multivariate linear Gaussian state space

model directly. They will not find any consideration hereafter. For details on alternative

exact treatments of the initial Kalman filter, see, for example, Ansley and Kohn (1985),

de Jong (1988b, 1991) and Koopman (1997).

The assumption of an infinite variance might be regarded unnatural as all observed

time series have a finite variance. This leads to the third way of initialization: Rosenberg

(1973) considers ξ1 to be an unknown constant that can be estimated from the first

observation y1 by maximum likelihood. It can be shown that by this procedure, the

same initialization of the filter is obtained as by assuming that ξ1 is a random variable

with infinite variance (cf. Durbin and Koopman 2001,
✂
2.9).

In the following, unless genuine prior information on a1 and P 1 is available, a diffuse

prior with a = 0, P ∗ = 0 and P∞ = I will be used such that ξ1 ∼ N(0, κI). Following

the recommendation of Koopman et al. (1999), κ is first set to 106 and then multiplied

by the maximum diagonal value of the residual covariances to adjust for scale:

κ = 106 × max

{

1,

[
Qt 0

0 Ht

]}

. (3.51)

It should be noted that the initialization is not trivial for the multivariate case. It is

possible that the part of F−1
t that is linked to P∞ is sometimes singular with different

ranks. In these cases F−1
t cannot simply be expanded in powers of κ−1 for the first few
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elements of a multivariate series. As it is straightforward to deal with this problem for

univariate series, Durbin and Koopman (2001,
✂
5.1) propose to bring in the components

of a multivariate series into the analysis one at a time. Thus, a multivariate series is

converted into a univariate series. This leads to computational gains and significantly

simplifies the process of diffuse initialization for multivariate series. For a detailed

discussion of the univariate treatment of multivariate series, the reader is referred to

Durbin and Koopman (2001,
✂
6.4).

3.3.7 The Kalman filter with non-Gaussian errors

The derivation of the Kalman filter presented above and the related estimation proce-

dures are based on the assumption of normally distributed disturbances. It was shown

how the conditional distribution of the state vector ξt can be calculated recursively given

the information set at time t, for all t = 1, . . . , T . As these conditional distributions are

also normal, they are fully specified by their first two moments. These can be computed

by the Kalman filter. The conditional mean of the state vector represents an optimal

estimator in the sense that is has minimum MSE matrix.

In case of non-Gaussian disturbances, the Kalman filter is no longer guaranteed to

yield the conditional mean of the state vector. However, it nevertheless represents an op-

timal estimator in the sense that no other linear estimator has a smaller MSE. Therefore,

the Kalman filter can still be employed when the normality assumption is dropped. The

estimators obtained by maximizing the Gaussian likelihood function with observations

that are not normally distributed are referred to as quasi-maximum likelihood (QML)

estimators; cf. Hamilton (1994a).6

3.4 Maximum likelihood estimation

So far, the system matrices have been assumed to be known. In the more general

case, they depend at least partially on ψ, the vector of unknown parameters. This

section explains how the vector of unknowns can be estimated by means of maximum

likelihood (ML). After briefly summarizing the general idea behind the concept of ML,

Subsection 3.4.1 introduces the loglikelihood function for the general Gaussian state

space model. It will be demonstrated how the general model can be reparameterized

in order to reduce the dimension of the vector of parameters by one. Subsections 3.4.2

and 3.4.3 briefly overview the two alternative concepts of maximizing the loglikelihood:

direct numerical maximization and the EM algorithm. Finally, Subsection 3.4.4 shows

how parameter restrictions can be implemented.

3.4.1 The loglikelihood function

In order to estimate a model by ML, it has to be parametric and fully specified through

the joint probability density function; the parameter values have to contain all the

necessary information for a simulation of the dependent variables. For the T sets of

6For an introduction to state space models that take non-Gaussianity explicitly into account,
which is beyond the scope of this thesis, see, for example, Durbin and Koopman (2001, Part II).
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observations, y1, . . . ,yT , which are assumed to be IID, the joint density is given by the

product of the individual densities, denoted by p(·):

L(y,ψ) = p(y1, . . . ,yT ) =

T∏

t=1

p(yt), (3.52)

where L(y,ψ) is the joint probability density function of the t-th set of observations.

When the joint density is evaluated at a given data set, L(y,ψ) is referred to as a

likelihood function of the model. To avoid computational difficulties caused by extreme

numbers that may result from the product above, it is generally simpler to work with

the natural logarithm of the likelihood function:

logL(y,ψ) =
T∑

t=1

log p(yt). (3.53)

The likelihood function and its logarithm are often simply denoted as L(y) and logL(y),

respectively. If the vector of parameters is identifiable, the ML estimate of the parame-

ters (ψ̂) is found by maximizing the likelihood with respect to ψ.7 For a general intro-

duction into the methodology of ML, see, for example, Greene (2003,
✂
17) or Davidson

and MacKinnon (2004,
✂
10).

3.4.1.1 Prediction error decomposition

As the observations for time series models are not generally independent, Equation (3.53)

is replaced by a probability density function. The distribution of yt is conditioned on

Y t−1, the information set at time t− 1:

logL(y) =
T∑

t=1

log p(yt|Y t−1), (3.54)

with Y t = {y1, . . . ,yt} and p(y1|Y 0) := p(y1).

If the observation disturbances and the initial state vector in the general state space

model (3.1)–(3.7) have a multivariate normal distribution, it can be shown that the

conditional distribution of yt itself is normal with conditional mean

E(yt|Y t−1) = Ztat, (3.55)

and conditional covariance

V ar(yt|Y t−1) = F t. (3.56)

The variance of the one-step ahead forecast error, F t, is defined as in (3.16). For Gaus-

sian models, yt is conditionally distributed as N(Ztat,F t) with conditional probability

density function

p(yt|Y t−1) =
1

2π
|F t|

1

2 exp

(

−1

2
v′tF

−1
t vt

)

. (3.57)

7Identifiability means that the estimation yields a unique determination of the parameter
estimates for a given set of data. For more details on the identifiability of structural time series
models, see Harvey (1989,

�
4.4).
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After substitution of (3.57) for the conditional density in (3.54), the loglikelihood func-

tion can be expressed as

logL(y) = −TN
2

log(2π) − 1

2

T∑

t=1

log |F t| −
1

2

T∑

t=1

v′tF
−1
t vt, (3.58)

with vt being defined as in (3.15). This representation of the loglikelihood traces back

to Schweppe (1965). As F t and vt are part of the standard Kalman filter output for

given values of ψ, the loglikelihood can be obtained in routine fashion from the Kalman

filter. As the conditional mean of yt is equal to the minimum MSE of yt (3.45), vt can

be interpreted as a vector of prediction errors. The loglikelihood (3.58) is referred to as

prediction error decomposition (p.e.d); cf. Harvey (1989,
✂
3.4).

When the Kalman filter is initialized using a diffuse prior with d diffuse elements in

the state vector, the first d innovations and their corresponding variances are excluded

from the prediction error decomposition. With summations starting at t = d+1 instead

of t = 1, the joint density of yd+1, . . . ,yT , conditional on y1, . . . ,yd, is given by

logL(y) = − (T − d)N

2
log(2π) − 1

2

T∑

t=d+1

log |F t| −
1

2

T∑

t=d+1

v′tF
−1
t vt. (3.59)

Numerical maximization of the loglikelihood with respect to ψ yields the ML estimate

for the vector of unknown parameters.

3.4.1.2 Concentrated loglikelihood

Maximum likelihood can be improved by concentrating one parameter out of the log-

likelihood function. In the univariate case it is usually possible to reparameterize a

model such that it depends on ψ = [ψ′
∗ σ2

∗]
′, where σ2

∗ is a positive scalar to which

the variances of the disturbance terms are proportional. The vector ψ∗ contains one

parameter less than ψ. With ht and Qt depending only on ψ∗ and not on σ2
∗ , the

disturbance variances can be written as V ar(ǫt) = σ2
∗ht and V ar(ηt) = σ2

∗Qt. By set-

ting ht or one of the diagonal elements of Qt equal to unity, σ2
∗ becomes equal to the

variance of the corresponding disturbance term. In accordance with Harvey (1989,
✂
3.4)

the introduction of σ2
∗ gives the following prediction error decomposition for N = 1:

logL(y) = −T − d

2
log(2π) − T − d

2
log σ2

∗ −
1

2

T∑

t=d+1

log ft −
1

2σ2
∗

T∑

t=d+1

v2
t

ft
. (3.60)

For univariate series, the scalar ft = ztP tz
′
t + ht replaces the N × N matrix F t of

(3.16). Differentiating (3.60) with respect to σ2
∗ and solving the first-order condition as

a function of the data and the remaining parameters, yields the ML estimator of σ2
∗ for

given values of ψ∗:

σ̃2
∗(ψ∗) =

1

T − d

T∑

t=d+1

v2
t

ft
. (3.61)
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Substituting σ̃2
∗ back into (3.60) gives the concentrated or profile loglikelihood function

that has to be maximized with respect to ψ∗:

logLc(y) = −T − d

2
log(2π) − 1

2

T∑

t=d+1

log ft −
T − d

2
(log σ̃2

∗(ψ∗) + 1). (3.62)

When (3.62) is maximized instead of (3.59), the dimension of the vector of parameters

to be estimated is reduced by one. In addition to the obtained gains in computational

efficiency, the results are likely to be more reliable. As no exact gradients are available

for the concentrated loglikelihood, it has to be maximized numerically.

If the Kalman filter is initialized by employing the large κ approximation, rounding

errors can lead to numerical problems. In this thesis, a feasible possibility to overcome

this problem in the univariate case is to calculate starting values from the first observa-

tions, as explained by Harvey (1989,
✂
3.3.4). For a more general algorithm, see Ansley

and Kohn (1985) who propose an analytical but complex and difficult to implement

solution to the exact initialization problem. An alternative exact approach is discussed

by de Jong (1991) who uses an augmentation technique to the exact Kalman filter. In

a more recent work, Koopman (1997) proposes an exact analytical approach based on

a trivial initialization and develops a diffuse loglikelihood, logLd(y|ψ). However, as

it can be shown that the estimate ψ̂, obtained by maximizing logL(y|ψ) for fixed κ,

converges to the estimate obtained by maximizing the diffuse loglikelihood as κ → ∞
(cf. Durbin and Koopman 2001,

✂
7.3.1), the approach taken here can be considered a

valid procedure for univariate models.

3.4.2 Numerical maximization

Given the sample observations, the loglikelihood can be maximized by means of direct

numerical maximization. The basic idea behind this method is to find the value ψ̂ for

which the loglikelihood is maximized. An algorithm is used to make different guesses for

ψ and to compare the corresponding numerical values of the loglikelihood. To compute

the ML estimates, the algorithm performs a series of steps, each time starting with a first

guess for the unknown parameters. The algorithm then chooses the direction where to

search, determines how far to move in the chosen direction, and computes and compares

the value of the loglikelihood for the chosen values of ψ. If ψ leads sufficiently close

to a maximum of the loglikelihood, the algorithm stops, otherwise the search continues.

Generally, numerical maximization methods differ with respect to the direction to search,

the step size and the stopping rule (cf. Davidson and MacKinnon 2004,
✂
6.4).

Many numerical maximization techniques are based on Newton’s method : for a given

starting value for ψ, the direction of search is determined by the gradient or score vector,

denoted as g(ψ); the step size is calculated from the Hessian matrix, denoted as H(ψ),

which has a unique maximum only if it is negative definite for all ψ. For a more detailed

description of the different available algorithms, see, for example, Hamilton (1994b,
✂
5.7)

or Judge et al. (1985,
✂
B.2). In practical applications, it is often impossible or compu-

tationally expensive to calculate the gradient and the Hessian analytically. However, it

is usually feasible to compute g(ψ) numerically. For details on the calculation of the
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score vector with respect to problems formulated in state space, the reader is referred to

Durbin and Koopman (2001,
✂
7.3.3). In order to avoid numerical or analytical computa-

tion, the Hessian can usually be approximated. In Ox, H(ψ) is approximated using the

quasi-Newton method according to Broyden-Fletcher-Goldfarb-Shanno (BFGS), which

ensures negative definiteness of the Hessian; details on this nonlinear optimization tech-

niques are discussed by Greene (2003,
✂
E.6.2).

3.4.3 The EM algorithm

The unknown elements of the system matrices can alternatively be estimated via the

expectation-maximization (EM) algorithm by Dempster et al. (1977). The EM algo-

rithm, named after its two steps of maximizing the expectation of the loglikelihood, is

an iterative algorithm for maximum likelihood estimation. It has originally been de-

veloped for dealing with missing observations and can be employed for maximizing the

loglikelihood of many state space models (cf. Shumway and Stoffer 1982; Watson and

Engle 1983).

As in this thesis the likelihood will be generally maximized using numerical maxi-

mization procedures, both in the context of Kalman filter based state space models as

well as the basic hidden Markov model to be introduced below, the reader is referred

to the well-established literature for details on the EM algorithm. For an introductory

outline, see, for example, Bulla (2006, Appendix A) and the references provided therein.

A general demonstration of how to use the EM algorithm to compute the ML estimates

in some common statistical applications is provided by McLachlan and Krishnan (1997);

a Bayesian treatment is given by Tanner (1993).

3.4.4 Parameter restrictions

Sometimes the parameters of a model are not allowed to take any value in R, the set of

real numbers. In this case, it may become necessary to impose parameter constraints.

For example, the elements of the covariance matrices Qt and Ht in (3.1) and (3.2)

are restricted to positive values. While it is theoretically possible to introduce such con-

straints into the numerical maximization procedure directly, it is not practically feasible.

In order to employ Newton-type maximization routines implemented in standard statis-

tical software packages, it is recommendable to perform any maximization with respect

to unconstrained quantities. This can be achieved by transforming the parameters in an

appropriate way. In case of a positive variance term σ2, the constraint will be imposed

by defining

ψσ = log σ2, −∞ < ψσ <∞. (3.63)

Once the loglikelihood is maximized using the transformed but unconstrained parameter

ψσ, the constrained parameter can be calculated by back-transformation:

σ̂2 = exp(ψ̂σ), σ̂2 > 0. (3.64)
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Similarly, whenever a parameter θ should be restricted to the range [−a; a] with a > 0,

it is possible to use the transformation

ψθ =
θ√

a2 − θ2
, −∞ < ψθ <∞, (3.65)

where the restricted parameter can be obtained as

θ̂ =
aψ̂θ

√

1 + ψ̂2
θ

, −a < θ̂ < a. (3.66)

In case where a parameter θ is only allowed to take on values between zero and unity,

the transformed parameter

ψθ =

√

θ

1 − θ
, −∞ < ψθ <∞, (3.67)

will be used with θ being computed as

θ̂ =
ψ̂2

θ

1 + ψ̂2
θ

, 0 ≤ θ̂ < 1. (3.68)

With these transformations, the ML estimates are obtained in two steps. At first, the

likelihood is maximized with respect to the unconstrained but transformed parameters.

In a second step, the estimates for the transformed parameters are converted back to

the constrained original parameters.

3.5 Introduction of explanatory variables

The general state space model can be extended to include explanatory variables that are

able to partially explain the movements of the vector of observations. Subsection 3.5.1

introduces regression effects to the state space framework. Subsection 3.5.2 discusses

the estimation of regression models with time-varying parameters and develops vari-

ous dynamic processes for changing regression coefficients. The section closes with a

brief discussion of how to set the initial values needed to initialize the Kalman filter in

Subsection 3.5.3.

3.5.1 Incorporation of regression effects

A state space model can be allowed for regression effects by setting dt in the observation

equation (3.2) equal to the linear combination xtβt. Given an expanded set of informa-

tion with k observable variables, which are assumed to be weakly exogenous8 and to be

linearly related to the univariate vector of observations yt, the observation equation can

be stated as

yt = ztξt + xtβt + ǫt, t = 1, . . . , T, (3.69)

8According to the definition provided by Harvey (1989,
�
7.1.4) explanatory variables are

weakly exogenous if they can be dealt with as though they do not change in repeated samples.
A formal treatment of the concept of exogeneity can be found in Engle et al. (1983).
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where xt is a 1 × K vector of explanatory variables, which possibly contains unity

as first element. The k × 1 vector βt contains the unknown regression coefficients.

Weak exogeneity assures that it can be conditioned on xt without losing any relevant

information needed to efficiently estimate the unknown model parameters (cf. Harvey

1989,
✂
7.1).

In case where βt is known, the inclusion of explanatory variables does not affect

the operation of the Kalman filter. In practical applications, however, the regression

coefficients are usually unknown. In this case regression effects can be incorporated by

including βt in the state vector. This yields a state space model with an extended (m+

k)× 1 state vector ξ†t = [ ξ′t β′
t ]′ whose components can be estimated simultaneously

for t = 1, . . . , T :

ξ
†
t+1 = T tξ

†
t +Rtηt, ηt ∼ N(0,Q†

t), (3.70)

yt =
[
zt xt

]
ξ
†
t + ǫt, ǫt ∼ N(0, ht), (3.71)

where T t, Rt and ηt are of dimensions (m+k)×(m+k), (m+k)×(r+k) and (r+k)×1,

respectively. The (r + k) × (r + k) covariance matrix of the state errors is defined as

Q
†
t =

[
Qt 0

0 Q
β
t

]

. (3.72)

The structure of Qβ
t , a block matrix of dimension k × k, determines the nature of the

regression coefficients. For fixed coefficients, Qβ
t has to be set to a k × k zero matrix.

For Qβ
t 6= 0, the regression coefficients can be made time-varying. Details on the case

with stochastic coefficients are provided in
✂
3.5.2.

With β1 being treated as diffuse, the standard Kalman filter and smoother, as de-

scribed in
✂
3.3, can be employed to this extended state space model without further

modification (cf. Durbin and Koopman 2001,
✂
6.2). The regression coefficients can be

estimated in the time-domain by employing the ML procedures introduced in
✂
3.4. The

Kalman filter can also be applied to a regression model with fixed coefficients that is

formulated in state space form: in the absence of structural components, this yields the

same results as can be obtained by recursive least squares estimation. This property

can be used in connection with specification tests for structural breaks. The estimation

yields two different types of residuals, which will be employed in
✂
3.6 for specification

testing and model diagnostic purposes. For details on the estimation of structural time

series model with explanatory variables, see Harvey (1989,
✂
7.3.2).

3.5.2 Time-varying parameter models

The coefficients of the explanatory variables can be made time-varying by incorporating

them directly into the state vector, ξt, where the variance of the corresponding state

errors has to be nonzero. Since a regression with time-varying coefficients is a special

case of the general state space introduced in
✂
3.2, it can be handled routinely by the

standard Kalman filter and smoother. The focus in this section is on the modeling of

time-varying regression coefficients as both non-stationary and stationary processes.
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Following Chow (1984) a general expression for the basic univariate time-varying

coefficient regression model with homoskedastic error terms can be formulated as

yt = ztξt + ǫt, ǫt ∼ N(0, h), (3.73)

where zt denotes a 1 ×m row vector with m = k fixed explanatory variables, of which

unity might be the first element. The column vector ξt contains the regression coefficients

whose behavior over time is represented by

ξt+1 = Tξt +Rηt, ηt ∼ N(0,Q), (3.74)

where the system matrices T andR are assumed to be time-homogeneous. To allow for a

meaningful economic interpretation, the state equation given in (3.74) can be rearranged

by introducing the mean state vector ξ̄ and by replacing ξt by ξt − ξ̄. This leads to

a representation in which ξ̄ can be interpreted as the mean coefficient over the entire

sample. The matrix T is referred to as the speed parameter, which measures how fast

the time-varying state vector returns to its mean:

ξt+1 − ξ̄ = T (ξt − ξ̄) +Rηt. (3.75)

The literature has not arrived yet at a consensus on how to introduce time-variation

into the coefficients of explanatory variables. In the following, it will be demonstrated

how different processes for the time-varying state vector can be derived depending on

the chosen value for T .

3.5.2.1 The random coefficient model

Setting T to an m × m zero matrix yields a model that describes the time path of a

changing ξt as random coefficients (RC):

ξt+1 = ξ̄ +Rηt. (3.76)

The random coefficient model, originally introduced by Hildreth and Houck (1968) in a

cross-sectional context, implies a long-run average coefficient around which the current

estimate fluctuates randomly. The parameters to be estimated are ξ̄ and the variances

of the error terms. As it is not possible to distinguish between a randomly behaving

intercept and the observation disturbances, any intercept term has to be included as

being fixed in the observation equation. This reduces the state vector’s dimension by

one (cf. Wells 1996,
✂
5.3).

Overall, the practical relevance of this model is limited: as the stochastic properties

of the underlying process are only reflected in the state disturbances, the average state

always represents the best forecast. For a review of the random coefficient model, see,

for example, Nicholls and Pagan (1985).

3.5.2.2 The random walk model

By setting the transition matrix to an m-dimensional identity matrix, one can derive

an important modeling class according to which the behavior of the changing regression
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coefficients over time can be described as a random walk (RW):

ξt+1 = ξt +Rηt. (3.77)

The random walk is considered an essential scientific concept in the analysis of dynamics

across many disciplines. It had already been widely established in the natural sciences

when Samuelson (1965) introduced it to finance. Today, the random walk represents

one of the most important ideas in financial economics.

An illustrative example of the applicability of random walks to economics is the time-

varying parameter model for U.S. monetary growth presented by Kim and Nelson (1989).

Excellent surveys of the random walk and its link to financial markets and security prices

include Campbell et al. (1997,
✂
2) and Lo and MacKinlay (1999).

3.5.2.3 The mean reverting model

Another important time-varying coefficient model is the mean reverting (MR) model,

proposed by Rosenberg (1973). The regression coefficients are modeled as a stationary

process:

ξt+1 − ξ̄ = T (ξt − ξ̄) +Rηt, (3.78)

where ξt is a vector of stochastic parameters with non-stochastic mean ξ̄ in stochastic

equilibrium. For values of the roots of T inside the unit circle, stationarity of the

stochastic process is guaranteed and the coefficients move around the constant mean ξ̄.

The parameters to be estimated are ξ̄, T , Q and h. Following Collins et al. (1987) it is

assumed a priori that the major determinants of any time-varying regression coefficients

change only gradually over time. To assure smoothly developing coefficients from period

to period, the diagonal elements of T are restricted to values between zero and unity. For

T = I, Equation (3.78) reduces to a random walk. For T = 0, the model is equivalent

to the random coefficient model.

The state equation of the mean reverting model differs from the general state equation

in (3.74) by the incorporation of the parameter ξ̄. Substitution of (3.78) into (3.73)

brings the mean reverting model into the same form as (3.70)–(3.71):

[
ξ∗t+1

ξ̄

]

= T

[
ξ∗t
ξ̄

]

+Rηt, (3.79)

yt = zt

[
ξ∗t
ξ̄

]

+ ǫt, (3.80)

with ξ∗t = ξt− ξ̄ for all t (cf. Chow 1984). The diagonal elements of T that correspond to

ξ̄ are equal to unity. As ξ̄ is constant over time, the lower part of ηt is set to zero. In this

representation, the state vector contains both time-varying as well as fixed regression

coefficients and can be estimated by the standard Kalman filter.

In the literature, the mean reverting model has been applied to the testing and model-

ing of the time-variation of an asset’s systematic risk; see, for example, Bos and Newbold

(1984), Wells (1996,
✂
5.3) and Brooks et al. (1998).



36 3 Linear Gaussian state space models and the Kalman filter

3.5.2.4 The moving mean reverting model

The most general of the models presented in this section is the moving mean reverting

(MMR) model proposed by Wells (1994). It represents an extension to the mean re-

verting model. In the moving mean model the regression coefficients are mean reverting

with the mean itself being modeled as a random walk:

ξt+1 − ξ̄t+1 = T (ξt − ξ̄t) + ηt, (3.81)

with

ξ̄t+1 = ξ̄t + ςt, (3.82)

where R is assumed to be the identity matrix. The dynamic process for the mean state

can be brought into the state vector leading to a state space model similar to (3.79)–

(3.80), only with ξ̄ being replaced by ξ̄t. Note that in contrast to the MR model above,

all elements of ηt have to be unequal to zero to allow for time-variation in the mean.

A more detailed treatment of the moving mean model and its specification in Ox using

SsfPack is given in
✂
3.7.

3.5.3 Initial values

Two different sets of starting values are needed to initialize the Kalman filter for the

various time-varying parameter regression models. With respect to the initial values

of the state vector and its covariance, a diffuse prior as described in
✂
3.3.6 is used for

random coefficient and mean reverting models. As long as no numerical problems arise

due to rounding errors, the same strategy is pursued for the random walk and the moving

mean reverting model. In case of numerical difficulties, the initial state values of random

walk and moving mean models are estimated via OLS using the first ten observations,

as proposed by Wells (1996,
✂
5.8) and Yao and Gao (2004).

The second type of initial values is concerned with the hyperparameters that have

to be estimated by ML. The initial means are set to the OLS estimates over the entire

sample. All diagonal elements of the transition matrix T that are neither zero nor unity,

are set to 0.5. With the initial value for σ2 set to 1.001, the variances of the state and

observation disturbances are initialized using the parameter transformation introduced

by (3.63).

3.6 Model diagnostics

Once a model has been implemented, it is necessary to check whether the assumptions

underlying the model hold. By applying formal statistical test procedures, the quality

of the estimated model can be evaluated. Subsection 3.6.1 introduces two different

types of time series residuals that are commonly used for model diagnostic purposes.

Subsection 3.6.2 summarizes the computation of basic measures of the goodness of fit

for structural time series models. Subsection 3.6.3 refers to the employment of general

diagnostic tests.
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3.6.1 Residuals

Following the outline by Harvey (1989,
✂
7.4.1) two sets of time series residuals can

be computed for a state space model with an observation equation as defined in (3.69).

While the generalized recursive residuals are calculated by standardization of the Kalman

filter innovations, the generalized least squares residuals can be obtained by standard-

ization of the Kalman smoother or disturbance smoother innovations.

3.6.1.1 Generalized recursive residuals

In accordance with the definition of an innovation term given in (3.15), T−d−k one-step

ahead prediction errors can be obtained by applying the Kalman filter to the state space

model defined in (3.70)–(3.71):

v†t = yt −E(yt|Yt−1) = yt − ztat − xtβ̃t|t−1, t = d+ k + 1, . . . , T, (3.83)

where β̃t|t−1 denotes the ML estimate of βt based on the set of observations up to time

t − 1. Standardizing the recursive residuals by dividing v†t by
√
ft as defined in (3.16)

yields the generalized recursive residuals, denoted as ṽ†t :

ṽ†t =
v†t√
ft
. (3.84)

Without any stochastic model components, the Kalman filter becomes equivalent to

standard OLS recursions such that ṽ†t reduces to the recursive residuals. This property

and the fact that recursive residuals are independent over time can be used in procedures

to test for structural breaks.

3.6.1.2 Generalized least squares residuals

The application of the Kalman filter to the constructed series of observations yt−xtβ̃t|T ,

where β̃t|T denotes the ML estimate of βt given the complete sample up to time T , yields

T − d least squares residuals

v+
t = yt − ztat − xtβ̃t|T , t = d+ 1, . . . , T. (3.85)

In case where the coefficient vector βt is included in the state vector, overall two Kalman

filters are needed: one to obtain β̃t|T and another one that is applied to yt − xtβ̃t|T =

ztξt + ǫt (cf. Durbin and Koopman 2001,
✂
6.2.4). Dividing the least squares residuals

by
√
ft yields the generalized least squares (GLS) residuals

ṽ+
t =

v+
t√
ft
. (3.86)

In the absence of any stochastic components, these residuals resemble standard OLS

residuals.

For a detailed description of applying the two types of residuals defined above to

major test procedures for models in state space form, the reader is referred to Harvey

(1989,
✂
5 &

✂
7.4).
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3.6.2 Goodness of fit

Measures of the goodness of fit are usually computed on the basis of forecast errors.

The basic goodness of fit measure for time series models is the prediction error variance,

which also serves as an input to calculate the coefficient of determination. A comparison

between models with different numbers of parameters is commonly made on the basis

of information criteria.

3.6.2.1 Prediction error variance

In case of time-homogeneity, the prediction error variance (p.e.v.) is defined as

σ2 = σ2
∗ f̄ , (3.87)

where f̄ represents the value to which ft converges in steady-state. When a concentrated

likelihood function is used with σ2
∗ being estimated by (3.61), σ2 can be estimated as

σ̃2 = σ̃2
∗ f̄ . (3.88)

The incorporation of regression effects into a model slightly changes the definition of the

estimator of σ2
∗ . When dealing with time-varying regression models, the ML estimator

of σ2
∗ for stochastic βt is a function of the generalized recursive residuals:

s2∗ = (T − d− k)−1
T∑

t=d+k+1

ṽ†2t , (3.89)

where k is equal to the dimension of the vector of explanatory variables. For fixed βt,

the ML estimator of σ2
∗ depends on the GLS residuals:

σ̃+2
∗ = (T − d)−1

T∑

t=d+1

ṽ+2
t , (3.90)

where the sums of squares are identical in both cases. Taking (3.89) and (3.90) into

account, the prediction error variance for models that contain explanatory variables can

be estimated as

s2 = s2∗f̄ , (3.91)

or as

σ̃+2 = σ̃+2
∗ f̄ . (3.92)

According to Harvey (1989,
✂
7.4.3) the prediction error variance can be approximated

for large samples in terms of the unstandardized GLS residuals as defined in (3.85):

σ̃2 =
f̄

T − d

T∑

t=d+1

ṽ+2
t =

1

T − d

T∑

t=d+1

v+2
t

ft
f̄ ≈ 1

T − d

T∑

t=d+1

v+2
t . (3.93)
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3.6.2.2 Coefficient of determination

The coefficient of determination, R2, is one of the most widely used measures of fit

for time series models with stationary data. In the univariate case, the standard R2 is

computed by subtracting the ratio between the sum of squared errors (SSE) and the

sum of squares of observations about their mean from unity:

R2 = 1 − SSE
∑T

t=d+1 (yt − ȳ)2
, (3.94)

where ȳ denotes the mean of the dependent variable over the sample t = d + 1, . . . , T .

The residual sum of squares is defined as

SSE = (T − d)σ̃2 = (T − d− k)s2. (3.95)

An adjusted R2 that penalizes models with a large number of explanatory variables,

commonly denoted as R̄2, will be computed in standard fashion as

R̄2 = 1 −
(
1 −R2

)
(T − d− 1)

T − d− k
. (3.96)

3.6.2.3 Information criteria

Another way of comparing different models is to use an information criterion that bal-

ances between the achieved goodness of fit and the degree of parsimony of a model.

The two most widely used criteria are the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC), proposed by Akaike (1973) and Schwarz (1978),

respectively. In the following, the AIC and BIC will be defined in terms of the value of

the loglikelihood function for given ψ̂:

AIC = [−2 logL(y|ψ̂) + 2w]/T, (3.97)

BIC = [−2 logL(y|ψ̂) + w logT ]/T, (3.98)

where w denotes the dimension of ψ. When using one of these two information criteria

as a guide for model selection, the model with the smallest information criterion is to

be preferred. Unless mentioned otherwise, the BIC will be preferred in the following as

it imposes the higher penalty for each additional parameter (given that T > 7).

3.6.3 Diagnostics

Diagnostic tests are employed to check whether the disturbances of an estimated model

are approximately random. Generally, both types of residuals introduced in
✂
3.6.1 can

be employed for model diagnostics, each revealing different aspects of the fitted model.

While the recursive residuals yield the advantage of being serially uncorrelated, the

least squares residuals are based on the information of the entire sample and allow for

a direct comparison with OLS estimates. Unless stated otherwise, the basic diagnostics

for testing on normality, heteroskedasticity and serial correlation will employ the GLS

residuals defined in (3.86). Tests for detecting structural change are usually based on the
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standardized one-step ahead prediction errors given in (3.84); definitions of the various

test procedures and a discussion of their appropriateness for state space models can be

found in Harvey (1989,
✂
5.4 &

✂
7.4).

3.7 Illustration: How to specify the MMR model for estimation using

SsfPack

This section illustrates how to specify a state space model for estimation using SsfPack.

Together with the technical paper by Koopman et al. (1999) the following outline al-

lows for a hands-on application of the Kalman filter based methods discussed in this

chapter. To demonstrate the application of the Kalman filter to the time-varying coeffi-

cient models presented in the previous section, we have a look at the univariate moving

mean model with a single explanatory variable xt, with regression coefficient βt. The

nonzero intercept term αt is assumed to follow an AR(1) process. Following the logic of

augmentation as in
✂
3.5.1, this model is obtained by rewriting the observation equation

as

yt =
[

1 xt xt

]





αt

βt − β̄t

β̄t



+ ǫt, ǫt ∼ N
(
0, σ2

ǫ

)
, (3.99)

with the corresponding state vector being formulated as

αt+1 = T11αt + νt, νt ∼ N
(
0, σ2

ν

)
, (3.100)

βt+1 − β̄t+1 = T22(βt − β̄t) + ζt, ζt ∼ N
(
0, σ2

ζ

)
, (3.101)

β̄t+1 = β̄t + ςt, ςt ∼ N
(
0, σ2

ς

)
, (3.102)

where νt, ζt and ςt are assumed to be normally distributed and mutually independent

state disturbances.

In connection with SsfPack, it is useful to formulate the moving mean model in state

space form by utilizing the compact representation of a state space model as presented

in (3.8)–(3.10):

[
ξt+1

yt

]

=

[
T

zt

]

ξt + υt υt ∼ N

(

0,

[
Q 0

0 h

])

, (3.103)

with

ξt =





αt

βt − β̄t

β̄t



 , T =





T11 0 0

0 T22 0

0 0 1



 , zt =
[

1 xt xt

]
,

υt =







R





νt

ζt
ςt





ǫt






, R = I3, Q =





σ2
ν 0 0

0 σ2
ζ 0

0 0 σ2
ς



 , h = σ2
ǫ ,

(3.104)

where the six parameters σ2
ǫ , σ2

ν , σ2
ζ , σ2

ς , T11 and T22 have to be estimated. For T11 = 1,

αt follows a random walk. If the variance of νt is equal to zero, the intercept term
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becomes a constant. For values of σ2
ς close to zero, the model resembles a mean reverting

model with a constant mean.

In SsfPack, the initial state values are collected in the matrix Σ. In case of the

moving mean model, it is defined as

Σ =







−1 0 0

0 −1 0

0 0 −1

0 0 0






, (3.105)

where the value −1 indicates that the corresponding elements of the initial state vector

are diffuse. If OLS estimates were used as initial values, the diagonal elements of the first

three rows would be replaced by the corresponding elements of the estimated covariance

matrix; the last row would contain the estimated OLS regression coefficients as initial

values for the corresponding means of the state vector.

The lower part of the parameter matrix Φt = [T zt]
′ contains the time-varying

system element zt with the explanatory variables. In SsfPack, an index matrix JΦ,

whose index refers to the explanatory data in zt, is required to specify the time-varying

elements in Φt. The two matrices Φt and JΦ must be of same dimension. With the

exception of those elements for which time-variation in the corresponding elements of

Φt should be indicated, the elements of the index matrix take the value −1. An index

value greater than −1 refers to the column of zt with the time-varying values. For the

moving mean model, the index matrix is given by

JΦ =







−1 −1 −1

−1 −1 −1

−1 −1 −1

0 1 2






. (3.106)

Notice that indexing in Ox generally starts at zero. Therefore, the (4,1) element of JΦ

refers to the first column of zt.

As the corresponding elements in the last row of JΦ already indicate where the data

for the respective columns of zt come from, the values associated with zt in the last

row of Φt are set to zero when dealing with time-variation. In the current example Φt

becomes

Φt =







T11 0 0

0 T22 0

0 0 1

0 0 0






. (3.107)

Generally, SsfPack allows to assign time-varying elements to any system matrix by using

the index matrices Jδ, JΩ and JΦ to indicate the time-varying elements of δt, Ωt and

Φt, respectively (cf. Zivot et al. 2002).





Chapter 4

Markov regime switching

Markov switching models of changing regimes are latent variable time series models.

The observation-generating distribution depends on an unobserved, or hidden, state

variable modeled as a Markov chain. Markov switching models, also commonly known

as hidden Markov models (HMMs), offer a high degree of flexibility and can be employed

for both univariate and multivariate series. A hidden Markov model represents a special

class of dependent mixtures and consists of two processes: an unobservable m-state

Markov chain that determines the state, or regime, and a state-dependent process of

observations. The hidden Markov model is closely related to the general linear Gaussian

state space model introduced in Chapter 3. Both models are state space models. The

major difference is that HMMs have discrete states, while the Kalman filter based state

space approach deals with unobserved continuous states.9

While HMMs have been employed by engineers in the context of signal-processing,

over the last two decades extensive literature developed in automatic speech recognition,

biosciences, image processing and climatology, among others. Important references in-

clude Baum and Petrie (1966), the tutorial by Rabiner (1989) and Ephraim and Merhav

(2002). Economic and financial researchers are also frequently confronted with time

series that experience changes in regime that are evoked by third factors. The shifts are

not observed directly, and usually it is unknwown which regime currently prevails. How-

ever, it was not until the seminal works of Hamilton (1988, 1989, 1990) that economists

and financial econometricians started to apply HMMs. Hamilton introduced a homoge-

neous Markov switching vector autoregressive model, in which the latent state process is

independent from exogenous variables. Lahiri and Wang (1996) studied the comparative

performance of various interest rate spreads as leading indicators for turning points of

the U.S. business cycle. They assumed the U.S. economy to shift between two states

with the shift between regimes being governed by a two-state Markov process. Frid-

man (1994) proposed a two-state CAPM where the states represent two market regimes

of high and low volatility. The parameters are determined by an unobserved Markov

chain. Another well-known application to finance is conducted by Rydén et al. (1998)

9For a review of the common properties of both concepts, see Roweis and Ghahramani
(1999).
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who employ a hidden Markov model to derive stylized facts of daily S&P 500 return

series.

The standard regime switching model can be extended to provide an even higher

degree of flexibility. Important specifications include Markov switching models with

time-varying switching probabilities (Diebold et al. 1994; Filardo 1994) and hidden

semi-Markov models, which allow for nonparametric state occupancy distributions, as

proposed by Ferguson (1980). As these extensions are beyond the scope of this thesis,

they will not find any consideration hereafter; for further reading, see, for example, Bulla

(2006,
✂
5) and the references given therein.

HMMs are employed in a wide spectrum of applications due to their overall versa-

tility and mathematical tractability. Their attractiveness is grounded on the fact that

the likelihood can be evaluated in a straightforward fashion, either by numerical maxi-

mization or by employing the EM algorithm. Moment properties can be easily derived,

missing observations can be easily dealt with, and HMMs are often interpretable in a

natural way. Besides, they are moderately parsimonious with a simple two-state model

providing a good fit in many cases. Comprehensive treatments of HMMs are provided

by Elliott et al. (1995), MacDonald and Zucchini (1997), Bhar and Hamori (2004) and

Hamilton (1993), with the latter two focusing on applications in economics and finance.

The organization of this chapter is as follows. Section 4.1 briefly reviews independent

mixture models and basic properties of Markov chains. Section 4.2 outlines the basic

hidden Markov model. Section 4.3 briefly discusses parameter estimation based on the

ML method. Section 4.4 looks at forecasting and decoding procedures, before Section 4.5

provides an overview of model selection and validation. To assure notational conforma-

bility, the outline in this chapter is, unless stated otherwise, based on Bulla (2006,
✂
2–3)

who also provided the code for conducting the computations related to HMMs in this

thesis using the statistical software package R 2.1.1 (R Development Core Team 2005).

4.1 Basic concepts

Before introducing the theory of HMMs, it is instructive to look at two fundamental

concepts as a basis to understand the basic structure of a hidden Markov model. Sub-

section 4.1.1 reviews the concept of mixture distributions. Subsection 4.1.2 provides a

brief introduction to the basic properties of Markov chains, which are needed to construct

HMMs.

4.1.1 Independent mixture distributions

Consider the weekly log-return series of the Technology sector. As discussed in
✂
2.2.2,

the series of all sectors show signs of positive autocorrelation in the squared returns.

This characteristic is commonly referred to as volatility clustering, a common feature

of financial returns data that usually induces excess kurtosis. Panel (a) of Figure 4.1

shows the weekly percentage log-returns on the DJ Technology sector. It can be seen

that the sector’s volatility is not constant over time: the level of volatility is clearly

lower at the beginning and higher in the second half of the sample. As a consequence, a

normal distribution is not capable of describing the return series adequately. Panel (b)
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Figure 4.1: (a) Weekly percentage log-return series of the Technology sector and (b) his-
togram with a fitted normal distribution.

displays a histogram of the weekly returns together with a fitted normal distribution.

It becomes obvious that the chosen normal underestimates the probability of both low

returns around zero and extremely high absolute returns.

One possibility to overcome the shortcomings of the normal distribution is to employ

a mixture of two normal distributions. Mixture distributions are useful in the context

of overdispersed or multimodal data that may be caused by unobserved heterogeneity

in the sample. An independent mixture distribution can either be modeled as a discrete

mixture, which is characterized by a finite number of component distributions, or as a

continuous mixture, which can be thought of as a discrete mixture consisting of infinitely

many component distributions. Note that in both cases discrete or continuous distribu-

tions can be chosen as components. As only discrete mixtures are relevant for the HMMs

considered in the context of this chapter and also for the applications in the empirical

part of this thesis, the continuous case will not find any further consideration.10

In the general m-component case, the characteristics of the mixture distribution are

determined by m random variables X1, . . . , Xm, and their probability or probability

density functions, denoted as pi(x) or fi(x), respectively, for i = 1, . . . ,m. The mixture

is performed using a discrete random variable S that determines from which random

variable an observation is drawn. It can take values between 1 and m, each with a

probability πi:

S :=







1 with probability π1

2 with probability π2

...

m with probability πm,

(4.1)

where
∑m

i=1 πi = 1 and πi ≥ 0 for i = 1, . . . ,m. With π1, . . . , πm representing the weights

of the various components, the probability (density) function of the mixture distribution

10A survey of mixture distributions, is given, for example, by Titterington et al. (1985). For
more details on continuous mixture distributions, see the references provided by Zucchini et al.
(2006,

�
2.1).
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based on X can be computed by a linear combination of the single components:

p(x) =

m∑

i=1

πipi(x) (discrete case), (4.2)

f(x) =

m∑

i=1

πifi(x) (continuous case), (4.3)

with the k-th moment of the mixture defined as a linear combination of the respective

components moments

E(Xk) =

m∑

i=1

πiE(Xk
i ), k = 1, 2, . . . . (4.4)

As it can be shown that the variance of a mixture model cannot be simply computed as

a linear combination of the respective components variances, the standard equality

V ar(X) = E(X2) − (E(X))2, (4.5)

can be employed together with (4.4) to estimate the variance of a mixture model (cf.

Zucchini et al. 2006,
✂
2).

The parameters of a mixture distribution are usually estimated by ML. For the ex-

ample of the continuous case, the likelihood of an m-components mixture model can

generally be stated as

L(ψ1, . . . ,ψm, x1, . . . , xT ) =

T∏

j=1

m∑

i=1

πifi(xj ,ψi), (4.6)

with observations x1, . . . , xT . The mixture weights π1, . . . , πm and the parameter vec-

tors of the component distributions are included in ψ1, . . . ,ψm. As the ML estimates

ψ̂1, . . . , ψ̂m represent a solution to a system of nonlinear equations, the likelihood can

be maximized analytically only for rather trivial models. In most cases, the unknown

parameters have to be estimated by employing direct numerical maximization proce-

dures or by using the EM algorithm (cf.
✂
3.4.3). Figure 4.2 shows the results of fitting

mixtures of two (a) and three normals (b) to the weekly log-returns of the Technology

sector. The components’ weights have been obtained by a hidden Markov model for

which more details will be provided in the section below. Compared to the case where

the returns are fitted by a single normal distribution, the fit is clearly improved by both

mixture models.

4.1.2 Markov chains

Let {St : t = 1, . . . , T} be a stochastic process, i.e. a sequence of random variables that

can assume an integer value in S = {1, . . . ,m}, the state space. If for each date t,

the probability that St+1 is equal to a particular value st ∈ S depends only on St, the

current state of the process, such a process is called an m-state Markov process:

P (St+1 = st+1|St = st, St−1 = st−1, . . . , S1 = s1) = P (St+1 = st+1|St = st). (4.7)
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Figure 4.2: Histogram of weekly log-returns of the Technology sector and fitted mixtures
with (a) two and (b) three normal distributions.

This is known as the Markov property. While both the state space and the time set can

be either discrete or continuous, in the following only discrete-time Markov processes in

discrete state space, referred to as Markov chains, are considered.

The probability of changing from state i to state j is called the transition probability.

Even though the transition probability can be modeled as depending on date t in the

general case, in this thesis only homogeneous Markov chains with constant transition

probabilities over time will be considered, i.e., γij := P (St+1 = j|St = i) for all t with
∑m

j=1 γij = 1 and 1 ≤ i ≤ m. The one-step ahead transition probabilities can be

collected in an m×m matrix Γ, which is referred to as transition probability matrix :

Γ :=








γ11 γ12 · · · γ1m

γ21 γ22 · · · γ2m

...
...

. . .
...

γm1 γm2 · · · γmm







, (4.8)

with each row summing up to unity. It can be shown that the matrix Γ(l) of l-period

ahead transition probabilities γij(l) := P (St+l = j|St = i) can be computed by multi-

plying Γ by itself l times:

Γ(l) :=








γ11(l) γ12(l) · · · γ1m(l)

γ21(l) γ22(l) · · · γ2m(l)
...

...
. . .

...

γm1(l) γm2(l) · · · γmm(l)








= Γl. (4.9)

In the following, any Markov chain will be assumed to be irreducible. This means that

for all i, j ∈ {1, . . . ,m} the probability of the chain changing from state i to state j,

starting from state i, and vice versa, is positive.
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While γij(l) describes the conditional probability of being in state j at time t + l,

with the Markov chain starting from state i at time t, it does not provide the marginal

probability of being in state i at a given time t. With the probability distribution of the

initial state, π(1) := (π1(1), . . . , πm(1)) = (P (S1 = 1), . . . , P (S1 = m)), the probability

function of the state at time t is given by

π(t) := (P (St = 1), . . . , P (St = m)) = π(t)Γl−1. (4.10)

For a homogeneous and irreducible Markov chain, π(t) can be shown to converge to a

fixed vector πs := (π1, . . . , πm) for large t. This unique vector of dimension m satisfies

πs = πsΓ, (4.11)

and is called the vector of stationary transition probabilities. For existing πs, a Markov

chain is referred to as being stationary if πs describes the marginal distribution of the

states for all t = 1, . . . , T .

For more details on the well developed theory of Markov chains and further references,

see, for example, Hamilton (1994b,
✂
22).

4.2 The basic hidden Markov model

The sequence of observations and hidden states in an independent mixture model are

independent by definition. Any potential correlation between the states cannot be cap-

tured by an independent mixture as it does not take into account the respective infor-

mation. One method of modeling serially correlated time series is to use an unobserved

Markov chain to select the parameters. This yields the hidden Markov model as a special

dependent mixture model.

With {Xt} = {Xt, t = 1, . . . , T} denoting a sequence of observations and {St} =

{St, t = 1, . . . , T} denoting a Markov chain in the state space {1, . . . ,m}, their respective

histories up to time t can be written as

X(t) := {X1, . . . , Xt}, (4.12)

S(t) := {S1, . . . , St}. (4.13)

Consider a stochastic process that consists of two elements: (i) an underlying and un-

observed parameter process {St} for which the Markov property (4.7) holds, and (ii) a

state-dependent observation process {Xt}, which fulfills the conditional independence

property

P (Xt = xt|X(t−1) = x(t−1), S(t) = s(t)) = P (Xt = xt |St = st). (4.14)

This means that with known St, Xt only depends on St and not on the history of states

or observations. The pair of stochastic processes {Xt} and {St} is referred to as an

m-state hidden Markov model whose basic structure is illustrated in Figure 4.3, which

is taken from Bulla (2006,
✂
2).

Generally, different distributions are imposed for the various states. In this thesis, the

Markov chain with transition probability matrix Γ will be assumed to be homogeneous
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Figure 4.3: Basic structure of a hidden Markov model (source: Bulla 2006, p. 17).

and irreducible and to have a unique stationary distribution πs (cf.
✂
4.1.2). In practical

applications, the underlying state process {St} is hidden and only the state-dependent

sequence of observations {Xt} is known. Usually, the unobservable states can be inter-

preted in a natural way: for example, a hidden Markov model with two states could be

employed in the context of the weekly return series of the Technology sector considered

in
✂
4.1.1: the observations in times of high volatility would be referred to by one state,

while the other state would refer to low volatility markets.

For more details on the basic hidden Markov model, including a derivation of its

moments and marginal distributions, see, for example, MacDonald and Zucchini (1997,
✂
2).

4.3 Parameter estimation

The parameters of a hidden Markov model are generally estimated via the maximum

likelihood principle. As the estimates represent a solution to a system of nonlinear

equations, it is usually impossible to estimate the unknown parameters analytically.

Instead, one has to refer either to direct numerical maximization procedures or to the

EM algorithm, which was briefly mentioned in
✂
3.4.3. In this thesis, the focus will be on

parameter estimation by means of direct numerical maximization procedures. Provided

that the initial values to be employed are adequately accurate, numerical maximization

leads to faster convergence than the EM algorithm. Direct numerical maximization,

which avoids the derivation of the required formula for the EM algorithm, can be used

both for non-stationary and for stationary Markov chains; cf. Bulla and Berzel (2006)

who compare the competing estimation procedures based on a simulation experiment.

For details on the implementation of the EM algorithm with regard to HMMs, the reader

is referred to Baum et al. (1970) and MacDonald and Zucchini (1997,
✂
2).

The likelihood function of the basic hidden Markov model is presented in
✂
4.3.1.

Subsection 4.3.2 briefly overviews parameter estimation by numerically maximizing the

likelihood.
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4.3.1 The likelihood function

In order to estimate the parameters of a hidden Markov model by ML, a general likeli-

hood function of a hidden Markov model in closed from can be derived as

L(ψ) = P ({X1 = x1, . . . , XT = xT }) = πsP (x1)ΓP (x2)Γ . . .ΓP (xT )1′, (4.15)

with parameter vector ψ and 1 := (1, . . . , 1). The diagonal matrix P (xt) contains the

constant state-dependent probabilities of xt for t = 1, . . . , T ; for a detailed derivation,

see, for example, MacDonald and Zucchini (1997,
✂
2.5).

Following Zucchini et al. (2006,
✂
3.3) an appealing property of HMMs is that missing

observations can be easily dealt with by replacing the respective diagonal matrices P (xt)

by the identity matrix I. Besides, both stationary and non-stationary models can be

handled. However, the evaluation of the likelihood usually involves a high number of

matrix multiplications with elements between zero and unity. This frequently leads to

problems of numerical underflow. Irrespective of whether the likelihood is maximized by

employing methods of direct numerical maximization or the EM algorithm, this problem

can be overcome by applying some form of rescaling as proposed, for example, by Rabiner

(1989).

4.3.2 Direct numerical maximization

Following the outline of Zucchini et al. (2006,
✂
4.3), direct numerical maximization of

the likelihood in (4.15) has two major advantages over the EM algorithm: the flexibility

to fit alternative and more complex specifications, and the ease with which missing

observations can be dealt. On the other hand, two major problems are related to the

implementation of parameter constraints and to numerical underflow.

Whenever the parameters of a hidden Markov model are not allowed to take all values

in R, the set of real numbers, it becomes necessary to consider parameter restrictions

in the estimation procedure to be employed. As already outlined in the context of ML

estimation of Kalman filter based Gaussian state space models, it is usually recom-

mendable to reparameterize the model and to perform any maximization with respect

to transformed but unconstrained quantities. The transformations and corresponding

back-transformations introduced in
✂
3.4.4 also apply to HMMs.

The problem of numerical underflow, where the likelihood for large t becomes very

small for long series, is usually solved by considering the loglikelihood function. As for

HMMs the likelihood represents a product of matrices, it is not trivial to maximize the

loglikelihood. To allow for a recursive evaluation of the likelihood, a closed form of the

loglikelihood is needed. Before the derivation is demonstrated in
✂
4.3.2.2, the so-called

forward-backward probabilities are introduced in
✂
4.3.2.1.
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4.3.2.1 Forward-backward probabilities

Using the notation for the history of observations and states introduced in (4.12) and

(4.13), the likelihood function (4.15) can be reformulated as

L(ψ) = πsP (x1)Γ . . .ΓP (xt)
︸ ︷︷ ︸

=:αt

ΓP (xt+1)Γ . . .ΓP (xT )1′

︸ ︷︷ ︸

=:β′

t

= αtβ
′
t, (4.16)

for t = 1, . . . , T , with α0 = πs and β′
T = 1′.

The introduced m-vector vector αt = (αt(1), . . . , αt(m)) contains the forward proba-

bilities, defined as

αt(i) = P (X(t) = x(t), St = i), (4.17)

for i = 1, . . . ,m. Each component αt(i) can be interpreted as the probability of the

hidden Markov model’s history up to time t, with the Markov chain being at state i at

the same date.

Similarly, βt = (βt(1), . . . , βt(m)), consists of the so-called backward probabilities given

as

βt(i) = (P (Xt+1 = xt+1, . . . , XT = xT |St = i), (4.18)

which represent the conditional probability of future observations xt+1, . . . , xT , for state

i of the Markov chain at time t; cf. Zucchini et al. (2006,
✂
4.1) where a proof for these

results is given.

4.3.2.2 Recursive evaluation of the loglikelihood

From the forward probabilities introduced above, for LT = πsB1 . . .BT1′ with Bt =

ΓP (xt), it follows that

LT = αT . (4.19)

We define wt := αt1
′, with the scalar wt being equal to the sum of the forward prob-

abilities, and φt := αt/wt, where φt contains the rescaled forward probabilities. The

loglikelihood LT can be evaluated by the following recursion with starting equation

φ0 =
α0

w0
=

πs

πs1
′ = πs, (4.20)

and updating equation

φt =
αt

wt
=
αt−1Bt

wt
=
wt−1

wt
φt−1Bt, (4.21)

for t=1,. . . ,T, with α0 := πs and αt := αt−1Bt. For t = T the vector of rescaled

forward probabilities can be derived as

φT =
wT−1

wT

wT−2

wT−1
. . .

w0

w1
αT , (4.22)

which can be converted to yield the likelihood:

LT =

T∏

t=1

wt

wt−1
. (4.23)
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Taking the logarithm of LT gives the loglikelihood function as

logLT =

T∑

t=1

log

(
wt

wt−1

)

. (4.24)

It can be shown that the ratio of the scaling factors can be obtained as wt/wt−1 =

φt−1Bt1
′. An efficient algorithm for recursively evaluating the loglikelihood based on

the scaled forward probabilities can be derived with starting equations

logL0 = 0, (4.25)

φ0 = πs, (4.26)

and updating equations

vt = φt−1Bt, (4.27)

ut = vt1
′, (4.28)

logLt = logLt−1 + log ut, (4.29)

φt = vtu
−1
t . (4.30)

To obtain the loglikelihood function, the loop is repeated for t = 1, . . . , T (cf. Zucchini

et al. 2006,
✂
4.3).

Together with a statistical software package that offers functions for numerical max-

imization (or minimization), this algorithm can be employed to estimate the unknown

parameters of a hidden Markov model by means of direct numerical maximization. In

this thesis, the ML parameters of HMMs are estimated using the R-functions nlm() and

optim(), which can be employed to minimize a negative loglikelihood.

4.3.3 Standard errors of ML estimates

In the context of HMMs it is not trivial to determine the accuracy of the ML param-

eters estimated by one of the methods described above. As the elements of the vector

of estimated parameters can be shown to be correlated, it is not possible to compute

the standard error of the overall model directly. One possibility to obtain distributional

properties of the parameter estimates is to apply parametric bootstrap methods. As

these procedures are beyond the scope of this thesis, in the following the quality of a

hidden Markov model will be evaluated based on its forecast performance rather than

using classical statistical fit statistics. For details on how parametric bootstrap proce-

dures can be employed to analyze the distributional properties of parameter estimates,

the reader is referred to Zucchini et al. (2006,
✂
4.4) and the references given therein.

4.4 Forecasting and decoding

Based on Zucchini et al. (2006,
✂
5) this section briefly summarizes how HMMs can be

used to produce forecasts (
✂
4.4.1), and how information with regard to the unobservable

states of the Markov chain can be obtained (
✂
4.4.2). The inference regarding the hidden

states is commonly referred to as decoding.
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4.4.1 Forecast distributions

Before a forecast distribution for HMMs can be derived, it is necessary to compute

the corresponding conditional distribution. Let X−u denote the sequence of random

variablesXt for t = 1, . . . , T withXu being excluded, and let x−u denote the observations

xt for t = 1, . . . , T with xu being excluded:

X(−u) = {X1, . . . , Xu−1, Xu+1, . . . , XT }, (4.31)

x(−u) = {x1, . . . , xu−1, xu+1, . . . , xT }. (4.32)

Together with the likelihood function in (4.15) and the forward-backward probabilities

defined in
✂
4.3.2.1, the conditional distribution of Xu for u = 1, . . . , T , given all other

observations, can be derived as

P
(

Xu = x|X(−u) = x(−u)
)

=
αu−1ΓP (x)β′

u

αu−1Γβ
′
u

. (4.33)

The numerator can be regarded as the likelihood of the observed series with x being

substituted for xu. The denominator can be interpreted as the likelihood of the series

with xu treated as being missing. Alternatively, the conditional probability can be

interpreted as a mixture of state-dependent probability distributions.

The forecast distribution of a hidden Markov model, which is needed to compute the

probability of an observation occurring l steps in the future, represents a special type of

a conditional distribution. It can be derived as

P
(

XT+l = x|X(T ) = x(T )
)

=
αT ΓlP (x)1′

αT 1′ = φTΓlP (x)1′. (4.34)

The scaling algorithm introduced in
✂
4.3.2.2 can be employed to avoid problems of

numerical underflow. For increasing l the forecast distribution converges to πsP (x)1′,

the stationary distribution.

4.4.2 Decoding

Decoding refers to the determination of the most probable states of the Markov chain

for an estimated hidden Markov model. One distinguishes between local decoding and

global decoding. The former refers to the derivation of the most likely state at date t,

which can also be used to generate state predictions as will be shown in
✂
4.4.2.1. Global

decoding looks for the most probable sequence of states (
✂
4.4.2.3).

4.4.2.1 Local decoding

With the forward-backward probabilities introduced above, the joint probability of the

observations X (T ) = x(t) and the Markov chain St being in state i at date t, can be

shown to be equal to

αt(i)βt(i) = P
(

X(T ) = x(T ), St = i
)

, (4.35)
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such that the conditional distribution of the Markov chain given X (T ) = x(T ) can be

derived as

P
(

St = i|X(T ) = x(T )
)

=
αt(i)βt(i)

LT
, (4.36)

for each date t = 1, . . . , T , and states i = 1, . . . ,m. The likelihood can be evaluated

by employing the efficient scaling algorithm presented in
✂
4.3.2.2. This conditional

distribution represents a discrete probability function that is allowed to take values

between 1 and m. For the given set of observations, the most likely state for each time

t, denoted as i∗t , is the one that maximizes (4.36):

i∗t = argmax
i∈{1,...,m}

P
(

St = i|X(T ) = x(T )
)

. (4.37)

4.4.2.2 State predictions

Local decoding can be applied to derive the states of past as well as of future states.

Following Zucchini et al. (2006,
✂
5.3.3) the following expression shows how smoothed,

filtered and predicted state estimates can be derived by local decoding for given obser-

vations xt:

P
(

St = i|X(T ) = x(T )
)

=







αt(i)βt(i)

LT
for 1 ≤ t < T “smoothing”,

αT (i)

LT
for t = T “filtering”,

αT (Γt−T )•j

LT
for t > T “predicting”,

(4.38)

where (Γt−T )•j refers to the j-th column of Γt−T .

4.4.2.3 Global decoding

While local decoding determines the most likely state for a chosen date t, in practice it is

often more important to derive the most probable sequence of unobserved states. Instead

of considering the conditional probability of a single state, global decoding requires the

maximization of the joint probability

(i∗1, . . . , i
∗
T ) = argmax

(i1,...,iT )∈{1,...,m}

P
(

S1 = i1, . . . , ST = iT , X
(T ) = x(T )

)

, (4.39)

with all states being taken into account simultaneously. The most likely sequence of

states is denoted by (i∗1, . . . , i
∗
T ). This state sequence cannot be determined by using

local decoding for each t separately as local decoding partially ignores the transition

probability matrix Γ. This might lead to a path with zero probability even though for

each single t the most likely state is detected. Besides, evaluating all possible mT joint

probabilities would lead to a high computational burden. A more efficient way to find

the most likely sequence of hidden states is needed. In the context of Markov switching
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models, the Viterbi algorithm is employed for this purpose. The Viterbi algorithm repre-

sents an efficient dynamic programming algorithm. It was originally proposed by Viterbi

(1967) as an error-correction procedure in noisy digital communication applications.

According to Rabiner (1989) the Viterbi algorithm can be summarized as follows. At

first, it is necessary to define the quantity

νt(i) := max
i1,...,it−1

P
(

S1 = i1, . . . , St−1 = it−1, St = i,X(t) = x(t)
)

, (4.40)

which represents the highest likelihood along a single path at date t accounting for the

first t observations X (t) = x(t) and ending at state St = i. It can be shown that νt(i)

satisfies

νt+1(j) = [max
i

(νt(i)γij)] · pj(xt+1), (4.41)

from which a T ×m matrix of values νt(i) for t = 1, . . . , T , and j = 1, . . . ,m, can be

derived. The required sequence of hidden states (i∗1, . . . , i
∗
T ) is computed in four steps:

1. Initialization:

ν1(i) = πi · pi(x1), 1 ≤ i ≤ m, (4.42)

κ1(i) = 0, (4.43)

where κt(i) is another auxiliary variable whose role becomes clear in the second step.

2. Recursion:

νt(j) = max
1≤i≤m

[νt−1(i)γij ] · pj(xt), 1 ≤ j ≤ m, 2 ≤ t ≤ T, (4.44)

κt(j) = argmax
1≤j≤m

[νt−1(i)γij ], 1 ≤ j ≤ m, 2 ≤ t ≤ T, (4.45)

where κt(j) yields the state i at time t−1 which is most likely to lead to state j at time t.

3. Termination: The first recursion is terminated by maximizing νT (i) and storing the

likelihood of the most probable path as a vector p∗. The most probable state at time T

is stored in i∗T :

p∗ = max
1≤i≤m

[νT (i)], (4.46)

i∗T = argmax
1≤i≤m

[νT (i)]. (4.47)

4. Path backtracking: Starting with the most probable last state i∗T , the most likely

path can be computed by tracking back from t = T − 1 to t = 1 in a second recursion

using κt:

i∗t = κt+1i
∗
t+1, t = T − 1, T − 2, . . . , 1. (4.48)

The resulting optimal state sequence is referred to as Viterbi path. In order to avoid

numerical underflow, the Viterbi algorithm can alternatively be stated in terms of log-

arithms.
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4.5 Model selection and validation

A problem that naturally arises in connection with HMMs is the determination of the

number of discrete states. A common approach to select an appropriate model is based

on the information criteria presented in
✂
3.6.2.3. According to the proposed AIC and

BIC, the specification that yields the smallest relative information criterion is chosen.

While an information criterion allows for the selection of the best specification among

various fitted models, it cannot guarantee appropriateness of the selected model. This

can only be checked by assessing the model’s fit. However, while it is straightforward

to derive model diagnostics based on generalized recursive and generalized least squares

residuals in the context of continuous state space models (cf.
✂
3.6), assessing the fit of

HMMs is more complex. As under a hidden Markov model the observations that are re-

lated to different states are produced by different distributions, the residuals should also

be modeled by different distributions. The assumption of independently and identically

distributed errors, which is commonly made in diagnostic testing procedures, does not

even hold approximately for the residuals of a hidden Markov model (cf. Zucchini et al.

2006,
✂
6.2). A possible solution is to employ so-called pseudo residuals, which allow for a

comparison of observations induced by different distributions. As the concept of pseudo

residuals is beyond the scope of this thesis, it will not find any consideration hereafter;

for a comprehensive introduction to the subject, see, for example, Stadie (2002). Rather

than relying on standard diagnostic tests, in the empirical part below the relative appro-

priateness of a hidden Markov model will be formally assessed based on its respective

in- and out-of-sample forecast performance.



Chapter 5

Conditional heteroskedasticity models

It is a well established stylized fact of financial time series that the volatility of returns

on financial assets changes persistently over time and across assets (cf.
✂
2.2.2). The

concept of conditional heteroskedasticity is key to many areas in finance and financial

econometrics, whether it is in asset allocation, risk management, asset pricing or duration

modeling (cf. Diebold 2004). In the context of this thesis, conditional heteroskedasticity

models are mainly used to model time-varying relationships in an indirect way. As a

simple regression coefficient is defined as a covariance-variance ratio, models of condi-

tional heteroskedasticity can be used to obtain conditional betas based on conditional

variance estimates.

The phenomenon of time-varying volatility, first recognized by Mandelbrot (1963) and

Fama (1965), is commonly referred to as volatility clustering: quiet periods with small

absolute returns are followed by volatile periods with large absolute returns, then quite

periods again, and so on. This chapter presents the basic ideas of the two most impor-

tant concepts of capturing time-varying volatility and excess kurtosis, which is usually

induced by volatility clusters. The ARCH/ GARCH framework by Engle (1982) and

Bollerslev (1986) represents practitioners’ preferred tool to model and forecast volatil-

ity. An alternative way of modeling conditional heteroskedasticity is offered by the class

of stochastic volatility (SV) models, introduced by Taylor (1982, 1986). In contrast to

a GARCH model, the SV model adds an unobserved shock to the return variance. This

leads to a higher degree of flexibility in characterizing the dynamics related to volatil-

ity.11 The major difference between these two approaches is that ARCH models are

observation-driven, while SV models are parameter-driven. In the context of an ARCH

model, the conditional variance is a function of lagged observations, with the correspond-

ing likelihood function being directly available. For SV models, the conditional variance

depends on a latent component. As no analytic one-step ahead forecast densities are

available, SV models can only be dealt with approximately or by employing numerically

11In addition to these two concepts of historical volatility, alternative measurements such as
implied and realized volatility are available. As these procedures are based on option pricing
data and high-frequency data for single stocks, respectively, they will not be considered in
this thesis focusing on sectors. For details and an account on the available literature, see, for
example, Andersen et al. (2002), Koopman et al. (2004) or Andersen et al. (2005).
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intensive procedures. This is the major reason why practitioners prefer ARCH models

to model time-varying volatilities in financial markets. However, the progress made with

respect to the estimation of latent variable models over the past ten years increased the

relative competitiveness of SV models. Yu (2002), for example, compares the ability

of SV models to that of alternative ARCH-type models to predict stock price volatility

and concludes that the SV model outperforms its competitors. Major advantages of the

SV model, which have allowed the concept to grow up as a viable alternative to the

modeling of conditional volatility, are:

� The ability to capture the stylized facts of excess kurtosis and leverage more nat-

urally than a GARCH model.

� The provision of both filtered and smoothed estimates of conditional volatility.

� A treatment in continuous time, which is essential in mathematical finance and

modern option pricing theory (not to be explored here).

Explicit comparisons of the basic ideas, estimation and inference issues related to ARCH

and SV models are provided, for example, by Danielsson (1994), Jacquier et al. (1994),

Pagan (1996), Shephard (1996) and Andersen et al. (2005).

This chapter is structured as follows. Section 5.1 introduces the basic GARCH frame-

work. The concept of SV is the subject of Section 5.2. Alternative estimation methods

with a focus on efficient Monte Carlo likelihood estimation are discussed. The chapter

closes with a brief presentation of multivariate conditional heteroskedasticity models in

Section 5.3.

5.1 Autoregressive conditional heteroskedasticity

The aim of this section is to provide a summary of the basic theory of GARCH models as

a prerequisite for subsequent analyses. For more details and extensions of the standard

GARCH model, the reader is referred to one of the excellent surveys that have been

made available over the last fifteen years. For example, Bollerslev et al. (1992) give an

overview of the numerous empirical applications related to finance; Bera and Higgins

(1993) comprehensively treat many of the GARCH extensions; Bollerslev et al. (1994)

evaluate the most important theoretical aspects; Palm (1996) gives a survey on GARCH

modeling related to finance including multivariate models. More recent articles include

Andersen and Bollerslev (1998), Engle (2001b) and Diebold (2004). A collection of the

most influential papers on ARCH/GARCH is presented by Engle (1995).

Subsection 5.1.1 introduces the basic univariate GARCH representation, summarizes

the statistical properties of the model and shows how forecasts of conditional volatility

can be produced. Subsection 5.1.2 looks at the two most influential nonlinear extensions

of the GARCH model and demonstrates how to test for asymmetric effects. Subsec-

tion 5.1.3 discusses how to deal with non-Gaussianity. Subsection 5.1.4 closes with a

summary of parameter estimation.



5.1 Autoregressive conditional heteroskedasticity 59

5.1.1 The GARCH(p, q) model

For an observed univariate time series yt and a given information set Ωt−1, which con-

tains the relevant information through period t − 1, the functional form of yt can be

defined as

yt = E(yt|Ωt−1) + ǫt, (5.1)

with E(ǫt) = 0 andE(ǫtǫs) = 0 for all t 6= s. The conditional meanE(yt|Ωt−1) represents

the predictable part of yt; the disturbance term ǫt represents the unpredictable part of yt.

In contrast to the standard regression model, in which ǫt is assumed to be unconditionally

and conditionally homoskedastic, i.e., E
(
ǫ2t
)

= E(ǫ2t |Ωt−1) = σ2 for all t, the conditional

variance of ǫt is allowed to vary over time:

E(ǫ2t |Ωt−1) = ht, (5.2)

with nonnegative function ht := ht(Ωt−1). A general expression for the conditional

heteroskedasticity of ǫt is given by

ǫt = zt

√

ht, (5.3)

where zt is an IID process with E(zt) = 0 and V ar(zt) = 1. For now, zt is assumed

to be normally distributed. Taking (5.3) and the assumed properties of zt together, it

follows that ǫt is conditionally normal distributed with mean zero and variance ht. With

the unconditional variance of ǫt being assumed to be constant, it can be shown that the

unconditional expectation of ht is itself constant with σ2 := E
(
ǫ2t
)

= E(E(ǫ2t |Ωt−1)) =

E(ht); cf. Franses and van Dijk (2000,
✂
4) who, unless mentioned otherwise, serve as a

basis for the outline on GARCH modeling in this section.

The model is completed by finding a specification for the behavior of ht over time. In

the basic ARCH(q) model by Engle (1982), the conditional variance of the error term

at time t depends on the realized values of past squared disturbance terms:

ht = ω +

q
∑

i=1

γiǫ
2
t−i, (5.4)

Nonnegativeness and stationarity of ht are guaranteed for ω > 0, γi ≥ 0 for i = 1, . . . , q,

and
∑q

i=1 γi < 1. With ∀ γi = 0 the conditional variance reduces to a constant. For the

case with q = 1, it becomes obvious that the ARCH model is able to capture volatility

clustering: as ht is a function of the previous squared shock, large shocks of either

sign tend to be precedented by large shocks and vice versa. It can be shown that the

ARCH(1) model captures the excess kurtosis usually inherent to financial time series.

While the ARCH(1) model captures the stylized facts of volatility clustering and

excess kurtosis, it is unlikely that the model also accommodates for the characteristic

features related to the autocorrelation function of squared disturbances ǫ2t . As illustrated

by Figure 2.3, the first-order autocorrelation function of squared weekly returns is not

very high, which implies a low value for γ1. At the same time, the autocorrelation

function is observed to be persistent, hence demanding a value of γ1 that is close to

unity. One possibility to cope with the persistent autocorrelation, is to add additional
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lagged squared shocks to the function of the conditional variance. However, allowing q to

become large results in many parameters to be estimated. This would be infeasible given

the positiveness and stationarity conditions that have to be imposed. In many cases, an

ARCH(q) process is not capable of capturing both the height and shape dimensions of

the autocorrelation function; further generalization is required (cf. Pagan 1996).

By including a lagged conditional variance term to the conditional variance function,

Bollerslev (1986) generalized the ARCH(q) model. The GARCH(p, q) class of models

allows for a more flexible lag structure and for longer memory effects:

ht = ω +

q
∑

i=1

γiǫ
2
t−i +

p
∑

j=1

δjht−j

= ω + γ(L)ǫ2t + δ(L)ht, (5.5)

with ω > 0 and L denoting the lag operator, where γ(L) = γ1L + · · · + γqL
q and

δ(L) = δ1L+ · · ·+ δpL
p. For δj = 0 and j = 1, . . . , p, the GARCH(p, q) process reduces

to an ARCH(q) model. Following Bollerslev et al. (1994) the process is well-defined if

all parameters in the infinite-order autoregressive representation

ht = (1 − δ(L))−1γ(L)ǫ2t (5.6)

are nonnegative. It is assumed that all the roots of 1−δ(L) lie outside the unit circle. The

condition for covariance-stationary of the GARCH(p, q) process is
∑q

i=1 γi+
∑p

j=1 δj < 1.

5.1.1.1 Statistical properties

A specification with p = q = 1 represents the simplest and most common GARCH

model. As it is found to be sufficient for most empirical applications (cf. Bollerslev

et al. 1992), only the GARCH(1,1) process will be considered in the following. The

GARCH(1,1) model corresponds to an ARCH(∞) process, in which the conditional

variance is guaranteed to be nonnegative with ω > 0, γ1 > 0 and δ1 ≥ 0. Under the

assumption of covariance-stationarity, which is assured for γ1+δ1 < 1, the unconditional

variance of ǫt is defined. It can be calculated as

σ2 =
ω

1 − γ1 − δ1
. (5.7)

If (γ1 + δ1)
2 + 2γ2

1 < 1, the unconditional fourth moment of ǫt exists. For normally

distributed zt, the kurtosis of ǫt is defined as

Kǫ =
3
(
1 − (γ1 + δ1)

2
)

1 − (γ1 + δ1)2 − 2γ2
1

. (5.8)

The kurtosis of ǫt is always greater than three. It captures some of the excess kurtosis

usually inherent to financial time series.

When the GARCH(1,1) model is applied to high-frequency data, a common finding is

that current information has an impact on conditional variance forecasts for any horizon.

This leads to a sum of γ1 and δ1 that is close or equal to unity. Engle and Bollerslev
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(1986) refer to the class of models with γ1+δ1 = 1 as integrated GARCH (IGARCH). For

IGARCH models the finite unconditional variance is not defined. Although the IGARCH

model is not covariance-stationary, it can be shown that it is strictly stationary. Standard

inference procedures remain asymptotically valid given that the sample size is large; cf.

Bollerslev et al. (1992) where further references can be found.

To understand why the GARCH(1,1) process is qualified to model the stylized facts

of a small first-order autocorrelation and a slow decay simultaneously, we have a look

at the autocorrelations of ǫ2t :

ρ1 = γ1 +
γ2
1δ1

1 − 2γ1δ1 − δ21
, (5.9)

ρτ = (γ1 + δ1)
τ−1ρ1, for τ = 2, 3, . . . . (5.10)

With the decay factor of the exponentially declining autocorrelations being equal to

γ1 + δ1, the autocorrelations will decrease the more gradually the closer this sum is to

unity (cf. Franses and van Dijk 2000,
✂
4.1.1).

5.1.1.2 Forecasting

With respect to forecasts of the conditional variance, it follows from (5.5) that the

optimal l-step ahead forecast can be calculated directly from ht+1, which is part of the

information set Ωt:

ĥt+l|t = ω + γ1ǫ̂
2
t+l−1|t + δ1ĥ

2
t+l−1|t. (5.11)

For a covariance-stationary GARCH(1,1) process, it can be shown that this is equivalent

to

ĥt+l|t = σ2 + (γ1 + δ1)
l−1 (

ht+1 − σ2
)
, (5.12)

where the forecast reverts to σ2 at an exponential rate (cf. Andersen et al. 2005).

5.1.2 Nonlinear extensions

The basic GARCH model is based on the assumption that positive and negative past

shocks have the same effect on the conditional variance. However, many financial time

series are asymmetric: negative shocks tend to have a bigger influence on future volatility

than equally sized positive shocks. Asymmetric effects are often observed for aggregate

equity indices (cf. Andersen et al. 2005), which will be in the focus of this thesis. This

asymmetry, first observed by Black (1976), is commonly referred to as leverage effect.

According to its definition, the fall of the value of equity amounts in an increased debt-

to-equity ratio, the leverage. This implies an increased level of riskiness, which results in

increased future volatility.12 In the standard GARCH model, the conditional variance

does not depend on the sign of the shocks such that asymmetries cannot be accommo-

dated. Over the last fifteen years various nonlinear extensions of the GARCH model

12The volatility-feedback hypothesis by Campbell and Hentschel (1992) represents an alter-
native but less regarded explanation for volatility asymmetries, according to which positive
volatility shocks lead to lower future returns.
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have been proposed to capture asymmetric effects. Below, only the two most influ-

ential nonlinear extensions are discussed. For a more comprehensive overview of the

broad spectrum of nonlinear GARCH specifications, see, for example, Hentschel (1995)

or Franses and van Dijk (2000,
✂
4.1.2).

5.1.2.1 Exponential GARCH

The first GARCH extension, in which the conditional volatility depends on both the

size as well as the sign of lagged shocks, was proposed Nelson (1991). In its simplest

specification with p = q = 1, the exponential GARCH (EGARCH) model can be written

as

log(ht) = ω + γ1zt−1 + ϑ1(|zt−1| −E(|zt−1|)) + δ1 log(ht−1). (5.13)

Due to the modeling of ht in logarithms, no restrictions on the coefficients have to be

imposed to ensure nonnegativity of the conditional volatility. Let the function g(zt) be

defined as g(zt) := γzt + ϑ1(|zt| − E(|zt|)) where the two summands relate to the sign

and to the magnitude effect. By rewriting it as

g(zt) = (γ1 + ϑ1)ztI(zt > 0) + (γ1 − ϑ1)ztI(zt < 0) − ϑ1(E|z1|), (5.14)

with I(·) being an indicator function, it can be seen how asymmetric effects are incor-

porated: while the term (γ1 +ϑ1) is affected by positive shocks, negative shocks have an

impact on (γ1−ϑ1). Generally, positive shocks have a smaller effect on ht than negative

shocks of equally sized positive shocks (cf. Engle and Ng 1993). This becomes clear by

having a look at the news impact curve (NIC)13 for the EGARCH model, which is given

by

NIC
(
ǫt|ht = σ2

)
=







A exp

[
(γ1 + ϑ1)

σ
ǫt

]

, for ǫt > 0,

A exp

[
(γ1 − ϑ1)

σ
ǫt

]

, for ǫt < 0,

(5.15)

with A = σ2δ1 exp(ω − ϑ1

√

2/π), for parameter constellation γ1 < 0, 0 ≤ ϑ < 1 and

ϑ1 + δ1 < 1. As the EGARCH model is not differentiable with respect to zt−1 at zero,

its estimation is more difficult than that of alternative asymmetric models. Another

problem is related to forecasting. Usually, the researcher is interested in forecasting ht+l

and not loght+l. This requires a transformation that depends on the complete l-step

ahead forecast distribution, f(yt+l|Ωt), which is generally not available in closed-form.

5.1.2.2 GJR-GARCH

Glosten et al. (1993) and Zakoian (1994) independently introduced an alternative non-

linear extension to capture asymmetric effects: the GJR-GARCH or threshold GARCH

model. According to Ling and McAleer (2002), the GJR-GARCH model represents the

13Engle and Ng (1993) introduced the NIC, defined as the functional relationship between
the conditional variance and lagged shocks, as a measure of how the arrival of new information
is reflected in volatility estimates. The NIC can be used to compare different GARCH models.
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most widely used nonlinear GARCH specification. In the GJR-GARCH(1,1) model, the

impact of lagged squared shocks is made dependent on the sign of ǫt−1 by augmenting

the GARCH(1,1) model with an additional ARCH term:

ht = ω + γ1ǫ
2
t−1 + ϑ1ǫ

2
t−1I(ǫt−1 < 0) + δ1ht−1. (5.16)

It can be seen immediately that negative lagged shocks have a bigger influence on ht than

positive shocks. For symmetrically distributed zt, the process is covariance-stationary if

γ1 + δ1 + 1
2ϑ1 < 1. The condition for the existence of the fourth moment is

δ21 + 2δ1γ1 +Kzγ
2
1 + δ1ϑ1 +Kzγ1ϑ1 +

Kz

2
ϑ2

1 < 1, (5.17)

where Kz denotes the kurtosis of zt; cf. Ling and McAleer (2002) who derive conditions

for the existence of moments and strict stationarity for the family of GARCH models.

If (5.17) holds, the kurtosis of the unconditional distribution of ǫt can be calculated as

Kǫ = Kz

1 −
(
δ21 + 2γ1δ1 + δ1ϑ1 + γ1ϑ1 + γ2

1 + (1/4)ϑ2
1

)

1 − (δ21 + 2γ1δ1 + δ1ϑ1 +Kzγ1ϑ1 +Kzγ2
1 + (Kz/4)ϑ2

1)
, (5.18)

cf. Verhoeven and McAleer (2003).

Assuming that the mean of zt is zero, multi-period point forecasts of the conditional

volatility can be implemented analogously to the standard GARCH model (5.12). The

l-step ahead forecast is given by

ĥt+l|t = σ2 +

(

γ1 +
1

2
ϑ1 + δ1

)l−1
(
ht+1 − σ2

)
, (5.19)

where the unconditional variance is defined as σ2 = ω(1−γ1− 1
2ϑ1−δ1)−1 (cf. Andersen

et al. 2005).

In a comparison of both nonlinear methods, Engle and Ng (1993) conclude that the

GJR-GARCH model represents the better model. Although the corresponding NICs

are quite similar, the variability of ht as implied by the EGARCH model is too high.

Taking this recommendation and the computational difficulties related to the EGARCH

model into account, the GJR-GARCH method will be the preferred choice throughout

this thesis whenever the explicit consideration of asymmetric GARCH effects seems to

be appropriate.

5.1.2.3 Testing for asymmetric effects

Various diagnostic tests to check whether positive and negative shocks of the same

magnitude have different effects on the conditional volatility have been proposed. For

example, Sentana (1995) and Hagerud (1997) discuss test procedures based on the La-

grange multiplier principle. Alternatively, Engle and Ng (1993) present the sign bias

(SB) test, the negative sign bias (NSB) test, the positive sign bias (PSB) test and a

general test. All these tests yield the advantage of being directly applicable to the raw

data series, without having to assume a specific volatility model.
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The SB test checks whether the squared current residual depends on the sign of lagged

residuals. It is defined as the t-statistic for the coefficient β1 in the following regression:

ǫ∗2t = β0 + β1S
−
t−1 + ηt, (5.20)

with ǫt := yt − µ and ǫ∗t := ǫt/σ, where µ and σ refer to the unconditional first two

moments of yt, the series to be considered. S−
t−1 represents a dummy variable that

takes the value of unity for negative ǫt and zero otherwise. Replacing S−
t−1 in (5.20) by

S−
t−1ǫ

∗
t−1, or by S+

t−1ǫ
∗
t−1 with S+

t−1 = 1 − S−
t−1, leads to the NSB test and PSB test,

respectively. They test whether the conditional volatility depends on the size of past

negative or positive shocks. As the corresponding test statistics are all t-ratios, they

asymptotically follow the standard normal distribution.

A general test for nonlinear GARCH can be derived by conducting these tests jointly:

ǫ∗2t = β0 + β1S
−
t−1 + β2S

−
t−1ǫ

∗
t−1 + β3S

+
t−1ǫ

∗
t−1 + ηt, (5.21)

where the null hypothesis is defined as H0 : β1 = β2 = β3 = 0. The test-statistic is equal

to T times the R2 from this regression. It asymptotically follows a χ2 distribution with

three degrees of freedom.

5.1.3 Non-Gaussian conditional densities

Even though GARCH models have thicker than normal tails, it is still possible that the

kurtosis induced by a GARCH model with conditional normal errors does not capture

the leptokurtosis present in high-frequency financial time series completely (cf. Bollerslev

et al. 1994). If not taken explicitly into account, this leads to a formally misspecified

likelihood function. However, as long as E(zt|Ωt−1) = 0 and V ar(zt|Ωt−1) = 1, the

future conditional variance does not depend on the distribution of zt. Under these cir-

cumstances, QML estimation still yields asymptotically valid volatility forecasts without

having the distribution of zt fully specified (cf. Andersen et al. 2005).

Alternatively, instead of relying on QML based procedures, fully efficient ML estimates

can be obtained by considering alternative distributions with fatter than normal tails

for zt. The most common choice is to employ a standardized Student-t distribution with

ν degrees of freedom as proposed by Bollerslev (1987). The t-distribution is symmetric

around zero; the number of existing moments is restricted by ν. For the standard

GARCH(1,1) model, the fourth moment of zt exists for ν > 4. It is given by

Kz =
3(ν − 2)

ν − 4
. (5.22)

The value of Kz is greater than the normal value of three. This results in an uncondi-

tional kurtosis of ǫt that is also greater than in the normal case. The number of degrees

of freedom is treated as an extra parameter and can be estimated together with the other

model parameters. In case of the nonlinear GJR-GARCH(1,1) model with zt ∼ t(ν) and

ν ≥ 5, and Kǫ and Kz being defined as in (5.18) and (5.22), respectively, the fourth

moment exists if (5.17) holds (cf. Ling and McAleer 2002).

To account for the observed leptokurtosis, several other parametric distributions have

been suggested. Examples include the normal-Poisson mixture distribution (Jorion 1988)
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or the generalized error distribution (Nelson 1991). As none of these will find consider-

ation in the empirical part of this thesis, the reader is referred to Bollerslev et al. (1992)

for a summary and an account of the relevant literature.

5.1.4 Parameter estimation

As a wide range of GARCH specifications can be estimated by standard econometric

software packages, parameter estimation will only be briefly summarized. Throughout

this thesis, all the computations related to GARCH models are carried out using Ox 3.30

by Doornik (2001) together with the package G@RCH 2.3 by Laurent and Peters (2002).

Following Bollerslev et al. (1994) GARCH models are usually estimated by ML,

where the assumption of an IID distribution for zt is made. It follows from (5.3) that

zt(θ) := ǫ(θ)ht(θ)
(−1/2), where the conditional mean and variance functions depend on

the finite dimensional vector θ with true value θ0. Let f(zt;ν) denote the conditional

density function for the standardized innovations with mean zero, variance unity and

nuisance parameters ν. Let ψ′ := (θ′,ν ′) be the combined vector of the parameters

to be estimated. The conditional loglikelihood function for the t-th observation can be

expressed as

lt(yt;ψ) = log f(zt(θ);ν) − 1

2
log ht(θ), t = 1, . . . , T. (5.23)

The second term on the right hand side appears, because ht depends on the unknown

parameters in the conditional mean for yt (cf. Franses and van Dijk 2000,
✂
4.3.1). Once

an explicit assumption for the conditional density in (5.23) has been made, the ML

estimator for the true parameters ψ0, denoted as ψ̂ML, can be calculated by maximizing

the loglikelihood for the full sample:

logL(yT , yT−1, . . . , y1;ψ) =

T∑

t=1

lt(yt;ψ), (5.24)

where yT , yT−1, . . . , y1 refer to the sample realizations of the GARCH model.

As the first-order condition to be solved is nonlinear in the parameters, ψ̂ML is ob-

tained by employing iterative optimization procedures. Following Bollerslev (1986) the

most popular procedure to estimate GARCH models is the algorithm named after Berndt

et al. (1974). Although convergence may fail in specifications with many parameters,

usually no convergence problems arise in connection with univariate GARCH models

and large data sets (cf. Alexander 2001,
✂
4.3).

5.2 Stochastic volatility

This section introduces the concept of stochastic volatility (SV). In contrast to the

class of GARCH models, the SV approach includes an unobservable shock to the return

variance, which cannot be characterized explicitly based on observable past information.

This raises the difficulty that no closed expression for the likelihood function exists.

As the parameters of the SV model cannot be estimated by a direct application of

standard maximum likelihood techniques, estimation is conducted by approximation or
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via simulation-based techniques. In this regard, the SV model turns out to be strongly

connected to the state space framework outlined in Chapter 3.

Subsection 5.2.1 introduces a representation for the univariate case, deals with the

difficulties related to the estimation of SV models and summarizes the basic statistical

properties of the model. Subection 5.2.2 gives an overview of the major procedures

for statistical inference discussed in the literature. In Subection 5.2.3, the main ideas

behind Monte Carlo likelihood, the estimation framework that will be used throughout

this thesis for estimation purposes, will be highlighted. The final subsection contains a

brief overview of possible extensions of the basic SV model.

5.2.1 The basic stochastic volatility model

Following Ghysels et al. (1996) the basic SV models in discrete time for a univariate

time series yt of asset log-returns can be written as:

yt = µ+ σ∗ exp

(
1

2
ht

)

ǫt, ǫt ∼ IID(0, 1), (5.25)

with

ht+1 = φht + ηt, ηt ∼ IID
(
0, σ2

η

)
, h1 ∼ N

(
0, σ2

η/(1 − φ2)
)
, (5.26)

for t = 1, . . . , T . The parameter µ denotes the unconditional expectation of the return

process yt. The scaling parameter σ∗ is the average standard deviation with σ∗ > 0.

The unobserved log-volatility process is denoted by ht = log
(
σ2

t

)
. As in the case of

the EGARCH model (cf.
✂
5.1.2) the use of logarithms ensures positivity of σ2

t . The

persistence parameter φ with 0 < φ < 1, plays a similar role as the sum γ1 + δ1 for the

GARCH(1,1) model. The parameter usually takes on values greater than 0.8. As most

financial time series exhibit no pronounced serial dependence in the mean equation, the

constant µ will be treated as fixed and set to zero in the following.14 Although ht can be

modeled by any stationary autoregressive process, it is common to choose a first-order

autoregressive process. The disturbances ǫt and ηt are Gaussian white noise. They are

assumed to be uncorrelated, contemporaneously and at all lags. Franses and van Dijk

(2000,
✂
4.1.1) offer a useful interpretation of the two different shocks: ǫt represents the

contents of new information (good or bad news); ηt reflects the shocks to the newsflow’s

intensity.

The SV model in (5.25) and (5.26) is commonly referred to as the log-normal SV

model. It represents a state space model where the observation equation describes the

relationship between the univariate vector of observations, y = (y1, . . . , yT )′, and the

state vector. The latent volatility process θ = (h1, . . . , hT )′ is specified in the state

equation, which models the dynamic properties of ht. As ǫt and ht, which both enter the

multiplication in the mean equation, are stochastic, the basic SV model is nonlinear. The

Kalman filter as introduced in
✂
3.3 cannot be applied directly for estimation purposes.

14Alternatively, some authors prefer to use mean-corrected returns y∗

t := log(Pt) −

log(Pi,t−1) − (1/T )
∑T

i=0
(log(Pt) − log(Pi,t−1)), see, for example, Kim et al. (1998).
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5.2.1.1 Linearized representation

Harvey et al. (1994) proposed to linearize the SV model by squaring the returns and

taking logarithms:

log y2
t = log σ2

∗ + ht + log ǫ2t , (5.27)

ht+1 = φht + ηt, (5.28)

where the disturbance terms in the transformed model are assumed to be uncorrelated,

contemporaneously and at all lags. The standard normality of ǫt in the original mean

equation (5.25) implies a log
(
χ2

1

)
distribution for log ǫ2t with mean −1.27 and variance

π2/2 = 4.93. Taking logarithms of very small numbers leads to a heavily skewed distri-

bution of log ǫ2t with a long left-hand tail. Another important issue of practical relevance

is the so-called inlier problem, which arises when taking logarithms of returns that are

equal to zero. In case where zero returns go back to irregular observations, deletion of

these observations avoids the inlier problem. For those inliers that cannot be assumed

to result from data irregularities, Sandmann and Koopman (1998) describe various ways

of dealing with them. They recommend to cut off any inliers by replacing zeros by the

value 0.001.

Unfortunately, due to the non-Gaussianity of the observation disturbances, the pre-

diction error decomposition in (3.58) does not yield the exact likelihood. Thus, a direct

application of the Kalman filter using the QML method introduced in
✂
3.3.7, only yields

minimum mean square linear estimators. Even though the QML asymptotic theory is

correct, it has been shown that due to the poor approximation of log ǫ2t by a normal

distribution, the corresponding QML estimator has poor small sample properties (Kim

et al. 1998). Therefore, the QML method for estimating SV models will not find any

consideration hereafter.

5.2.1.2 Statistical properties

According to Shephard (1996) the properties of the SV model as represented by (5.26)

and (5.26) can be easily derived. For φ being restricted to be positive and smaller than

unity, the standard Gaussian autoregression ht will be strictly covariance stationary and

follow a log-normal distribution with

E(ht) = 0, (5.29)

V ar(ht) =
σ2

η

1 − φ2
. (5.30)

Stationarity of yt holds if and only if ǫt and ht are stationary processes. Given the

properties of the log-normal distribution, for stationary ht all odd moments are zero.

All even moments exist and are given by

E(yr
t ) = E(ǫrt )E

(

exp
(r

2
ht

))

= r! exp

(
r2σ2

h

8

)

/
(

2r/2
( r

2

)

!
)

, (5.31)
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where σ2
h denotes the variance of ht, with r referring to the r-th moment. If the fourth

moment of ǫt exists, it follows from (5.31) that the kurtosis of yt can be computed as

Ky =
E
(
y4

t

)

E (y2
t )

2 = 3 exp
(
σ2

h

)
, (5.32)

which implies fatter than normal tails with Ky > Kǫ. As discussed in
✂
5.1.3, a

GARCH(1,1) model with conditional normal errors typically requires an alternative

distribution with fatter tails to capture the excess kurtosis inherent to financial time

series completely. The basic SV model does so naturally as 3 exp
(
σ2

h

)
can take on any

value.

The dynamic properties of y2
t can be characterized by the autocorrelations to be

derived as

ρy2

t
(τ) =

exp
(
σ2

hφ
τ
)
− 1

3 exp (σ2
h) − 1

≈ exp
(
σ2

h

)
− 1

3 exp (σ2
h) − 1

φτ . (5.33)

As in case of a GARCH(1,1) model, where the autocorrelation function is given by (5.9)

and (5.10), the autocorrelations decay exponentially toward zero. For the SV model, the

speed of this decay is determined by φ. In case of the linearized SV model as represented

by (5.27) and (5.28), the autocorrelation function for log y2
t is given by

ρlog y2

t
(τ) =

φ2

1 + 4.93/σ2
h

. (5.34)

5.2.2 Alternative estimation procedures

The objective is the simultaneous estimation of the vector of unknown parameters,

denoted as ψ = [σ∗ φ ση]′, and the volatility vector h conditional on y. Various

alternative methods have been proposed to estimate SV models. According to Shephard

(2005, p. 13) estimation techniques for SV models can be categorized into (i) relatively

simple but inefficient estimators, which are based on moments or approximations of the

model; and (ii) computationally demanding procedures, which attempt to evaluate the

full likelihood function.

5.2.2.1 Methods of moments and quasi maximum likelihood

In his introductory work on SV models, Taylor (1982) employed the method of moments

for inference purposes. Generalized methods of moments (GMM) estimation techniques

are based on the idea of utilizing the stationarity properties, which allow the sample

moments to converge to their unconditional expectations. GMM was employed to esti-

mate SV models, among others, by Melino and Turnbull (1990), Jacquier et al. (1994),

Andersen and Sorensen (1996), Gallant et al. (1997) and van der Sluis (1997). While

method of moments estimators are easy to implement, their efficiency is low. Besides,

method of moments procedures do not yield an estimate of the conditional volatility

directly, which makes an additional form of estimation necessary.

As mentioned above (cf.
✂
5.2.1.1), an alternative estimation procedure, which is also

convenient but quite inefficient with poor small sample properties, is the quasi maximum
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likelihood (QML) approach as proposed by Harvey et al. (1994). It is based on the

transformation of the nonlinear Gaussian SV model into a linear non-Gaussian state

space model. In comparison to GMM procedures, QML has the attractive feature that

it can be easily extended to non-stationary and multivariate settings. Estimates of the

parameters as well as filtered and smoothed conditional volatility series can be readily

obtained via the Kalman filter.

While the estimation procedures related to GMM and QML are based on finding

solutions for analytical parameter functions, in many situations it is impossible to find

such analytical expressions. This is where computationally more demanding simulation

techniques come into play. They include the simulated methods of moments approach

by Duffie and Singleton (1993), the indirect inference estimator by Gouriéroux et al.

(1993) and the moment matching procedure by Gallant and Tauchen (1996).

5.2.2.2 Markov chain Monte Carlo

All estimation methods mentioned so far have in common that they are either based

on moments or on an approximation of the exact likelihood. Alternatively, inference

can be performed by computing the likelihood directly using computationally intensive

methods. The most prominent approach to date is the application of Markov chain

Monte Carlo (MCMC) techniques. Their origins trace back to the statistical physics

literature. The first fully efficient parametric inference procedures for SV models based

on MCMC have been developed by Shephard (1993) and Jacquier et al. (1994). Kim

et al. (1998) discussed alternative simulation-based strategies for actually implementing

MCMC to estimate SV models.

Following the outline of Andersen et al. (2005) MCMC can be used to deal with the

high-dimensional inference problem inherent to the likelihood of the SV model from

a Bayesian perspective. In the Bayesian MCMC approach, the model parameters are

considered to be random variables. The entire latent volatility process is treated as an

additional parameter. The focus is on the possibly high-dimensional joint distribution

of this parameter vector, conditioned by the data, which is referred to as the posterior

distribution. Âlthough this density is analytically intractable, it can be characterized

through a set of related conditional distributions. These allow a single parameter or a

whole group of parameters to be expressed conditional on the remaining parameters.

This feature is exploited by the MCMC procedure, which can be summarized as fol-

lows: after initialization of the vector of parameters conditioned on the observed data,

the coefficients are drawn from the assumed prior distribution. The current draw for

the parameters is combined with the dynamics of the SV model and the observations.

A complete cycle through all conditional densities is called a sweep of the sampler.

Depending on the form of these distributions, different samplers such as the Metropolis-

Hastings algorithm or the Gibbs sampler or a combination of both can be used. Once

the sample generated from the joint posterior distribution is long enough, inference on

the parameters and the latent volatility process can be made. For a general introduction

to MCMC procedures, see Geman and Geman (1984), West and Harrison (1997,
✂
15) or

Chib and Greenberg (1996). The idea of estimating SV models via MCMC procedures

is comprehensively illustrated by Jacquier et al. (1994).
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The enhancement of MCMC methods for the estimation of SV models and their

extensions to cope with non-Gaussian errors and the leverage effect (cf.
✂
5.1.2), is an

active field with recent contributions, for example, by Jacquier et al. (2004), Omori et al.

(2004) and Yu (2005). Overall, Bayesian estimators have been shown to outperform

method of moments and QML approaches with respect to both, computing filtered

volatility estimates and the estimation of parameters. On the other hand, they demand

a large amount of computationally intensive simulations. Nontrivial modifications are

required for certain extensions, such as the incorporation of explanatory variables.

5.2.2.3 Monte Carlo likelihood

These undesirable features of MCMC procedures have led to the second branch of infer-

ence that attempts to evaluate the full likelihood: simulated maximum likelihood, also

referred to as Monte Carlo likelihood (MCL). According to Durbin and Koopman (2001,
✂
8.3) MCL techniques are more transparent and computationally more convenient for

the estimation of SV models than MCMC methods. As these two features are partic-

ularly valuable to practitioners who do not dispose of expert knowledge of simulation

techniques, MCL will be preferred over MCMC in this thesis.

Danielsson (1994) was the first to apply MCL to the estimation of SV models. General

contributions to the MCL literature were made by Shephard and Pitt (1997) and Durbin

and Koopman (1997) who improved computational efficiency by employing importance

sampling techniques. Sandmann and Koopman (1998) proposed an efficient MCL es-

timator, which was demonstrated to be a veritable alternative to MCMC procedures.

They showed that efficient MCL, while offering comparable finite sample properties,

is less computationally demanding than MCMC. As it is possible to approximate the

likelihood arbitrarily close, inference can be performed by making use of Likelihood Ra-

tio test statistics. Another comparative advantage of the proposed MCL technique is

that only trivial modifications have to be imposed to extend the basic SV model to al-

low for heavy-tailed errors, leverage effects and explanatory variables; see, for example,

Sandmann and Koopman (1998). Koopman and Hol-Uspensky (2001) proposed the SV-

in-Mean model, in which the mean may also be influenced by changes in the conditional

volatility. Liesenfeld and Richard (2003) generalized the importance sampling method

employed by Danielsson (1994) by making use of the efficient importance sampling pro-

cedure proposed by Richard and Zhang (1996). Lee and Koopman (2004) compared the

two different importance sampling techniques by considering a generalized SV model

with Student-t distributed observation errors.

For a general introduction to SV models and a more detailed discussion of the various

estimation techniques, see, for example, Shephard (1996), Ghysels et al. (1996) or Broto

and Ruiz (2004). A collection of some of the most important papers on the topic is

presented by Shephard (2005).

5.2.3 Efficient Monte Carlo likelihood estimation

The method of MCL will be used throughout this thesis for the estimation of SV models.

In contrast to Sandmann and Koopman (1998), who employed MCL combined with the
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linearized representation — thus dealing with a non-Gaussian state space model —

the basic SV model without transformations will be considered in the following. As

a comprehensive treatment of sampling methods would be beyond the scope of this

thesis, only the main ideas behind the concepts of MCL and importance sampling will

be outlined. For a discussion of importance sampling techniques, the reader is referred

to Ripley (1987,
✂
5). A comprehensive treatment of the handling of non-Gaussian and

nonlinear state space models using simulation techniques, both from a classical and a

Bayesian perspective, is given by Durbin and Koopman (2000) and Durbin and Koopman

(2001, Part II). All inferential aspects will be considered from a classical standpoint.

5.2.3.1 The likelihood function

Following Durbin and Koopman (1997), the likelihood of the basic SV model in (5.25)

and (5.26) is given by

L(ψ) = p(y|ψ) =

∫

p(y, θ|ψ)dθ =

∫

p(y|θ,ψ)p(θ|ψ)dθ, (5.35)

where p(y|ψ), p(θ|ψ), p(y|θ,ψ) and p(y, θ|ψ) denote the marginal densities of y and θ,

the conditional density of y given θ for given ψ and the joint density of y and θ given

ψ, respectively. For the SV model, no analytical solution for this integral is available;

direct numerical maximization is not feasible. The idea of employing MCL is to estimate

the loglikelihood by simulation and find an estimate for ψ by numerical maximization.

In principle, simulation could be used to estimate L(ψ) by generating M independent

draws θ(i) from the density p(θ|ψ), for i = 1, . . . ,M . In a second step, the likelihood

could be estimated by M−1
∑M

i=1 p(y|θ(i)). However, as most replications θ(i) would not

resemble the process of θ under which y was observed, M would have to become large to

gain some accuracy. As a consequence, this procedure turns out to be highly inefficient

in practice (Lee and Koopman 2004).

5.2.3.2 Importance sampling

Computational efficiency can be improved by applying importance sampling techniques.

A conditional Gaussian approximating density, denoted as g(θ|y,ψ), for which random

draws can be obtained is chosen as importance density. The approximating density

should be as close as possible to p(θ|y,ψ). Sampling from this density and estimating

the original likelihood by appropriately adjusting the Gaussian likelihood of the ap-

proximating model using a correction factor, is referred to as importance sampling (cf.

Durbin and Koopman 2001,
✂
11.1). To simplify the notation, in the following a density’s

dependency on ψ will be suppressed as all densities depend on ψ.

With the Gaussian importance density g(θ|y) the likelihood for the approximating

Gaussian SV model can be rewritten as

LG(ψ) = g(y) =
g(y, θ)

g(θ|y) =
g(y|θ)p(θ)
g(θ|y) . (5.36)
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After substitution of (5.36) for p(θ) in (5.35), the likelihood of the original model can

be stated as

L(ψ) = LG(ψ)

∫
p(y|θ)g(θ|y)
g(y|θ) dθ

= LG(ψ)EG

(
p(y|θ)
g(y|θ)

)

, (5.37)

where EG denotes the expectation with respect to g(θ|y). The simulation smoother 15 by

Durbin and Koopman (2002) is used to obtain M independent draws θ(i) from g(θ|y).
The Monte Carlo likelihood of the basic SV model can be calculated as the product of

the Gaussian likelihood of the approximating model and a correction factor, which is

obtained by simulation:

L̂(ψ) = LG(ψ)

(

1

M

M∑

i=1

p
(
y|θ(i)

)

g
(
y|θ(i)

)

)

, (5.38)

To minimize the required number of draws, g(θ|y) has to be chosen to be a good ap-

proximation to p(θ|y).
The importance sampling density can be obtained according to the procedure proposed

by Shephard and Pitt (1997) and Durbin and Koopman (1997), which approximates the

original model by a linear Gaussian state space model. In the approximating model, the

state equation is still provided by (5.26), while the observation equation is represented

by

yt = ht + at + btut. (5.39)

The standard normally distributed errors are assumed to be uncorrelated with the state

disturbances ηt. The location and scaling parameters at and bt are responsible for a good

match between the approximating and the original model. The conditional density g(θ|y)
of the approximating model is taken as the importance density. For more details on the

selection of the approximating model, see Durbin and Koopman (1997).

Based on the outline of Lee and Koopman (2004) the importance sampling procedure

to calculate the likelihood of y given the vector of parameters ψ can be summarized as

follows:

1. At the beginning, neither θ, at nor bt are known. The algorithm that solves at and

bt analytically for given θ and y is started by choosing a trial value for θ.

2. Taking logarithms of the conditional densities of y given θ, both for the approx-

imating and the original model, and equalizing the first two derivatives of the

resulting log-density functions with respect to θ, yields some first estimates of at

and bt.

15According to Durbin and Koopman (2002, p. 603), “a simulation smoother in state space
time series analysis is a procedure for drawing samples from the conditional distribution of
state or disturbance vectors given the observations.” These samples are useful for analyzing
non-Gaussian and nonlinear state space models, both from a classical and from a Bayesian
perspective.
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3. An estimate for the unobserved process θ can be computed from the state space

model given by (5.26) and (5.39) with (5.29) and (5.30) by making use of the

Kalman smoother as introduced in
✂
3.3.2.

4. Steps #2 and #3 are repeated using the smoothed estimates of θ until convergence

of θ, at and bt is achieved.

5. Finally, with the importance density g
(
θ(i)|y

)
being evaluated using the Kalman

smoother, the likelihood given by (5.38) can be estimated with the samples θ(i)

that are drawn from g
(
θ(i)|y

)
via simulation smoothing.

In order to avoid numerical problems, this is usually done by working with logarithms of

the likelihood. Let w(θ) = p(y|θ)/g(y|θ) and wi = w
(
θ(i)
)

for i = 1, . . . ,M . According

to Durbin and Koopman (1997) an approximately unbiased estimator of logL(ψ) is

given by

log L̂(ψ) = logLG(ψ) + log w̄ +
s2w

2Mw̄2
, (5.40)

where w̄ = M−1
∑M

i=1 wi and s2w = (M − 1)−1
∑M

i=1(wi − w̄)2 represent the sample

mean and variance of wi, respectively. The last term on the right hand side corrects

for the bias that can be shown to arise from taking logarithms of (5.38). According to

Durbin and Koopman (2000) the bias is usually so small that it can be neglected in prac-

tice. Numerical maximization of the simulated loglikelihood (5.40), using an iterative

numerical optimization method as discussed in
✂
3.4.2, yields the MCL estimate of ψ.

Starting values can be obtained from logLG(y|ψ). The accuracy of the approximation

of the likelihood function depends positively on M , the number of draws. Sandmann

and Koopman (1998) showed that N = 5 is sufficient in empirical applications.

In this thesis, the SV model is estimated using Ox 3.30 by Doornik (2001) together

with the packages SsfPack 2.3 and SsfNonG by Koopman et al. (1999). The relevant

code for implementing the estimation of SV models in Ox has been downloaded from

www.feweb.vu.nl/koopman/sv/.

5.2.3.3 Filtering, smoothing and forecasting

Once estimates for the unknown model parameters have been found as demonstrated

above, another interest focuses on obtaining filtered, smoothed and predicted estimates

of the conditional volatility process. In contrast to the GARCH model, where filtered

estimates of the volatility process can be calculated recursively once the parameters

are known, for an SV model the latent volatility has to be estimated. In addition to

the filtered volatility also smoothed estimates are available via the Kalman filter and

smoother (cf.
✂
3.3); see Sandmann and Koopman (1998) for details.

According to Koopman et al. (2004) the one-step ahead forecast of conditional volatil-

ity can be calculated as

σ̂2
T+1 = σ̂2

∗ exp

(

ĥT+1|T +
1

2
pT+1|T

)

, (5.41)
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with σ̂2
∗ denoting the ML estimate of σ2

∗ . The estimator of hT+1 given all T observations

and its MSE, denoted as ĥT+1|T and pT+1|T , are given by

ĥT+1|T =

∑M
i=1 wihT+1|T θ

(i)

∑M
i=1 wi

, (5.42)

pT+1|T =

∑M
i=1 wipT+1|T θ

(i)

∑M
i=1 wi

. (5.43)

Based on the draw θ(i), the Kalman filter is applied to the approximating model g(θ|y)
to obtain hT+1|T θ

(i) and pT+1|T θ
(i).

5.2.4 Extensions

The SV model can be extended in various directions. As in the case of the GARCH

framework, the most important extensions cope with alternative error distributions for

the conditional mean innovations and leverage effects. An account of recently published

papers related to extensions of the basic SV model, applying both MCMC and efficient

MCL methods, is given in
✂
5.2.2.

5.2.4.1 Heavy-tailed distributed errors

Empirical evidence of heavy-tailed ǫt in the context of SV models has been provided,

for example, by Gallant et al. (1997). The efficient MCL method using importance sam-

pling techniques presented in
✂
5.2.3.2, can be adapted to consider Student-t distributed

errors by replacing the Gaussian density p(y|θ) by a Student-t density with ν degrees of

freedom. This leads to an altered pair of equations, which can be solved to obtain an ap-

proximating model through at and bt. The importance density itself remains Gaussian;

see Lee and Koopman (2004, Appendix B) for details.

Even though the basic SV model can be generalized by allowing for Student-t dis-

tributed mean errors, throughout this thesis only SV models with Gaussian errors will

be considered. According to Ghysels et al. (1996) the SV model in its basic form is able

to capture the excess kurtosis usually found in financial time series by considering yt

as a mixture of distributions, where the degree of mixing is governed by the parameter

σ2
η. As outlined in

✂
5.2.1.2, the kurtosis of yt is equal to 3 exp

(
σ2

h

)
which can take any

nonnegative value. Besides, the empirical analyses in this thesis are strictly based on

weekly series, for which the evidence in favor of fat-tails is not as strong as for daily

data (cf. Jacquier et al. 2004).

5.2.4.2 Asymmetric effects

As outlined in
✂
5.1.2, asymmetric effects represent a well documented empirical stylized

fact for many financial time series. It has been demonstrated in the previous section how

to employ nonlinear GJR-GARCH and EGARCH extensions to specify the conditional

volatility as a function of the sign and/ or size of past returns. For discrete time SV

models, leverage effects can be implemented by allowing for contemporaneously neg-

atively correlated observation and state disturbances. One of the earliest studies on
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SV models with leverage was presented by Harvey and Shephard (1996) where infer-

ence is conducted via QML. More recently, asymmetric SV models are estimated using

simulation-based methods; see, for example, Sandmann and Koopman (1998), Meyer

and Yu (2000) or Jacquier et al. (2004).

Following the outline of Jungbacker and Koopman (2005b) the basic SV model in

(5.25) and (5.26) can be extended to account for asymmetric effects by relaxing the

assumption of uncorrelated ǫt and ηt:

[
ǫt
ηt

]

∼ IID

([
0

0

]

,

[
1 ρ

ρ 1

])

, |ρ| ≤ 1, (5.44)

for t = 1, . . . , T with ρ := Corr(ǫt, ηt). After reformulation of the state space model to

include ρ, the parameters can be estimated by maximizing the Monte Carlo likelihood

function in (5.40). The vector of unknown parameters ψ consists of σ∗, φ, ση and ρ.

Despite the efforts made to explicitly allow for asymmetric effects in the SV model,

the basic SV model with uncorrelated errors has been found to have higher maximum

likelihood values than any EGARCH model considered (cf. Danielsson 1994). At the

same time, fewer parameters have to be estimated. Chan et al. (2005) note that leverage

effects are mainly a feature of market-wide rather than industry-specific returns and

volatility. Given these findings, in the subsequent analyses with a focus on industry

portfolios, only the basic SV model will be employed.

5.3 Multivariate conditional heteroskedasticity

The classes of ARCH and SV models represent the two major techniques to model

conditional volatility in financial markets. It can be assumed that certain news affect

the volatility of different assets simultaneously. To make use of potential linkages, in

many practical applications it is necessary to adapt the procedures that were discussed

above in the context of univariate conditional heteroskedasticity models to a multivariate

setting.

Covariances of various financial variables play an important role in financial economics:

for example, they are used to estimate market betas, in the context of portfolio optimiza-

tion, the pricing of derivatives and for hedging purposes. It is a common observation

that joint stationarity does not hold even though the individual variables are stationary

(cf. Alexander 2001,
✂
1.4). Unconditional covariances between these variables do not

exist. Multivariate GARCH and SV models can be employed to model the time-varying

behavior of conditional covariances. In a multivariate setting two major obstacles have

to be dealt with: (i) the lack of parsimony due the proliferation of the number of param-

eters in high-dimensional models, and (ii) the search for sufficient conditions to ensure

positive definiteness. Multivariate models of conditional heteroskedasticity are a field

of ongoing research. Engle (2001a, p. 54) notes in a survey article on the recent finan-

cial econometrics literature: “The most significant unsolved problem is the multivariate

extension of many of these methods. Although various multivariate GARCH models

have been proposed, there is no consensus on simple models that are satisfactory for big

problems.”
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This section summarizes some of the most important multivariate conditional het-

eroskedasticity models. For those topics and the many extensions that are not covered

here, the reader is referred to Bauwens et al. (2003) and Asai et al. (2006) who provide

surveys of multivariate GARCH and multivariate SV models, respectively.

5.3.1 Multivariate GARCH

A general multivariate GARCH model for an N -dimensional process ǫt|Ωt−1 is given by

ǫt = ztH
1/2
t , (5.45)

where zt is an N -dimensional IID process with zero mean and the identity matrix

IN as covariance matrix. These properties of zt together with Equation (5.45) imply

that E(ǫt|Ωt−1) = 0 and E(ǫtǫ
′
t|Ωt−1) = H t. For illustrative purposes, only the case

with N = 2 will be considered in the following. In the bivariate case, the conditional

covariance matrix is given by

Ht =

[
h11,t h12,t

h21,t h22,t

]

, (5.46)

where Ht depends on lagged errors ǫt−1 and on lagged conditional covariance matrices

Ht−1. The most influential parameterizations of H t can be summarized as follows.

5.3.1.1 The vech model

The most general representation of H t−1 is the vech model as proposed by Bollerslev

et al. (1988). By employing the vech( � ) operator, which vertically stacks the matrix

elements on or below the principal diagonal and thus transforms an N ×N matrix into

an N(N + 1)/2× 1 vector, all non-redundant elements of H t are stacked into a column

vector:

vech(Ht) = ω∗ + Γ∗vech(ǫt−1ǫ
′
t−1) + ∆∗vech(H t−1), (5.47)

where ω∗ = vech(Ω) is a N(N + 1)/2× 1 parameter vector and Γ∗ and ∆∗ are N(N +

1)/2 ×N(N + 1)/2 matrices. In the bivariate case, Equation (5.47) becomes





h11,t

h21,t

h22,t



 =





ω∗
11

ω∗
21

ω∗
22



+





γ∗11 γ∗12 γ∗13
γ∗21 γ∗22 γ∗23
γ∗31 γ∗32 γ∗33









ǫ21,t−1

ǫ2,t−1ǫ1,t−1

ǫ22,t−1





+





δ∗11 δ∗12 δ∗13
δ∗21 δ∗22 δ∗23
δ∗31 δ∗32 δ∗33









h11,t−1

h21,t−1

h22,t−1



 . (5.48)

Despite its flexibility, the vech model has two major drawbacks: to guarantee positive

definiteness of H t it is necessary to impose further constraints on Γ∗ and ∆∗; see

Engle and Kroner (1995) for a discussion. Besides, overall N(N + 1)/2 +N 2(N + 1)2/2

parameters have to be estimated. As this number grows at a polynomial rate with

increasing N , estimation of this general model may become quite cumbersome without

further restrictions.
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5.3.1.2 The diagonal vech model

The diagonal vech model is a first way to restrict Equation (5.47) and to reduce the

number of parameters. Bollerslev et al. (1988) restrict the matrices Γ∗ and ∆∗ to be

diagonal such that the conditional covariance between ǫ1,t and ǫ2,t depends only on

lagged cross-products of the residuals and its own lagged value. In this specification,

each element of the conditional covariance matrix follows a univariate GARCH(1,1)

model:

hij,t = ωij + γijǫi,t−1ǫj,t−1 + δijhij,t−1, (5.49)

where ωij , γij and δij denote the ij-th element of the symmetricN×N matrices Ω, Γ and

∆, respectively. The latter two matrices are implicitly defined by Γ∗ = diag(vech(Γ))

and ∆∗ = diag(vech(∆)).16 Following Ding and Engle (2001) the diagonal vech model

can be expressed in terms of the Hadamard product,17 denoted by ⊙:

Ht = Ω + Γ ⊙ ǫt−1ǫ
′
t−1 + ∆ ⊙Ht−1, (5.50)

The number of parameters is reduced to 3N(N + 1)/2. Using this representation, H t

can be shown to be positive definite for positive definite Ω and positive semi-definite Γ

and ∆ (cf. Franses and van Dijk 2000,
✂
4.7).

5.3.1.3 The BEKK model

A more general representation is the BEKK model of Engle and Kroner (1995). It

includes all positive definite diagonal models and nearly all positive definite vech spec-

ifications. The model is named after an earlier version of the paper, which was based

on the contributions of Baba, Engle, Kraft and Kroner. The BEKK model elegantly

imposes the restrictions of positive definiteness of H t by (i) decomposing the constant

matrix into Ω′Ω, and (ii) by using quadratic forms of Γ and ∆ instead of imposing

restrictions on these matrices. The model is given by

Ht = Ω′Ω + Γ′ǫt−1ǫ
′
t−1Γ + ∆′Ht−1∆, (5.51)

where Ω, Γ and ∆ are symmetric N × N matrices with Ω being upper triangular. In

the bivariate case the BEKK model can be written as

Ht = Ω′Ω′ +

[
γ11 γ12

γ21 γ22

]′ [
ǫ21,t−1 ǫ1,t−1ǫ2,t−1

ǫ2,t−1ǫ1,t−1 ǫ22,t−1

] [
γ11 γ12

γ21 γ22

]

+

[
δ11 δ12
δ21 δ22

]′

Ht−1

[
δ11 δ12
δ21 δ22

]

. (5.52)

The number of parameters equals N(5N + 1)/2. For N = 2, two more unknowns than

in the diagonal vech setting have to be estimated. The number of parameters can be

16The operation diag(x) with x = [x1 · · ·xN ]′ denotes the N × N diagonal matrix with the
diagonal elements given by x.

17For two N ×N matrices A and B, the Hadamard product A⊙B is the N ×N matrix that
contains the element-by-element products [aijbij ]i,j=1,...,N .
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further reduced by imposing diagonality on Γ and δ, or by setting these matrices equal

to scalars; both results in a loss of generality.

As the number of parameters to be estimated simultaneously still becomes large with

increasing N , the resulting computational problems soon become insurmountable. Var-

ious approximations to compute multivariate GARCH conditional covariance matrices

based on univariate GARCH models have been proposed. Two of the most influential

specifications will be summarized below.18

5.3.1.4 The constant conditional correlation model

The constant conditional correlation model (CCC) by Bollerslev (1990) reduces the com-

putational complexity of the general multivariate GARCH(1,1) model by assuming the

conditional correlations between ǫi,t and ǫj,t, denoted by ρij , to be constant. The diag-

onal vech model with constant correlations can be defined as

hii,t = ωii + γiiǫ
2
i,t−1 + δiihii,t−1, (5.53)

hij,t = ρij

√

hii,t

√

hjj,t, for all i 6= j. (5.54)

Equation (5.53) denotes the conditional variance of the returns of index i; Equation (5.54)

is the conditional covariance between the returns of indices i and j. Alternatively, Boller-

slev’s model can be written as

Ht =DtRDt, (5.55)

where Dt is an N × N matrix with the conditional standard deviations
√
hii,t on the

diagonal; R denotes a symmetric positive definite N × N matrix that contains the

unconditional correlations ρij . In the bivariate case, the CCC model becomes

Ht =

[ √
h11,t 0

0
√
h22,t

][
1 ρ12

ρ12 1

][ √
h11,t 0

0
√
h22,t

]

, (5.56)

with only seven (= N(N + 5)/2) parameters left to be estimated. The conditional

covariance matrix is guaranteed to be positive definite, provided that R is positive

definite and that the conditional variances hii,t are positive (cf. Franses and van Dijk

2000,
✂
4.7).

The consideration of different functional forms for the GARCH process, for example,

allowing for asymmetric effects or non-Gaussian conditional densities, is straightforward:

as the CCC model is exclusively based on univariate models, it is only necessary to

respecify (5.53) in accordance with the outline presented in
✂
5.1.2 or

✂
5.1.3, respectively.

18Alternative simplifying approaches to estimate multivariate GARCH models, which will not
find any consideration in this thesis, include the factor multivariate GARCH model by Diebold
and Nerlove (1989) where the conditional covariance structure of the observed variables arises
from a joint dependence on common factors; the orthogonal GARCH model by Alexander
(2000) which is based on univariate GARCH volatilities of a limited number of uncorrelated
risk factors obtained from a principal component analysis; and the flexible multivariate GARCH
model by Ledoit et al. (2003) who propose to estimate univariate models and to transform the
estimated parameters such that the conditional covariance matrix is positive definite.
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5.3.1.5 The dynamic conditional correlation model

The dynamic conditional correlation model (DCC) by Engle (2000) generalizes the CCC

model by allowing the conditional correlations to be time-varying:

Ht = DtRtDt, (5.57)

The N × N matrix Rt contains the conditional correlations, which are estimated as

follows: univariate GARCH models are estimated for each of the series in the N -

dimensional vector of observations Y t. The resulting conditional standard deviations

are used to build Dt and to define the N × 1 vector of standardized residuals:

ǫ̃t =D−1
t ǫt. (5.58)

These are employed to calculate the N ×N matrix of unconditional variances of ǫ̃t:

R̃ =
1

T

T∑

t=1

ǫ̃tǫ̃
′
t, (5.59)

which is guaranteed to be positive definite. In the next step, the symmetric N × N

covariance matrix of the standardized residuals, Qt, can be estimated as

Qt = (1 − α− β)R̃ + α(ǫ̃t−1ǫ̃
′
t−1) + βQt−1. (5.60)

Finally, the matrix of conditional correlations is obtained by standardization of the

elements in Qt:

Rt = diag
(

q
−1/2
11,t . . . q

−1/2
NN,t

)

Qt diag
(

q
−1/2
11,t . . . q

−1/2
NN,t

)

. (5.61)

As long as the sum of the nonnegative scalars α and β is smaller than one, this process

will be mean-reverting. For α + β = 1, the process induced by Qt will be integrated,

and (5.60) reduces to an exponential smoothing process:

Qt = (1 − λ)(ǫ̃t−1ǫ̃
′
t−1) + λQt−1, (5.62)

with 0 < λ < 1. According to Engle (2000) this leads to one of the simplest and most

successful parameterizations of Rt, in which the individual elements can alternatively

be estimated as a geometrically weighted average of the standardized residuals:19

ρij,t =
qij,t√
qii,tqjj,t

=

∑t−1
o=1 λ

oǫ̃i,t−oǫ̃j,t−o
√
∑t−1

o=1 λ
o ǫ̃2i,t−o

∑t−1
o=1 λ

oǫ̃2j,t−o

. (5.63)

With respect to forecasting dynamic conditional correlations, Engle (2000) developed

the following forecasting expression for an l-step ahead forecast. It is based on an

19This specification is also used by RiskMetrics
�

, a well known risk management system
developed by J.P. Morgan, with the smoothing parameter λ set to 0.94 for daily data (cf.
Riskmetrics Group 1996).
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approximation using a first-order Taylor series expansion of the correlation coefficient:

ρij,t+l ≈
q̄ij

(q̄iiq̄jj)1/2
+
qij,t+l − q̄ij
(q̄iiq̄jj)1/2

− 1

2

q̄ij
(q̄iiq̄jj)1/2

(
qii,t+l − q̄ii

q̄ii
+
qjj,t+l − q̄jj

q̄jj

)

, (5.64)

with

Et(qij,t+l) = ρ̄(1 − α− β) + αEt(ǫ̃i,t+l−1ǫ̃j,t+l−1) + βEt(qij,t+l−1), (5.65)

where Et(ǫ̃i,t+l−1ǫ̃j,t+l−1) = 1 for i = j, and Et(ǫ̃i,t+l−1ǫ̃j,t+l−1) = Et(ρij,t+l−1) for

i 6= j.

The most important feature of the DCC model is that it can be estimated in two

steps. This makes the method as feasible for the estimation of large variance-covariance

matrices as the CCC model. Besides, the DCC model allows for the incorporation of

nonlinear extensions and non-Gaussian conditional densities through the modeling of

the univariate conditional variances, as introduced in
✂
5.1.2 and

✂
5.1.3, respectively. A

drawback is that the dynamics of all conditional correlations are modeled to be the same

as they all depend on the scalars α and β. For a review of the recent literature coping

with this problem, see Bauwens et al. (2003,
✂
2.3).

Even though the DCC model represents a more general approach to multivariate

GARCH models, the assumption of constant correlations has been shown to be reason-

able in many empirical applications; see, for example, Baillie and Bollerslev (1990) and

Schwert and Seguin (1990). Hence, for the empirical analyses in this thesis the CCC

model will be employed. As the multivariate SV model to be outlined below will also

be based on the assumption of constant conditional correlations, the results obtained

from the chosen multivariate conditional heteroskedasticity models can be compared in

a straightforward fashion. In the absence of distractions caused by different ways of

modeling conditional correlations, both chosen multivariate specifications purely reflect

the respective volatility processes.

5.3.2 Multivariate stochastic volatility

In recent years, the basic univariate SV model has been extended to cope with mul-

tivariate N × 1 time series vectors yt = [y1,t · · · yN,t]
′. Important works on the issue

include, among others, Harvey et al. (1994), Pitt and Shephard (1999), Aguilar and

West (2000), Chan et al. (2005), Jungbacker and Koopman (2005a) and Chib et al.

(2006). Similar to the case of multivariate GARCH models, the literature on multi-

variate SV (MSV) focusses on (i) conditions that guarantee positive definiteness of the

conditional covariance matrix, and (ii) restrictions that reduce the number of unknown

parameters. According to Asai et al. (2006) the different approaches to address these

two issues can be categorized as follows:

� A basic model with constant correlations.

� Asymmetric models.
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� Factor models.

� Time-varying correlation models.

Asai et al. (2006, p. 171) note that “the MSV literature is still in its infancy” and

that no paper has yet analyzed the relative performance of the various MSV models for

predicting volatility. As these issues are beyond the scope of this thesis, only the basic

MSV model will be employed in the empirical part of this thesis; for details on other

MSV specifications, the reader is referred to the references cited above.

The basic MSV model has been proposed by Harvey et al. (1994). According to

their representation, the univariate SV model in (5.25) and (5.26) can be generalized to

multivariate series as follows:

yi,t = σ∗i exp

(
1

2
diag(hi,t)

)

ǫi,t, i = 1, . . . , N, t = 1, . . . , T, (5.66)

where yi,t denotes the t-th observation of series i, and ǫt = [ǫ1,t · · · ǫN,t]
′ represents a

multivariate normal vector with mean zero and positive definite covariance matrix Σǫ.

The elements of Σǫ on the principal diagonal are unity; the off-diagonal elements are

denoted as ρij with ρii = 1 and |ρij | < 1 for any i 6= j and i, j = 1, . . . , N . The state

vector contains the unobserved multivariate volatility process:

hi,t+1 = φihi,t + ηi,t, (5.67)

where ht = [h1,t · · ·hN,t]
′ is the vector of log-volatilities; ηt = [η1,t · · · ηN,t]

′ is assumed

to be multivariate normal with mean zero and positive definite covariance matrix Ση

with elements ση,ij . The disturbance vectors ǫt and ητ are assumed to be uncorrelated

with each other at all lags.

With the assumption that all off-diagonal elements of Ση are equal to zero, this

MSV model is analogous to the constant conditional correlation model discussed in the

context of multivariate GARCH models in
✂
5.3.1.4: each conditional variance is specified

in a univariate way, while the conditional covariance is computed as the product of a

constant correlation coefficient and the corresponding conditional standard deviations.

In reference to (5.55) the conditional covariance matrix can be written as

Ht = DtRDt, (5.68)

where the N × N matrix Dt is now defined as Dt = exp(1
2diag(ht)); R is a sym-

metric positive definite N ×N matrix with conditional correlation elements ρij . With

ht representing log-volatilities, this specification guarantees positive definiteness of the

conditional covariance matrix. At the same time, the number of the parameters to be

estimated remains low.





Chapter 6

Time-varying market beta risk of pan-European

sectors

Market beta represents one of the most widely used concepts in finance. It is used both

by financial economists and practitioners. Important applications include the estimation

of a security’s sensitivity to the overall market, the identification of mispricings, cost of

capital calculations and the evaluation of an asset manager’s performance. In the context

of the market model, in which beta is estimated via OLS, beta is assumed to be constant

over time. However, as the real world is characterized by ongoing dynamics beta can

be expected to depend on the available information at a given date and, hence, to vary

over time (cf. Jagannathan and Wang 1996). Inspired by theoretical arguments that

the systematic risk of an asset depends on microeconomic as well as macroeconomic

factors, various studies over the last three decades have rejected the assumption of beta

stability; see, for example, Fabozzi and Francis (1978), Bos and Newbold (1984) and

Collins et al. (1987). While many papers have concentrated on testing the constancy of

beta, only minor efforts have been made to explicitly model the time-varying behavior of

systematic risk. In this chapter, a selection of modern time series techniques is employed

to model and to analyze the time-varying behavior of sector-specific betas.20

From a practical perspective, betas prove to be especially useful in the context of sec-

tors. Following Yao and Gao (2004) the analysis of industry effects and of the macroe-

conomic environment are two major determinants in the process of security analysis.

Macroeconomics affect the security market through the impact on corporate earnings:

under the assumption that a company’s beta depends positively on the firm’s sensitivity

to the business cycle, sector betas can be employed to derive the implications of macroe-

conomic forecasts to specific industry portfolios. In spite of the empirical evidence that

systematic risk on the sector level in the U.S. and in other regions of the world is time-

variant, similar work in a pan-European context is still missing. This chapter aims at

closing this gap. The stochastic behavior of beta for eighteen pan-European sector port-

folios is modeled using time series techniques that are more sophisticated than OLS.

These are based on the state space models and the conditional heteroskedasticity mod-

els outlined in the methodological part of this thesis. The data used in this chapter as

20This chapter is based on Mergner and Bulla (2008).
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dependent variables are the weekly excess DJ Stoxx
�

sector return series introduced in
✂
2.1; the DJ Stoxx

�

Broad index serves as market proxy.

The main purpose of the present chapter is to analyze the time-varying behavior of

market betas for European sectors by applying elaborate modeling techniques. The re-

spective ability of the various approaches to explain sector returns by movements of the

overall market is compared. This chapter aims at contributing a comprehensive com-

parison of modeling techniques to the literature including non-standard procedures such

as stochastic volatility, Markov switching and various Kalman filter based approaches.

The results are expected to give an indication of how to proceed in the second part of

empirical applications: the technique that turns out to model the systematic risk of Eu-

ropean sectors most adequately will be employed in the subsequent chapter to analyze

the time-varying impact of macroeconomic and fundamental determinants on industry

portfolios.

The remainder of the chapter is organized as follows. Section 6.1 gives a brief overview

of the CAPM and defines an unconditional beta. Section 6.2 reviews the literature on

time-varying betas. The theoretical part of this thesis is linked to the empirical analyses

to be conducted in this chapter by summarizing the competing modeling techniques

together with their respective parameter estimates. Section 6.3 discusses the estimated

conditional beta series and evaluates their in-sample and out-of-sample forecasting per-

formances. Section 6.4 concludes.

6.1 The unconditional beta in the CAPM

The benchmark for time-varying market beta risk is the unconditional beta in the

CAPM, introduced by Sharpe (1964) and Lintner (1965). The CAPM has played a

dominant role in the field of asset pricing modeling over the last forty years. Assum-

ing that investors can borrow and lend at a risk-free rate rf , it linearly relates the

expectation of the return on asset i, E(ri), to the systematic risk — or beta — of that

security. The systematic risk is measured against the market portfolio, which consists of

all securities on the market:

E(ri) = rf + βi

(
E(r0) − rf

)
, (6.1)

with r0 being the market return. Using excess returns as defined in (2.2) instead of real

returns, yields a more compact version of the Sharpe-Lintner CAPM:

E(Ri) = βiE(R0), (6.2)

where R0 denotes the realized excess return of the market portfolio and Ri denotes the

excess return to sector i for i = 1, . . . , N . As the CAPM is designed as a single-period

model a time dimension is missing.

The unconditional beta of an asset, βi, is usually estimated by the OLS slope coefficient

of the excess-return market model:

Ri,t = αi + βiR0,t + ǫi,t, ǫi,t ∼ IID(0, σ2
i ), (6.3)
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for period t = 1, . . . , T . In the context of excess returns, αi is expected to be zero. Beta

is defined as

β̂OLS
i =

Cov(R0, Ri)

V ar(R0)
. (6.4)

The error terms ǫi,t are assumed to be normally and independently distributed over time

with zero mean and constant variance σ2
i ; cf. Campbell et al. (1997,

✂
5) who provide a

review of the fundamental assumptions of the CAPM and their derivations.

Table 6.1 summarizes the OLS results of the excess market model for the eighteen

DJ Stoxx
�

sector indices estimated over the full sample. As expected, the intercept

is not different from zero at the 5% level for any sector. Therefore, if not mentioned

otherwise, αi will be assumed to be zero in the following. The estimated betas are all

significant at the 1% level. Over the entire sample, the lowest beta was estimated for

Table 6.1: OLS estimates of the excess market model.

This table presents summary statistics for OLS estimation of the excess market model; ***
means significance at the 1% level (**: 5%, *: 10%).

Sector α × 102 β R2 JBa Q(12)b LM(6)c

Automobiles −0.09 1.15*** 0.64 168.43*** 11.75 53.38***

Banks 0.03 1.06*** 0.82 2360.85*** 27.67*** 44.81***

Basics 0.03 0.90*** 0.54 358.16*** 20.31* 171.64***

Chemicals 0.00 0.91*** 0.66 500.13*** 19.48* 86.82***

Construction −0.01 0.89*** 0.69 369.89*** 17.70 47.81***

Financials −0.03 1.00*** 0.79 599.60*** 19.44* 79.92***

Food 0.04 0.65*** 0.50 1485.44*** 55.02*** 184.76***

Healthcare 0.09 0.78*** 0.50 324.62*** 12.25 58.89***

Industrials −0.03 0.98*** 0.83 930.30*** 13.41 58.00***

Insurance −0.09 1.27*** 0.77 1397.30*** 22.58** 74.91***

Media −0.05 1.22*** 0.67 4508.10*** 51.20*** 74.82***

Oil & Gas 0.07 0.76*** 0.43 279.22*** 36.97*** 114.59***

Personal 0.00 0.91*** 0.74 1055.98*** 21.01** 95.63***

Retail −0.05 0.95*** 0.61 964.95*** 19.48* 7.26

Technology −0.08 1.49*** 0.66 1079.03*** 10.21 98.73***

Telecom 0.01 1.19*** 0.64 464.12*** 24.50** 65.18***

Travel −0.01 0.77*** 0.65 598.81*** 18.62* 38.80***

Utilities 0.08* 0.69*** 0.62 38.38*** 15.19 36.20***

aJB is the Jarque-Bera statistic for testing normality. The relevant critical values at the
95% (99%) level are 5.99 (9.21).

bQ(12) is the test statistic of the Ljung-Box portmanteau test for the null hypothesis of no
autocorrelation in the errors up to order 12. In case of OLS, the Q-statistic is asymptotically
χ2 distributed with 12 degrees of freedom. The critical values at the 95% (99%) level are 21.03
(26.22).

cLM(6) is the LM -statistic of Engle’s ARCH test for the null hypothesis of no ARCH effects
up to order 6. The test statistic is asymptotically χ2 distributed with 6 degrees of freedom.
The relevant critical values at the 95% (99%) level are 12.59 (16.81).
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Food & Beverages (0.65). The beta for Technology (1.49) was the highest confirming

the sector’s high-risk profile. The reported coefficients of determination suggest that

between 43% (Oil & Gas) and 83% (Industrial Goods & Services) of the total return

variation can be explained by movements of the overall market.

The last three columns provide test statistics to check whether the residuals are ap-

proximately normal and independent. As already indicated by the stylized facts dis-

cussed in
✂
2.2, the Jarque-Bera and the ARCH-LM test statistics are highly significant

for almost all sectors. The null hypothesis of normality can be rejected for every sector.

The null of no heteroskedasticity can be rejected for all sectors with the exception of

Retail. Regarding the Ljung-Box Q(l)-statistic to test for autocorrelation up to order l,

the results are mixed: for seven sectors the null of no autocorrelation can be rejected at

the 5% level. Overall, the standard regression models are not very well-specified as the

assumptions underlying OLS do not generally hold.

6.2 Modeling conditional betas

The OLS estimator of beta is based on the assumption that the market model relation-

ship is stable over the estimation period. Following the outline by Moonis and Shah

(2002) sound economic arguments suggest that beta is not constant but varying over

time. For example, beta can be shown to be linked to leverage. Thus changes in lever-

age, which may be induced by fluctuations of stock prices (cf.
✂
5.1.2), cause changes in

beta. Another reason for time-varying betas is related to information asymmetries in

the market: whenever any news do not affect the returns of the overall market and a

specific security equally, beta as a measure of the relative response of an asset changes.

A macroeconomic argument for non-constant betas is the dependence of systematic risk

on the level of the risk-free interest rate, which also changes over time. Aside from

these economic arguments, time-variation of betas can be derived by the stylized fact of

volatility clustering: time-variation in the second moments of returns imply time-varying

conditional variances and covariances and, hence, time-variation in betas. Given these

arguments in favor of considering systematic risk as being non-constant, various time

series techniques can be employed to model conditional betas.

The first method is based on the multivariate GARCH model with constant conditional

correlations (MGARCH) as introduced in
✂
5.3.1.4. The conditional variance estimates

derived by a GARCH(1,1) model are utilized to generate the series of conditional time-

varying betas in an indirect way. This approach has been applied in previous studies:

Giannopoulos (1995) uses weekly local stock market data over the period 1984 to 1993

to estimate time-varying country betas. Brooks et al. (1998) estimate time-dependent

betas for Australian industry portfolios using monthly data covering the period from

1974 to 1996. Li (2003) studies the time-varying beta risk for sector portfolios in New

Zealand by analyzing daily data from January 1997 to August 2002. Although the

standard GARCH(1,1) model is able to describe the stylized facts of volatility clustering

and excess kurtosis, asymmetric effects of positive and negative shocks on the conditional

volatility are not captured (cf. discussion in
✂
5.1.2). Therefore, nonlinear extensions of

the basic GARCH model have been proposed and adopted to the modeling of time-
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varying betas. For example, Braun et al. (1995) employ an EGARCH model to test for

predictive asymmetries in beta; Faff et al. (2000) estimate time-varying systematic risk

of UK industry indices by an EGARCH and a GJR-GARCH specification.

Event though GARCH is the most widely employed concept to model and forecast

volatility, the class of SV models represents an attractive alternative. As shown in
✂
5.2, by adding an additional contemporaneous shock to the return variance, SV models

are more flexible in characterizing volatility dynamics than GARCH models. However,

despite its theoretical appeal and its empirical superiority over GARCH models, the

SV model is rarely used in practice for volatility forecasting or to model time-varying

betas. This can be mainly attributed to the difficulties related to parameter estimation,

which has been demonstrated above to be substantially more difficult for SV models.

Nevertheless, the promising results by Li (2003), who uses an SV model to estimate

non-constant betas for New Zealand industry portfolios, encourage further research in

the applicability of SV models to the modeling of unconditional betas.

An alternative way of modeling the time-varying behavior of beta is based on the state

space form of the CAPM using the Kalman filter. The Kalman filter allows to model

and estimate time-varying betas directly by application of the time-varying parameter

models introduced in
✂
3.5.2. Different models for the dynamic process of conditional

betas have been proposed. For U.S. data, Fabozzi and Francis (1978) and Collins et al.

(1987) modeled beta as a random coefficient. The random coefficient model has also been

applied by Wells (1994) for Swedish stocks and by Faff et al. (2000) for UK sectors. Two

of the most prominent alternatives to model time-varying betas are the random walk

model and the mean-reverting model. The former has been employed by Lie et al. (2000)

for Australian financial stocks and by Li (2003) for New Zealand industry portfolios.

The mean-reverting model has been used by Bos and Newbold (1984) for U.S. data

and by Brooks et al. (1998) and Groenewold and Fraser (1999) for Australian industry

portfolios. For their investigation of the systematic risk of Australian industrial stock

returns, Yao and Gao (2004) also considered a moving mean reverting model, in which

the mean beta is allowed to vary over time as proposed by Wells (1994).

The last approach to be considered in this chapter uses a Markov switching framework,

which belongs to the large class of Markov switching models introduced in Chapter 4.

Although Markov switching regression models have been applied in many different set-

tings, the literature dealing with time-varying betas is relatively thin. Fridman (1994)

considered monthly data from 1980 to 1991 to analyze the excess returns of three oil

companies. The fitting of a two-state regression model led to an improved assessment

of systematic risk associated with each security. Two interesting effects were observed:

� Beta increases whenever the process is in the more volatile state.

� The state associated with higher volatility tends to be less persistent than the

state associated with lower volatility.

Huang (2000) also considered a Markov switching model with one high-risk and one

low-risk state. Using monthly return data from 1986 to 1993, he performed several test

to check the consistency of different states with the CAPM. He rejected the hypothesis

that the data were from the same state.
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6.2.1 GARCH conditional betas

While in the traditional CAPM returns are assumed to be IID, it is well established in

the empirical finance literature that this is not the case for returns in many financial

markets. Signs of autocorrelation and regularly observed volatility clusters contradict

the assumption of an identical and independent return distribution over time. In this

case, the variance-covariance matrix of sector and market returns is time-dependent. A

non-constant beta can be defined by extending (6.4) to

β̂GARCH
i,t =

Cov(Ri,t, R0,t)

V ar(R0,t)
. (6.5)

The conditional beta is obtained indirectly as the ratio between the time-varying con-

ditional covariance between a sector and the overall market, and the time-varying con-

ditional market variance.

A bivariate version of the MGARCH model with constant conditional correlations can

be used to compute time-varying betas. Let Rt = [Ri,t R0,t]
′ be a 2 × 1 time-series

vector, where Ri,t represents the return series of sector i for i = 1, . . . , 18, and R0,t

denotes the return series of the broad market. Consider a system of N = 2 conditional

mean equations:

Rt = µ+ ǫt, (6.6)

where µ = [µ1 µ2]
′ is a 2 × 1 vector of constants and ǫt = [ǫ1,t ǫ2,t]

′ denotes a

2 × 1 time series vector of residuals, conditioned by the complete information set Ωt−1.

In accordance with (5.45) a general bivariate GARCH model for the two-dimensional

process ǫt|Ωt−1 is represented by

ǫt = ztH
1/2
t , (6.7)

where zt is a two-dimensional IID process with mean zero and covariance matrix I2. This

implies E(ǫt|Ωt−1) = 0 and E(ǫtǫ
′
t|Ωt−1) =H t. The most influential parameterizations

forH t have been summarized in
✂
5.3.1, where it has also been discussed why the constant

correlation model is to be preferred in the following.

Referring to (5.53) and (5.54) the assumption of constant conditional correlations

leads to a bivariate GARCH model of the form

hii,t = ψii + γiiǫ
2
i,t−1 + δiihii,t−1, (6.8)

hij,t = ρij

√

hii,t

√

hjj,t, for all i 6= j, (6.9)

which can be substituted into (6.5) to estimate a time-varying beta of sector i:

β̂GARCH
i,t =

Cov(R0,t, Ri,t)

V ar(R0,t)
= ρ0i

√
hii,t

√
h00,t

, (6.10)

where ρ0i denotes the unconditional correlation between the overall market and sector i.

The last step before actually estimating ARCH-based time-varying betas is to find an

adequate functional form for the univariate GARCH(1,1) models for market and sector

excess returns in (6.8). Two issues have to be dealt with: excess kurtosis and potential
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Table 6.2: Testing for asymmetric ARCH effects.

This table presents the test statistics together with the corresponding p-values for the Sign
Bias (SB), Negative Sign Bias (NSB), Positive Sign Bias (PSB) test and the general test for
asymmetric volatility effects.

Sector SB test NSB test PSB test General test

Test p-value Test p-value Test p-value Test p-value

Broad 2.65 0.004 −10.08 0.000 0.52 0.303 116.50 0.000

Automobiles 1.91 0.028 −7.75 0.000 0.73 0.234 72.22 0.000

Banks 2.25 0.012 −9.81 0.000 1.56 0.060 115.21 0.000

Basic 1.94 0.026 −5.59 0.000 −0.75 0.226 33.27 0.000

Chemicals 2.22 0.013 −7.36 0.000 0.66 0.254 64.19 0.000

Construction 2.49 0.006 −6.56 0.000 −0.44 0.330 47.27 0.000

Financials 2.85 0.002 −9.78 0.000 1.74 0.041 112.64 0.000

Food 1.32 0.093 −5.60 0.000 −0.99 0.161 37.66 0.000

Healthcare 2.31 0.011 −7.87 0.000 −0.20 0.419 70.92 0.000

Industrials 2.59 0.005 −8.38 0.000 −0.76 0.224 74.77 0.000

Insurance 1.67 0.047 −9.19 0.000 1.03 0.152 93.70 0.000

Media 1.16 0.123 −6.12 0.000 2.44 0.007 57.07 0.000

Oil & Gas 1.59 0.056 −8.95 0.000 1.12 0.131 100.34 0.000

Personal 3.42 0.000 −8.61 0.000 −1.07 0.141 74.99 0.000

Retail 2.36 0.009 −4.47 0.000 −0.49 0.310 20.79 0.000

Technology −0.29 0.384 −3.05 0.001 3.96 0.000 35.96 0.000

Telecom 1.71 0.043 −4.25 0.000 1.18 0.118 26.49 0.000

Travel 2.72 0.003 −7.83 0.000 −0.78 0.219 64.52 0.000

Utilities 1.85 0.032 −6.72 0.000 0.73 0.232 56.20 0.000

asymmetric effects. It has been shown in
✂
2.2.1 that the sector returns in the selected

sample are highly leptokurtic. Following the outline in
✂
5.1.3, a standardized Student-t

distribution can be considered for the innovation terms zt in (6.7) to avoid a reliance on

QML based procedures. With respect to the second issue, it has been outlined in
✂
5.1.2

that aggregate equity indices are frequently observed to exhibit asymmetric effects. The

test results presented in Table 6.2 confirm that this feature also holds true for the pan-

European sectors to be considered here. The application of the SB, NSB, PSB tests

and the general test for asymmetric effects as described in
✂
5.1.2.3, gives substantial

evidence of asymmetric conditional volatility effects. With the exception of Media and

Technology, both the sign and negative size effects appear to be of greater importance

than positive size effects.

To decide on the functional form to be utilized, various univariate GARCH(1,1) models

are fitted to all sectors and the broad market. The different specifications allow for

Gaussian versus t-distributed errors, for symmetric versus asymmetric effects and for

a constant versus no constant in the mean equation (6.6). The different models are

compared using the estimated BIC as defined in
✂
3.6.2.3. The results in Table 6.3

reveal that, other things being equal, on average specifications with t-distributed errors

offer lower information criteria than in case with normally distributed innovations zt.
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Regarding asymmetric effects, symmetric GARCH models with t-distributed innovations

are superior to the alternative GJR-counterparts. These results are in line with Bollerslev

et al. (1992,
✂
3.3). They argue that leverage effects are often attributable to a few

outliers, which can be better captured by employing a fat-tailed distribution than by

explicitly allowing for asymmetric effects. The inclusion of a constant term generally

improves the values of the corresponding log-likelihood without leading to higher BIC.

These results suggest to model ARCH-based conditional betas by a bivariate GARCH

framework, in which univariate t-GARCH(1,1) models with nonzero constants in the

mean equation are fitted to the excess returns of each sector and the overall market.

The estimation results are summarized in Table 6.4. The corresponding beta series are

denoted as βtG
i,t .

Table 6.4: Parameter estimates for t-GARCH(1,1) models.

This table reports the estimated parameters for the t-GARCH(1,1) models for the eighteen
DJ STOXX

�

sectors and the DJ Stoxx
�

Broad as market index; *** means significance at the
1% level (**: 5%, *: 10%).

Sector µ × 102 ω × 104 γ δ DF a JBb Q(12)c

Broad 0.25*** 0.16** 0.13*** 0.84*** 9.29*** 127.12*** 16.96

Automobiles 0.17* 0.25** 0.10*** 0.88*** 7.03*** 223.82*** 17.46

Banks 0.26*** 0.12** 0.12*** 0.87*** 7.88*** 245.82*** 13.14

Basics 0.22*** 0.05 0.06*** 0.94*** 6.63*** 580.94*** 22.99**

Chemicals 0.22*** 0.27** 0.14*** 0.82*** 9.48*** 44.56*** 9.70

Construction 0.23*** 0.24** 0.11*** 0.85*** 8.26*** 279.77*** 18.71*

Financials 0.25*** 0.16* 0.14*** 0.84*** 6.27*** 485.41*** 37.67***

Food 0.20*** 0.23** 0.11*** 0.84*** 7.79*** 144.74*** 12.76

Healthcare 0.27*** 0.23* 0.10*** 0.86*** 10.54*** 27.956*** 13.70

Industrials 0.26*** 0.16** 0.14*** 0.84*** 8.26*** 139.28*** 34.59***

Insurance 0.18** 0.14** 0.09*** 0.90*** 6.01*** 648.31*** 14.16

Media 0.23*** 0.18** 0.10*** 0.88*** 7.76*** 88.42*** 10.92

Oil & Gas 0.22*** 0.20 0.08*** 0.89*** 9.43*** 29.39*** 9.38

Personal 0.23*** 0.51** 0.16*** 0.76*** 12.10*** 69.55*** 18.74*

Retail 0.24*** 0.67** 0.14*** 0.78*** 6.17*** 14986.00*** 10.97

Technology 0.29*** 0.14** 0.11*** 0.89*** 8.70*** 137.26*** 17.75

Telecom 0.29*** 0.14* 0.09*** 0.90*** 15.42*** 8.94** 19.20*

Travel 0.17** 0.54** 0.15*** 0.75*** 8.43*** 90.72*** 6.26

Utilities 0.24*** 0.38** 0.15*** 0.76*** 7.76*** 90.24*** 19.19*

aDF denotes the number of degrees of freedom of the Student-t distribution, which has
been estimated along with the other parameters of the t-GARCH(1,1) models.

bJB is the Jarque-Bera statistic for testing normality. The relevant critical values at the
95% (99%) level are 5.99 (9.21).

cQ(12) is the test statistic of the Ljung-Box portmanteau test for the null hypothesis of no
autocorrelation in the errors up to order 12. The critical values at the 95% (99%) level are
21.03 (26.22).
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While the constant term in the mean equation, µi, is statistically significant at the 1%

level for 17 sectors, ωi is different from zero at the 5% level only for 13 sectors. The

coefficients for the ARCH and GARCH terms, γi and δi, are always significantly different

from zero at the 1% level. They are all positive and sum up to less than unity, such that

positive definiteness and stationarity are guaranteed. The highest degree of persistence

can be obsreved for Basic Resources, Technology and Telecommunications. On the other

hand, the models for Travel & Leisure, Utilities and Retail are the least persistent. With

regard to the reported diagnostics, the Jarque-Bera statistics indicate that the residuals

are generally not normally distributed. With the exception of Basic Resources, Financial

Services and Industrials, where the null of white noise can be rejected at the 5% or higher

level, the residuals show no signs of autocorrelation.

Following (6.10) the correlation coefficient ρ0i between a sector and the overall market

is the other factor that is needed to calculate GARCH conditional betas. The uncon-

ditional correlations, estimated in the context of stylized facts over the entire sample,

have been reported in the last column of Table 2.2.

6.2.2 Stochastic volatility conditional betas

By including an additional contemporaneous shock to the return variance, SV models

allow the conditional mean and the conditional volatility of return series to be char-

acterized by different shocks. As discussed in
✂
5.2, SV models offer a higher degree

of flexibility and imply excess kurtosis. This qualifies them to be more appropriate

in describing financial time series than GARCH-type approaches. Hence, SV models

represent an alternative to the modeling of time-varying betas.

According to (5.25) and (5.26) a general SV model can be represented by its first two

moments. The mean equation is given by

Ri,t = σi,tǫi,t, ǫi,t ∼ IID(0, 1), t = 1, . . . , T, (6.11)

where Ri,t is the return series of index i. The disturbances are assumed to be identically

and independently normally distributed with zero mean and unit variance. The variance

equation is given by

σ2
i,t = σ2

∗i exp(hi,t), (6.12)

where the actual volatility σ2
i,t is the product of the positive scaling factor σ2

∗i and

the exponential of the stochastic process hi,t. The log-volatility hi,t is modeled as a

first-order autoregressive process:

hi,t+1 = φihi,t + σηiηi,t, ηi,t ∼ IID(0, 1), hi,1 ∼ N

(

0,
σ2

ηi

1 − φ2
i

)

. (6.13)

The persistence parameter φi is restricted to be positive and smaller than one to ensure

stationarity of hi,t. The disturbances ǫi,t and ηi,t are assumed to be uncorrelated,

contemporaneously and at all lags. The inclusion of an unobservable shock to the return

variance makes the variance a latent process. As this process cannot be characterized

explicitly with respect to observable past information, the parameters of the SV model
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Table 6.5: Parameter estimates for stochastic volatility models.

This table reports the estimated parameters for the SV models for the eighteen DJ Stoxx
�

sectors and the DJ Stoxx
�

Broad as market index. Figures in parentheses denote the lower and
upper bounds of the asymmetric asymptotic 95% confidence intervals. For the JB- and Q-test
statistics, *** means significance at the 1% level (**: 5%, *: 10%).

Sector φ σ2

η σ2

∗ JB-statisticsa Q(12)b

Broad 0.966 0.039 3.677 13.57*** 16.07**
(0.924;0.986) (0.018;0.083) (2.498;5.413)

Automobiles 0.964 0.041 7.651 8.30** 10.77
(0.920;0.984) (0.020;0.087) (5.255;11.139)

Banks 0.977 0.035 4.362 10.37*** 14.89*
(0.947;0.990) (0.018;0.068) (2.585;7.360)

Basics 0.973 0.029 6.156 1.71 13.93*
(0.925;0.991) (0.010;0.085) (4.066;9.320)

Chemicals 0.958 0.047 4.737 9.28** 8.42
(0.906;0.982) (0.021;0.108) (3.346;6.706)

Construction 0.955 0.039 4.707 9.20* 12.42
(0.903;0.980) (0.018;0.086) (3.482;6.363)

Financials 0.958 0.067 4.013 7.85** 31.58***
(0.911;0.981) (0.033;0.139) (2.662;6.049)

Food 0.941 0.053 3.446 9.55*** 11.30
(0.878;0.972) (0.025;0.114) (2.630;4.516)

Healthcare 0.953 0.038 5.031 2.47 13.10
(0.882;0.982) (0.014;0.103) (3.783;6.689)

Industrials 0.965 0.043 4.314 11.47*** 26.75***
(0.938;0.981) (0.023;0.083) (2.831;6.574)

Insurance 0.979 0.035 5.833 6.28** 15.40*
(0.952;0.991) (0.018;0.067) (3.267;10.414)

Media 0.978 0.037 6.829 5.73* 7.71
(0.947;0.991) (0.018;0.074) (3.950;11.808)

Oil & Gas 0.963 0.031 5.518 2.71 10.87
(0.894;0.988) (0.010;0.098) (4.004;7.605)

Personal 0.947 0.042 5.219 7.69** 19.61**
(0.864;0.980) (0.015;0.117) (3.842;7.088)

Retail 0.917 0.093 5.975 6.35** 14.18*
(0.830;0.962) (0.042;0.205) (4.442;8.035)

Technology 0.989 0.021 9.470 7.88** 14.98*
(0.970;0.996) (0.010;0.046) (4.138;21.672)

Telecom 0.989 0.013 7.590 0.81 17.80**
(0.966;0.997) (0.006;0.030) (3.895;14.789)

Travel 0.905 0.089 4.074 4.33 8.27
(0.807;0.956) (0.039;0.206) (3.138;5.289)

Utilities 0.908 0.084 3.215 14.62*** 19.99**
(0.837;0.950) (0.044;0.159) (2.561;4.038)

aThe relevant critical values for the Jarque-Bera test at the 95% (99%) level are 5.99 (9.21).
bIn a structural model, the Q-statistic of the Ljung-Box portmanteau test for the null

hypothesis of no autocorrelation in the errors up to order l is asymptotically χ2 distributed
with l − w − 1 degrees of freedom, where w denotes the total number of estimated parameters
(Harvey 1989, p. 259). The relevant critical values at the 95% (99%) level are 15.51 (20.09).
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cannot be estimated by a direct application of standard maximum likelihood techniques.

As outlined in
✂
5.2.2, several procedures for estimating SV models have been proposed.

These include method of moments and QML estimators, Bayesian approaches based on

MCMC techniques, the MCL estimator and the efficient MCL procedure. A consensus

on how to estimate SV models is still missing.

As outlined in
✂
5.2.3, in this thesis SV models are estimated via efficient MCL using

importance sampling techniques. Recalling the MSV model in (5.68) time-varying sector

betas can be constructed as

β̂SV
i,t = ρ0i

√
hii,t

√
h00,t

. (6.14)

In contrast to the GARCH based conditional betas defined in (6.10) smoothed rather

than filtered estimates of the conditional variance series of market and sector returns,

h00,t and hii,t, are employed. All the available information up to and including date T

can be relied upon for in-sample analysis purposes.

A summary of the estimation results of the considered univariate SV models for Eu-

ropean sectors over the full sample period is given in Table 6.5. The asymmetric 95%

confidence intervals for the persistence parameter φi are generally narrow. This indi-

cates a high level of significance. The degree of volatility persistence ranges from a low

for Travel & Leisure, to the highest level for Technology and Telecommunications. This

compares well to the GARCH results. For the two other parameters, σ2
ηi and σ2

∗i, both

the asymmetric confidence intervals as well as the range of parameter estimates across

sectors, are wider. For the sectors Retail, Travel & Leisure and Utilities, the combination

of a low persistence parameter and a high value for σ2
ηi, which measures the variation of

the volatility process, implies that the process of volatility is less predictable for these

three sectors. The highest levels of volatility, as indicated by a high scaling parameter

σ2
∗i, are found for Automobiles & Parts and the three sectors Telecommunications, Me-

dia and Technology (TMT). This finding broadly corresponds to the calculated standard

deviations of weekly returns in Table 2.2. Notably, the null of normality cannot be re-

jected at the 5% level for seven sectors. Compared to the GARCH models estimated in

the previous subsection, the estimated Jarque-Bera test statistics are significantly lower

for all sectors and also for the overall market. The reported Q-statistics indicate some

degree of autocorrelation at the 5% level for five sectors as well as the market index.

Figure 6.1 allows for a comparison of conditional volatility estimates based on a t-

GARCH(1,1) and a SV model. The graph displays the filtered and smoothed conditional

volatility estimates for the Telecommunications sector. Overall, the filtered conditional

volatility series show a very similar pattern. The range of the GARCH based series

is greater than in case of its SV counterpart. The smoothed estimate, which — per

definition — takes the full set of observations into account, reveals that both filtered

series tend to overstate the level of volatility.

6.2.3 Kalman filter based approaches

In contrast to volatility-based techniques, where the conditional beta series can only be

constructed indirectly after the conditional variances of the market and sector i have
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Figure 6.1: Conditional volatility estimates for the Telecommunications sector.

been obtained first, the state space approach allows to model and estimate the time-

varying structure of beta directly. As outlined in Chapter 3, state-space models can be

estimated through a recursive algorithm known as the Kalman filter.

In state space form, the excess-return market model in (6.3) is modified to become an

observation equation:

Ri,t = βi,tR0,t + ǫi,t, ǫi,t ∼ N(0, σ2
ǫi). (6.15)

In accordance with (3.75) the dynamic process of the unobserved time-varying state

vector βi,t can be generally defined by the state equation

βi,t+1 − β̄i = φi(βi,t − β̄i) + ηi,t, ηi,t ∼ N(0, σ2
ηi), (6.16)

where φi denotes the constant transition (or speed) parameter. The system of equations

(6.15)–(6.16) represents a special case of the general state space model introduced in
✂
3.2. The constant variances σ2

ǫi and σ2
ηi together with the transition parameter φi are

the hyperparameters of the system. As discussed in
✂
3.5.2, alternative specifications for

the stochastic process of βi,t are derived by formulating different assumptions on φi and

β̄i.

6.2.3.1 The random walk model

The RW model represents the first state space specification of the evolution of the time-

varying beta to be employed in the following. By setting φi to unity, the beta coefficient

develops as a random walk:

β̂RW
i,t+1 = βi,t + ηi,t, (6.17)

where the two hyperparameters σ2
ǫi and σ2

ηi have to be estimated.

The parameter estimates and diagnostic test statistics for the RW model are reported

in Table 6.6, which summarizes the estimation results for all considered Kalman filter

models. The estimated hyperparameters are all significant at the 1% level. While the
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null hypothesis of normality can be generally rejected, signs of autocorrelation in the

residuals are observed at the 5% level for twelve out of eighteen sectors. Even though the

ARCH-test is highly significant for all sectors, for eleven sectors the corresponding LM -

statistics are lower than in case of OLS. It can be concluded that the RW specification is

able to capture the heteroskedasticity in the resulting residuals at least partially. With

regard to the goodness of fit, the R2 is always significantly higher than in case of OLS.

6.2.3.2 The mean reverting model

As an alternative to the random walk, the dynamic process of beta can be modeled as

being mean reverting. In the MR model, an autoregressive process of order one, AR(1),

with a constant mean is used for the evolution of beta:

β̂MR
i,t+1 − β̄i = φi(βi,t − β̄i) + ηi,t. (6.18)

In order to use the Kalman filter for estimating the MR model, the mean beta coefficient

is augmented into the state vector. This leads to the following state space model:

[
βi,t+1 − β̄i

β̄i

]

=

[
φi 0

0 1

] [
βi,t − β̄i

β̄i

]

+

[
1 0

0 1

] [
ηi,t

0

]

, (6.19)

yt =
[
xt xt

]
[
βi,t − β̄i

β̄i

]

+ ǫt, (6.20)

where overall four parameters (σ2
ǫi, σ

2
ηi, β̄i, φi) have to be estimated. As outlined

in
✂
3.5.2.3, the AR(1) parameter φi should be restricted to values between zero and

unity. This constraint is implemented in the estimation procedure by application of the

parameter transformation (3.67).

The estimated variances of observation and state disturbances are significant at the

1% level for every sector. Compared to the RW model above, the estimated variance

for the observation equation, σ2
i , is generally lower in case of the MR parameterization;

the opposite holds with respect to σ2
ηi, the variance of the dynamic process of the time-

varying beta. For the MR model, two additional parameters have been estimated. The

value for β̄i, which compares well to the estimated OLS betas as reported in Table 6.1, is

always significant at the 1% level. The estimates for the second extra parameter can be

clustered across all sectors into three groups. In the first group, φi is close to unity. The

closer to unity the transition parameter gets, the more the conditional beta resembles its

RW counterpart. In case of Food & Beverages, Healthcare and Personal & Household

Goods, the MR betas literally follow a random walk. In the second group with values

for φi around 0.5, the conditional betas return faster to their individual means, which

implies more noisy series of conditional betas. In the third group, where φi is close to

zero, the resulting beta series follow a random coefficient model as defined in
✂
3.5.2.1.

Note that the estimated speed parameters in the last group (Industrials and Travel &

Leisure) are not statistically significant.

According to the fit statistics, the residuals are generally non-normal. With the ex-

ception of Healthcare and Retail, the null of no autocorrelation can be rejected for all

sectors. According to the conducted ARCH-test, the null of no heteroskedasticity cannot
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be rejected at the 5% in five cases. A comparison of the resulting LM -statistics reveals

that, with the exception of Personal & Household Goods, the test statistic usually takes

on smaller values for the MR than for the RW model. With respect to the estimated

goodness of fit, the coefficient of determination for the MR models is usually higher than

for the RW models. However, the better fit comes at the cost of a less parsimonious

model. For seven sectors, the Bayesian information criterion of the RW model is lower.

6.2.3.3 The moving mean reverting model

The moving mean reverting model is the third Kalman filter based specification to be

considered. The MMR model has been demonstrated in
✂
3.5.2.4 to generalize the MR

by allowing the mean beta to vary over time. The state vector is given by

[
βi,t+1 − β̄i,t+1

β̄i,t+1

]

=

[
φi 0

0 1

] [
βi,t − β̄i,t

β̄i,t

]

+

[
1 0

0 1

] [
ηi,t

ζi,t

]

, (6.21)

with [
ηi,t

ζi,t

]

∼ N

([
0

0

]

,

[
σ2

ηi 0

0 σ2
ζi

])

, (6.22)

where estimates for the parameters σ2
ǫi, σ

2
ηi, σ

2
ζi and φi have to be found. The various

initial values needed to implement the Kalman filter for the different models are set as

discussed in
✂
3.5.3.

It can be seen from Table 6.6 that all estimated variance terms are significant at the

1% level. On average, the observation errors are less dispersed than in case of the MR

model above. This comes at the cost of a higher variance in the state errors. For seven

sectors, σ2
ζi is smaller than 0.001. In these cases the MMR model effectively comes close

to being a MR model. With respect to the transition parameter φi, it is interesting

to note that, with the exception of Chemicals, Financial Services and Oil & Gas, the

estimates are not statistically significant at the 10% level. Taking this result together

with the low values for σ2
ζi, the corresponding MMR models de facto behave like random

coefficient models.

As for the RW and MR models above, the JB-statistic is highly significant for all

sectors. With the exception of Retail and Healthcare, the error terms are significantly

autocorrelated. The LM -tests are comparable to those computed for the MR models.

For six sectors, the null of no autocorrelation cannot be rejected. The reported values

for R2 signal a comparable fit of MMR and MR models. According to the information

criteria, the MMR model is to be preferred for all sectors with the exception of Financial

Services and Oil & Gas.

6.2.3.4 The generalized random walk model

The Kalman filter models considered so far are based on the assumption of normally

distributed errors. As discussed earlier, the assumption of normality is incompatible

with the sector series at hand. When the Kalman filter is employed in case of non-

normal errors, the Kalman filter still leads to consistent QML estimators as outlined in
✂
3.3.7. However, the obtained estimators are not efficient. As discussed in Chapter 5,
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the two most important sources of non-Gaussianity are volatility clustering and outliers.

As neither of the Kalman filter based approaches above is capable of fully coping with

these issues, it might be sensible to remove these influences altogether. For this purpose,

a three-stage estimation procedure following Ghysels et al. (1996) is developed:

1. Correct the observations for heteroskedasticity.

2. Cut down the remaining outliers.

3. Apply the Kalman filter based random walk model to the transformed observations.

In order to account for ARCH effects, less weight should be placed on data points

with high conditional volatility. In the OLS context, this approach is referred to as

generalized least squares (GLS). Following the outline by Davidson and MacKinnon

(2004,
✂
7), who give a general introduction to GLS and related topics, the concept of

GLS can be summarized as follows: in a standard linear regression model of the form

y = Xβ + ǫ, ǫ ∼ IID(0,Ω), (6.23)

the parameter vector β can only be estimated efficiently by least squares if the residu-

als are uncorrelated and homoskedastic. Whenever these assumptions are violated, an

efficient GLS estimator of β can be found by appropriately transforming the regression

so that the Gauss-Markov conditions are satisfied. The corresponding transformation

depends on Ψ, a quadratic matrix that is usually triangular with

Ω−1 = ΨΨ′. (6.24)

Premultiplication of (6.23) by Ψ′ yields the transformed regression model that can be

estimated by OLS to obtain efficient estimates:

Ψ′y = Ψ′Xβ + Ψ′ǫ. (6.25)

The GLS estimator for β is given as

β̂
GLS

= (X ′ΨΨ′X)−1X ′ΨΨ′y = (X ′Ω−1X)−1X ′Ω−1y. (6.26)

In case of heteroskedastic but uncorrelated errors, the covariance matrix is diagonal and

a GLS estimator can be obtained by means of weighted least squares (WLS). Each ob-

servation is weighted proportionally to the inverse of the nonconstant diagonal elements

of Ω. With w2
t denoting the t-th element of Ω and w−1

t denoting the t-th element of Ψ,

for a typical observation at time t, the transformed regression model in (6.25) can be

written as

w−1
t yt = w−1

t Xtβ + w−1
t ǫt. (6.27)

The dependent and independent variables are simply multiplied by w−1
t , where the

weight observations depend negatively on the variance of the disturbance term. It can

be shown that the variance of the disturbances is equal to unity.

As the precise form of the covariance matrix is usually unknown in practice, a consis-

tent estimate of Ω can be employed to get feasible GLS estimators. A common way to
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correct for heteroskedasticity is to base wt on a filtered or smoothed estimator of the con-

ditional volatility, calculated by one of the methods discussed in Chapter 5. Even though

this does not necessarily give the most efficient estimator in small samples, the feasible

GLS estimator is usually more efficient than OLS in the presence of heteroskedasticity

(cf. Ghysels et al. 1996).

The concept of WLS can be easily adapted to the random walk model discussed above.

For the original state space model of the form

Ri,t = βi,tR0,t + ǫi,t, (6.28)

βi,t+1 = βi,t + ηi,t, (6.29)

the weighted transformation is

Ri,t/wt = βWLS
i,t (R0,t/wt) + ǫi,t/wt, (6.30)

βWLS
i,t+1 = βWLS

i,t + ηWLS
i,t , (6.31)

with regressandRi,t/wt and regressorR0,t/wt. Summary statistics are reported in terms

of the transformed regressand to ensure orthogonality of the corresponding residuals.

In order to estimate the transformed model in (6.30) and (6.31) consistent estimates

of the weighting factor are needed. In the following, wt is set equal to the filtered

conditional standard deviation estimated from an auxiliary heteroskedastic regression

model. The behavior of hi,t is modeled by a t-GARCH(1,1) model:

Ri,t = β∗
i R0,t + ǫ∗i,t, (6.32)

ǫ∗i,t = zi,t

√

hi,t, (6.33)

hi,t = ωi + γiǫ
∗2
i,t−1 + δihi,t−1, (6.34)

where zi,t is assumed to be t-distributed. The weighting factor ŵi,t can now be computed

in annualized percentages as

ŵi,t = 100 ∗
√

Ahi,t, (6.35)

where the annualizing factor A = 52 is equal to the number of weekly returns per

year (cf. Alexander 2001,
✂
1.1). For all t = 1, . . . , T , ŵt depends on the information

set Ωt−1, which only contains relevant information through date t − 1. Therefore, the

transformation based on filtered volatility estimated over the full sample is valid both

for in-sample and out-of-sample purposes.

The second issue addressed above is related to outliers. For many estimation methods

outliers can be captured straightforwardly by employing a t-distribution for the distur-

bance terms. The introduction of t-distributed errors to a Kalman filter model is not

trivial as the resulting likelihood cannot be evaluated analytically. One way of handling

non-Gaussian state space models is to employ importance sampling techniques as intro-

duced in the context of SV models in
✂
5.2.3; see Durbin and Koopman (2000,

✂
11) for

details. However, in order to limit the level of complexity, in the following outliers should

be treated without relying on simulation-based techniques. A common way to remove

the influence of outliers is to truncate the variables that enter the model. According to

Granger et al. (2000) outlying observations can be identified as those data points that
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Figure 6.2: Weekly excess log-return series of (a) Automobiles and (b) the broad market.

are at least four standard deviations away from the mean of regressand and regressors,

respectively. They propose to employ outlier-reduced series where any data point above

or below µ̂± 4σ̂ is replaced by µ̂± 4σ̂; µ̂ and σ̂ are estimated from the original data. In

this thesis, more rigid limit lines at three standard deviations are imposed. Any outlying

observation in (6.30) is simply set equal to the mean of yt/wt or xt/wt plus — or minus

for negative outliers — three standard deviations. Obviously, unless outliers and the

standard deviations are determined simultaneously, outliers will distort the standard

deviations to be estimated. This leads to inflated sigmas and possibly masks influential

observations. However, the objective of the “three sigma”-rule is not to fundamentally

remove all outliers, but to approximately remove the biggest distractive effects from

the data. Therefore, the chosen procedure can be considered being appropriate in the

following.

The resulting model will be referred to as the generalized random walk (GRW) model.

The estimates of conditional beta series are denoted as β̂GRW
i,t . Of course, other meth-

ods for dealing with non-normality are available. For example, in order to take condi-

tional heteroskedasticity explicitly into account, Harvey et al. (1992) proposed a modified

Kalman filter estimated by QML, and Kim (1993) developed a state space models with

Markov switching heteroskedasticity. An alternative approach to deal with outliers is

discussed by Judge et al. (1985,
✂
20) who, instead of truncating the independent and

dependent variables directly, truncate the residuals from a robust regression. While

those techniques may be more sophisticated, in the following the methodology should

be kept as simple and as relevant for practical implementation purposes as possible.

Hence, the preference will be on the methodology described above. Even though this

approach is simple, its relevance can be tested in a straightforward fashion: if the fore-

casting accuracy is superior in comparison to the standard RW model, then the proposed

modifications can be regarded as being justified. Note that all reported diagnostics refer

to the trimmed generalized input variables, while the error measures to be used in the

next section to evaluate the forecast performances will be based on the original return

series. This allows for a fair comparison of the different Kalman filter based models.
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Figure 6.3: (a) Residuals from the auxiliary heteroskedastic regression model and
(b) GLS weighting factor for Automobiles and the overall market.

The described procedure to deal with volatility clusters and outliers shall be illustrated

at the example of the Automobiles sector. Figure 6.2 shows the weekly excess log-returns

on the sector and the DJ Stoxx
�

Broad index. It is obvious that the volatility of both

series is not constant over time. It can be seen that some periods are characterized by

small absolute returns and others by large absolute returns. Especially in the second half

of the period, which is effected by the Asian crisis, the Russian crises and the boom and

bust of the new economy, some outlying absolute returns exceed the value of 10%. As

outlined above, the influence of heteroskedasticity can be removed by means of weighted

least squares. The weighting factor wt can be derived by an auxiliary heteroskedastic

regression model. Figure 6.3 displays the auxiliary residuals in Panel (a); Panel (b)

shows the weighting factor computed as the annualized conditional t-GARCH volatility

estimate.

The estimated conditional volatility confirms the impression of volatility clustering.

It is used to transform the return series according to (6.30) to yield the weighted return

series, which is plotted in Figure 6.4. As expected, the WLS transformation removed

the heteroskedasticity in the series. What remains are a few outliers defined as those

observations outside µ̂ ± 3σ̂ that can now be capped (floored) according to the “three

sigma”-rule. The trimmed generalized series can now be utilized as dependent and

independent variables to estimate time-varying GRW beta series. Figure 6.5 illustrates

the difference between the RW and GRW beta series for the Automobiles sector: the

proposed procedure to deal with heteroskedasticity and outliers leads to a smoother

conditional beta series whose major pattern remains intact.

The estimation results for all GRW models are summarized in Table 6.6. The es-

timated variance of observation and state disturbances are significant at the 1% level

for all sectors. Although the null of normality can be rejected without exception, the

reported JB-statistics are all significantly lower than for the Kalman filter based mod-

els considered above. The null of no autocorrelation can be rejected at the 5% level

for eleven sectors. According to the reported LM -tests, the weighted transformation

removed the volatility clusters for all sectors except for Personal & Household Goods.
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Figure 6.4: Weighted weekly excess log-return series of (a) Automobiles and (b) the
broad market.

The reported values for R2 and BIC should be interpreted with caution as they only

refer to the second step of the proposed GRW approach. This is the major reason for

not relying on fit statistics to compare and evaluate the in-sample performances of the

various modeling techniques below.

6.2.4 Markov switching based approaches

The Markov regime switching approach outlined in Chapter 4 represents an alternative

way to model time-varying betas. In contrast to the Kalman filter based specifications

above, conditional betas switch between discrete states. The implicit assumption of

regime switching models is that the observed data result from a process that undergoes

abrupt changes, induced, for example, by political or environmental events.

In the Markov switching framework, the systematic risk of an asset is determined by

the different regimes of beta, which are driven by an unobserved Markov chain. The

switching behavior of beta is governed by the transition probability matrix Γ. Under

the assumption of a model with two states, Γ is of the form

Γ =

(
γ11 γ12

γ21 γ22

)

. (6.36)

The entries of each line describe the interaction of the two regimes from which beta is

drawn: γ11 is the probability of staying in the first state from period t to period t+ 1,

γ12 is the probability of switching from the first to the second state. The second row of

the matrix Γ can be interpreted analogously.

In this thesis, two different Markov switching models are employed. The first approach

is a simple Markov switching (MS) regression model. Let {s1, . . . , sT } denote the state

sequence that represents the different regimes. Driven by the transition probability

matrix of a stationary Markov chain, the states take values in {1, . . . ,m}. Following

Huang (2000) the regime-switching CAPM is specified by

Ri,t = αist
+ βist

R0,t + ǫi,t, ǫi,t ∼ N(0, σ2
ist

), (6.37)
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Figure 6.5: Conditional random walk and generalized random walk beta estimates for
the Automobiles sector.

where the regression coefficients αist
and βist

depend on state st. Note that the model

is designed to accommodate both the correlations across return series and the serial

correlation of the individual series.

The second approach synchronizes the switching times of beta according to different

market conditions by making additional assumptions on the market returns. This model

will be referred to as Markov switching market (MSM) model. Rydén et al. (1998)

showed that the temporal and distributional properties of daily return series can be well

governed by a hidden Markov model with conditional normal distributions. Following

their approach, the dynamics of the assets’ returns also follow the regime-switching

regression in (6.37). At the same time, the distribution of the market return is given by:

R0,t = µst
+ ηst

, ηst
∼ N(0, σ2

0st
). (6.38)

This means that in the MSM model the regime of the market changes together with the

regime of the regression setup. Modeling both regimes as depending on the same state

sequence allows for direct conclusions from the market condition on the asset’s risk as

represented by beta.

The estimation procedures for these two Markov switching models are based on the

maximum likelihood method for hidden Markov models. The respective likelihood of

both models is available in an explicit form such that the parameters of the models can

be estimated directly by numerical maximization of the loglikelihood (cf.
✂
4.3.2). The

estimates for the model parameters include the state-dependent betas for each asset

i and state j denoted by β̂MS
ij or β̂MSM

ij . All computations were carried out using

the statistical software package R, version 2.1.1 (R Development Core Team 2005); see

Mergner and Bulla (2008) for details.

As mentioned above the state sequence is not directly observable. Information about

the state-distribution at time t has to be derived in order to obtain in-sample estimates

as well as out-of-sample forecasts of conditional betas. The desired probabilities of a

sojourn in state j at time t can be computed by smoothing, filtering and state prediction
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algorithms (cf.
✂
4.4.2.2). Given the state-distribution at time t, estimates for the time-

varying betas can be calculated by weighting the state-dependent β̂MS
ij (β̂MSM

ij ) with

the probability of a sojourn in the corresponding state:

β̂
MS(MSM)
i,t =

m∑

j=1

[

βij · P (St = j|R0,1, . . . , R0,T , Ri,1, . . . , Ri,T )
]

, (6.39)

with

P (St = j|R0,1, . . . , R0,T , R1,1, . . . , R1,T ) =







αt(j)βt(j)

L
for 1 ≤ t ≤ T

αt(j)(Γ
t−T )•j

L
for T < t,

(6.40)

where αt(j) and βt(j) are the forward-backward probabilities introduced in
✂
4.3.2.1, and

(Γt−T )•j denotes the j-th column of the matrix Γt−T .

The estimation results are summarized in Table 6.7. As expected, all alphas are very

close to zero. For almost all sectors the high- and the low-risk states are well identifiable.

However, the two state-dependent betas are quite close together in case of the MS model

for the sectors Industrials and Retail, and in case of the MSM model for Industrials.

Generally, the MSM model is characterized by a weaker separation of the two regimes:

the state-dependent betas lie closer together than the betas of the corresponding MS

model. This phenomenon can be explained by the lack of flexibility of the former model

due to the enforced synchronous switching with the market regimes. The estimates for

the expected market returns µ1 and µ2 of the MSM model are very close to zero. This

supports Rydén et al. (1998) who proposed means equal to zero for daily return series.

The estimates for γ11 and γ22 with values between 95% and 99% for most sectors show

a high persistence both for the high- and the low-risk state. The observation of Fridman

(1994) who reports lower persistence of the high-risk state cannot be confirmed.
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6.3 Analysis of empirical results

Following the methodological outline and the presentation of estimation results above,

this section discusses the estimated conditional betas derived by the selected modeling

approaches. The resulting beta series are compared in
✂
6.3.1. The in-sample forecasting

performance of the different modeling approaches is evaluated in
✂
6.3.2. The respective

out-of-sample predictive power is looked at in
✂
6.3.3.

6.3.1 Comparison of conditional beta estimates

According to the discussed estimation results for the various modeling techniques, time-

varying betas have been calculated for the eighteen pan-European DJ Stoxx
�

sector

indices. All conditional beta series can be summarized by their respective mean and

range. To avoid an unfair bias against the Kalman filter, which is likely to produce

large outliers in the first stages of estimation, in the subsequent analyses the first fifty

conditional beta estimates for any of the chosen modeling techniques will be excluded.

Figure 6.6 utilizes boxplots to characterize the conditional betas for the example of the

Insurance sector; for a complete summary covering all sectors, see Table C.1 in the

appendix.

tG SV RW MR MMR GRW MS MSM

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

modeling techniques

be
ta

OLS

Figure 6.6: Boxplots of the conditional beta series for the Insurance sector.

Even though the mean conditional betas are usually close to their OLS peers, a wide

range of mean betas can be observed for every individual sector. The widest beta range

across sectors is observed for the two Kalman filter based MR and MMR models, followed

by the t-GARCH and RW approaches. On the other end of the spectrum, the minimum

and maximum of conditional betas estimated by the two Markov switching approaches

do not deviate far from their respective mean. The evolution of conditional Insurance

betas over time is displayed in Figures 6.7–6.9. They illustrate general similarities and

differences between the alternative conditional beta series.
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Figure 6.7: t-GARCH and stochastic volatility based betas for the Insurance sector.

As already indicated by the range of conditional betas, the Kalman filter and GARCH

based techniques display the greatest variation. The time series of systematic risk exhibit

the greatest amplitude when modeled either by the MMR or the MR model. They seem

to be the techniques that are most flexible in capturing changes in a sector’s sensitivity

to the overall market over time.
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Figure 6.8: Markov switching betas for the Insurance sector.

With the exception of the Markov switching framework, the evolution of the Insurance

beta during the stock market bubble at the end of the 1990s and its aftermath is described

in a similar way by all techniques. During the twelve months period before the market

peaked, a sharp fall of the Insurance beta below unity is indicated. In the subsequent

two years the sector’s beta more than doubles. The highest beta values are reached

when either modeled by one of the two mean reverting approaches or by the GARCH

framework. On the other hand, the Markov switching models are not able to reflect the

developments and dramatic shifts in terms of exposure to market risk during the bubble

period. The MSM model switches back and force between the different states and fails to

give a clear direction of the sector’s sensitivity to the overall market. Irrespective of the
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Figure 6.9: Kalman filter betas for the Insurance sector.

chosen modeling technique, the conditional beta of the Insurance sector tends to return

to pre-bubble levels at the end of the sample period. Overall, similar patterns can also

be observed for most other sectors as illustrated by Figures B.1–B.4 in the appendix.

The comparison of the different Kalman filter based betas for the Insurance sector

illustrates that the RW and GRW series on the one hand side, and the MR and MMR

series on the other hand side, show a very similar shape. As discussed in
✂
6.2.3.4,

the GRW beta can be thought of as a smoothed RW beta. For Kalman filter betas,

the characteristics of the stochastic process of systematic risk depend strongly on the

estimated values for the transition parameter: while φi is highly significant and close to

0.5 for the MR model, it is insignificant and close to zero for the MMR model. At the

same time, the variance term σζ is significantly different from zero. Hence, the MMR

model turns out to behave like a random coefficient model that fluctuates randomly

around a moving mean.

6.3.2 In-sample forecasting accuracy

The results above strongly indicate that systematic risk is not stationary and that the

nature of the time-varying behavior of beta depends on the chosen modeling technique.

In order to determine the relatively best measure of time-varying systematic risk, the

quality of estimated conditional betas could be evaluated based on the goodness of fit
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and diagnostic statistics reported in
✂
6.2. However, in the context of this thesis at least

two problems arise in connection with such an approach. The first issue is related to

the residuals that are employed to calculate fit statistics. With the exception of the

GARCH model, the fit statistics to be considered could either be calculated based on

recursive residuals or generalized residuals (cf.
✂
3.6.1). For a comparison with OLS, the

generalized residuals should be used as these are also based on the full sample. However,

for GARCH based models only recursive residuals are available. As a consequence,

all derived fit statistics would employ less information than in case of the alternative

modeling techniques. The GARCH based approach to conditional betas would be at

a structural disadvantage. The second problem refers to the way time-varying betas

are derived. While GARCH based betas are constructed indirectly, conditional betas

derived by a state space model are calculated directly. As the resulting test statistics

refer to different aspects of the respective models, they should only be employed for

comparative purposes within the same modeling class.

To avoid these problems, in the following the different techniques are formally ranked

based on their in-sample forecast performance. Following previous studies, the two main

criteria used to evaluate and compare the respective in-sample forecasts are the mean

absolute error (MAE) and the mean squared error (MSE):

MAEi =
1

T

T∑

t=1

|R̂i,t −Ri,t|, (6.41)

MSEi =
1

T

T∑

t=1

(R̂i,t −Ri,t)
2, (6.42)

where T is the number of forecast observations; R̂i,t = β̂i,tR0,t denotes the series of

return forecasts for sector i, calculated as the product of the conditional beta series

estimated over the entire sample and the series of market returns. The latter is assumed

to be known in advance, which is a commonly made assumption in the context of fore-

cast evaluation. The forecast quality is inversely related to the size of these two error

measures.

Figure 6.10 displays the average MAE and MSE measures across all sectors for the dif-

ferent modeling techniques on the left hand side. Panel (b) shows the respective average

ranks of mean absolute and mean squared errors for each approach under consideration.

For a more detailed sectoral breakdown, see Tables C.2 and C.3 in the appendix. A com-

parison of the different modeling techniques confirms the conjecture that the forecast

performance of standard OLS is worse than for any time-varying technique. However,

compared to the GARCH based techniques and the two Markov switching approaches,

the degree of OLS’ inferiority is remarkably low.21 The MSE of OLS equals 2.89, which

is only slightly higher than the MSE for the Markov switching model (2.78).

For the investigated sample, the two mean reverting techniques clearly outperform

their competitors. The average mean squared error of 1.56 is nearly 50% lower than in

case of OLS. With respect to both error measures, the MMR model ranks first in ten

21When interpreting the in-sample results, it should be remembered that, in contrast to all
other techniques, the GARCH based betas are based on filtered instead of smoothed estimates.
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Figure 6.10: In-sample forecasting evaluation: (a) average MAE and MSE across sectors
and (b) average ranks across sectors.

occasions and second in eight cases. With the exception of the MAE for Personal &

Household Goods, each time the MMR only ranks second, the MR takes the top spot.

The average rank of the mean absolute and mean squared errors for the RW model

is equal to 3.3 and 3.2, respectively. Whenever the RW model does not rank third,

it is usually outperformed by the SV model. The GRW model ranks behind the SV

model. As the proposed generalization was intended not to capture every spike and to

yield smoother conditional betas than the standard RW model, the comparably weak

in-sample performance is not surprising. Within the class of volatility models, the SV

approach seems to be better qualified to model the time-varying behavior of systematic

risk than the well established GARCH model. On average, the MAE (MSE) for the SV

model is 6% (13%) lower than the error measures for the GARCH based models, and

25% (59%) higher compared to the overall best model. Within the Markov switching

framework, the MS betas lead to lower average errors than the MSM in case of fourteen

sectors.

While the mean error criteria can be used to evaluate the average forecast perfor-

mance over a specified period of time for each model and each sector individually, they

do not allow for an analysis of forecast performances across sectors. From a practical

perspective, it is interesting to see how close the rank order of forecasted sector returns

corresponds to the order of realized sector returns at any time. Spearman’s rank cor-

relation coefficient, ρS
t , represents a non-parametric measure of correlation that can be

used for ordinal variables in a cross-sectional context. It is introduced as the third eval-

uation criteria: after ranking the predicted and observed sector returns separately for

each date, where the sector with the highest return ranks first, ρS
t can be computed as

ρS
t = 1 −

6
∑Nt

i=1D
2
i,t

Nt(N2
t − 1)

, (6.43)

with Di,t being the difference between the corresponding ranks for each sector, and Nt

being the number of pairs of sector ranks, each at time t. Figure 6.11 plots histograms
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Figure 6.11: Histograms of Spearman’s in-sample rank correlations.

of the in-sample rank correlations for the different modeling techniques together with

their respective medians. The reported value of F (0) denotes the proportion of rank

correlations that are smaller than zero.

The highest medians of in-sample rank correlations are observed for the MMR and the

MR models, where 50% of the computed rank correlations exceed the value of 0.616 and

0.513, respectively. For both models the distribution of rank correlations is negatively

skewed, with the share of negative rank correlations being smaller than 10% (11%) for

the MMR (MR) model. This confirms the finding gained from the analysis of mean errors

above that these two models provide the best in-sample measures of time-varying betas.

The next best results are observed for the RW, the SV and the GRW model. In contrast

to the two mean reverting models, about a quarter of computed rank correlations is

negative. The GARCH and Markov switching models do only slightly better than OLS.

Overall, the analysis of in-sample estimates suggests that time-varying European sec-

tor betas as modeled by one of the proposed Kalman filter approaches are superior to

the considered alternatives. This is in line with previous findings presented by Brooks

et al. (1998) and Faff et al. (2000) for industry portfolios in Australia and the UK.

6.3.3 Out-of-sample forecasting accuracy

The in-sample analysis is useful to assess the various techniques’ ability to fit the data.

However, as Wells (1996, p. 101) notes, “we should [. . . ] be aware that because a
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model gives a satisfactory description of historical phenomena does not [. . . ] mean that

it will perform as well on the future.” Therefore, the indispensable extension to the

model comparisons conducted above is to evaluate the respective out-of-sample forecast

performances. In a first step, 100 beta and return forecasts based on 100 samples of 520

weekly observations are estimated for all proposed time-varying techniques. Within this

rolling window forecasting procedure, the sample is rolled forward by one week, while

the sample size is kept constant at 520. The first sample starts 24 March 1993 and ends

5 March 2003. It is used to calculate the out-of-sample conditional beta forecasts for

12 March 2003 based on the chosen modeling technique. The 100-th beta forecast for

2 February 2005 is then generated based on the last sample starting 15 February 1995

and ending 26 January 2005. The reason why the out-of-sample period is chosen to be

limited to one hundred observations is to ensure proper convergence of the conditional

volatility models. As will be seen from this analysis, the three Kalman filter based

models RW, MMR and GRW prove to be superior in an out-of-sample context.

In a second step, an out-of-sample period of ten years based on 520 samples of 150

weekly observations is considered for these three models. As the Kalman filter does

not require as many observations as the GARCH or stochastic volatility based models,

an analysis based on an extended out-of-sample period is added. An estimation period

of 150 weeks is chosen to allow for an out-of-sample period of 10 years for all eighteen

sectors, including the three newly formed sectors for which only 683 instead of 897 weekly

observations are available. An estimation period of 150 data points is somehow arbitrary

and represents a compromise. According to Lo and MacKinlay (1997,
✂
5.1) the most

common choice to estimate the market model is to employ five years of monthly data.

The current chapter deals with the forecastability of systematic risk at a more short-

term horizon, which is reflected by the use of weekly data. Therefore, an estimation

period roughly corresponding to three years of data is justified: while it contains enough

data to generate stable parameter estimates, it is short enough to reflect current market

conditions. Remembering that the Kalman filter naturally puts more weight on the

most recent observations, the out-of-sample results for the Kalman filter models do not

critically depend on the length of the estimation period.

The goal of this analysis is to identify the Kalman filter model that generates the best

out-of-sample forecasts of the time-varying exposure to systematic risk over the more

representative time horizon of ten years. The to be identified overall best approach

will be chosen in the next chapter to model and forecast the time-varying relationship

between macroeconomics and sector allocation.

6.3.3.1 Step I: Out-of-sample period of 100 weeks to compare all conditional modeling
techniques

To compare the out-of-sample performances of all conditional betas, the average MAE

and MSE measures across sectors and the respective average ranks are shown in Fig-

ure 6.12; the complete sectoral breakdown of out-of-sample error measures is provided

in the appendix in Tables C.4 and C.5. Note that the MR model failed to converge for

the Food & Beverages sector such that the out-of-sample mean error measures as well
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Figure 6.12: Out-of-sample forecasting evaluation (100 samples): (a) average MAE and
MSE across sectors and (b) average ranks across sectors.

as the cross-sectional analysis for this modeling technique are based only on seventeen

sectors.

According to the chosen error measures, the best out-of-sample forecast performances

are offered by the GRW and the MMR models, for which the lowest average mean errors

are observed. The MR model, which does very well in-sample, only yields the fifth

lowest MSE. Within the class of conditional volatility models, no clear winner can be

proclaimed as the GARCH and SV models approximately produce the same forecast

errors. Disappointing forecast performances are observed for the two Markov switching

models, which do even worse than standard OLS. While the average errors related to

OLS are higher than for the volatility based techniques, the average relative ranks are

even lower, being only inferior to the Kalman filter models. Generally, the average mean

errors lie more closely together than for the in-sample results. The highest average

MAE (MSE) as observed for the MSM model, the approach that offers the worst out-

of-sample performance, is 4.5% (12.7%) higher than for the overall best model. Overall,

the Kalman filter remains superior, even though it is not as dominant as it is in-sample:

for both error measures, the average rank of the overall best model drops to around

three, which compares to an average rank near one for the best technique in-sample.

Only in five (six) occasions the MMR (GRW) model yields the lowest or second-lowest

MSE.

The Kalman filter’s superiority is also broadly confirmed in a cross-sectional setting

utilizing Spearman’s rank correlation coefficient. The histograms in Figure 6.13 show

that all estimated medians are positive. The highest medians are observed for the RW

and the MMR model, followed by the SV and the MR. The lowest medians are observed

for the standard OLS and the two Markov switching models. Compared to the in-

sample analysis, the difference between the median of the best model (RW: 0.298) and

the overall worst model (MSM: 0.244) is smaller. The fraction of adverse signals is also

broadly comparable, with values of F(0) around 25% for most of the different techniques.

Outstanding in this context is the GRW model where only 14% of the computed rank
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Figure 6.13: Histograms of Spearman’s out-of-sample rank correlations (100 samples).

correlations are smaller than zero. This means that the risk of generating a misleading

signal is reduced.

When evaluating a model, a common way to take the risk related to a forecast ex-

plicitly into account is to calculate an information ratio (IR). Alexander (2001, p. 445)

defines an information ratio as “the mean prediction error divided by the standard de-

viation of the prediction error”. In the context of the cross-sectional analysis using rank

correlations, an information ratio for a given modeling techniques n can be defined as

IRn =
E(ρS

n)
√

V ar(ρS
n)
, (6.44)

where ρS
n = {ρS

n,1, ρ
S
n,2, . . . , ρ

S
n,T}. The computed information ratios are reported in

Table 6.8. For the chosen out-of-sample period, the GRW model is confirmed to offer

the best risk-adjusted forecasting performance, followed by the MMR and the RW model.

To check which of these three models yields the best forecasting performance over a more

representative period of time, an out-of-sample period of ten years based on 520 samples

Table 6.8: Information criteria of out-of-sample rank correlations.

OLS tG SV RW MR MMR GRW MSM MS

0.63 0.65 0.64 0.70 0.64 0.72 1.42 0.62 0.65
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of 150 weekly observations is considered in the second step of the proposed evaluation

procedure.

6.3.3.2 Step II: Out-of-sample period of ten years to identify the overall best modeling
approach

Table 6.9 summarizes the calculated mean absolute and squared errors for the RW,

GRW and MMR model, respectively, by reporting their averages across all sectors; for

a comprehensive sectoral breakdown, see Table C.6 in the appendix. According to the

considered average mean errors, the out-of-sample forecasting performance of all three

models over the last ten years of the given sample is very similar. Even though the

average MAE is slightly lower for the MMR model and the average MSE is lowest for

the RW model, based on these results neither approach significantly stands out. This

is also confirmed by looking at the relative ranks, which indicate that the different

modeling approaches yield an average rank of around two.

Table 6.9: Average out-of-sample MAE and MSE across sectors (520 samples).

Mean absolute error (×102) Mean squared error (×104)

RW GRW MMR RW GRW MMR

Average error 1.311 1.310 1.309 3.584 3.600 3.589

Average rank 2.33 2.11 1.94 1.94 2.22 2.17

When Spearman’s rank correlation coefficient is employed to evaluate the forecasting

performance in a cross-sectional context, the RW model has a small advantage over

its competitors. While Figure 6.14 illustrates that the realized rank correlations are

similarly distributed for all three models, the median rank correlation as well as the

information criteria of the RW model are slightly higher.

Overall, neither the less parsimonious moving mean reverting nor the generalized ran-

dom walk model, which are both motivated by their respective capability to capture

volatility clusters and outliers, yield a forecasting advantage over the random walk spec-

ification. This result suggests that heteroskedasticity and outliers can be considered as

being “third-order” problems in the context of applying the Kalman filter to model the

time-varying behavior of systematic risk for pan-European sector indices.

6.4 Concluding remarks

Despite the considerable empirical evidence that systematic risk is not constant over

time, only few studies deal with the explicit modeling of the time-varying behavior of

betas. Previous studies with a focus on Australia, India, New Zealand, the U.S. and

the UK primarily employed Kalman filter and GARCH based techniques. The empirical

analysis presented in this chapter contributes an investigation of time-varying betas for

pan-European industry portfolios. The spectrum of modeling techniques is extended by

(i) incorporating two Markov switching approaches, whose capabilities to model time-
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Figure 6.14: Histograms of Spearman’s out-of-sample rank correlations for the random
walk, the moving mean reverting and the generalized random walk model (520 samples).

varying betas have not been compared to the proposed alternatives in previous studies;

(ii) by incorporating the stochastic volatility model, which so far has only been used by Li

(2003) to model time-varying betas; and (iii) by proposing the generalized random walk

model to deal with the common phenomena of heteroskedasticity and non-normality.

The in-sample forecast performances of the analyzed modeling approaches suggest

that the extent to which sector returns can be explained by movements of the overall

market is always higher in combination with time-varying betas. This confirms previous

findings that sector betas are not stable over time. Based on the employed evaluation

criteria, the in- and out-of-sample forecast performance of the various techniques has

been compared. The results indicate that time-varying sector betas are best described by

a random walk process estimated via the Kalman filter. The in-sample results generally

support Kalman filter based approaches. In an out-of-sample context, where the relative

advantage is less pronounced, their superiority is maintained only partially. The findings

of Li (2003), according to which stochastic volatility based conditional betas outperform

the other techniques, cannot be confirmed. The two proposed Markov switching models

deliver an unsatisfactory out-of-sample predictive performance, which is even inferior to

that of standard OLS.

It has been shown that the forecasting ability of the random walk model is not neg-

atively affected by the influence of volatility clusters and outliers. The random walk

specification outperforms all of the alternative Kalman filter based approaches, including

the suggested generalized random walk model. The obtained quasi-maximum likelihood

estimators are not only consistent, they also generate the best out-of-sample forecasts

of conditional betas. As a consequence, the violation of the homoskedasticity and nor-

mality assumption can be neglected in the following. For the remainder of this thesis,

time-varying factor sensitivities will be generally modeled as random walks estimated

via the Kalman filter.

The methodology used in this study can be extended in a couple of directions. It would

be of interest to see how the forecasting accuracy of the various models depends on the

chosen length of the forecasting period. The performance of the Kalman filter might
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be further improved by adding exogenous factors to explain the time-varying behavior

of systematic risk. Some first steps into this direction have been made by Abell and

Krueger (1989) and Andersen et al. (2005) who link betas to macroeconomics; Liodakis

et al. (2003) use company fundamentals, momentum and liquidity data as determinants

of time-varying betas. Another interesting path to continue research on conditional betas

is to analyze the performance of employing multivariate conditional heteroskedasticity

models with truly dynamic conditional correlations.





Chapter 7

A Kalman filter based conditional multifactor

pricing model

Factor pricing models relate the risk of a portfolio to a possibly multidimensional set of

common factors. They are widely employed by academics and investment professionals

to analyze risk or to derive return predictions. The quality of a factor model depends on

the selection of risk factors and on the estimated factor sensitivities. Using a Kalman

filter based conditional multifactor pricing model, this chapter aims at analyzing the

time-varying impact of fundamentals and macroeconomics on pan-European industry

portfolios. Commercial portfolio risk models, such as BARRA (www.barra.com) or Cit-

igroup’s macro-based European Risk Attribute Model (Brennan et al. 2000), are usually

based on single stock returns. They account for potential time-variation in factor sen-

sitivities by assigning more weight to the most recent observations. The conditional

modeling approach employed in this chapter is different in both aspects: (i) sectors

instead of single stocks are used as dependent variables, and (ii) time-varying factor sen-

sitivities are modeled explicitly as individual stochastic processes. A major advantage of

building a factor model on sectors is the reduction of a potential errors-in-variables prob-

lem, which typically arises whenever independent variables, such as factor sensitivities

in a cross-sectional setting, are measured with error. The proposed conditional multi-

factor pricing model can be applied to analyze current portfolio risks at the sector-level,

to construct sector portfolios and to evaluate the past performance of an implemented

sector strategy.

Given the results of the available literature on multifactor pricing models and the

demonstrated significant relationship between macroeconomics, fundamentals and eq-

uity returns, this chapter focuses on the time-variation in macroeconomic and funda-

mental factor loadings of pan-European sectors. In the previous chapter, the ability of

various modeling techniques to model the time-varying behavior of betas have been com-

pared. As the results suggest that the stochastic process of systematic risk can be best

described and predicted by a random walk process estimated via the Kalman filter, the

same modeling technique is employed here. This is in contrast to the literature where

conditional sensitivities are commonly captured either by allowing for an interaction

term, by selecting different factors at different times, or by employing a discrete regime-
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switching framework. In this thesis, time-varying sensitivities will be modeled directly

as continuous stochastic random walk processes based on the state space framework

introduced in Chapter 3.

The research goal of this chapter is to study the practical relevance of time-varying

factor loadings in a multifactor pricing framework. Based on the conditional multiple

beta series to be estimated via the Kalman filter, it will be analyzed whether an ex-

plicit consideration of the time-varying impact of macroeconomics and fundamentals on

European industry portfolios can be exploited in a profitable way, either from a risk

management or from a portfolio management perspective. The present chapter con-

tributes to the literature a synthesis of the classical cross-sectional regression approach

by Fama and MacBeth (1973) and conditional factor loadings.

The chapter is organized as follows. After briefly summarizing the concept of factor

modeling, Section 7.1 reviews the anomalies literature with a focus on macroeconomic

and fundamental factors. Section 7.2 outlines the conditional multifactor methodology.

It will be differentiated between time series and cross-sectional regressions. Section 7.3

introduces the set of common risk factors. Section 7.4 discusses the empirical results

and evaluates the relative out-of-sample forecasting ability of the proposed conditional

multifactor specification. It will be analyzed whether the statistical superiority of the

Kalman filter based model can be exploited in practice. Section 7.5 concludes.

7.1 Factor modeling

As outlined in
✂
6.1 the most widely used factor model is the CAPM, in which the excess

return of the overall market is chosen as the single common factor. The measure of

systematic risk is referred to as market beta. Despite the CAPM’s popularity, various

studies over the last three decades have suggested that a single beta model, while describ-

ing a large portion of the common variation in returns, may not be sufficient to explain

the cross-section of returns. The biggest challenge to the CAPM includes the empirical

evidence that macroeconomic sources of risk and company-specific characteristics are

priced beyond market risk. In accordance with these well-documented findings, the em-

pirical deficiencies of the CAPM are most commonly explained by missing risk factors or

by a misapproximation of the total wealth portfolio.22 This leads to multifactor pricing

models as motivated by the Intertemporal Capital Asset Pricing Model (ICAPM), in-

troduced by Merton (1973), or the Arbitrage Pricing Theory (APT), developed by Ross

(1976). The basic idea of a multifactor pricing model is that the common variation in

asset returns can be accounted for by multiple common components, or risk factors.23

Without explicitly differentiating between the ICAPM and the APT in the following,

22Alternatively, instead of explaining the violations of the CAPM using risk-based arguments,
nonrisk-based explanations have been proposed. They include, among others, data-snooping
biases, the existence of market frictions, transaction costs and liquidity effects. As nonrisk-
based explanations will not find any consideration in this chapter, the reader is referred to
MacKinlay (1995) for more details.

23An introduction to the basic conception of asset pricing theory is provided in Appendix A.
As the theory on multifactor models is well-established, it is not intended to derive the under-
lying assumptions of the various multifactor pricing models in this thesis; for any details and
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unconditional multifactor models, which describe the return generating process for asset

i by linking returns to common sources of risk, can be specified in the general form of a

beta pricing model :

ri,t = αi +
K∑

k=1

βikfk,t + ǫi,t, (7.1)

where βik is referred to as factor loading or exposure, i.e. the sensitivity of the i-th asset

on the k-th risk factor, denoted by fk,t for k = 1, . . . ,K. The asset-specific intercept

is given by αi. The idiosyncratic components of the return series, captured by the

disturbances ǫi,t, are assumed to be uncorrelated with zero mean for i = 1, . . . , N , and

to be uncorrelated with the set of risk factors, each for all t. Whenever the set of common

factors does not have mean zero, it is usually convenient to construct zero mean factors

as

f̃ t := f t −E(f ), (7.2)

where f t is the K × 1 vector of risk factors (cf. Cochrane 2005,
✂
9.4). In a world with

existing risk-free assets, the constant term is usually assumed to be equal to the risk-free

interest rate and (7.1) can be written in terms of excess returns, Ri,t, as defined in (2.2).

With αi set to zero, this can be represented in matrix notation as

Ri,t = β′
if t + ǫi,t, (7.3)

where βi is a K × 1 vector of factor loadings of asset i to the set of common factors.

A central derivation of the APT theorem is that in the absence of arbitrage, expected

excess returns conditioned by the information set at date t − 1, Ωt−1, depend approxi-

mately linear on the factor loadings:

E(Rt|Ωt−1) ≈ Bλt, (7.4)

where Rt is an N × 1 vector of excess returns, B is an N ×K matrix of factor loadings

and λt is a K × 1 vector of factor risk premia. The risk premium can be interpreted as

the compensation for owning one unit of the k-th factor risk. In the following, we align

ourselves with the majority of the literature and assume that (7.4) holds exactly:

E(Rt|Ωt−1) = Bλt. (7.5)

By testing whether risk premia are significantly different from zero, one can determine

which risk factors are priced by the market. As indicated by the chosen notation, Rt

and λt are usually considered for a given date t, while B is assumed to remain constant

over time.

Despite its intuitive appeal, the theory on multifactor models does not prescribe which

and how many factors should be included. Answers to these questions can be derived

from the so-called anomalies literature. It has emerged in the course of empirical works

further references, see one of the many excellent texts on the subject, for example, Fama and
French (1996), Campbell et al. (1997,

�
6) or Cochrane (2005,

�
9).
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testing the validity of the CAPM. Various empirical findings have demonstrated the ex-

istence of factors with explanatory power for the cross-section of returns beyond market

beta risk. This section provides a brief literature review on the different factor types

that can be categorized into macroeconomic, fundamental, momentum and statistical

factors.

7.1.1 Factor taxonomy

Macroeconomic variables constitute the first set of potential risk factors that can be

assumed to be rewarded by the market. They are intended to capture the state of the

economy or to forecast future economic conditions. Commonly employed macroeconomic

factors include interest rates, production growth, consumer confidence, credit spreads,

steepness of the yield curve and shifts in energy prices. Macroeconomic factor models

with multiple betas, where each beta relates an asset to a particular economic risk,

allow fund managers to gain top-down insights into how their portfolios are affected

by different economic scenarios. Alternatively, fundamental factor models assume that

sensitivities to firm characteristics such as the price-earnings ratio (PE), leverage or size

are capable of explaining the cross-section of returns. Although it is not yet clear which

systematic risks are approximated by fundamental factors, this second type of model has

been very successful empirically. Employing the third type of factors, momentum models

are based on the empirical finding that past return patterns may offer an indication of

future returns. In contrast to those factor categories, statistically derived factors are not

observable and have to be inferred from the return data using statistical factor selection

procedures.

7.1.1.1 Macroeconomic factors

The possibility that macroeconomic factors may successfully predict security returns has

spawned a remarkable bulk of literature that analyzes whether stock and bond returns

can be predicted using macroeconomic variables. One of the best known studies is that

of Chen et al. (1986). In an APT framework, the authors implement expected and

unexpected inflation, industrial production, the spread between short- and long-term

interest rates and the default premium, defined as the yield spread between high and

low rated bonds. The chosen risk factors are found to be significantly priced. The

predictive power of the default premium has been confirmed, among others, by Fama

and French (1989) and Keim and Stambaugh (1986). The results presented by Campbell

(1987) imply that excess stock returns are predicted by the state of the term structure

of interest rates. A further indication of the importance of interest rates as well as their

volatility is provided by Shanken (1990). In an analysis of the source of predictability

of monthly stock and bond returns, Ferson and Harvey (1991) look at a set of state

variable proxies: the value-weighted New York Stock Exchange index return less the

1-month Treasury-bill return, per capita growth of personal consumption expenditures,

unanticipated inflation, the yield spread between Baa-rated corporate bonds and a long-

term government bond, the change in the slope of the yield curve, the real 1-month

Treasury-bill return and the dividend yield on the S&P 500. In a later study on risk and
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predictability of international equity returns (Ferson and Harvey 1993) the authors add

a dollar and an oil price factor. Jones and Kaul (1996) explicitly document the impact of

changes in the oil price on the stock market. In another application, Chan et al. (1998)

use the growth rate of monthly industrial production, the default premium, the real

interest rate defined as the difference between the return on one-month Treasury-bills

and the relative change in the monthly consumer price inflation, the slope of the yield

curve, the change in the monthly expected inflation and the maturity premium, defined

as return difference between long-term government bonds and the one-month Treasury-

bill rate, as macroeconomic variables. The authors conclude that only the default and

the maturity premium are significantly related to stock returns. In a work on maximized

predictability in stock and bond markets in the US, Lo and MacKinlay (1997) rely on

the dividend yield, the default spread, the maturity spread, the return on the S&P 500

and an interest-rate trend, calculated as the change of average yields on a long-term

government bond. More recently, Lettau and Ludvigson (2001) successfully employ the

log consumption-wealth ratio as a conditioning factor.

7.1.1.2 Fundamental factors

The second category of factors is related to firm-specific attributes. Various empirical

studies have illustrated that it is possible to earn risk-adjusted returns by constructing

portfolios in accordance with fundamental factors. Basu (1977) finds the PE effect : firms

with low PEs have higher sample returns and firms with high PEs have lower sample

returns than can be expected in the context of a mean-variance efficient market portfolio.

Banz (1981) documents the size effect with higher than expected returns for firms with a

small market capitalization. Bhandari (1988) documents a positive relationship between

average returns and leverage. Rosenberg et al. (1985) report the so-called value premium,

where the average returns are positively related to the book-to-market equity ratio, which

is defined as a company’s book value (BV) to its market value (MV). At the beginning

of the 1990s, Chan et al. (1991) confirms the value premium also for Japanese equities.

Subsequent studies, see, for example, Fama and French (1993, 1995, 1998), Lakonishok

et al. (1994) and Daniel and Titman (1997), gave further confirmation of the book-

to-market anomaly and tried to find different explanations for the value premium. In

today’s portfolio management industry, the most important investment style is based on

the value premium: a value investor invests in firms with the highest book-to-market

ratios, which means investing in the relatively cheapest value companies.

Fama and French (1992, 1996) developed a more comprehensive framework. Instead of

conducting individual analyses for the various anomalies, they take the interdependen-

cies between the different variables explicitly into account. They analyze the empirical

relationships between the expected return of a stock, its beta and other fundamen-

tals such as size, book-to-market equity, leverage and earnings-price ratios. Their work

is considered a milestone as they interpret the combination of different variables as

a multidimensional measure for risk. The most widely used fundamental multifactor

model, which dominates today’s empirical research, is the three-factor model by Fama

and French (1993). It explains the cross-section of expected returns by three factors: a

market proxy, size and the book-to-market ratio. Even though a solid economic theory
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explaining which non-diversifiable risks are proxied by size and book-to-market still has

to be developed, these two factors explain average returns better than the theoretically

easier to justify macroeconomic factors (cf. Cochrane 2005,
✂
20).

7.1.1.3 Momentum and reversal

Research on momentum and reversal strategies has started with the works of DeBondt

and Thaler (1985, 1987) who report price reversals over the long-term (three to five

years) where stock prices overreact and eventually mean-revert. The authors demon-

strate that a portfolio that is long past losers and short past long-term winners, yields a

better performance than a portfolio constructed in the opposite way. Jegadeesh (1990)

finds that price reversals also occur over the very short term (one week to one month).

Over the medium term (three to twelve months) Jegadeesh and Titman (1993, 2001)

and Chan et al. (1996) document price momentum effects: past winners continue to

outperform past losers.

Long-term price reversals are consistent with the Fama-French three-factor model,

because stocks that do poorly over a long time horizon build up a value premium. By

contrast, short-term reversals and price momentum cannot be explained by the Fama-

French model. Some authors relate momentum profits to microstructure explanations

such as calendar or illiquidity effects; see Cochrane (2005,
✂
20) for an overview. How-

ever, once transaction costs are taken into account, momentum and reversal strategies,

which both require frequent trading, are not exploitable as shown by Carhart (1997).

Therefore, given these non-supportive arguments together with the findings of Grundy

and Martin (2001), who conclude that momentum strategies are even less attractive

when applied to sectors instead of single stocks, momentum and reversal effects will not

find any consideration in the following.

7.1.1.4 Statistical factors

An alternative to employ macroeconomic or fundamental variables is to derive the fac-

tors statistically. Instead of using observable real world variables, the factors are inferred

from the return data by applying statistical factor selection procedures. The two pri-

mary approaches are a two-step factor analysis and principal components; see Campbell

et al. (1997,
✂
6) for a summary. Statistical factor models yield the advantage that no

external explanatory variables are required and that they provide an answer to the num-

ber of unknown factors. Moreover, one does not have to deal with problems related to

multicollinearity as the statistically derived factors are usually orthogonal. However,

despite their attractive in-sample features, their out-of-sample performance is usually

poor (cf. Chan et al. 1998). Besides, purely statistical factors do not offer an economic

interpretation. In this thesis statistically derived factors will not be considered as risk

factors.

7.1.2 Number of factors

The multifactor model proposed in (7.3) does not yet specify K, the number of required

factors. In order to avoid overfitting and to arrive at a specification of maximum practical
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usefulness, K should generally be as small as possible. The employment of fewer factors

increases the chance that the results hold in- and also out-of-sample (cf. Chan et al. 1998).

In empirical work, the lack of specification of K is usually handled by repeated modeling

with different numbers of factors, where the sensitivity of any results to increasing K

is observed. Alternatively, the adequacy of opting for K explanatory variables can be

tested explicitly by employing a likelihood ratio test, for example. Overall, various

studies have suggested that the adequate number of factors should be between four and

six, which serves as a guideline in this chapter; cf. Campbell et al. (1997,
✂
6.4.2) for an

overview and further references.

7.1.3 Time-varying factor loadings

The central notion throughout this thesis is that in an inherently dynamic world, where

expected returns and risk premia vary over the business cycle, as demonstrated, among

others, by Keim and Stambaugh (1986), Fama and French (1989) and Ferson and Harvey

(1991), factor sensitivities should also be time-varying. This implies conditional versions

of (7.3) and (7.4), respectively.

According to Shanken (1990) many authors have traditionally modeled time-varying

multiple sensitivities as linear functions of observable, possibly macroeconomic state

variables. For example, Lo and MacKinlay (1997) use an interaction term, constructed

as the product of the dividend yield and the return on a market proxy, to capture time-

variation in market betas. An alternative route is taken by Pesaran and Timmermann

(1995) who find that, due to the conditional nature of return volatility, the predictive

ability of particular macroeconomic factors is changing over time. The authors propose

a recursive forecasting model with a base set of explanatory variables from which a

model with possibly different factors is specified at each date. A third way of addressing

sensitivities that evolve through time is to permit for a nonlinear relation between risk

factors and returns. This is illustrated by González-Rivera (1997) who integrate the

conditional APT with betas modeled as random coefficients. In a more recent work on

the predictability of U.S. sectors, Johnson and Sakoulis (2003) employ a Kalman filter

with Bayesian parameter estimation to model the time-varying link between returns and

lagged macroeconomic information as following a random walk.

As demonstrated in the previous chapter on time-varying market beta risk, a wide

spectrum of econometric techniques to model conditional sensitivities is available. While

each approach has its own merits, the empirical results presented above suggest that

time-varying systematic risk for pan-European industry portfolios can be best modeled

and predicted by employing a Kalman filter based random walk model. In addition to the

superior in- and out-of-sample forecasting performance of the random walk specification,

the computational burden related to Kalman filter estimation is substantially lower than

in case of stochastic volatility or hidden Markov models. This is true for the estimation

of parameters and also for the generation of out-of-sample forecasts of time-varying

sensitivities: within a state space framework one-step ahead predictions are readily

available. The Kalman filter’s computational advantage represents a major determinant

of practical usefulness and implementability. Considering these properties together with

the superior forecasting performance of the random walk specification, the time-varying
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coefficients of the multifactor model in this chapter will be modeled as individual random

walks estimated via the Kalman filter.

7.2 Specification of a conditional multifactor risk model

Following the review of the standard unconditional multifactor pricing framework, this

subsection derives a conditional multifactor risk model, on which the subsequent em-

pirical analysis will be based. Subsection 7.2.1 outlines the conditional time series

representation. Subsection 7.2.2 summarizes how to estimate factor risk premia in a

cross-sectional setting and how to conduct inferences about them.

7.2.1 Time series representation

The starting point for modeling the time-varying impact of macroeconomics and fun-

damentals on pan-European sector allocation is the general multifactor beta pricing

model as given by (7.3). A multifactor model for the realized excess returns Ri,t with

time-varying betas can be stated in state space form with observation equation

Ri,t = β′
i,tf t + ǫi,t, ǫi,t ∼ N(0, σ2

i ), (7.6)

for i = 1, . . . , N and t = 1, . . . , T ; f t and βi,t are the K × 1 vectors of risk factors

and corresponding factor loadings, respectively; ǫi,t is the vector of normally distributed

disturbances with unconditional variance σ2
i . The factor realizations are assumed to be

stationary with unconditional moments

E(f t) = 0, (7.7)

Cov(f t) = Ωf , (7.8)

and to be uncorrelated with the error terms:

Cov(fk,t, ǫi,t) = 0, (7.9)

for all i, k and t.

In accordance with (3.77) the evolution of the k factor loadings βik,t can be modeled

as individual random walks by the following set of K state equations:

βi1,t+1

βi2,t+1

βiK,t+1

=

=
...

=

βi1,t + ηi1,t,

βi2,t + ηi2,t,

βiK,t + ηiK,t,

ηi1,t ∼ N(0, σ2
ηi1),

ηi2,t ∼ N(0, σ2
ηi2),

ηiK,t ∼ N(0, σ2
ηiK).

(7.10)

The system of equations (7.6)–(7.10) is a special case of the general state space frame-

work presented in
✂
3.2. The assumptions made in (3.3)–(3.7) apply. The constant

variances σ2
i and σ2

ηik represent the K + 1 unknown hyperparameters of the system,

which can be estimated by means of maximum likelihood as discussed in
✂
3.4. The path

of time-varying factor sensitivities can be tracked and predicted by the Kalman filter

and smoother as outlined in
✂
3.3.
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7.2.2 Cross-sectional regressions

The ability of the proposed time-varying multifactor specification to predict the cross-

sectional variation of pan-European industry portfolios is tested by employing the cross-

sectional regression approach proposed by Fama and MacBeth (1973). Instead of using

time series averages to conduct a single cross-sectional regression, the basic idea of the

Fama-MacBeth approach is to regress the cross-section of returns for each time period on

a set of predetermined factor loadings. In a second step, inference about the estimated

risk premia is conducted to analyze the explanatory power of the corresponding risk

factors. For regressors that do not vary over time, the Fama-MacBeth procedure can be

shown to be equivalent (i) to a single cross-sectional regression that is based on sample

averages, and (ii) to a pooled approach with stacked time series and cross-sections. In

contrast to these alternative procedures, the Fama-MacBeth methodology can easily

handle time-varying right-hand variables (cf. Cochrane 2005,
✂
12.3). This qualifies the

approach as the preferred cross-sectional regression procedure in the following. As a

novelty, the procedure outlined below combines the traditional Fama-MacBeth approach

with the paradigm of changing betas.

7.2.2.1 The Fama-MacBeth approach

In accordance with Ferson and Harvey (1991) the Fama-MacBeth approach is imple-

mented in two steps. At first, time series instruments for the betas are estimated for

each asset. While the instruments are usually derived by means of standard OLS, in this

chapter OLS betas are replaced by the Kalman filter based random walk specification

as proposed in (7.6)–(7.10). This leads to a Fama-MacBeth approach with conditional

betas. The set of estimated time-varying factor sensitivities is taken as an estimator of

the matrix of factor loadings B in (7.5), denoted as B̂. In the second step, the cross-

section of ex-post excess returns is regressed for each date t on the matrix of ex-ante

instruments to obtain overall T estimates of the K × 1 vector of risk premia, λt:

Rt = B̂t−1λt + νt, (7.11)

where νt is the N × 1 vector of cross-sectional disturbances. Due to the use of excess

returns, the above equation does not contain an intercept term. The employed dating

convention indicates that the betas are time-varying and based only on information

available at date t − 1. The regression in (7.11) allows for a decomposition of excess

returns for each t. The term B̂t−1λt refers to the component that traces back to the

cross-sectional risk structure as measured by the conditional betas. This is the part

of the returns that is predictable. The remainder term ν t is not correlated with the

measures of risk and should thus be unpredictable.

A risk factor is priced if the expected value of the corresponding ex-post risk premium

is significantly different from zero. Following common practice, the significance of the

involved risk factors is tested by defining λk = E(λk,t) for k = 1, . . . ,K, and employing

a usual t-test with test statistic

w(λ̂k) =
λ̂k

σ̂λk

, (7.12)
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with mean

λ̂k =
1

T

T∑

t=1

λ̂k,t, (7.13)

and standard error

σ̂2
λk

=
1

T (T − 1)

T∑

t=1

(λ̂k,t − λ̂k)2, (7.14)

where w(λ̂k) is Student-t distributed with T − 1 degrees of freedom (cf. Campbell et al.

1997,
✂
5.8).

7.2.2.2 Econometric issues

Several problems related to the methodology may arise. The conditional betas in (7.11)

are unknown and have to be estimated in a first step based on a time series regression.

This induces an errors-in-variables problem. Secondly, even if the true betas were known,

the errors of the proposed cross-sectional regression would be likely to be heteroskedastic

and correlated, because the stock returns that are used as dependent variables are usually

correlated for a given date t. As a consequence, the estimated standard errors might be

unreliable (cf. Ferson and Harvey 1991).

The empirical evidence presented by Ferson and Harvey (1999) suggests that the

main results are robust to errors-in-variables. Nevertheless, different ways to explicitly

cope with the issue have been proposed. Shanken (1992) presents a general procedure

that corrects for errors in the estimates of conditional betas by using adjusted standard

errors. Alternatively, better estimates of the conditional betas can be produced by using

returns of portfolios rather than of single stocks (cf. Chen et al. 1986). As this thesis

exclusively deals with industry portfolios, the impact of a potential errors-in-variables

problem can be assumed to be of limited nature. The second problem of heteroskedastic

and correlated errors is especially alarming in small samples where the t-ratios might

be biased. One way to address this is to employ an efficient generalized least squares

estimator where the T estimates are weighted according their reciprocal variances; see

Ferson and Harvey (1999) for details. In the following, the analysis will be conducted

based on ten years of weekly data. The sample is sufficiently large to assume that the

corresponding t-ratios will be unbiased. Therefore, throughout this chapter, the widely

used unadjusted standard errors of the Fama-MacBeth approach will be relied upon.

7.3 The risk factors

The weekly excess returns on the eighteen DJ Stoxx
�

sector indices introduced in
✂
2.1

constitute the set of dependent variables to be studied. This section describes the risk

factors to be used in the context of the proposed conditional multifactor model.

According to the literature review provided in
✂
7.1, various fundamental factors, in

particular size and valuation, as well as different proxies for macroeconomic risks, which

can be thought of having an impact on equity returns, have been previously analyzed.

As this thesis focuses on weekly data, the spectrum of available macroeconomic series is

limited. Many factors that are typically employed in empirical research, such as growth
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Table 7.1: Glossary and definition of risk factors.

Symbol Definition Mnemonica

TS Change in the euro term structure defined as the BDBRYLD; GERMDRQ;

difference between the yield of a 10-year German EMINT3M

government bond and a money market rate

(assembled series: until 18.11.92 German 3-month

rate; thereafter Euro 3-month rate)

OIL Log-return of the crude oil-brent 1-month forward OILBRNI

contract

FX Log-return of the synthetic US-dollar to euro ex- USEURWD

change rate

V GS Difference between log-returns of the chosen value FRUS1VA; FRUS1GR;

and growth indices (assembled series: until 2.7.97 DJTSVAE; DJTSGRE

Frank Russell 1000 Value and Growth indices;

thereafter DJ Stoxx
�

TMI Value and Growth

indices)

SIZ Difference between log-returns of the DJ Stoxx
�

DJSLARG; DJSSMAL

TMI Large 200 index and the DJ Stoxx
�

TMI

Small 200 index

BMR Residual excess benchmark return calculated from DJSTOXX; FIBOR3M

a time-varying regression of the log-return of the

DJ Stoxx
�

Broad return index in excess of the risk-

free rate, calculated from the 3-month FIBOR, on

the set of macroeconomic and fundamental factors

aThis column provides the codes used to access the corresponding data series via Thomson
Financial Datastream.

in gross domestic product, unexpected inflation or consumer and industrial confidence

indicators, are only surveyed monthly or quarterly. Table 7.1 lists the variables to be

employed as risk factors in this study. They are all assumed to capture underlying

exogenous influences that have an impact on all sectors. The focus in this chapter is

on the modeling of risk using conditional factor loadings and not on factor selection

procedures. Hence the factors have been chosen from widely tested variables that can

be justified theoretically and that have been successfully employed in the literature in

a similar context, as reviewed in
✂
7.1.1. Following Ferson and Harvey (1991) who used

a similar set of risk factors to study predictable components of stock and bond returns,

it cannot be claimed that these factors uniquely pick up all relevant fundamental and

macroeconomic risks. These variables could well represent a joint approximation for a

set of unobserved variables that influence asset returns. However, the chosen factors

are theoretically appealing. They each have been previously documented to capture

different aspects of systematic risk.

In order to work with a set of independent variables of the same length, the beginning

of the sample period is set to the earliest date for which historical pricing data for all

eighteen DJ Stoxx
�

sectors is available (as outlined in
✂
2.1, Stoxx Ltd. redefined its
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sector classification in 2004, which led to the introduction of three new sectors whose

histories are shorter than for the remaining market segments). The sample spans a period

of 683 weekly excess return observations from 8 January 1992 to 2 February 2005. All

sector returns, as well as the proposed macroeconomic and fundamental factor series,

are obtained from Thomson Financial Datastream.

7.3.1 Macroeconomic risk variables

The choice of macroeconomic factors is based on previous empirical findings, which

demonstrate that the corresponding risk premia are significantly different from zero. The

theoretical reasons behind the selection of macroeconomic factors can be summarized as

follows.

7.3.1.1 European term structure

The term structure represents one of the most widely used variables to reflect systematic

changes in the state of the economy. It is usually defined as the weekly change in the

difference between the yield of a 10-year Treasury bond and a 3-month Treasury bill.

This factor is chosen to pick up risks that are reflected by a changing shape of the yield

curve, as proposed, among others, by Chen et al. (1986), Ferson and Harvey (1991)

or Johnson and Sakoulis (2003). Changes in the slope of the yield curve capture both

changes in the set of investment opportunities and changes in inflation expectations,

which are partly driven by growth expectations. With a focus on pan-European industry

portfolios in this thesis, the term structure variable (TS) is derived by European interests

rates. These are approximated by the yield of a 10-year German government bond and

a European money market rate. Until 18 November 1992 the latter is approximated by

the German money market rate, thereafter by the 3-month Euro rate.

The term structure variable is highly correlated both with changes in German bond

yields (ρ = 0.60) and changes in European money market rates (ρ = −0.64). To avoid

problems related to multicollinearity, TS is the only interest rate variable that is included

in the set of employed risk factors.

7.3.1.2 Oil price

Given the global economy’s dependence on oil as a major energy resource, fluctuations

in the price of oil can be expected to have an effect on security prices, as shown, for

example, by Jones and Kaul (1996). Hence, the oil price constitutes another factor that

is typically included in the set of systematic risk factors (see, for example, Chen et al.

1986; Hamao 1988). The OIL series used here is defined as weekly differences in the

logarithm of the crude oil-brent 1-month forward contract.

7.3.1.3 Dollar

Exchange rate risks have been successfully documented to be priced in international

security markets. The results of Dumas and Solnik (1995), among others, support

the existence of a premium for foreign exchange risks. Even though the euro was not
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introduced as a common European currency until 1999, markets started to price the

effect of a common exchange rate much earlier. This anticipation was mainly driven by

the economic convergence across Europe (cf. Brennan et al. 2000). Therefore, a synthetic

dollar to euro time series is chosen as common risk factor, where FX denotes the series

of corresponding log-returns.

7.3.2 Fundamental risk variables

The selection of fundamental factors is motivated by the Fama and French (1993) three-

factor model. Based on the concept of factor mimicking portfolios, the Fama-French

model incorporates, in addition to a market factor, a size factor as well as a factor that

measures the spread between value and growth. The idea behind mimicking portfolios

is to construct portfolios in a way such that their returns mimic a specific factor. For

example, a mimicking portfolio for the size factor can be obtained by sorting all eligible

stocks by their market capitalization in a first step. Based on its respective rank each

stock is assigned to one of five portfolios, where the smallest and largest stocks form

portfolios 1 and 5, respectively. The return spread between the highest and lowest ranked

portfolio represents the return of the size mimicking portfolio, which can be employed as

a proxy for a common size factor (cf. Chan et al. 1998). Instead of calculating proprietary

factor mimicking portfolios, return differences between corresponding indices, calculated

by professional index providers such as Stoxx Ltd. or MSCI, for example, can be relied

upon as respective proxies.

7.3.2.1 Size

The size factor (SIZ) to be used in the following, is defined as the difference between

the log-returns of the DJ Stoxx
�

Total Market Index (TMI) Large 200 index and the

DJ Stoxx
�

TMI Small 200 index. Stoxx Ltd. publishes three so-called size indices. The

Large 200 index covers the 200 largest stocks as ranked by free-float market capitalization

of the DJ Stoxx
�

TMI universe. The index covers 95% of the total market capitalization

of all stocks that are traded on the main exchanges in the UK, Switzerland, Denmark,

Iceland, Norway, Sweden and the Eurozone ex Slovenia. The Medium 200 index covers

the next-largest 200 companies, and the Small 200 index again the next-largest 200

companies of the DJ Stoxx
�

TMI universe. All indices are weighted by the free-float

market capitalization of the index constituents. The index composition as well as the

weights are reviewed quarterly; for more details, see Stoxx Ltd. (2007).

7.3.2.2 Value-growth-spread

Analogously to the size factor, the value-growth risk factor (V GS) is derived as the

difference between the log-returns of the DJ Stoxx
�

TMI Value and the DJ Stoxx
�

TMI Growth index. Stoxx Ltd. offers these two so-called style indices, which are also

based on the DJ Stoxx
�

TMI universe. The style characteristics of a stock depend on

six factors: projected and trailing price to earnings ratio, projected and trailing earnings

growth, price to book ratio and dividend yield. The index composition is reviewed semi-
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annually with the weightings being reviewed quarterly; see Stoxx Ltd. (2005) for more

details.

As the history of these two indices only goes back to 30 June 1997, V GS is an as-

sembled series: prior to inception of the two DJ Stoxx
�

style indices, the value-growth-

spread is proxied by the difference between the log-returns of the Frank Russell 1000

Value and the Frank Russell 1000 Growth index. Comparable to the DJ Stoxx
�

style

indices for European stock markets, the objective of the two Frank Russell indices is to

give a comprehensive picture of value and growth stocks for a universe of the 1000 U.S.

common stocks with the highest market capitalization. The style index membership is

determined by ranking each stock in the Russell 1000 universe by their respective price

to book ratio and their projected long-term growth. The indices are reconstituted on a

yearly basis; more details on the methodology are provided by Russell Investment Group

(2007).

Following this procedure, the value and growth indices, from which the time series

of the V GS factor is derived, refer to different regions. However, during the period for

which weekly style returns are available for both European and U.S. markets, the corre-

lation between the respective value (growth) returns is as high as 0.76 (0.73). Therefore,

under the assumption that style performance in different regions — particularly in the

U.S. and Europe — is highly correlated, the chosen procedure can be considered feasible.

7.3.3 The market factor

Given the importance of the market portfolio as a measure of aggregate wealth as indi-

cated by the CAPM (cf.
✂
6), a market factor is typically included as a central risk factor

in the context of a multifactor pricing model. Even though the goal of this chapter is

to analyze the time-varying impact of macroeconomic and fundamental factors on Eu-

ropean industry portfolios, the consideration of a non-macroeconomic, non-fundamental

equity market factor is economically plausible: as stock prices respond very quickly to

new information, aggregate market returns can be expected to reflect additional infor-

mation that is not yet captured by the factors above (cf. Chen et al. 1986).

As illustrated in Table 7.2, the excess log-returns of the DJ Stoxx
�

Broad index, which

serve as a proxy for the overall market throughout this thesis, are highly correlated with

some of the chosen macroeconomic and fundamental risk factors. A common approach

to assure that the set of considered risk factors is reasonably independent is to define a

so-called residual market factor. This factor measures market returns after eliminating

the effects of the macroeconomic and fundamental factors. Brennan et al. (2000), for

example, regress the series of market returns on the set of the remaining risk factors

by using standard OLS. The obtained disturbance terms are then used as the residual

market factor.

As a means to avoid any look-ahead bias, in this chapter the residual benchmark factor,

BMR, is derived as the series of one-step ahead prediction errors. These are obtained

from an auxiliary regression with time-varying coefficients modeled as individual random

walks (cf.
✂
3.6.1.1). In order to use the Kalman filter for estimation purposes, the
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auxiliary regression is stated in state space form with observation equation

R0,t = β01,tV GSt + β02,tSIZt + β03,tTSt + β04,tOILt + β05,tFXt + ǫ0,t,

ǫ0,t ∼ N(0, σ2
0), (7.15)

where R0,t denotes excess returns on the DJ Stoxx
�

Broad benchmark index. The set

of five state equations is given by

β0k,t+1 = β0k,t + η0k,t, η0k,t ∼ N(0, σ2
η0k), (7.16)

for k = 1, . . . , 5. In accordance with the definition of one-step ahead prediction errors,

v†t , given in (3.83), the residual benchmark series is defined as

BMRt := v†t , (7.17)

for t = d+ k+ 1, . . . , T , where d refers to the number of diffuse state elements. In order

to receive a series BMR that is of length T, an extended history of 735 observations

with starting date 9 January 1991 is employed for estimating the system of equations

(7.15)–(7.16). That way, with t = −51, . . . , 683, the series of one-step-ahead predic-

tion errors obtained in (7.17) contains 735 − k − d elements of which the last 683 are

taken as residual market factor series BMR. The estimation results are summarized in

Table 7.3. As illustrated by the estimated R2, only 57% of the variation of the excess

benchmark returns are explained by the chosen macroeconomic and fundamental factors.

The remaining unexplained information is captured by the generated BMR series.

7.3.4 Summary statistics

Summary statistics for the set of chosen risk factors are given in Table 7.4. As illustrated

by the second column, with the exception of the size factor, all reported mean values

are not significantly different zero. For the size factor, the null hypothesis of a zero

mean can be rejected at the 5% significance level. For reasons of parsimony, without

having to construct zero mean factors as defined in (7.2), the first moment assumption

made in (7.7) is considered to hold at least approximately. According to the estimated

annualized standard deviations, the macroeconomic factors are on average more volatile

than the residual benchmark and fundamental factors. In columns 4–9, the risk factors’

autocorrelations for different lags are displayed; the last column shows the test statistic

for the Ljung-Box test of no autocorrelation. While the BMR factor displays elevated

autocorrelations for the first two lags, the two fundamental factors show elevated auto-

correlations at the first three lags. For all three equity market related factors, the Q-test

Table 7.2: Correlations between the DJ Stoxx � Broad index and the chosen macroeco-
nomic and fundamental risk factors (8.1.1992–2.2.2005).

V GS SIZ TS OIL FX

DJ Stoxx
�

Broad −0.27 0.56 0.10 0.01 0.40
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Table 7.3: Parameter estimates for auxiliary regression (9.1.1991–2.2.2005).

This table reports the estimated parameters for the auxiliary Kalman filter regression used to
generate the series of the residual market factor BMR. All parameters and test statistics are
significant at the 1% level.

σ2

0 × 104 σ2

η01 × 104 σ2

η02 × 104 σ2

η03 × 104 σ2

η04 × 104 σ2

η05 × 104

2.72 12.23 32.84 1.07 0.15 10.84

log L BIC R2 JBa Q(12)b LM(6)c

1906.1 −5.13 0.57 252.81 36.25 19.74

aJB-statistics is the Jarque-Bera statistic for testing normality. The relevant critical values
at the 95% (99%) level are 5.99 (9.21).

bQ(l) is the test statistic of the Ljung-Box portmanteau test for the null hypothesis of no
autocorrelation in the errors up to order l. In a structural model, the Q-statistic is asymptot-
ically χ2 distributed with l − w − 1 degrees of freedom where w denotes the total number of
estimated parameters (Harvey 1989, p. 259).

cLM(l) is the LM -statistic of Engle’s ARCH test for the null hypothesis of no ARCH effects
up to order l. The test statistic is asymptotically χ2 distributed with l degrees of freedom. The
relevant critical values at the 95% (99%) level are 12.59 (16.81).

indicates significant autocorrelation up to order 12. In contrast, neither the oil price

nor the exchange rate factor exhibit signs of serial autocorrelation. The result for the

term structure factor is mixed: while no autocorrelation is detected at low lag orders,

the Q(12)-statistic indicates significant autocorrelation at the 5% level. Overall, these

results are in line with the levels of autocorrelation found in similar sets of risk factors,

as documented, for example, by Chen et al. (1986) or Ferson and Harvey (1993).

An important aspect in selecting the explanatory variables is to ensure that they

do not systematically move together. The absence of multicollinearity is a prerequisite

to determine the individual contributions of the various factors to overall risk, and to

estimate the unknown parameters with the required degree of precision. A common

rule of thumb for ruling out the presence of severe multicollinearity is to check whether

the R2 from the estimated model is greater than the individual correlations between

the set of regressors (cf. Alexander 2001,
✂
A.4.1). Table 7.5 displays contemporaneous

correlations between the risk factors for different time periods. Panel A covers to full

sample from 8 January 1992 to 2 February 2005. The remaining panels refer to four

subperiods. The first break takes place 15 February 1995. This date represents the end

of the formation period and the beginning of the out-of-sample period, which is chosen

to be of length 520 observations or ten years. The out-of-sample period itself is broken

into three subsamples according to different market regimes: Panel C reaches to the

end of the dotcom bubble, which took off at the end of the 1990s; Panel D covers the

subsequent bear market whose end is marked by the low point in the DJ Stoxx
�

Broad

as observed on 12 March 2003; and Panel E refers to the market recovery that began

thereafter.

The risk factors are only mildly correlated both over the entire sample and across

subperiods. For most factors, the pairwise correlation is around 0.1 or lower. For
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Table 7.4: Summary statistics for the set of risk factors (8.1.1992–2.2.2005).

µa σb ρ1 ρ2 ρ3 ρ4 ρ5 ρ12 Q(12)c

BMR 0.03 (0.68) 13.14 0.14 0.13 0.02 0.02 0.03 −0.08 33.45 (0.01)

V GS 0.03 (0.52) 9.73 0.03 0.10 0.13 0.03 0.02 0.04 81.54 (0.00)

SIZ 0.11 (0.04) 9.80 −0.11 0.11 0.15 0.02 −0.01 0.06 46.70 (0.00)

TS 0.71 (0.14) 90.29 0.00 0.03 0.11 0.00 0.02 0.02 25.09 (0.01)

OIL 0.14 (0.39) 29.51 −0.02 0.04 0.03 −0.03 0.03 0.03 12.98 (0.37)

FX −0.01 (0.82) 10.06 0.01 −0.02 0.00 0.05 0.08 −0.08 14.39 (0.28)

aThe mean is expressed in percentage terms. Figures in parentheses denote p-values for a
simple t-test of the null hypothesis of a zero mean.

bThe standard deviation is expressed in annualized percentage terms.
cQ(l) is the test statistic of the Ljung-Box portmanteau test for the null hypothesis of no

autocorrelation in the errors up to order l. The Q-statistic is asymptotically χ2 distributed
with l degrees of freedom. Figures in parentheses denote p-values.

the full sample, the highest correlations occur between SIZ and FX (−0.204) and

between SIZ and V GS (−0.227). This indicates that the outperformance of small caps is

associated (i) with a falling dollar, and (ii) with value outperforming growth. The highest

correlation coefficients are measured for Panel E, which is based on fewer observations

than the other subperiods. During this time, the exchange rate factor’s correlation with

the value-growth-spread (−0.370) and the term structure (−0.385) is elevated. Overall,

the observed pairwise correlations indicate that the selected risk factors are far from

being excessively collinear, which suggests that none is dispensable.

7.4 Empirical results

Employing the risk factors defined above together with the conditional multifactor model

given by (7.6)–(7.10) implies the following data-generating process for the set of excess

sector returns, Ri,t. The observation equation can be written as

Ri,t = βi1,tBMRt + βi2,tV GSt + βi3,tSIZt + βi4,tTSt + βi5,tOILt

+ βi6,tFXt + ǫi,t, ǫi,t ∼ N(0, σ2
i ), (7.18)

for i = 1, . . . , 18. The state equation is given as

βi,t+1 = βi,t + ηi,t, ηi,t ∼ N(0,Q), (7.19)

where βi,t+1 and ηi,t are 6 × 1 vectors of states and state disturbances, respectively;

Q = diag(σ2
ηi1, . . . , σ

2
ηi6) is the variance term of state errors. With reference to (7.11)

we are ultimately interested in the factor loadings βi,t−1, which are based only on

information available at date t − 1. Hence, filtered state estimates as defined in (3.13)

serve as time series estimates of time-varying factor loadings.

In order to assess the relative superiority of the proposed dynamic specification with

conditional factor loadings modeled as individual random walks, three alternative models
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Table 7.5: Risk factor cross-correlations.

This table reports the estimated contemporaneous correlations between the risk factors for
different time periods. Panel A covers to full sample from 8 January 1992 to 2 February 2005.
The remaining panels refer to four subperiods: the first break takes place at 15 February 1995
representing the end of the formation period and the beginning of the out-of-sample period
(520 obsrevations). The out-of-sample period itself is broken into three subsamples according
to different market regimes: Panel C reaches to end of the TMT bubble, Panel D covers the
subsequent bear market, and Panel E refers to the market recovery that began thereafter.

Symbol BMR V GS SIZ TS OIL FX

A. 8 January 1992–2 February 2005 (t = 1, . . . , 683)

BMR 1.000

V GS −0.024 1.000

SIZ −0.023 −0.227 1.000

TS −0.011 −0.020 −0.047 1.000

OIL 0.035 0.020 −0.009 −0.007 1.000

FX 0.007 0.036 −0.204 −0.104 −0.001 1.000

B. 8 January 1992–15 February 1995 (t = 1, . . . , 163)

BMR 1.000

V GS 0.024 1.000

SIZ 0.093 −0.235 1.000

TS −0.011 −0.097 −0.222 1.000

OIL 0.117 0.105 0.009 −0.012 1.000

FX −0.067 0.022 −0.240 0.037 −0.017 1.000

C. 22 February 1995–8 March 2000 (t = 164, . . . , 427)

BMR 1.000

V GS −0.027 1.000

SIZ −0.010 −0.255 1.000

TS −0.007 0.104 −0.196 1.000

OIL 0.036 0.011 0.028 0.000 1.000

FX 0.009 0.055 −0.206 −0.135 0.005 1.000

D. 15 March 2000–12 March 2003 (t = 428, . . . , 584)

BMR 1.000

V GS 0.000 1.000

SIZ −0.010 −0.173 1.000

TS 0.039 −0.121 0.286 1.000

OIL 0.021 −0.040 0.072 0.122 1.000

FX 0.006 0.053 −0.155 −0.141 −0.085 1.000

E. 19 March 2003–2 February 2005 (t = 585, . . . , 683)

BMR 1.000

V GS −0.156 1.000

SIZ −0.225 0.110 1.000

TS −0.169 0.006 −0.002 1.000

OIL −0.149 0.233 0.018 −0.099 1.000

FX 0.112 −0.370 −0.041 −0.385 0.020 1.000
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are considered. Each of the alternative specifications is based on the simple factor model

Ri = βi1BMRt + βi2V GSt + βi3SIZt + βi4TSt + βi5OILt

+ βi6FXt + ǫi,t, ǫi,t ∼ N(0, σ2
i ). (7.20)

The first alternative model employs recursive least squares (RLS). The factor model

in (7.20) is estimated repeatedly using expanding subsets of the sample. As outlined

in
✂
7.3.4, the first 163 observations represent the formation period, on which the first

estimate of the vector of factor loadings, β̂i,163, is based. Adding the subsequent obser-

vation to the subset of data leads to an estimate of βi,164, adding the next observation

yields an estimate of βi,165, and so on. This procedure is repeated until the number of

observations in the subset grows to T = 682. This gives overall 520 estimates of ex-ante

factor loadings; the last one is computed on 26 January 2005 based only on information

up to this date.

The other two alternative models are based on rolling regressions with estimation

periods of one and five years, respectively. In the literature, factor models are most

commonly estimated using five years of data (cf. Campbell et al. 1997,
✂
5.1). In this

chapter, a one-year rolling period is chosen so that short-term effects can be captured

by simple OLS. In case of the one-year rolling regression (RR1) specification, (7.20) is

estimated using a sample spanning an estimation period from t− 51 to t. The sample is

rolled forward week-by-week for t = 163, . . . , 682 such that the 520-th loading is obtained

using data from 4 February 2004 to 26 January 2005. Analogously, for the five-years

rolling regression (RR5) setup the sample size is targeted at 260 observations. As before,

520 ex-ante estimates of the vector of factor loadings are generated. As the complete

data set contains only 683 weeks, the first 97 ex-ante instruments are generated based on

expanding samples consisting of less than 260 data points. The first estimate is available

for 15 February 1995 and is based on 163 observations. After 18 December 1996 all factor

loadings are based on individual samples that contain the respective previous five years

of weekly data.

Following the procedures described above, four different estimates of the 18×6 matrix

Bt of ex-ante factor loadings, denoted as B̂
KF

t , B̂
RLS

t , B̂
RR1

t and B̂
RR5

t , are obtained

for t = 163, . . . , 682. In a second step, these estimates will be employed as instruments

to estimate the corresponding risk premia in a cross-sectional setting according to (7.11).

Unless mentioned otherwise, all estimation procedures in this chapter have been carried

out using Ox 3.30 by Doornik (2001). For all Kalman filter based computations, Ox has

been used together with the package SsfPack 2.3 by Koopman et al. (1999).

The remainder of this section presents the empirical results and is organized as fol-

lows: Subsection 7.4.1 summarizes the estimation results and compares the various factor

loading series. Subsection 7.4.2 compares the out-of-sample forecasting accuracy of the

Kalman filter based sensitivities with that of the proposed alternatives. Subsection 7.4.3

analyzes whether the superior forecasting performance of the Kalman filter based speci-

fication can be exploited either from a risk management or from a portfolio management

perspective.
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7.4.1 Estimation of factor loadings

The estimation results for the fully specified Kalman filter based model in (7.18)–(7.19)

are provided in Table 7.6. The estimated hyperparameters are broadly significant. While

the market factor is significant for all sectors except for Travel & Leisure, both funda-

mental factors are significant at the 1% level for all sectors. With regard to the set of

macroeconomic factors it can be observed that not all factors are relevant for all sectors.

The term structure factor, which is supposed to pick up systematic risks that are re-

lated to a changing slope of the yield curve, turns out to be significant for thirteen out of

eighteen sectors. The estimated sensitivities to changes in the oil price are significantly

different from zero for twelve sectors. Surprisingly, the oil price does not represent a

systematic risk factor for the energy-related Chemicals, Utilities and Travel & Leisure

sectors. This leaves the latter as the only sector with only four significant factors. The

overall most important macroeconomic factor in explaining the sector return series over

time is the exchange rate. With the exception of Healthcare, Personal & Household

Goods and Telecommunications, the dollar is significant for all sectors. As measured by

the adjusted coefficient of determination, the proposed specification with the selected

set of explanatory variables explains between 65% and 93% of the variance of sectors.

The lowest values of R̄2 are observed for Travel & Leisure and the defensive sectors

Food & Beverages, Healthcare, Oil & Gas and Utilities. The model is found to be more

appropriate for financials and non-financial cyclicals than for defensives and TMT.

Regarding the estimation results of the alternative least squares based multiple factor

specifications given by (7.20), the finding that the market and fundamental factors are

more significant than the macroeconomic factors is only partially maintained. For the

RLS specification, both the market and the size factor are significant for all eighteen

sectors. With the exception of Construction and Healthcare, the value-growth spread is

significant at least at the 10% level for all sectors. In contrast to the observation made

above, the term structure factor also represents a systematic risk factor for sixteen sec-

tors. The exchange rate factor is only significantly different from zero for Automobiles.

Changes in the oil price represent the second most important macroeconomic factor. As

expected the explanatory power is lower than in case of the more flexible Kalman filter

based model: as measured by the adjusted R2 between 49% (Food & Beverages) and

78% (Banks) of the sector variance can be explained by movements of the chosen sys-

tematic risk factors. The estimation results for the rolling RR1 and RR5 specifications

are summarized by reporting the respective ranges of estimated coefficients. It can be

seen that all factors are significant for each sector at some stage. This supports the

hypothesis of time-varying factor sensitivities. For a detailed summary of the estimated

parameters of the alternative least squares based multifactor models, see Table C.7 in

the appendix.

Examples of the paths of Kalman filter based factor loadings are illustrated in the

following set of figures. All charts show filtered state estimates so that large outliers

may occur at the beginning of the respective series of factor loadings. The two panels

in Figure 7.1 display the respective time-varying exposure of Technology and Food &

Beverages to the value-growth spread. Technology’s value-growth beta became clearly

negative during the bubble and its subsequent aftermath, which reflects the growth
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Figure 7.1: V GR factor loadings for Technology and Food & Beverages.

characteristics of the sector. As can be seen from Panel (b), the market perception of

whether the Food & Beverages sector has more growth or more value attributes changes

over time. Four distinct regimes can be identified. Until October 1997, the V GR beta of

the sector moves around zero. Over the subsequent two years, when the whole market

rose and growth outperformed value, the beta becomes slightly negative. After the

market peaked in March 2000, the V GR beta of Food & Beverages turns positive. This

is intuitive given the sector’s defensive characteristics: market participants exited the

overcrowded and expensive growth segments of the market and looked for cheaper and

safer alternatives such as Food & Beverages. This led to a rising V GR beta. At the

end of the sample, the estimated sensitivity returns toward zero, which means that the

value-growth spread no longer represents a systematic risk factor of the sector. The

observation that the V GR beta is only significantly different from zero around the TMT

bubble holds for other sectors as well.

Figure 7.2 displays the time-varying size exposure for Industrials and Healthcare.

While the Industrials sector index is comprised of many small caps, the Healthcare sector
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Figure 7.2: SIZ factor loadings for Industrials and Healthcare.
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Figure 7.3: TS factor loadings for Automobiles and Insurance.

is dominated by large cap pharmaceutical stocks, such as GlaxoSmithKline, Novartis

and Sanofi-Aventis. Therefore, size beta of Healthcare can be expected to be higher.

At the first glance, both series mostly move in positive territory, which is representative

for all sectors. This means that over the entire estimation period returns are usually

positively related to an outperformance of large caps over small caps. As can be seen

from Panel (a), the size beta of the Industrials sector occasionally becomes negative and

rarely takes on values greater than 0.5. This is in contrast to the average size beta of

Healthcare, which moves around unity as shown in Panel (b).

Changes in the slope of the yield curve are generally assumed to capture changes in

the state of the economy and would naturally be expected to have a systematic impact

on cyclical sectors. The two panels in Figure 7.3 illustrate the paths of TS loadings for

the non-financial cyclical sector Automobiles and the financial cyclical Insurance sector,

respectively. For both sectors, the sensitivities alternate between positive and negative

territory: at some stages of the cycle the corresponding sectors rise when the yield curve
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Figure 7.4: OIL and V GR betas for the Oil & Gas sector.
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Figure 7.5: FX factor loadings for Utilities and Industrials.

steepens, while at other times the returns are positively related to a flattening of the

curve.

For the Oil & Gas sector, the loadings on the oil price are positive over the complete

out-of-sample period (t=163,. . . ,683). This could be expected as the sales and earnings

of oil companies are directly linked to changes in the price of oil. This does not mean

that the systematic importance of the oil price factor is not changing over time. As

illustrated by the left panel of Figure 7.4, the OIL beta of the sector even decreases

toward zero after July 2001. At the same time, the sector’s V GR beta starts to pick up.

Between 2002 and 2003 the value-growth spread becomes relatively more important in

explaining the series of Oil & Gas returns than changes in the price of oil.

As indicated above, the US-dollar is found to be the most important systematic

macroeconomic risk factor. All sectors tend to be negatively related to a rising euro.

This observation is especially true for export-oriented industrial cyclical sectors such as

Industrials and Automobiles; it only holds to a lower degree for Utilities as shown by

Figure 7.5.

7.4.2 Out-of-sample forecasting performance

The estimation results above indicate that the sensitivities to the chosen multiple sys-

tematic risk factors are varying over time. As demonstrated in Chapter 6, the out-

of-sample forecasting accuracy of the estimated conditional betas can be evaluated and

compared to the proposed least squares based alternatives using the mean absolute error

(MAE) and mean squared error (MSE) criteria. Their definition is repeated here for

convenience:

MAEi =
1

T

T∑

t=1

|R̂i,t −Ri,t|, (7.21)

MSEi =
1

T

T∑

t=1

(R̂i,t −Ri,t)
2, (7.22)
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Table 7.7: Average out-of-sample errors across sectors for multiple factor models.

Mean absolute error (×102) Mean squared error (×104)

KF RLS RR5 RR1 KF RLS RR5 RR1

Average error 1.270 1.401 1.371 1.345 3.143 4.051 3.767 3.505

Average rank 1.00 3.67 3.00 2.33 1.00 3.89 3.06 2.06

for t = 164, . . . , 683 with T = 520 where R̂i,t represents the series of return forecasts for

sector i defined as

R̂i,t = β̂
′

i,t|t−1f t, (7.23)

The betas employed to generate the return forecasts for date t are based only on infor-

mation available at time t − 1. For all specifications, betas are predicted näıvely with

the respective latest estimate of beta being used as the corresponding one-step ahead

prediction. The series of factor realizations, f t, are assumed to be known with perfect

foresight, which represents a common modus operandi in empirical research to isolate

the impact of conditionality.

The resulting mean error measures are summarized in Table 7.7 which reports the

respective averages together with the corresponding average ranks each across all sectors

for all four employed specifications; for a detailed sectoral breakdown, see Table C.8 in

the appendix. For the sample under consideration, the Kalman filter based betas yield

the relatively best out-of-sample forecasts. For both error measures, the Kalman filter

based specification ranks first for all eighteen sectors. Compared to the least squares

alternatives, the mean absolute error is between 5.9% and 10.4% lower. When using the

mean squared error as evaluation criterion, the superiority of the Kalman filter based

betas becomes even more obvious: compared to the RLS, RR5 and RR1 alternatives,

the average MSE is 28.9%, 19.9% and 11.5% lower, respectively.

7.4.3 Practical relevance of time-variation in factor loadings

The results above indicate that the proposed dynamic specification, where conditional

betas are modeled as individual random walks estimated via the Kalman filter, pro-

duces the relatively most accurate estimates of time-varying factor loadings. This sub-

section examines whether the statistical superiority of the proposed methodology can

be exploited in practice, either in the pricing of risk or from a portfolio management

perspective.

7.4.3.1 Risk pricing

As outlined in Subsection 7.2.2, a common procedure to analyze how well the chosen

set of risk factors explains the cross-section of assets is to employ the Fama-MacBeth

cross-sectional regression approach. Based on the proposed set of explanatory variables,

(7.11) implies that the cross-section of sector returns follows a linear factor model of the
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following form:

Rt = λ1,tβ̂1,t−1 + λ2,tβ̂2,t−1 + λ3,tβ̂3,t−1 + λ4,tβ̂4,t−1 + λ5,tβ̂5,t−1

λ6,tβ̂6,t−1 + νt, for (7.24)

for t = 164, . . . , 683, with Rt and β̂1,t−1, . . . , β̂6,t−1 denoting 18 × 1 vectors of excess

sector returns and factor loadings, respectively. The factor loadings used as independent

variables have been estimated from one of the alternative time series regressions (KF,

RLS, RR5 or RR1) of excess sector returns on the set of explanatory variables given

by (7.18)–(7.20). Estimation of (7.24) for each date t of the out-of-sample period yields

a time series of associated risk premia λk,t, k = 1, . . . , 6, each of length 520.24 In

accordance with (7.12)–(7.14) the significance of the chosen risk factors is tested by

employing a t-test to the time series means of estimated risk premia.

The cross-sectional regression results are summarized in Table 7.8, where the coeffi-

cient averages together with the corresponding Fama-MacBeth t-statistics are reported.

To ascertain whether the proposed Kalman filter based conditional factor loadings are

relatively better in explaining sector pricing, the cross-sectional regressions have also

been conducted for the betas estimated by recursive least squares and by rolling OLS.

Table 7.8 is divided into four panels: Panel A covers the complete out-of-sample period

from 22 February 1995 to 2 February 2005; Panels B to D refer to the three subperiods of

observed bull market, bear market and market recovery regimes. Overall, there is only

little evidence that the multifactor model is better able to describe the cross-section of

returns when conditional Kalman filter based factor loadings are used as independent

variables. Over the entire estimation period, the average R̄2 is only slightly higher than

in case of the three alternative least squares specifications. The four different models

explain between 28.9% (KF ) and 28.0% (RR1) of the total cross-sectional variation of

excess sector returns. The only risk premium that is significantly different from zero

over the complete sample is estimated for the Kalman filter based TS factor.

Dividing the sample under consideration into three market-regime dependent subpe-

riods reveals that both the average ability to explain the cross-sectional variability and

the significance of estimated risk premia differ across subperiods. For the bull market

period (Panel B) the risk premium of the SIZ factor is significantly positive for all mod-

els. The sign on SIZ reflects the outperformance of large caps over small caps during

the dotcom bubble. Besides, for the KF and RR1 based factor loadings the risk pre-

mium of the TS factor is significantly negative at the 10% level. This means that during

24For each cross-sectional regression at a given date t, six parameters have to be estimated
with the dependent variable consisting of 18 data points only. Similar settings with comparable
degrees of freedom are commonly employed in the literature, see, for example, Chen et al.
(1986) who use 20 portfolios as dependent variables to estimate up to seven parameters in
the cross-section. Nevertheless, in order to check whether the conclusion to be drawn in this
subsection is sensitive to the dimension of the vector of dependent variables, (7.24) has also
been estimated using 37 sectors instead of the 18 supersectors employed throughout this thesis.
As the employment of a finer market segmentation leads to the same conclusion with respect
to the practical relevance of time-varying factor loadings, only the case with 18 supersectors
is discussed here; results of the Fama-MacBeth procedure using 37 sectors are available on
request.
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Table 7.8: Fama-MacBeth regression results I.

This table presents the estimation results for the Fama-MacBeth regressions where the regres-
sors are the out-of-sample factor loadings on the proposed set of explanatory variables. The
factor loadings have been estimated from one of the time series regressions of excess sector
returns on the set of explanatory variables as presented in

�
7.4.1. Average coefficients are

expressed as percent per week ×10. The number of cross-sectional regressions is 520 for each
model; t-statistics are reported in parentheses with the relevant critical value at the 95% (90%,
99%) level being −1.96 (−1.65, −2.59). Significant average coefficients are printed in boldface.
The last column reports average adjusted coefficients of determination.

Model BMR V GS SIZ TS OIL FX R̄2

A. Complete out-of-sample period (22 February 1995–2 February 2005)

KF 0.214 0.114 0.993 −12.041 0.321 −0.284 0.289

(0.186) (0.128) (1.268) (−1.694) (0.062) (−0.237)

RLS 1.030 0.152 1.099 19.764 3.356 0.492 0.284

(0.543) (0.099) (1.059) (0.519) (0.381) (0.180)

RR5 1.214 0.993 1.427 16.663 1.700 0.980 0.282

(0.755) (0.754) (1.448) (0.781) (0.223) (0.475)

RR1 −0.675 0.524 0.912 −7.340 −1.292 −0.316 0.280

(−0.553) (0.610) (1.152) (−0.813) (−0.331) (−0.273)

B. Bull market subperiod (22 February 1995–8 March 2000)

KF 0.730 −2.000 2.706 −18.968 0.401 −1.132 0.209

(0.490) (−1.464) (2.346) (−1.829) (0.052) (−0.624)

RLS 3.113 −3.797 3.755 58.609 21.553 3.575 0.196

(1.254) (−1.503) (2.680) (1.229) (1.488) (0.857)

RR5 1.754 −1.375 4.358 48.533 12.872 2.164 0.215

(0.769) (−0.625) (3.205) (1.320) (0.985) (0.635)

RR1 −0.483 −1.538 3.056 −23.658 −1.853 −1.515 0.189

(−0.324) (−1.234) (2.632) (−1.756) (−0.323) (−0.930)

C. Bear market subperiod (15 March 2000–12 March 2003)

KF −2.923 3.322 −2.012 −6.410 −1.153 1.093 0.420

(−1.127) (1.907) (−1.360) (−0.434) (−0.126) (0.489)

RLS −6.521 6.264 −2.647 4.862 −25.850 −5.049 0.441

(−1.534) (2.399) (−1.160) (0.055) (−1.723) (−0.953)

RR5 −3.093 5.020 −2.569 −12.368 −14.200 −0.227 0.419

(−0.938) (2.256) (−1.210) (−0.406) (−1.217) (−0.067)

RR1 −3.658 3.948 −2.742 6.247 0.181 −0.970 0.406

(−1.290) (2.137) (−1.774) (0.365) (0.026) (−0.446)

D. Market recovery subperiod (19 March 2003–2 February 2005)

KF 3.813 0.661 1.187 −2.502 2.444 −0.205 0.296

(2.026) (0.897) (0.891) (−0.276) (0.239) (−0.104)

RLS 7.449 0.989 −0.044 −60.188 1.151 1.057 0.268

(2.479) (0.992) (−0.029) (−0.971) (0.141) (0.306)

RR5 6.603 0.919 −0.053 −22.285 −2.879 −0.264 0.244

(2.563) (1.116) (−0.039) (−0.921) (−0.411) (−0.104)

RR1 3.546 0.591 0.989 14.628 −2.134 3.920 0.319

(1.613) (0.838) (0.841) (0.998) (−0.273) (1.600)



150 7 A Kalman filter based conditional multifactor pricing model

this subperiod sectors that performed well whenever the yield curve flattened have been

preferred. While the model explains only around a fifth of the total variation during

the bull market, it captures between 40.6% (RR1) and 44.1% (RLS) of total variation

during the subsequent period of market decline (Panel C). In this market environment

the V GS factor is positively priced for all models, which reflects the outperformance

of value over growth between March 2000 and March 2003. For the RLS and RR1

based betas, both the OIL and the SIZ factor are also found to be significant. After

the end of the bear market the residual market factor BMR dominates. In accordance

with Panel D the associated risk premium is significantly positive for all models except

for the RR1 specification. Following previous market phases, where either large caps

or value assets have been en vogue, market participants started to focus on classical

market beta exposure to benefit from the market recovery. For this subperiod, the cho-

sen systematic risk factors account for between 24.4% (RR5) and 31.9% (RR1) of total

cross-sectional variation. Notably, the risk premium for the FX factor is not significant

in any subperiod. The OIL factor is only significantly priced by the RLS model in a

single subperiod (bear market). Re-estimation of the Fama-MacBeth regressions with-

out these two factors leaves the major findings unaltered; a detailed summary of the

corresponding estimation results is given in Table C.9 in the appendix.

The findings above indicate that the statistical superiority of the Kalman filter based

factor loadings does not lead to a significant improvement in the pricing of risk. When

factor loadings are estimated by one of the alternative least squares specifications, similar

results are obtained with regard to both the identification of significant risk premia, and

the degree to which the cross-sectional variation of excess sector returns can be explained.

7.4.3.2 Portfolio management perspective

This subsection analyzes whether portfolios built on Kalman filter based return forecasts

would have been more profitable on average than alternatively constructed portfolios.

The respective hypothetical performances are compared using a backtesting procedure.

Backtests are widely established in the financial community to test models and in-

vestment strategies prior to implementation (cf. Campbell et al. 2007). All backtests

presented here have been performed using R (R Development Core Team 2005) in com-

bination with the backtest package, version 0.1-1, by Campbell et al. (2006b).

In a first step, so-called rank scores are assigned to the assets used to construct the

portfolios. These scores are based on R̂i,t, the series of return forecasts computed in
✂
7.4.2 for the different modeling techniques according to (7.23) for t = 164, . . . , 683.

For each forecasting period, scores from 1 to 18 are assigned to each sector, where the

sector with the respective lowest predicted return ranks first. Following the outline

by Campbell et al. (2006a) these scores are used to split the return forecasts into six

quintiles, for which the average real returns are computed for each modeling approach.

The spread between the observed average future returns for the highest and the lowest

quintile represents a simple measure for the accuracy of the different sector rankings.

Table 7.9 summarizes the results for all four models.

For the return predictions based on Kalman filter derived factor loadings, the average

return for the lowest quintile, i.e. the mean weekly forward return for sectors with a



7.4 Empirical results 151

Table 7.9: Summary results of simple backtests.

Model low Q2 Q3 Q4 Q5 high spread

KF −0.0113 −0.0031 0.0001 0.0026 0.0050 0.0133 0.0246

RLS −0.0106 −0.0027 −0.0005 0.0027 0.0053 0.0124 0.0230

RR5 −0.0107 −0.0031 0.0000 0.0022 0.0052 0.0130 0.0237

RR1 −0.0112 −0.0025 0.0006 0.0020 0.0050 0.0128 0.0240

rank score in the lowest quintile, is −1.13%. Together with an average return of 1.33%

for sectors in the highest quintile, this results in an average weekly spread of 2.46%.

This suggests that on average the high-ranked sectors perform significantly better than

the sectors in the lowest quintile. Positive spreads, albeit of smaller magnitude, are

also observed for the least squares based alternatives. Compared to the conditional

return predictions, the spread is between six (RR1) and sixteen (RLS) basis points

lower per week. The results of this simple backtest indicate that portfolios built on

return forecasts that utilize conditional factor loadings would have performed better

than portfolios alternatively built on least squares based return predictions.

While this procedure yields a simple measure for the average weekly performance over

the entire sample period, it does not take into account how the different portfolios de-

velop over time. For this purpose, a backtesting procedure referred to as natural backtest

is employed. Following Campbell et al. (2006a) a natural backtest is implemented as

follows: in the starting period an equally weighted long-short portfolio is constructed by

investing in the top three sectors and shorting the three sectors in the lowest quintile.

Subsequently, the portfolio is reviewed weekly and rebalanced according to the latest

quintile changes, i.e. a long (short) position in a sector that has left the top (bottom)

quintile is closed and new positions are entered. According to this procedure, for each

modeling approach 520 portfolios are formed over the out-of-sample period between

22 February 1995 and 2 February 2005.

Figure 7.6 displays the evolution of the Kalman filter based quintile portfolios and the

corresponding spread return, which is defined as the difference between the top and the

bottom quintile portfolio. The spread return represents a central output of a natural

backtest. As illustrated in Panel (a) the cumulative performance of the higher quintile

portfolios moves on a higher path than the cumulative performance of the lower quintile

portfolios. In the first three years of the out-of-sample period, the six quintile portfolios

move closely together. After 1998, when world equity markets entered the final stages

of the bull market, the individual quintile spreads began to widen. This observation

particularly holds for the spread between the highest and the lowest quintile. In the

period between the market peak in 2000 and the end of the bear market in 2003, the

widening accelerates even further. Panel (b) shows the weekly spread return. With a

few exceptions, the spread return is positive. Three volatility regimes can be observed:

following a period of relatively low spread dispersion, volatility increases and peaks in

2000. Since then the observed spread dispersion consistently decreases back toward pre-

1998 levels. Similar patterns can be observed for the portfolios alternatively built on

least squares based factor loadings; for an illustration, see Figure B.5 in the appendix.
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Figure 7.6: (a) Cumulative quintile and (b) spread returns for the KF portfolios.

Summary results for all conducted natural backtests are presented in Table 7.10. The

mean spread returns in the second column correspond to the reported spreads for the

simple backtests above (cf. Table 7.9). The first piece of extra information that is re-

ceived by conducting a natural backtest is the standard deviation of spread returns,

which is reported in the third column. Compared to the alternative specifications, the

higher average spread return offered by utilizing Kalman filter based betas does not

come at the cost of a significant pick-up in volatility. Column 4 reports non-annualized

information ratios, defined as the ratio between the mean spread return and its stan-

dard deviation, as a measure for risk-adjusted returns. With an information ratio of

0.8542, the average risk-adjusted performance of the Kalman filter based portfolio is

slightly higher than the performance of any alternative portfolio. With perfect foresight

of the systematic risk factors, the portfolio constructed using conditional random walk

betas would have led to an cumulative return of 1281% over the entire sample period.

As transaction costs are ignored and risk factors can only be predicted with a limited

degree of precision in the real world, this is only a hypothetical number. Nevertheless,

the reported total returns in column 5 can be employed to compare the relative perfor-

mance of the various modeling techniques. Other things being equal, the utilization of

Table 7.10: Summary results of natural backtests.

Model µ(spread)a σ(spread)b Information ratioc total returnd

KF 0.0246 0.0288 0.8542 12.81

RLS 0.0230 0.0275 0.8371 11.97

RR5 0.0237 0.0279 0.8501 12.34

RR1 0.0240 0.0289 0.8300 12.48

aµ(spread) is the mean spread return.
bσ(spread) is the standard deviation of spread returns.
cThe non-annualized information ratio is defined as µ(spread)/σ(spread).
dTotal return is defined as the cumulative spread return over the entire sample.
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Figure 7.7: (a) Cumulative KF spread return and (b) cumulative spread returns of the
alternative portfolios relative to the KF based portfolios.

conditional factor loadings to generate return forecasts results in long-short portfolios

that are characterized by both higher absolute and higher risk-adjusted returns.

In order to analyze how the performance of the Kalman filter based strategy relative to

that of the alternative least squares based strategies evolves over time, we look at relative

cumulative spread returns. The relative cumulative spread return of an alternative least

squares based long-short portfolio at date t for t = 164, . . . , 683, is computed as the

difference between its cumulative spread return and the KF cumulative spread return

at the same date. The left hand side of Figure 7.7 shows the KF cumulative spread

return, which is steadily growing over time. Panel (b) presents the relative cumulative

spread returns for the RLS, RR5 and RR1 based long-short portfolios, respectively.

It can be seen that during the low volatily regime at the beginning of the sample, all

relative cumulative spread return series move sideways around the zero line. In 1999,

the RR1 series reaches 20%, which means that this strategy has been temporally able to

outperform the KF strategy. At the end of 1999, the KF long-short portfolio started

to consistently outperform all alternative strategies. The sharpest relative gains are

observed for the last few months before the market peaked, and also in 2002 when

global equity markets collapsed.

The results in this section demonstrate the practical relevance of employing condi-

tional factor loadings from a portfolio management perspective. The analysis of long-

short portfolios reveals that the use of Kalman filter based factor loadings, which take

the time-varying nature of fundamental and macroeconomic systematic risks explicitly

into account, results in better return forecasts of pan-European sectors. The relative

performance of Kalman filter based long-short portfolios is analyzed over time by looking

at relative cumulative spread returns. It is found that the superior performance traces

back to the increased flexibility of conditional factor loadings, which particularly pays

off during more volatile market regimes.
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7.5 Concluding remarks

This chapter has explored the conditional nature of systematic influences on pan-

European industry portfolios. While factor models with multiple risk factors play a

dominant role in the modeling of risk and return, only relatively few approaches take

potential time-variation of factor sensitivities explicitly into account. The empirical anal-

ysis presented in this chapter models the loadings to multiple fundamental and macroe-

conomic common factors as individual stochastic random walk processes estimated via

the Kalman filter. The factors are chosen a priori in accordance with empirical findings

of the anomalies literature. In order to estimate factor risk premia in a cross-sectional

setting, the methodology proposed in this thesis combines the classical Fama-MacBeth

approach with the paradigm of time-varying betas.

In the first part of the empirical analysis, the out-of-sample forecasting accuracy of

the proposed conditional modeling approach is compared to that of various least squares

based alternatives. According to the selected error measures, the Kalman filter based

specification offers the best out-of-sample predictions of conditional betas for all sectors.

This confirms time-variation in the relationship between sector returns and the selected

systematic risk factors. In line with previous findings, the market risk factor and the

fundamental factors size and valuation turn out to have a bigger impact on pan-European

industry portfolios than common macroeconomic risk factors.

The second part of the empirical analysis addresses the practical relevance of explicitly

considering the conditionality of factor sensitivities. For the sample under consideration

the conclusion is mixed. From a risk management perspective, the findings derived by a

Fama-MacBeth regression procedure with conditional betas as instruments suggest that

the statistical superiority of Kalman filter based betas does not result in an improved

pricing of risk. On the other hand, from a portfolio management perspective the use of

conditional factor loadings is found to be of practical relevance. A backtesting procedure

that relies on the construction of long-short portfolios is employed to derive the empirical

results. Using out-of-sample estimates of conditional betas to compute return forecasts

over ten years, it is demonstrated that Kalman filter based conditional betas lead to

improved return forecasts of pan-European industry portfolios.

Overall, this chapter adds to the literature an empirical analysis that studies the

practical relevance of using time-varying factor loadings in a multifactor pricing model.

Methodologically, a Fama-MacBeth approach with conditional instruments is proposed.

The findings of this chapter lead to the conclusion that time-varying sensitivities carry

implications for the time series prediction of returns, and less so for the analysis of risk.

To further clarify the practical importance of time-varying betas, future research could

examine the modified Fama-MacBeth procedure in more detail. In order to increase the

dimension of the vector of dependent variables, single stock instead of sector returns

could be employed. Another interesting aspect would be a multivariate approach to the

introduced Kalman filter based multifactor model, where the equations for all sectors

are estimated simultaneously to make use of potential interrelationships between the

series under consideration.



Chapter 8

Conclusion and outlook

This thesis deals with the modeling of change in the context of widely established con-

cepts in finance. Advanced time series models are applied to analyze the time-varying re-

lationship between systematic risks and pan-European industry portfolios. Three major

research objectives are addressed: (i) to provide a notationally conformable introduction

to the econometric toolbox needed for an elaborate modeling of changing relationships

over time, (ii) to compare the different modeling techniques’ ability to characterize and

predict the time-varying nature of systematic beta risk as a stochastic process, and

(iii) to analyze the practical relevance of taking conditionality of factor sensitivities ex-

plicitly into account. This final chapter reviews the main results and points to possible

future directions to continue research connected to the findings presented in this thesis.

A sound theoretical foundation of how advanced time series techniques can be em-

ployed to model changing relationships over time constitutes a prerequisite to carry out

empirical research on the modeling of change. As we can choose from a wide spectrum

of available modeling techniques, the first step in conducting research is to decide on

how a problem should be approached. A general guide toward the selection and spec-

ification of a model is to look at the empirical stylized facts of the series of interest.

Chapter 2 introduces the set of weekly sector return series used throughout this thesis.

A review of the series’ major empirical properties illustrates why the paradigm of sta-

ble sensitivities has to be questioned: the distributions of the return series at hand are

found to be highly leptokurtic, the squared series are significantly autocorrelated, most

series exhibit a leverage effect and volatilities of different assets are linked to each other.

These empirical properties, especially with regard to the observed volatility clustering

and volatility co-movements, imply that the true degree of the linear association between

sector returns and systematic influences is not constant but changing over time. This

can be confirmed for all sectors by a formal testing procedure for structural breaks.

The stylized facts not only motivate the modeling of change, they also serve as a

guide to which modeling techniques might be relied upon. As a single model usually

cannot capture all identified distributional properties simultaneously, different models

are employed to capture different properties of a series. The finding of volatility clus-

tering points toward the employment of conditional heteroskedasticity modeling, a key

concept in many areas of finance and financial econometrics that can be used to model
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conditional regression coefficients in an indirect way. Within the versatile class of het-

eroskedasticity models, many different specifications that explicitly allow for particular

empirical properties, such as fat-tailed distributions, leverage effects or volatility co-

movements, are considered. As an alternative to the indirect approach, time-varying

relationships can be modeled and predicted directly: in the context of a state space

framework, the path of beta either emerges as a hidden continuous process estimated

via the Kalman filter, or as a hidden discrete process in a Markov regime switching

framework.

In the theoretical part of this thesis, the methodology to analyze the time-varying

relationship between common systematic risk factors and sector returns is introduced.

The econometric toolbox provided in Chapters 3–5 equips the reader with a range of

contemporary time series techniques of different, and often non-economic, origin: Gaus-

sian state space models and the Kalman filter, Markov regime switching models, and

linear and nonlinear GARCH models, and stochastic volatility models. Although choices

had to be made with respect to both breadth and depth in deciding which econometric

techniques should be employed in the course of this thesis, many features, reaching from

basic representations, estimation and path-tracking procedures to selected extensions,

are discussed. Linkages between the different concepts are emphasized: the introduc-

tion of linear Gaussian state space model and the Kalman filter lays the ground for

the strongly connected Markov regime switching and stochastic volatility models. The

presentation of the various concepts in a unified notational framework hopefully encour-

ages empirical researchers with a focus on finance-related disciplines — practitioners

and academics alike — to utilize these advanced time series concepts to conduct fruitful

empirical research in a field that is characterized by daily dynamics and ongoing change.

The empirical investigation in Chapter 6 adds to the literature a comprehensive analy-

sis of the ability of different elaborate time series concepts to model conditional beta risk

in a pan-European context. Compared to earlier studies for other regions of the world,

the spectrum of modeling techniques employed here is expanded to also include two

Markov regime switching models, and a bivariate stochastic volatility model that is es-

timated via simulation-based efficient Monte Carlo likelihood and importance sampling

techniques. A generalized random walk model is proposed to deal with heteroskedasticity

and non-normality in the context of a three-stage estimation procedure. The in-sample

results suggest that sector returns can be better explained by movements of the over-

all market when betas are allowed to vary over time. Compared to standard OLS,

each time-varying approach delivers superior in-sample forecasting results. This implies

confirmation of the conditionality assumption. An evaluation of the various modeling

techniques’ ability to produce out-of-sample forecasts of conditional sector betas reveals

that the Kalman filter based random walk model offers the relatively best predictive

performance. The random walk specification is closely followed by the moving mean re-

verting and the proposed generalized random walk model. Unsatisfactory out-of-sample

results are obtained by the two Markov regime switching models. It is concluded that

time-varying market beta for pan-European sectors can be best described as a stochas-

tic random walk process. The finding that the generalized random walk model, which

has been introduced to take volatility clustering and outliers explicitly into account,
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cannot outperform the random walk model, suggests that the corresponding quasi max-

imum likelihood estimator is well applicable in the presence of heteroskedasticity and

non-Gaussianity.

While answering the question which of the selected modeling approaches is most

suitable to predict the path of time-varying betas for the sample under consideration,

many interesting challenges are open for future research. It would be of interest how

the ranking of relative forecasting performances is affected both by the length of the

forecasting period and by the frequency of return data. The performance of the Kalman

filter could be further improved by adding exogenous top-down or bottom-up factors, or

a combination of both, to explain the path of beta. Besides, depending on the eventual

progress in the development of multivariate conditional heteroskedasticity models, it

might be worth to consider multivariate ARCH and stochastic volatility models with

truly dynamic conditional correlations.

Targeting the third research objective of this thesis, Chapter 7 contributes an empirical

evaluation of the practical relevance of explicitly considering time-variation in factor

sensitivities. The task is approached in the context of a conditional multifactor pricing

framework for pan-European industry portfolios with macroeconomic and fundamental

risk factors. Motivated by the findings on time-varying betas, the conditional factor

sensitivities are modeled as individual stochastic random walk processes estimated via

the Kalman filter. Methodologically, a synthesis of the classical Fama-MacBeth cross-

sectional regression procedure with time-varying betas as instruments is introduced.

Following a review of the anomalies literature, the following variables are selected as

risk factors: the European term structure, the oil price, the dollar-euro exchange rate,

the value-growth spread and size. All factors can be justified theoretically and have been

successfully employed in the literature. A so-called residual benchmark factor, which

is derived as the series of one-step ahead prediction errors obtained from an auxiliary

regression with time-varying coefficients, is introduced and employed as additional risk

factor. Compared to least squares based alternatives, the proposed Kalman filter based

specification is found to yield the relatively best ex-ante forecasts. Fundamental risk

factors are found to be of greater importance than macroeconomic factors.

The findings with regard to the practical relevance of explicitly considering the con-

ditionality of factor loadings are mixed. On the one hand, the results obtained by the

proposed Fama-MacBeth cross-sectional analysis with conditional instruments suggest

that the documented statistical superiority of Kalman filter based betas is not associ-

ated with an improved pricing of risk. On the other hand, from a portfolio management

perspective with a focus on producing return forecasts, the results are encouraging: the

employed backtests indicate that, everything else being equal, improved return predic-

tions can be obtained by replacing stable factor sensitivities by conditional loadings to

take the time-varying nature of fundamental and macroeconomic risks into account. The

superior performance of Kalman filter based long-short portfolios over time is grounded

on the higher degree of flexibility offered by Kalman filter based factor loadings, which

particularly pays off during more volatile market regimes.

As the question, whether the paradigm of time-varying betas is of practical relevance,

cannot be answered unambiguously, more effort is needed for clarification. Avenues to
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conduct future research connected to the analysis presented here, include further treat-

ment of the proposed Fama-MacBeth procedure with conditional betas as instruments.

Another interesting path would be a multivariate approach. Simultaneous estimation of

the conditional Kalman filter based multifactor models could lead to better estimates of

time-varying sensitivities and an improved forecasting performance.
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Brief review of asset pricing theory

The concept of mean-variance efficient portfolios introduced in the seminal work of

Markowitz (1959) represents a cornerstone of modern finance theory. The risk-return

relationship of a portfolio is usually characterized by an asset pricing model, i.e. a linear

factor model that decomposes the return on an asset into a possibly multidimensional

set of common risk factors and an asset-specific component. Linear pricing models are

commonly employed to predict returns, to identify risk sensitivities and to estimate

abnormal returns. Following Cochrane (2005,
✂
1–2) this section briefly summarizes the

basic ideas of asset pricing theory.

A.1 The discount factor view of asset pricing

The cornerstone of asset pricing theory is that the value of an asset is equal to the

expected discounted payoff. The risk related to the asset’s payment is explicitly taken

into account. One distinguishes between relative and absolute asset pricing. The former

refers to the pricing of an asset given the prices of other assets. In absolute pricing,

which is at the heart of finance and of this thesis, each asset is valued according to its

exposure to fundamental macroeconomic risks.

By employing the discount factor view of asset pricing as proposed, among others, by

Rubinstein (1976) or Hansen and Jagannathan (1991), asset pricing can be summarized

by the following two equations:

pt = Et(mt+1xt+1), (A.1)

mt+1 = f(data, parameters), (A.2)

where pt is the asset’s price at date t, xt+1 is the asset payoff at time t + 1 and mt+1

denotes the stochastic discount factor. This simple and universal approach allows for a

separation of (i) determining the empirical representation in (A.1), and (ii) specifying the

model assumptions in (A.2). By making different choices for the function f(·), different

asset pricing models can be derived.
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A.2 The consumption-based model

The most basic specification of the pricing equation presented in (A.1) can be derived

from the first-order condition of an investor’s marginal utility of consumption. The

marginal loss of utility of consuming less today to buy more assets, should be equal to a

higher degree of marginal utility gained from consuming more of the assets’ future payoff.

Hence, the value of an asset today should correspond to the expected discounted value

of its payoff. A stream of uncertain future cash flows can be valued by determining the

worth of this payoff to a typical investor using his or her utility function of consumption:

U(ct, ct+1) = u(ct) + δEt (u(ct+1)) , (A.3)

where ct is consumption at time t, ct+1 denotes random consumption at time t + 1,

and u(·) represents a concave and increasing utility function that reflects a declining

marginal value of more consumption. Investors’ typical preference of a steady stream of

consumption and their impatience for future cash flows are captured by the curvature of

the utility function and by δ, the subjective discount factor. Under the assumption that

the investor is able to freely buy and sell any amount of the payoff xt+1 at a price pt, the

basic pricing equation can be derived as the first-order condition for optimal portfolio

formation and consumption:

pt = Et

(

δ
u′(ct+1)

u′(ct)
xt+1

)

. (A.4)

The stochastic discount factor or marginal rate of substitution, which describes an in-

vestor’s willingness to intertemporal substitution of consumption, is defined as

mt+1 := δ
u′(ct+1)

u′(ct)
. (A.5)

According to Cochrane (2005, p. 6) Equation (A.4) represents “the central pricing equa-

tion”. Most of the asset pricing theory simply consists of rearrangements and specializa-

tions of this formula. The expectation is generally conditioned on information up to time

t; the price and the payoff are always considered at times t and t + 1, respectively. In

the following the subscripts will be suppressed and (A.1) is simply stated as p = E(mx).

A.3 Alternative asset pricing models

Despite its theoretical appeal as a universal way to value any uncertain cash flow and

security, the consumption-based model has not worked well in applied work. Possible

explanations for poor model performance relate, among others, to the use of wrong utility

functions and measurement errors in consumption data. This motivates alternative asset

pricing models to avoid the empirical shortcomings of the consumption-based approach.

Different functions for mt+1 have been proposed. The alternative approaches either

employ different utility functions or link asset prices not to consumption data but to

other factors or macroeconomic aggregates. The direct modeling of marginal utility

based on alternative variables leads to factor pricing models, on which the analysis in

the empirical part of this thesis is grounded.
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Factor pricing models specify the stochastic discount factor as a linear function of the

form

m = a+ b′f , (A.6)

with free parameters a and b. The K × 1 vector of factors f is chosen as a proxy for

an investor’s marginal utility growth. As demonstrated by Cochrane (2005,
✂
6), (A.6)

is equivalent to a multiple-beta model of expected returns:

E(Ri) = γ + λ′βi, (A.7)

with the K × 1 vector βi containing the multiple regression coefficients of returns Ri on

f for assets i = 1, . . . , N . This specification, usually referred to as a beta pricing model,

states that each expected return is proportional to the asset specific βi, which is also

known as the quantity of risk. The k× 1 vector of free parameters λ, which is the same

for all assets i, can be interpreted as the price of risk. In a world with existing risk-free

assets, i.e. a zero-beta portfolio, the constant γ is usually assumed to be equal to the

risk-free interest rate, denoted by rf ; the economic model in (A.7) can be written in

terms of returns in excess of the risk-free rate with γ being set to zero.

In order to identify the factors f that can serve as appropriate proxies for marginal

utility growth, one looks for variables for which (A.6) approximately holds. As con-

sumption is economically linked to the state of the economy, macroeconomic variables,

such as interest rates, GDP growth and broad-based portfolios, constitute the first set of

factors. Consumption can be assumed to also depend on current newsflow that signals

future income and consumption changes. Variables that either indicate changes in con-

sumption and/ or other macroeconomic indicators, or predict asset returns directly, also

qualify as potential factors; important variables include dividend yields, stock returns

or the term premium (Cochrane 2005,
✂
9).

The most important factor pricing models include the single-factor Capital Asset

Pricing Model (CAPM), the Intertemporal CAPM (ICAPM) and the Arbitrage Pricing

Theory (APT). The latter two allow for multiple sources of systematic risk. They all

represent specializations of the consumption-based model, in which extra assumptions

allow for the use of other variables to proxy for marginal utility growth. They can be

summarized as follows:

� The CAPM, developed by Sharpe (1964) and Lintner (1965), is the first and still

most widely used factor pricing model. It linearly relates the expected return of

an asset to the return’s covariance with the return on the wealth portfolio. The

return on total wealth is usually approximated by the return on a broad-market

stock portfolio.

� The ICAPM by Merton (1973) is grounded on equilibrium arguments where an

investor tries to hedge uncertainty about future returns by demanding assets that

do well on bad news. In equilibrium, expected returns depend on the covariation

with current market returns and on the covariation with news that predict changes

in the investment opportunity set of an investor. The ICAPM can be represented

by (A.6) where each state variable that forecasts future market returns can be a

factor.



162 Appendix A

� The APT, introduced by Ross (1976) as an alternative to the CAPM, is based on

arbitrage arguments. The starting point of the APT is a statistical characterization

of the return covariance matrix. The idea is that the common variation in returns

can be related to common components, or risk factors, that describe the covariance

matrix of returns. In this setting, idiosyncratic movements in returns are not priced

as they can be completely diversified away. In contrast to the ICAPM, the factors

f in (A.6) are assumed to provide a description of the return covariance matrix

and to be IID and orthogonal (cf. Cochrane 2005,
✂
9).

Overall, the ICAPM and the APT are more general than the CAPM as they allow for

multiple risk factors. They both offer the advantage of not necessarily requiring the

identification of the wealth portfolio. On the other hand, the nature and the number of

factors are not specified by the underlying models. For more details on multifactor asset

pricing models, their underlying assumptions and the various factor selection procedures,

see, for example, Fama and French (1996), Campbell et al. (1997,
✂
6) or Cochrane (2005,

✂
9).
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Figure B.1: t-GARCH and stochastic volatility conditional betas.
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Figure B.1 — continued
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Figure B.1 — continued



Figures 167

0.0

0.5

1.0

1.5

2.0

2.5
(a) Automobiles

β t

1990 1995 2000 2005

KFMR
KFRW

0.0

0.5

1.0

1.5

2.0
(b) Banks

β t
1990 1995 2000 2005

KFMR
KFRW

0.0

0.5

1.0

1.5

2.0
(c) Basics

β t

1990 1995 2000 2005

KFMR
KFRW

0.0

0.5

1.0

1.5

2.0
(d) Chemicals

β t

1990 1995 2000 2005

KFMR
KFRW

0.0

0.5

1.0

1.5

2.0
(e) Construction

β t

1990 1995 2000 2005

KFMR
KFRW

0.0

0.5

1.0

1.5

2.0
(f) Financials

β t

1990 1995 2000 2005

KFMR
KFRW

Figure B.2: Random walk and mean reverting conditional betas.
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Figure B.3: Moving mean reverting and generalized random walk conditional betas.
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Figure B.4: Markov switching and Markov switching market conditional betas.
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Table C.2: In-sample mean absolute errors.

This table reports the estimated in-sample MAE (×102) for the eighteen DJ Stoxx
�

sectors.
For each sector i, figures in parentheses denote the relative rank of a model’s MAE, where the
model with the smallest MAE ranks first.

Sector βOLS βtG βSV βRW βMR βMMR βGRW βMSM βMS

Automobiles 1.469 1.484 1.386 1.350 1.120 1.081 1.399 1.468 1.456

(8) (9) (4) (3) (2) (1) (5) (7) (6)

Banks 0.796 0.795 0.742 0.736 0.536 0.550 0.752 0.786 0.791

(9) (8) (4) (3) (1) (2) (5) (6) (7)

Basics 1.365 1.383 1.339 1.240 1.191 1.078 1.286 1.355 1.353

(8) (9) (5) (3) (2) (1) (4) (7) (6)

Chemicals 1.095 1.090 1.036 1.007 0.973 0.886 1.044 1.090 1.089

(9) (8) (4) (3) (2) (1) (5) (7) (6)

Construction 1.015 0.982 0.926 0.932 0.724 0.759 0.938 0.988 0.979

(9) (7) (3) (4) (1) (2) (5) (8) (6)

Financials 0.869 0.878 0.790 0.810 0.600 0.600 0.834 0.856 0.854

(8) (9) (3) (4) (1) (2) (5) (7) (6)

Food 1.042 1.039 1.000 0.884 0.881 0.723 0.917 0.978 0.956

(9) (8) (7) (3) (2) (1) (4) (6) (5)

Healthcare 1.327 1.344 1.283 1.250 1.242 1.136 1.269 1.315 1.304

(8) (9) (5) (3) (2) (1) (4) (7) (6)

Industrials 0.735 0.726 0.676 0.692 0.455 0.458 0.704 0.734 0.732

(9) (6) (3) (4) (1) (2) (5) (8) (7)

Insurance 1.146 1.076 0.997 0.988 0.727 0.737 1.004 1.130 1.132

(9) (6) (4) (3) (1) (2) (5) (7) (8)

Media 1.362 1.276 1.204 1.184 0.812 0.858 1.230 1.340 1.324

(9) (6) (4) (3) (1) (2) (5) (8) (7)

Oil & Gas 1.486 1.498 1.462 1.433 1.231 1.238 1.443 1.473 1.451

(8) (9) (6) (3) (1) (2) (4) (7) (5)

Personal 0.971 0.963 0.901 0.918 0.912 0.824 0.933 0.966 0.967

(9) (6) (2) (4) (3) (1) (5) (7) (8)

Retail 1.350 1.369 1.264 1.246 1.026 1.018 1.291 1.347 1.350

(8) (9) (4) (3) (2) (1) (5) (6) (7)

Technology 1.693 1.550 1.477 1.402 1.328 1.102 1.492 1.616 1.595

(9) (6) (4) (3) (2) (1) (5) (8) (7)

Telecom 1.515 1.469 1.412 1.397 1.357 1.178 1.436 1.514 1.499

(9) (6) (4) (3) (2) (1) (5) (8) (7)

Travel 0.993 1.015 0.936 0.959 0.747 0.748 0.962 0.995 0.970

(7) (9) (3) (4) (1) (2) (5) (8) (6)

Utilities 0.980 0.965 0.901 0.903 0.881 0.816 0.920 0.964 0.949

(9) (8) (3) (4) (2) (1) (5) (7) (6)

Average MAE 1.178 1.161 1.096 1.074 0.930 0.877 1.103 1.162 1.153

Average Rank 8.56 7.67 4.00 3.33 1.61 1.44 4.78 7.17 6.44
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Table C.3: In-sample mean squared errors.

This table reports the estimated in-sample MSE (×104) for the eighteen DJ Stoxx
�

sectors.
For each sector i, figures in parentheses denote the relative rank of a model’s MSE, where the
model with the smallest MSE ranks first.

Sector βOLS βtG βSV βRW βMR βMMR βGRW βMSM βMS

Automobiles 3.935 3.978 3.350 3.069 2.129 1.988 3.374 3.925 3.855

(8) (9) (4) (3) (2) (1) (5) (7) (6)

Banks 1.336 1.328 1.106 1.043 0.571 0.590 1.131 1.314 1.323

(9) (8) (4) (3) (1) (2) (5) (6) (7)

Basics 3.821 4.022 3.723 3.158 2.894 2.409 3.410 3.781 3.778

(8) (9) (5) (3) (2) (1) (4) (7) (6)

Chemicals 2.308 2.304 2.042 1.852 1.727 1.457 2.033 2.289 2.291

(9) (8) (5) (3) (2) (1) (4) (6) (7)

Construction 1.889 1.741 1.565 1.568 0.958 1.029 1.603 1.800 1.724

(9) (7) (3) (4) (1) (2) (5) (8) (6)

Financials 1.472 1.502 1.197 1.240 0.682 0.684 1.353 1.447 1.428

(8) (9) (3) (4) (1) (2) (5) (7) (6)

Food 2.333 2.442 2.240 1.680 1.670 1.145 1.857 2.170 2.099

(8) (9) (7) (3) (2) (1) (4) (6) (5)

Healthcare 3.324 3.509 3.177 2.884 2.842 2.392 2.991 3.288 3.238

(8) (9) (5) (3) (2) (1) (4) (7) (6)

Industrials 1.116 1.105 0.960 0.994 0.421 0.430 1.042 1.115 1.112

(9) (6) (3) (4) (1) (2) (5) (8) (7)

Insurance 2.713 2.325 1.899 1.811 0.968 0.995 1.955 2.608 2.624

(9) (6) (4) (3) (1) (2) (5) (7) (8)

Media 4.035 3.443 3.036 2.966 1.344 1.509 3.291 3.909 3.836

(9) (6) (4) (3) (1) (2) (5) (8) (7)

Oil & Gas 4.173 4.366 4.101 3.810 2.879 2.902 3.870 4.106 3.937

(8) (9) (6) (3) (1) (2) (4) (7) (5)

Personal 1.741 1.816 1.577 1.535 1.515 1.234 1.602 1.718 1.713

(8) (9) (4) (3) (2) (1) (5) (7) (6)

Retail 3.559 3.766 3.000 2.855 1.931 1.936 3.325 3.538 3.551

(8) (9) (4) (3) (1) (2) (5) (6) (7)

Technology 6.282 5.652 4.806 4.282 3.803 2.685 5.108 6.002 5.900

(9) (6) (4) (3) (2) (1) (5) (8) (7)

Telecom 4.412 4.091 3.644 3.495 3.295 2.527 3.790 4.406 4.340

(9) (6) (4) (3) (2) (1) (5) (8) (7)

Travel 1.928 1.997 1.757 1.765 1.089 1.080 1.776 1.912 1.798

(8) (9) (3) (4) (2) (1) (5) (7) (6)

Utilities 1.613 1.571 1.374 1.365 1.308 1.118 1.416 1.556 1.498

(9) (8) (4) (3) (2) (1) (5) (7) (6)

Average MSE 2.888 2.831 2.475 2.298 1.779 1.562 2.496 2.827 2.780

Average Rank 8.50 7.89 4.22 3.22 1.56 1.44 4.72 7.06 6.39
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Table C.4: Out-of-sample mean absolute errors (100 samples).

This table reports the estimated out-of-sample MAE (×102) for the eighteen DJ Stoxx
�

sectors.
For each sector i, figures in parentheses denote the relative rank of a model’s MAE, where the
model with the smallest MAE ranks first.

Sector βOLS βtG βSV βRW βMR βMMR βGRW βMSM βMS

Automobiles 1.309 1.287 1.294 1.289 1.336 1.257 1.254 1.279 1.299

(8) (4) (6) (5) (9) (2) (1) (3) (7)

Banks 0.456 0.489 0.482 0.478 0.447 0.480 0.488 0.459 0.454

(3) (9) (7) (5) (1) (6) (8) (4) (2)

Basics 1.584 1.496 1.517 1.485 1.495 1.493 1.489 1.568 1.583

(9) (5) (6) (1) (4) (3) (2) (7) (8)

Chemicals 1.106 0.991 1.026 0.931 0.959 0.942 0.948 1.083 1.090

(9) (5) (6) (1) (4) (2) (3) (7) (8)

Construction 0.938 0.872 0.863 0.870 0.926 0.882 0.881 0.909 0.916

(9) (3) (1) (2) (8) (5) (4) (6) (7)

Financials 0.679 0.710 0.699 0.694 0.666 0.678 0.699 0.673 0.673

(5) (9) (8) (6) (1) (4) (7) (3) (2)

Food 0.941 0.959 0.957 0.931 FTCa 0.929 0.935 0.933 0.951

(5) (8) (7) (2) (–) (1) (4) (3) (6)

Healthcare 1.032 1.096 1.095 1.024 1.022 1.028 1.021 1.046 1.011

(6) (9) (8) (4) (3) (5) (2) (7) (1)

Industrials 0.794 0.738 0.728 0.740 0.788 0.741 0.745 0.806 0.799

(7) (2) (1) (3) (6) (4) (5) (9) (8)

Insurance 1.098 0.991 1.011 1.017 1.080 1.000 1.004 1.127 1.097

(8) (1) (4) (5) (6) (2) (3) (9) (7)

Media 0.941 1.012 1.028 0.964 0.956 0.973 0.964 0.975 1.032

(1) (7) (8) (3) (2) (5) (4) (6) (9)

Oil & Gas 1.232 1.261 1.251 1.244 1.239 1.245 1.255 1.259 1.261

(1) (8) (5) (3) (2) (4) (6) (7) (9)

Personal 0.665 0.666 0.667 0.662 0.655 0.659 0.655 0.662 0.668

(6) (7) (8) (5) (2) (3) (1) (4) (9)

Retail 1.072 1.141 1.123 1.122 1.108 1.095 1.092 1.107 1.099

(1) (9) (8) (7) (6) (3) (2) (5) (4)

Technology 1.818 1.778 1.752 1.820 1.813 1.762 1.781 1.900 1.885

(6) (3) (1) (7) (5) (2) (4) (9) (8)

Telecom 1.161 1.089 1.078 1.057 1.053 1.044 1.065 1.147 1.129

(9) (6) (5) (3) (2) (1) (4) (8) (7)

Travel 0.738 0.757 0.753 0.739 0.741 0.736 0.739 0.748 0.761

(2) (8) (7) (4) (5) (1) (3) (6) (9)

Utilities 0.833 0.838 0.824 0.846 0.843 0.842 0.849 0.902 0.831

(3) (4) (1) (7) (6) (5) (8) (9) (2)

Average MAE 1.022 1.009 1.008 0.995 1.007 0.988 0.992 1.032 1.030

Average Rank 5.44 5.94 5.39 4.06 4.24 3.22 3.94 6.22 6.28

aFailed to converge.
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Table C.5: Out-of-sample mean squared errors (100 samples).

This table reports the estimated out-of-sample MSE (×104) for the eighteen DJ Stoxx
�

sectors.
For each sector i, figures in parentheses denote the relative rank of a model’s MSE, where the
model with the smallest MSE ranks first.

Sector βOLS βtG βSV βRW βMR βMMR βGRW βMSM βMS

Automobiles 3.146 3.101 3.205 3.176 3.223 2.999 2.993 3.027 3.128

(6) (4) (8) (7) (9) (2) (1) (3) (5)

Banks 0.349 0.373 0.362 0.364 0.328 0.373 0.387 0.344 0.344

(4) (8) (5) (6) (1) (7) (7) (3) (2)

Basics 4.062 3.566 3.744 3.538 3.606 3.570 3.558 3.962 4.057

(9) (3) (6) (1) (5) (4) (2) (7) (8)

Chemicals 2.177 1.670 1.789 1.424 1.443 1.448 1.451 2.198 2.184

(7) (5) (6) (1) (2) (3) (4) (9) (8)

Construction 1.500 1.317 1.297 1.312 1.462 1.355 1.352 1.443 1.441

(9) (3) (1) (2) (8) (5) (4) (7) (6)

Financials 0.878 0.959 0.886 0.894 0.817 0.855 0.916 0.879 0.826

(4) (9) (6) (7) (1) (3) (6) (5) (2)

Food 1.384 1.471 1.457 1.374 FTCa 1.362 1.388 1.952 1.476

(3) (6) (5) (2) (–) (1) (4) (8) (7)

Healthcare 1.864 2.179 2.151 1.838 1.815 1.840 1.805 1.952 1.780

(6) (9) (8) (4) (3) (5) (1) (7) (1)

Industrials 1.095 1.026 0.992 1.027 1.082 1.003 1.013 1.124 1.114

(7) (4) (1) (5) (6) (2) (3) (9) (8)

Insurance 2.695 1.996 2.134 2.495 2.362 2.164 2.084 2.737 2.622

(8) (1) (3) (6) (5) (4) (2) (9) (7)

Media 1.499 1.740 1.788 1.564 1.535 1.590 1.553 1.626 1.845

(1) (7) (8) (4) (2) (5) (3) (6) (9)

Oil & Gas 2.510 2.665 2.646 2.528 2.549 2.550 2.553 2.613 2.641

(1) (9) (8) (2) (3) (4) (5) (6) (7)

Personal 0.715 0.737 0.745 0.696 0.686 0.693 0.687 0.702 0.722

(6) (8) (9) (4) (1) (3) (2) (5) (7)

Retail 2.237 2.623 2.527 2.356 2.360 2.278 2.272 2.329 2.369

(1) (9) (8) (5) (6) (3) (2) (4) (7)

Technology 5.790 5.409 5.428 5.822 5.735 5.569 5.599 6.448 6.322

(6) (1) (2) (7) (5) (3) (4) (9) (8)

Telecom 2.316 2.045 1.993 1.905 1.895 1.869 1.949 2.274 2.213

(9) (6) (5) (3) (2) (1) (4) (8) (7)

Travel 0.944 0.976 0.986 0.911 0.938 0.910 0.912 0.977 1.014

(5) (6) (8) (2) (4) (1) (3) (7) (9)

Utilities 1.127 1.103 1.087 1.194 1.192 1.148 1.169 1.269 1.150

(3) (2) (1) (8) (7) (4) (5) (9) (5)

Average MSE 2.016 1.942 1.957 1.912 1.943 1.865 1.869 2.103 2.069

Average Rank 5.28 5.56 5.44 4.22 4.12 3.33 3.44 6.72 6.28

aFailed to converge.
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Table C.6: Out-of-sample mean absolute and squared errors (520 samples).

This table reports the estimated out-of-sample mean errors for an out-of-sample period of ten
years. For each sector i, figures in parentheses denote the relative rank of a model’s mean
absolute and squared error, respectively, where the model with the smallest error ranks first.

Sector MAE (×102) MSE (×104)

βRW βGRW βMMR βRW βGRW βMMR

Automobiles 1.607 1.596 1.598 4.534 4.568 4.480

(3) (1) (2) (2) (3) (1)

Banks 0.905 0.907 0.905 1.740 1.777 1.722

(2) (3) (1) (2) (3) (1)

Basics 1.705 1.703 1.710 5.495 5.490 5.546

(2) (1) (3) (2) (1) (3)

Chemicals 1.286 1.294 1.286 2.909 2.944 2.916

(2) (3) (1) (1) (3) (2)

Construction 1.077 1.071 1.075 2.127 2.117 2.137

(3) (1) (2) (2) (1) (3)

Financials 1.019 1.013 1.012 1.999 1.983 2.008

(3) (2) (1) (2) (1) (3)

Food 1.167 1.177 1.172 2.777 2.828 2.795

(1) (3) (2) (1) (3) (2)

Healthcare 1.405 1.397 1.397 3.730 3.664 3.697

(3) (2) (1) (3) (1) (2)

Industrials 0.884 0.880 0.884 1.563 1.562 1.560

(2) (1) (3) (3) (2) (1)

Insurance 1.215 1.199 1.200 3.190 3.043 3.035

(3) (1) (2) (3) (2) (1)

Media 1.512 1.516 1.535 5.034 5.133 5.193

(1) (2) (3) (1) (2) (3)

Oil & Gas 1.697 1.712 1.712 5.313 5.357 5.357

(1) (4) (3) (1) (2) (3)

Personal 1.003 1.000 1.005 1.828 1.821 1.834

(2) (1) (3) (2) (1) (3)

Retail 1.390 1.389 1.370 4.063 4.109 3.997

(4) (3) (1) (3) (4) (2)

Technology 2.018 2.016 2.001 9.047 9.192 9.171

(3) (2) (1) (1) (3) (2)

Telecom 1.624 1.625 1.623 5.181 5.236 5.194

(2) (3) (1) (1) (3) (2)

Travel 1.046 1.042 1.034 2.145 2.126 2.113

(4) (3) (2) (4) (3) (2)

Utilities 1.040 1.043 1.045 1.832 1.842 1.844

(1) (2) (3) (1) (2) (3)

Average error 1.311 1.310 1.309 3.584 3.600 3.589

Average rank 2.33 2.11 1.94 1.94 2.22 2.17
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Table C.8: Out-of-sample errors for multiple factor models.

This table reports the estimated out-of-sample mean errors for the four multiple factor speci-
fications. For each sector i, figures in parentheses denote the relative rank of a model’s mean
absolute and squared error, respectively, where the model with the smallest error ranks first.

Sector MAE (×102) MSE (×104)

KF RLS RR5 RR1 KF RLS RR5 RR1

Automobiles 1.617 1.720 1.703 1.670 4.706 5.655 5.458 5.109

(1) (4) (3) (2) (1) (4) (3) (2)

Banks 0.868 1.007 0.982 1.002 1.560 2.248 2.069 1.988

(1) (4) (2) (3) (1) (4) (3) (2)

Basics 1.610 1.713 1.671 1.663 5.002 5.553 5.313 5.227

(1) (4) (3) (2) (1) (4) (3) (2)

Chemicals 1.336 1.448 1.439 1.432 3.084 3.743 3.707 3.532

(1) (4) (3) (2) (1) (4) (3) (2)

Construction 1.039 1.133 1.120 1.115 1.990 2.531 2.351 2.201

(1) (4) (3) (2) (1) (4) (3) (2)

Financials 1.001 1.146 1.115 1.110 1.892 2.639 2.385 2.303

(1) (4) (3) (2) (1) (4) (3) (2)

Food 1.162 1.249 1.247 1.206 2.731 3.089 3.053 2.872

(1) (4) (3) (2) (1) (4) (3) (2)

Healthcare 1.283 1.357 1.368 1.348 3.181 3.547 3.538 3.488

(1) (3) (4) (2) (1) (4) (3) (2)

Industrials 0.907 1.054 1.011 1.002 1.617 2.277 2.037 1.941

(1) (4) (3) (2) (1) (4) (3) (2)

Insurance 1.280 1.509 1.466 1.392 3.279 5.460 4.878 4.183

(1) (4) (3) (2) (1) (4) (3) (2)

Media 1.470 1.721 1.643 1.502 3.989 6.319 5.447 4.197

(1) (4) (3) (2) (1) (4) (3) (2)

Oil & Gas 1.487 1.567 1.575 1.510 3.949 4.490 4.546 4.160

(1) (3) (4) (2) (1) (3) (4) (2)

Personal 1.085 1.168 1.156 1.159 2.164 2.541 2.455 2.347

(1) (4) (2) (3) (1) (4) (3) (2)

Retail 1.132 1.140 1.148 1.177 2.383 2.552 2.532 2.519

(1) (2) (3) (4) (1) (4) (3) (2)

Technology 1.642 2.096 1.939 1.862 5.588 9.273 7.738 6.797

(1) (4) (3) (2) (1) (4) (3) (2)

Telecom 1.424 1.551 1.469 1.445 3.789 4.589 4.059 3.949

(1) (4) (3) (2) (1) (4) (3) (2)

Travel 1.443 1.495 1.476 1.499 3.798 4.238 4.071 4.172

(1) (3) (2) (4) (1) (4) (2) (3)

Utilities 1.065 1.151 1.155 1.110 1.864 2.171 2.175 2.104

(1) (3) (4) (2) (1) (3) (4) (2)

Average error 1.270 1.401 1.371 1.345 3.143 4.051 3.767 3.505

Average Rank 1.00 3.67 3.00 2.33 1.00 3.89 3.06 2.06
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Table C.9: Fama-MacBeth regression results II.

This table presents the estimation results for the Fama-MacBeth regressions with the regressors
being the out-of-sample loadings on the BMR, V GS, SIZ and TS factors only. The factor
loadings have been estimated from one of the time series regressions of excess sector returns
on the set of explanatory variables as presented in

�
7.4.1. Average coefficients are expressed

as percent per week ×10. The number of cross-sectional regressions is 520 for each model.
t-statistics are reported in parentheses with the relevant critical value at the 95% (90%, 99%)
level being −1.96 (−1.65, −2.59). Significant average coefficients are printed in bold numbers.
The last column reports average adjusted coefficients of determination.

Model BMR V GS SIZ TS R̄2

A. 22 February 1995–2 February 2005

KF 1.128 0.532 0.346 −13.225 0.229

(1.073) (0.650) (0.463) (−1.895)

RLS 0.841 0.546 1.145 11.757 0.216

(0.681) (0.381) (1.130) (0.315)

RR5 0.717 0.680 1.329 14.079 0.213

(0.585) (0.555) (1.400) (0.688)

RR1 0.312 0.647 0.316 −7.041 0.218

(0.291) (0.780) (0.416) (−0.827)

B. 22 February 1995–8 March 2000

KF 2.155 −1.375 1.856 −23.141 0.140

(1.637) (−1.132) (1.690) (−2.262)

RLS 1.518 −3.263 3.549 26.942 0.116

(1.123) (−1.450) (2.605) (0.587)

RR5 1.071 −2.175 3.853 33.279 0.130

(0.788) (−1.104) (2.905) (0.942)

RR1 1.408 −1.498 2.031 −18.327 0.127

(1.043) (−1.264) (1.820) (−1.461)

C. 15 March 2000–12 March 2003

KF −2.727 3.362 −2.466 −5.080 0.371

(−1.159) (1.973) (−1.708) (−0.353)

RLS −3.974 6.663 −2.134 26.108 0.377

(−1.359) (2.443) (−0.956) (0.296)

RR5 −3.363 5.329 −2.130 0.556 0.362

(−1.113) (2.370) (−1.058) (0.019)

RR1 −3.081 3.908 −2.729 −2.148 0.362

(−1.295) (2.155) (−1.855) (−0.128)

D. 19 March 2003–2 February 2005

KF 4.505 1.128 0.780 0.301 0.241

(2.243) (1.564) (0.652) (0.035)

RLS 6.670 1.001 −0.068 −51.495 0.228

(2.523) (1.033) (−0.044) (−0.815)

RR5 6.246 0.918 0.087 −15.673 0.199

(2.778) (1.211) (0.064) (−0.669)

RR1 2.774 1.194 0.569 15.294 0.231

(1.327) (1.784) (0.472) (1.180)
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State space models play a key role in the estimation of time-varying sensiti-
vities in financial markets. The objective of this book is to analyze the rela-

tive merits of modern time series techniques, such as Markov regime switching 
and the Kalman filter, to model structural changes in the context of widely 
used concepts in finance.

The presented material will be useful for financial economists and practitio-
ners who are interested in taking time-variation in the relationship between 
financial assets and key economic factors explicitly into account. The empirical 
part illustrates the application of the various methods under consideration. 
As a distinctive feature, it includes a comprehensive analysis of the ability of 
time-varying coefficient models to estimate and predict the conditional nature 
of systematic risks for European industry portfolios.
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