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Abstract

Autism spectrum disorder (ASD) research has yet to leverage “big data” on the same scale as other fields; however, advance-
ments in easy, affordable data collection and analysis may soon make this a reality. Indeed, there has been a notable increase in
research literature evaluating the effectiveness of machine learning for diagnosing ASD, exploring its genetic underpinnings, and
designing effective interventions. This paper provides a comprehensive review of 45 papers utilizing supervised machine
learning in ASD, including algorithms for classification and text analysis. The goal of the paper is to identify and describe
supervised machine learning trends in ASD literature as well as inform and guide researchers interested in expanding the body of
clinically, computationally, and statistically sound approaches for mining ASD data.
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Over the past two decades, there has been a significant rise in
the generation, acquisition, and storage of data. The era of
“big data” is marked by both a substantial increase in the rate
at which data is generated and the variety of data produced.
The growth in volume, velocity, and variety of data is due in
large part to the availability and affordability of assorted in-
struments and infrastructure, used to collect and analyze many
different types of information. Furthermore, the availability of
various machine learning toolkits, such as Hadoop,
TensorFlow, Spark, and R, combined with specialized hard-
ware technologies has led to unique opportunities for re-
searchers to leverage machine learning algorithms. This rise
in computing power and processing technologies has opened
the door for the application of machine learning theories in
different fields of study.

One such field is autism spectrum disorder (ASD) research.
ASD is a neurodevelopmental disorder characterized by
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deficits in social communication and social interaction, in ad-
dition to restricted, repetitive patterns of behavior (American
Psychiatric Association 2013). The Centers for Disease
Control and Prevention (CDC) currently estimates that one
in 59 children is diagnosed with ASD in the USA (Autism
and Developmental Disabilities Monitoring Network 2016).
This may be an underestimate given the results of a recent
parent survey finding a prevalence rate of one in 45
(Zablotsky et al. 2015). ASD is a heterogeneous disorder with
diversity observed with respect to symptom presentation and
severity, risk factors and etiology, as well as treatment re-
sponse (Lord et al. 2000a). The high prevalence rate and het-
erogeneous nature of ASD have led some researchers to turn
to machine learning over traditional statistical methods for
data analysis.

Machine learning can be broadly sorted into two catego-
ries, unsupervised and supervised learning. This paper focuses
on the latter of these approaches. Supervised machine learning
involves algorithms that use input variables to predict a target
classification (i.e., the dependent variable), which may be cat-
egorical or continuous. Unlike unsupervised learning (cluster-
ing), supervised learning involves datasets where the target
prediction (e.g., diagnosis) is known at training time for the
data used to learn the model. A supervised learning model is
deemed successful when the model can (a) accurately predict
the target result for a training dataset to a certain degree of
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accuracy and (b) be generalized to new datasets beyond those
used to train the model. To improve a model’s ability to make
predictions on future data, a method called cross-validation is
often employed. This method allows a subset of the data to be
removed before training, so that the model can then be tested
on “new” data. A K-fold cross-validation strategy separates
the available data into K-subsets and trains the model on all
but one of the subsets and tests on the remainder. The process
is repeated until the model has been trained on all the available
data. The performance scores across the runs are averaged. In
a leave-one-out cross-validation (LOOCV) method, all but
one data point is used to train the model, which is then eval-
uated on the held out point. This process is repeated for each
of the data points. A supervised machine learning model’s
success is typically measured according to accuracy (i.e., the
ability to correctly classify into separate categories). This may
be further broken down to consider sensitivity (i.e., the ability
to correctly detect true positives) and specificity (i.e., the abil-
ity to correctly detect true negatives). A further measurement
of a supervised machine learning model’s success is AUC or
area under the receiver operating character curve (ROC). The
ROC is a plot of sensitivity vs specificity, and the area under
the curve depicts how well a method makes positive and neg-
ative categorical distinctions.

This survey contributes to the understanding of ASD re-
search as a whole, since it sheds light on new methods that
allow researchers to take advantage of the larger datasets that
are increasingly available to them. Exposing researchers to a
survey of these new methods both helps increase their under-
standing of how and where the field is expanding and helps
summarize the conclusions made using these methods on
large datasets. In addition, by providing a comprehensive re-
view of existing supervised machine learning research in
ASD, we hope to assist other researchers in finding areas in
this domain that can benefit from the techniques described
here.

Method

Endnote and Google Scholar were searched for peer-reviewed
articles using combinations of the search terms “autism,”
“ASD,” “pervasive developmental disorder,” “PDD,” “analy-
tics,” “data science,” “diagnosis,” “genetics,” “supervised
learning,” “machine learning,” “text mining,” “data mining,”
and “literature mining.” Searches were limited to articles pub-
lished between 2005 and 2018 and met the requirements of the
PRISMA statement (Appendix A) (Moher et al. 2009).

The abstracts, methods, and results sections of the articles
were reviewed by a team of five researchers with expertise in
computational and data science (machine learning) as well as
autism spectrum disorder, with each article receiving at least
two independent reviews. Using a standardized rubric, an
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article was included if the following criteria were met: (a)
was published in a peer-reviewed journal; (b) included a group
of individuals with ASD, autistic disorder, Asperger’s syn-
drome, or pervasive developmental disorder-not otherwise
specified (PDD-NOS); and (c) a supervised machine learning
model was utilized as the primary method of analysis. While
these procedures may not have produced an exhaustive re-
view, findings should be representative of the current trends
of machine learning in the field of ASD.

Results

The literature search produced 27 publications from Endnote
and 94 from Google Scholar. After abstracts and methods were
reviewed, 45 research articles were included. Of the included
articles, 35 involved the use of supervised machine learning in
original ASD research and 10 involved the use of supervised
machine learning in text mining of existing ASD literature.

Supervised Machine Learning in ASD Research

The supervised learning research reviewed in this paper in-
cludes classification algorithms designed to identify patterns
in a given dataset that will lead to a correct diagnosis or other
classification of participants. Many of the studies described in
this review applied a number of different supervised machine
learning methods, with one or more superior performing
models emerging from the group. Of the 35 articles included
in this review, with a number of studies reporting success with
various models, support vector machine (SVM) algorithms
were successfully used in 13 studies, applied alternating deci-
sion tree (ADTree) methods were used in six, least absolute
shrinkage and selection operator (LASSO) regression was
used in four, random forest (RF) was used in four, neural
networks were used in three, ridge regression was used in four,
deep learning was used in two, elastic net regression (ENet)
was used in two, linear discriminant analysis was used in two,
logistic regression was used in two, decision tree were used in
two, conditional inference forest (CF) was used in one, deci-
sion stump was used in one, flex tree was used in one, naive
Bayes was used in one, and random tree was used in one. Each
of these methods will be discussed in turn. Refer to Table 1 for
a summary of articles and the machine learning methods used.

Support Vector Machines

An SVM is a supervised learning algorithm that fits an optimal
hyperplane in an n-dimensional space to correctly categorize the
target result using the independent variables in the dataset. An
SVM is a maximum margin classifier, meaning it maximizes the
separation between n classes of data effectively in a high-
dimensional space (Bishop 2006). SVMs are especially useful
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; i when the boundary between groups is non-linear because points
S g S g can be easily transformed to a space in which the boundary is
< Prle e e e T linear (Bishop 2006). Because of this feature, SVMs are gener-
%* _ ally used in classification problems in which the distinction
2 % L - between groups is non-linear. SVM algorithms have been used
é‘ @ @ @ A é S g e in the research included in this review to classify individuals
> (e.g., according to diagnosis) based on standardized assess-
:é ) 2 ments, genes, neuroimaging, and other measurements.
58 o5 o G oo o=
2= e=lEe e Behavioral and Neuroimaging Data Machine learning
oy algorithms—such as SVMs—have been used in ASD research
§ ~ % ~ in attempts to improve screening and diagnostic practices. In
<t 588 2% RE general, these models have been shown to improve the accura-
= A ”é -~ o cy of diagnoses and provide insight into how different charac-
S e E = 2 teristics (such as standardized assessments, eye movement data,
8 n22Zn5.5 nonon upper limb and general kinesthetic data, and neuroimaging da-
E S S £ S SD % aﬁ E E E E ta) can help distinguish between patients with and without
o nn Do nPa uanaan . .
& << I<< < << << ASD. Currently, standardized assessments reliant on
behavioral observation are the clinical standard for diagnosing
B, ASD. One limitation of standardized assessments is the
; potential for misdiagnoses, particularly when distinguishing
g one disorder from another. Bone et al. (2016) trained and
A cross-validated an SVM classifier to differentiate ASD from
§ other developmental disorders (DD) based on data from two
a standardized assessments, the Autism Diagnostic Interview,
% Revised (ADI-R; Le Couteur et al. 2003) and the Social
_ = Responsiveness Scale (SRS; Constantino and Gruber 2007).
% é The sample consisted of 1264 individuals with ASD and 462
5 s =222 2 2222 individuals with a DD other than ASD. Participants were seg-
= R 5% b bon o mented into two groups: individuals 10 years of age or older
= 2 % and individuals under 10 years of age. Using only five behav-
% Té ,gi § ioral codes, results of the SVM screen algorithm showed a
" E’,g g & & 8 £ 3 sensitivity of 89.2% for individuals 10 years of age or older
. g < E _% g E § g and 86.7% for individuals under 10 years old. A specificity of
= 2 &5 88 E g2 3 59.0% was reported for individuals 10 years of age or older and
2 Ew 3 @ E 2 E E e E § 53.4% for individuals under 10 years old. Given the potential
= e< = < = =S for standardized assessments to fail to distinguish one disorder
from another, these findings suggest that machine learning may
g 2 be used to improve accuracy of standardized assessments.
B i Machine learning models have also been employed to eval-
=) E & A c% Aaona uate potential screening tools, alternative to behavioral assess-
S ; = z EEFE & ments, including computer-aided methods. Liu et al. (2016)
. .i I oS W used an SVM classification algorithm to explore whether pat-
" s 2 ; s s & 5= ; terns of eye movement during face recognition tasks can dif-
= 2<%§ 2 82282 ferentiate children with ASD from children with typical de-
: sz 3 2222 e LA i O
= a Q2 wn 2 eagrR velopment (TD). Participants included 29 children with ASD
(;J% L and 29 children with TD ages 4 to 11 years old. Using data
—’g s @ -2 recorded from eye tracking software, an SVM. classifier model
£ € g g =28 | _&3 S was generated using a LOOCYV strategy to train the model and
§ éoso << :Vl :,; ) :2 g S S/ = test its ability to detect ASD. Feature representation was con-
: o E @ == ;‘; 53 £0 S \7: ; *.fcj ducted in two parts. The SVM classifier was trained based on
212 § g % ; 2 % E Em % g ) %" the extracted histograms containing the visual attention infor-
gl z % SR &S5 < Q s 5 EAS mation on each face area (defined by K clusters). The results
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of'the analysis revealed an accuracy of 88.51% in discriminat-
ing participants with ASD from participants with typical de-
velopment, with a sensitivity of 93.10%, a specificity of
86.21%, and an AUC of 0.8963. Furthermore, the top seven
of 64 discrimination dimensions were found to produce a rel-
atively strong accuracy of 79.31%, with a sensitivity of
68.96% and a specificity of 84.48%. These findings reveal
preliminary support for the application of machine learning
analysis of face scanning patterns as a computer-aided screen-
ing method for the detection of ASD.

Similarly, Crippa et al. (2015) evaluated a potential
computer-aided screening method for ASD using an SVM
classifier. The authors set out to investigate whether upper limb
movement could accurately differentiate low functioning chil-
dren with ASD from children with TD. A total of 15 preschool-
aged children with ASD and 15 children with TD, matched on
developmental age, participated in the study. An SVM was
used to classify participants. Using seven movement-related
features, the method produced a maximum classification accu-
racy of 96.7%, with a sensitivity of 100% and a specificity of
93.8%. Leveraging LOOCYV, the overall mean classification
revealed an accuracy of 84.9%, with a specificity of 8§9.1% a
sensitivity of 82.2%. Findings suggest that machine learning
analysis of kinematic data may detect motor features that are
useful in identifying at least a portion of individuals with ASD
(i.e., low functioning and preschool aged).

Kinematic data was also used by Li et al. (2017) in a model
to distinguish adults with ASD from adults with TD.
Participants included 16 adults with ASD and 14 adults with
TD, matched on IQ. Based on the performance of hand move-
ment tasks, a naive Bayes classifier of the means and standard
deviations of 20 kinematic parameters was used to choose
which of the eight imitation conditions were most useful to
discriminate between subjects with ASD and subjects with
TD. Then, an SVM was used on the chosen parameters. The
performance of the SVM was lower than the accuracy of the
naive Bayes classifier, which the authors speculate was due to
overfitting. Four models were then tested, including an SVM,
RF, naive Bayes, and decision tree. Both the naive Bayes and
SVM models outperformed the other models on average. A
linear SVM achieved the highest accuracy of 86.7%, with
85.7% sensitivity and 87.5% specificity.

Voice prosody was examined by Nakai et al. (2017), com-
paring the performance of machine learning vs the clinical
judgment of speech therapists in classifying children with
ASD and children with TD based on single-word utterances.
Participants included 30 children with ASD and 51 children
with typical development. All children were between the ages
of 3 and 10 years old and had no comorbid disorders. After
isolating their single-word responses, an SVM classifier with
cross-validation on 24 features was employed to identify ASD
or TD. The SVM proved more accurate (76%) than the 10
speech therapists whose classifications were also based on
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the same audio recordings (69%). The SVM had a sensitivity
of 81% and specificity of 73% compared to the therapists,
who demonstrated a sensitivity of 54% and specificity of
80%. This study shows the potential of machine learning anal-
ysis of speech prosody as a useful screening tool.

Neuroimaging data has also been examined using machine
learning approaches. Moradi et al. (2017) predicted symptom
severity of individuals with ASD based on cortical thickness
using support vector regression (SVR) and ENet penalized
linear regression. Participants included 156 individuals with
ASD ages 8 to 40 years old. The dataset was compiled from
four sites in the Autism Brain Imaging Data Exchange
(ABIDE; Di Martino et al. 2014). ASD severity was based
on the participants’ Autism Diagnostic Observation
Schedule (ADOS; Lord et al. 2000b) scores. As compared to
SVM, SVR uses the same mathematical representation of the
input data, but the output is continuous instead of discretized.
In SVR, a regression line is fit to the data with a tube of
predetermined radius. A total of 78 outputs from the SVR
were used as the input for an ENet linear regression to produce
the desired symptom severity scores. The authors used 10-fold
cross-validation and found an average correlation of 0.51 and
an average mean absolute error of 1.36. These results show an
improved correlation score across multiple sites over previous
studies and show the potential of machine learning in identi-
fying biomarkers linked to behavioral symptoms of ASD.

Zhang et al. (2018) sought to identify male children with
ASD from TD children though diffusion magnetic resonance
imaging (AMRI). Using the data of 70 children diagnosed with
ASD and 79 typically developed controls obtained from the
Center for Autism Research through Children’s Hospital of
Philadelphia, this study analyzed their whole brain white mat-
ter connectivity with the help of a SVM and 10-fold cross-
validation. By extracting multiple diffusion features from each
fiber cluster of each subject, they were able to classify subjects
as ASD or TD. The model with the highest accuracy, 78.33%,
occurred with 4697 valid fiber clusters. This model produced
a sensitivity of 84.81% and specificity of 72.86%. This study
found that the most discriminatory fiber tracks (corpus
callosum, cerebellum, brain stem, uncinate fasciculus, arcuate
fasciculus, superior longitudinal fasciculus, and aslant) corre-
spond to the fiber tracks identified with ASD in previous re-
search. Using machine learning allowed Zhang and colleagues
to better study locally specific brain regions via white matter
parcellation into a large number of fiber clusters.

Behavioral and Developmental Data Differentiated from
many studies, Bussu et al. (2018) used longitudinal data cap-
tured at multiple points in development (8 and 14 months of
age) for high-risk siblings to increase accuracy of predicting
ASD diagnosis at 36 months. The behavioral measures used
include Mullen Scales of Early Learning (MSEL; Mullen
1995), Vineland Behavioral Scales (VABS; Sparrow et al.
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1984), and the Autism Observation Scale for Infants (AOSI;
Bryson et al. 2008). A total of 161 high-risk siblings were
separated into three groups: HR-ASD (n=32), HR-Atypical
(n=43), and HR-Typical (n=286). Two binary classification
targets were created from the three groups where the final
classification is either HR-ASD vs (HR-Atypical + HR-
Typical) or (HR-ASD + HR-Atypical) vs HR-Typical. A lease
squares SVM was used to train the classifiers with a 10-fold
cross validation to tune model parameters. Based on the
highest AUC, the classifier with the best performance for
HR-ASD vs (HR-Atypical + HR Typical) at 14 months uses
the Daily Living Score with an AUC of 71.3 which in com-
parison to data at 8 months having an AUC of 65.1 using
motor scores, while the classifier using data at 8 months and
the change factor leveraged motor, social, and daily living
scores resulting an AUC of 65.9 which is a slight improvement
over the 8-month scores. The best classified of (HR-ASD +
HR-Atypical) vs HR Typical is also using data at 14 months
but uses VABS scores and AOSI total score with an AUC of
70.8, in comparison the data at 8 months has an AUC of 69.2
using motor and communication scores, while the classifier
using data at 8 months and the change factor had an AUC of
69.4. For this classifier, the performance did not differ from an
AUC of 70 substantially as we saw in the HR-ASD vs (HR-
Atypical + HR Typical) modeling. This longitudinal study al-
lows for predictive measures to be used at their individual time
points but also the observed change between 8 and 14 months.

Genetic Data Machine learning has also been applied in ASD
genetics research. SVMs allow researchers to determine which
genes are related to ASD. These findings highlight the poten-
tial of machine learning to improve understanding of the role
genes play in the development of ASD and other disorders.
The identification of genes associated with ASD helps to shed
light on the etiology of the disorder. Using curated lists of
genes known to be associated with ASD and intellectual dis-
ability (ID), Kou et al. (2012) employed supervised machine
learning techniques to classify known and predict new genes
linked to these diagnoses. Computational methods, including
two network-based classifiers and one attribute-based classifi-
er, were employed. Finally, 10 SVM classifiers were employed
using positive gene sets (i.e., genes associated with ASD or ID)
and negative sets, which were randomly generated with 200
genes in each set. The SVM performed better than both
network-based classifiers. Two non-overlapping lists were
generated for truth data, containing 114 known rare, high-
risk genes associated with ASD and 223 genes associated with
ID. The SVM classifiers were capable of discriminating be-
tween genes associated with ASD, genes associated with 1D,
and other genes with an accuracy of 80 to 98%. Sensitivity for
the classifiers ranged from 76 to 89%, specificity ranged from
89 to 96%, and AUC ranged from 0.94 to 0.97. Furthermore,
the ASD classifiers performed better than ID classifiers.

Krishnan et al. (2016) also used an SVM to find potential
genes correlated with ASD. A brain-specific functional net-
work was created using a regularized Bayesian model. The
network was used to identify 594 genes that may be predictors
for ASD with varying levels of evidence (E1-E4). SVM models
were trained and tested using 5-fold cross-validation in order to
classify a patient with ASD or TD. Their best combination of
phenotypes performed fairly, attaining an AUC of 0.80 using
only E1 (high confidence genes). All evidence-weighted clas-
sifiers outperformed their unweighted counterparts.

Alternating Decision Tree

ADTree models, also known as acyclic directed graphical
models, involve combining many one-level decision trees
(i.e., decision stumps) to obtain a representation in which each
stump consists of a decision node and two prediction nodes
(Williams 2011). One main benefit of leveraging a decision
tree is being able to interpret and understand the impact of
each variable in the tree. While other methods, such as an
RF, may lead to better performance from a predictability
standpoint, they may lack the transparency that a decision tree
gives. Decision trees can also be leveraged to identify unique
segments in a population where multiple models can be ap-
plied rather than only a single model for the entire population.
ADTree models have been used in the reviewed ASD research
in attempts to enhance diagnostic and screening practices.

Behavioral and Neuroimaging Data As mentioned previously,
ASD is currently diagnosed via standardized behavioral as-
sessments, which can be lengthy and time consuming to
administer. In an attempt to accelerate the diagnostic process,
Wall et al. (2012a) set out to identify a subset of ADI-R items
that could be used to accurately classify ASD. A dataset of 8§91
individuals with ASD and 75 individuals without ASD who
completed the ADI-R was initially tested. Using seven of the
93 ADI-R items, an ADTree classifier was found to perform
best with an accuracy 0of 99.9%. The seven-item classifier was
further examined in two additional samples of individuals with
ASD (n=1654; n=322). Across both samples, the classifier
was found to have an accuracy of nearly 100%. Specificity
was evaluated using two small samples of individuals without
ASD (n=5;n=12)aswell as 1000 artificially generated score
sheets used as control data, with specificity ranging from 93.8
to 99%, for both real and artificial data.

In a similar study, Wall et al. (2012b) set out to identify a
subset of items included in the ADOS that could be used to
accurately detect ASD. An initial sample including 612 indi-
viduals with ASD and 15 individuals without ASD who had
completed module one of the ADOS were tested. Using eight
of the 29 items measured in module one of the ADOS, an
ADTree classifier again demonstrated a superior performance
with a classification accuracy of 100%. The eight-item
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classifier was further validated using two additional samples
of individuals with ASD (= 110; n=366) and 1000 artificial
controls. Across both ASD samples, the eight-item classifier
was found to have a sensitivity of 100%. Using the simulated
control data, a specificity of 94% was revealed. The findings
of these two studies by Wall and colleagues show promise in
the use of machine learning techniques to sizably reduce the
number of behavioral assessment items required to accurately
classify ASD.

In a replication study, Bone et al. (2015) discussed the
methodological issues that they felt raised concem in the stud-
ies conducted by Wall and colleagues (Wall et al. 2012a; Wall
et al. 2012b). The primary concern was the unbalanced
datasets used to test and validate the classifiers, which
contained little to no negative cases (i.e., participants without
ASD). The authors conducted experiments to replicate the re-
sults of Wall and colleagues’ ADTree procedures using larger,
though not publicly available, datasets with more balanced
samples of positive and negative cases. Both experiments
failed to replicate the level of accuracy achieved by Wall and
colleagues for both the reduced-item ADI-R and ADOS clas-
sifiers. Furthermore, the authors did not find that clinician ad-
ministration time decreased using the reduced-item classifiers.

These classifiers have undergone additional evaluation for
use as preclinical screening tools to detect risk of ASD. Duda
et al. (2014) set out to further validate the eight-item ADOS
classifier, referred to as the observation-based classifier
(OBCQ). The study dataset included a more balanced sample
of 2333 children with ASD and 283 children without ASD,
who had completed the ADOS. The OBC, which uses an
ADTree procedure to classify ASD, demonstrated significant
correlations with both original ADOS and ADOS-2 (Gotham
et al. 2007) scoring procedures, revealing a highest reported
accuracy of 95.8%, sensitivity of 97.7%, and specificity of
83.5%. OBC outcomes were also compared to best estimate
clinical diagnoses, showing an accuracy of 96.8%, sensitivity
0f97.1%, and a specificity of 83.3%. While the results are not
as robust as those initially reported by Wall et al. (2012b), the
OBC may be a viable screening tool to detect risk of ASD.

The seven-item ADI-R classifier has also undergone further
evaluation by Duda et al. (2016a). In this study, a mobile ap-
plication, the Mobile Autism Risk Assessment (MARA), was
used to administer the ADI-R questionnaire. Participants in-
cluded 222 children and adolescents (69 of which were diag-
nosed with ASD), between the ages of 16 months and 17 years
old, who were visiting a developmental-behavioral pediatric
clinic for the first time. Participant’s MARA screening out-
comes were compared to clinical diagnoses made during the
visit. MARA utilizes an ADTree trained on the answer sheets
of 891 subjects with ASD and 75 subjects without ASD from
the Autism Genetic Resource Exchange (AGRE; Geschwind
et al. 2001) database to generate scores. The model demon-
strated a sensitivity of 89.9% and a specificity of 79.7%.
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Supervised Feed-Forward Artificial Neural Networks

Neural networks are layered connections of neural units, or
perceptrons, which can learn mappings between input data
and desired outputs. The perceptrons typically make use of
sigmoidal activation functions to accommodate non-linearity.
Once a network is trained, new data can be input, and based on
the learned weights and biases of each neural unit, an output
will be generated. Neural networks are generally faster than
other methods used for non-linearly separable problems (such
as SVMs) (Bishop 2006). In the reviewed research, neural
networks have been applied to behavioral assessments to de-
tect ASD, to evaluate the impact of treatment intensity on
treatment gains, and to study gene expression in ASD. In
general, the application of Feed Forward Neural Networks
(FFNNs) to ASD research has shown promising improve-
ments both in diagnosis and in determining ASD phenotypes,
often improving on existing methods.

Behavioral and Neuroimaging Data Florio et al. (2009) set out
to evaluate the accuracy of a neural network model in detect-
ing ASD. The dataset included results of the Developmental
Behavior Checklist (DBC; Einfeld and Tonge 1995), a parent-
rated assessment that measures emotional and behavioral
problems in children and adolescents with DD. The authors
used a feed-forward neural network to predict whether or not a
participant had ASD. The model was first tested in a sample of
319 individuals with ASD and 319 individuals a DD other
than ASD. The model was then cross-validated using a sepa-
rate sample of 62 individuals with ASD and 38 individuals
with DD. In the initial test, the model revealed an accuracy of
92% and an AUC of 0.93. During cross-validation, the model
produced an accuracy of 80%, sensitivity of 92%, specificity
70%, and AUC of 0.88.

Neural networks have also been leveraged by Linstead
etal. (2015, 2017) in a regression task to learn the relationship
between treatment intensity and learning outcomes in the con-
text of applied behavior analysis (ABA) treatment for ASD.
The authors found that, compared to simple linear regression,
neural networks were more accurately able to model the rela-
tionship between treatment intensity and learning outcomes,
explaining substantially more variance for a sample size of
726 patients. This work leveraged only shallow neural net-
works with a single hidden layer and considered patients only
within the early intervention age range. Despite these limita-
tions, this work highlighted the advantage of neural networks
to learn non-linear relationships without any prior knowledge
of the functional form of those relationships.

Genetic Data Neural networks have also been used to explore
gene expression. Xiong et al. (2015) used an ensemble of
neural networks to analyze DNA sequences and predict to
what extent genetic variants may disrupt RNA splicing, an
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essential element of gene expression that may contribute to
various disorders including ASD. The genomes of five indi-
viduals with ASD and 12 controls were scanned for single
nucleotide variations (SNVs) resulting in approximately
42,000 SNVs per subject. Each neural network in the ensem-
ble had 2 layers and used 41,820 potential input-to-hidden
parameters and 960 hidden-to-output parameters. To over-
come the numerical difficulties of fitting a single model, a
Bayesian Markov chain Monte Carlo technique was deployed.
Markov chain Monte Carlo (MCMC) sampling methods al-
low sampling of multiple distributions, which will scale to the
dimensionality of the sample space (Bishop 2006). The final
model was used to score genetic variations. Of the 171 genes
found to be misregulated in individuals with ASD, 27% were
found to have high expression in the brain compared to only
13% of the 249 genes identified in the controls. The authors
highlighted 19 genes potentially linked to ASD with known
neurological, neurobehavioral, or neurodevelopmental pheno-
types. While some of these genes have been previously asso-
ciated with ASD, others were new candidate ASD genes.

Random Forest

An RF is an ensemble learning method that utilizes many
individual classification and regression trees. A classification
decision is made based on a majority vote of the trees predic-
tions. A beneficial feature of using an RF is the built-in
bootstrapping, which leads to training and validation of the
algorithm with less intrinsic bias in the analysis (Mayor
2015). An RF is beneficial in uncovering non-linearities across
a dataset that a simpler, more interpretable, generalized linear
model may not uncover. One negative to using this ensemble
method is the lack of easy interpretation due to the black box
nature of the algorithm. Having the flexibility to vary the num-
ber of variables at each tree split and the number of trees to
build allow the algorithm to find its optimal tuning parameters.
The built in training and validation inherent in the algorithm
will also have a positive effect on reducing the likelihood of
overfitting to the training dataset. RF has been used in the
reviewed ASD research to analyze neuroimaging data, monitor
populations diagnosed with ASD, and develop screening tools.
These methods have led to high diagnostic accuracy based on
neuroimaging data, video data, and electronic health records.
Again, these models often outperformed existing tools.

Behavioral and Neuroimaging Data Chen et al. (2015) used
machine learning models, including RF, to analyze neuroimag-
ing data for diagnostic classification purposes. Low-motion rest-
ing-state functional MRI (rs-fMRI) scans were used for a sam-
ple of 126 individuals with ASD and 126 individuals with TD.
Participants were matched based on age, non-verbal 1Q, and
head motion. Diagnostic classification was based on a matrix
of functional connectedness between 220 identified regions of

interest. Using the top 100 regions of interest, an RF produced
the greatest level of accuracy of the models tested for diagnostic
classification at 91%, with a sensitivity of 89% and a specificity
of 93%. When applied to the top 10 regions of interest, the RF
achieved an accuracy of 75%, with a sensitivity of 75% and a
specificity of 75%. The high number of regions required to
produce a strong accuracy in detecting ASD may imply that
brain biomarkers for ASD are scattered rather than localized.
RF classifiers have also been used to develop affordable and
efficient ASD screening tools. Abbas et al. (2018) combined
two independent classifiers to create an ASD screening tool
based on a parental questionnaire and behaviors observed in
home videos. ADI-R and ADOS scoresheets from children ages
18 to 84 months were cultivated from multiple repositories and
used to train an RF for a parental questionnaire and an RF video
classifier, respectively, with clinical diagnosis as the target var-
iable. To help balance the data, ADI-R interviews were admin-
istered to a random sample of low-risk children. Since language
development often affects the presentation of ASD, the classi-
fiers were trained and tested on children older and younger than
4 years old separately. The parental classifier was trained on
2299 children with ASD, 100 children with TD, and 287 chil-
dren with another condition. The video classifier was trained on
3310 children with ASD, 585 children with TD, and 364 chil-
dren with another condition. Once trained, the video classifier
used the presence and severity of behaviors, as determined by
analysts watching two to three 1-min semi-structured home
videos, as inputs. Final diagnosis utilized logistic regression
on the results of the questionnaire and video classifiers and
performed better than other established screening tools, includ-
ing the Modified Checklist for Autism in Toddlers (MCHAT;
Robins et al. 2014) and the Child Behavior Checklist (CBCL;
Achenbach and Rescorla 2001), based on the ROC curves.

Electronic Health Records Bishop-Fitzpatrick et al. (2018) lev-
eraged ICD-9 codes, V-codes, and E-codes from the electronic
health records of 91 decedents with an ASD (or related) diag-
nosis and 6186 control decedents to build a random forest
classifier. The goal of this study was not only to distinguish
ASD from the control decedent but also to examine the life-
time health problems of those with ASD. From the first RF
model, the top 50 ICD-9 codes, V-codes, and E-codes were
chosen and were used to build a second, smaller random forest
model. The model had an accuracy of 93%, sensitivity of
75%, specificity of 94%, and an AUC of 0.88. The 50 codes
were then ranked in order of importance. The authors report
that, overall, decedents with an ASD diagnosis have higher
rates of nearly all 50 ICD-9 codes, V-codes, and E-codes.

Logistic Regression

Logistic regression is a generalized linear model used for bi-
nary classification, taking as input a set of independent
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variables. The independent variables can be discrete or con-
tinuous and are used to predict the probability or odds of the
target result taking a particular binary value. To avoid
overfitting the regression model, regularization techniques
such as LASSO, ridge, and ENet can be deployed. LASSO,
also known as L1 regularization, attempts to minimize the sum
of the absolute value of the regression coefficients, which
leads to automatic feature detection, removing input parame-
ters that may provide little added value to the model. Ridge
regression, or L2 regularization, constrains the sum of the
squared differences of the regression coefficients, which min-
imizes an irrelevant feature’s effect on the regression model,
but unlike LASSO will not actually remove it (Bishop 2006).
The ENet regression combines the LASSO and ridge penalties
(Zou and Hastie 2005). Logistic regression model literature
shows attempts to improve ASD screening practices, analyze
neuroimaging data, and evaluate risk factors for developing
ASD. Linear discriminant analysis is similar to logistic regres-
sion, as it uses a linear combination of continuous, indepen-
dent variables to predict a categorical outcome; however, lin-
ear discriminant analysis assumes that the independent vari-
ables are normally distributed.

ASD Risk Factors Logistic regression has been used by Grether
et al. (2009) to evaluate the impact of parental age on the risk
of developing ASD. The study sample included 7,550,026
individuals born in California between 1989 and 2002. Data
from the California Department of Developmental Services
were used to identify individuals with ASD (n =23,311) while
the remainder of the sample made up the control group. Using
maternal and paternal ages obtained from birth certificates, the
authors applied logistic regression to determine risk of devel-
oping ASD, with race/ethnicity, parental education level, and
year of birth taken into account as covariates. Increased ma-
ternal age by 10 years was found to elevate the risk of ASD by
38% compared to 22% for increased paternal age by 10 years.
These findings persisted through all subgroups based on co-
variates, although it was found that these risks greatly in-
creased among first-born children. These findings demon-
strate the potential of machine learning to evaluate risk factors
for developing ASD in very large populations.

Behavioral and Neuroimaging Data Extending the work of
Wall et al. (2012b), Kosmicki et al. (2015) set out to determine
if a subset of the behaviors measured by the ADOS modules
two and three could be used to accurately detect ASD. ADOS
scores of 4540 individuals were included in the dataset. A total
of 1451 individuals with ASD and 348 without ASD had com-
pleted module two of the ADOS and another 2434 individuals
with ASD and 307 without ASD had completed module three.
Unlike Wall et al. (2012b), ADTree was not found to be the best
machine learning model tested. Using nine of the 28 behaviors
measured within module two, a ridge regression performed best
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in correctly classifying participants with an accuracy of
98.27%, sensitivity of 98.81%, and specificity of 89.39%. An
SVM (described above) was found to be the optimal method
for module three. Based on 12 of the 28 behaviors measured,
the SVM was able to classify participants with an accuracy of
97.66%, sensitivity of 97.71%, and specificity of 97.20%.

In a similar vein, Duda et al. (2016b) used machine learning
models in another effort to produce a reduced-item classifier,
this time using the SRS. Six machine learning models were
trained and tested using a sample of 2775 individuals with
ASD and 150 individuals with attention deficit hyperactivity
disorder (ADHD) who had completed the SRS. Forward fea-
ture selection, under sampling, and 10-fold cross-validation
were employed. Of the machine learning models tested, strong
and comparable results were demonstrated by four models,
including SVM, ridge regression, LASSO, and linear discrim-
inant analysis. Each of these models relied on five of the 65
items measured by the SRS and revealed an AUC ranging
from 0.962 to 0.965. These findings reveal that machine learn-
ing procedures can discriminate individuals with ASD from
individuals with ADHD with a high level of accuracy.

Continuing their goal of developing an easy and widely
available tool to distinguish between ASD and ADHD, Duda
et al. (2017) collected and analyzed data from a web-based 15-
question parent survey. Participants included 248 individuals
with ASD and 174 individuals with ADHD, ages 2 to 17 years
old, with no comorbidities base on parental report. A second
archival dataset with SRS scoresheets was obtained from mul-
tiple repositories. The archival dataset included 2775 subjects
with ASD and 150 subjects with ADHD. Subjects were diag-
nosed by a physician and had no comorbidities. The dataset was
subsampled to maintain diagnosis proportions, and only the 15
features correlated to the survey were retained. Five machine
learning models were selected based on the results of Duda et al.
(2016b): SVM, LASSO regression, ridge regression, linear dis-
criminant analysis, and ENet regression. Three independent ex-
periments were performed with the models, including (1) train-
ing on archival data and testing on survey data, (2) training on
survey data and testing on archival data, and (3) training and
testing on mixed archival and survey data. The performance of
each model varied greatly based on the training and testing sets,
but all models performed best (AUC > .9) when the archival set
was used from training. ENet and linear discriminant analysis
performed significantly better than the other models when tested
on survey data (AUC 0.89 £0.01). These models show poten-
tial for rapid risk score calculation available online.

Neuroimaging has also been examined using logistic re-
gression. Plitt et al. (2015) explored the potential of rs-fMRI
scans in identifying ASD biomarkers. Using a cohort of 59
individuals with high functioning ASD and 59 individuals
with TD, the authors trained multiple models on three differ-
ent regions of interest in fMRI scans along with demographic
data, such as age, 1Q, and SRS scores. A LOOCV was
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performed on each of the nine machine learning models ex-
plored across the three different regions of interest sets with
ridge logistic regression (73.33% average accuracy) and linear
SVM (73.89% average accuracy) outperforming the rest.
When excluding the fMRI scans, the behavioral classifiers
achieved as high as 95.19% accuracy. The authors also exam-
ined a dataset of 89 subjects with ASD and 89 subjects with
TD from three ABIDE database sites. The ABIDE cohort
performed markedly lower than the in house models. While
machine learning analysis of rs-fMRI data shows promise in
revealing ASD biomarkers, these results show it is not yet
meeting the benchmark standards.

More recently, Rane et al. (2017) deployed a logistic re-
gression model to build an open source whole brain classifier
to predict ASD diagnosis. fMRI scans from the ABIDE data-
base were used for 539 individuals with ASD and 573 indi-
viduals with TD. Features for a logistic regression model were
selected from voxels within a gray matter template mask in the
MNI152 space. LASSO regression and 5-fold cross-valida-
tion were utilized in an effort to avoid overfitting with the final
model achieving 62% accuracy.

An additional use of a resting-state functional MRI (rs-
fMRI) was done by Yamagata et al. (2018). Their work differ-
entiated prior studies analyzing endophenotypes (measureable
and heritable component between genes and disease diagnosis)
that are present in both individuals with ASD and their non-
ASD affected siblings by including an additional group of typ-
ically developing (TD) siblings. Enrolling additional pairs of
TD siblings (with and without the ASD Endophenotype) con-
trols for differences between TD siblings that would have pre-
viously been unaccounted for. The data consisted of a relatively
small sample size of 60 male participants without intellectual
disabilities, split in half between pairs of siblings with the ASD
endophenotype (15 participants with ASD and 15 unaffected
Siblings) and pairs of TD siblings (15 pairs of TD siblings
without a family member having been diagnosed as having
ASD). A sparse logistic regression was trained using Leave-
one-pair-out cross validation (LOPOCV) (“pair” referring to
pair of siblings) to reach a classification accuracy of 75% and
an area under the curve of 78%. The study identified nine func-
tional connections that in combination may serve as the poten-
tial endophenotype.

Deep Learning

Deep learning uses multiple hidden layers in a neural network
architecture that mimic the brain’s neural connections. In the
reviewed literature, deep learning has been used to study pre-
dictors of challenging behavior and analyze neuroimaging in
individuals with ASD.

Behavioral and Neuroimaging Data Deep learning has been
leveraged by Preetham Patnam et al. (2017) to identify

behaviors that precede challenging behaviors, including melt-
downs and self-injurious behavior, in children with ASD. The
authors took advantage of the NVIDIA Deep Learning GPU
Training System (DIGITS) along with the deep learning frame-
work Caffe (Jia et al. 2014) to rapidly train a convolutional
neural network (CNN). As the name suggests, CNNs have
“convolutional” and subsampling layers, allowing the model
to extract features while preserving spatial relationships
(Bishop 2006). Using video and images collected from various
databases and Internet sources, the authors were able to train a
recurrent CNN to identify common gestures displayed before a
meltdown by children with ASD. A recurrent CNN has addi-
tional weights allowing cycles within the network (Yue-Hei Ng
etal. 2015). On average, the model was trained in 30 to 60 min
and tested on video recording of five individuals with 92%
accuracy. Since the gestures were identified in less than 5 s
on average, authors also developed an alarming mechanism
to alert caregivers in real time. By using this model to train a
more robust model and the addition of enhanced hardware,
there is great potential for helping both children with ASD
and their caregivers before meltdowns occur.

Recently, a deep learning classifier has been used by
Heinsfeld et al. (2018) to analyze neuroimaging data. Using
the ABIDE database, the study dataset was comprised of rs-
fMRI scans, T1 structural brain images, and phenotypic data
from 505 individuals with ASD and 530 individuals with TD
across 17 sites. Dimension reduction was performed using un-
supervised feed-forward neural networks called autoencoders.
The model then used supervised learning by deploying two
stacked autoencoders as weights to a feed-forward neural net-
work. The deep neural network (DNN) outperformed SVM
and RF classifiers with an accuracy of 70%; however, compu-
tation time exceeded 32 h (leveraging GPU-enabled comput-
ing) while the SVM and RF models finished in less than
21 min. This study shows promise for the identification of
ASD biomarkers via machine learning analysis of rs-fMRIs.

Conditional Inference Forest

A CF is a modification of a RF that uses statistical inference
tests to select features when constructing trees. The input var-
iables are evaluated for independence (to the dependent vari-
able), and the variables with the strongest association to the
response are chosen (Mayor 2015). In the ASD literature in-
cluded in this review, CF has been used to analyze genetic data.

Behavioral and Neuroimaging Data Engchuan et al. (2015)
used machine learning models to analyze genes, specifically
rare copy number variation (CNV), associated with ASD. The
dataset was comprised of 1892 participants with ASD and 2342
controls with at least one rare CNV. Using rare CNV data and
comprehensive gene annotations, four classification methods
were conducted and compared. The CF model’s performance
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was equal or superior to the other tested classification methods.
The best classifier demonstrated an AUC of 0.533, correctly
categorizing 7.9% of the participants with ASD while incorrect-
ly classifying less than 3% of the controls. Performance im-
proved when limiting the model to participants with de novo
CNVs (i.e., those occurring spontaneously as opposed to
inherited from a parent) or pathogenic CNVs (i.e., those that
have been previously associated with ASD). Rare genic losses
were found to be more predictive than gains when analyzed
alone. Finally, 20 features identified as neurally relevant were
found to perform better in the model than total gene count.
These findings reveal the potential for machine learning to iden-
tify CNVs contributing to ASD that may not yet be well known.

Decision Trees

Classification and regression (CART) decision tree models
were first introduced by Breiman et al. (1984). The classifica-
tion tree predicts the likelihood of reaching the target value
along with a clear path that leads to the decision. The tree is
recursively constructed by posing a sequence of logical if-then
conditions (from independent variables) with the answers de-
termining the next condition (if any). Decision stumps are
single-level decision trees that provide output from only one
input feature (Bishop 2006). In the reviewed ASD literature,
decision trees have been used to study the relationship be-
tween genetics and symptom severity in ASD, as well as pre-
dict employer recruitment of individuals with ASD.

Genetic Data Jiao et al. (2012) used machine learning to clas-
sify children with ASD according to symptom severity using
data on genetic markers. The dataset included single nucleo-
tide polymorphism (SNP) data for 118 children with ASD
between the ages of 1.5 to 14 years old. Using the results of
the Childhood Autism Rating Scale (CARS; Schopler et al.
1980), participants were divided into two groups based on
symptom severity. A total of 65 participants made up the
mild/moderate group and 53 participants made up the severe
group. Of the machine learning models evaluated, decision
stumps and FlexTrees were found to perform best with an
accuracy of 67%, sensitivity of 88%, and specificity of 42%.
FlexTrees extend the binary-tree approach, where each split is
determined by a combination of the features of interest. This
suggests that SNPs have predictive power to accurately clas-
sify ASD symptom severity. One SNP in particular was found
to be related to symptom severity across all the models eval-
uated. Results reveal that SNPs have at least moderate predic-
tive power to make classifications based on ASD symptom
severity.

Employer Survey Hyde et al. (2018) utilized a decision tree to

predict a path for individuals with ASD to successfully find
employment. The model was built using 17 independent
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variables created from the responses of 154 representatives
of various employers who have hired an individual with
ASD in the past and 142 from those who have never hired
an individual with ASD. The model was able to predict wheth-
er an employer has hired an individual with ASD with 75%
accuracy and 82% specificity as well as identify some impor-
tant features that lead to the decision.

Random Tree

Random tree classifiers use a subset of features to build a
single decision tree (Mayor 2015). Like RF, random tree has
been used in the reviewed ASD research to make classifica-
tions based on neuroimaging data.

Behavioral and Neuroimaging Data Zhou et al. (2014) applied
machine learning techniques to detect ASD based on
multiparametric MRI data. The dataset included 127 children
with ASD and 153 children with TD matched on age and
gender. Cross-validation was employed in order to minimize
classification error estimation bias. A model of 22 quantitative
imaging features was used to predict ASD. Using a random
tree classifier, a combination of four features was found to
differentiate participants with ASD from those with TD with
an accuracy of 68%. When six imaging features were used in
the classifier, accuracy increased to 70%. Specific imaging
features were also found to predict outcomes of the partici-
pants with ASD on various measures, including the ADOS,
ADI-R, SRS, VASB, and IQ. These findings suggest that ma-
chine learning analyses of multiparametric MRI data may re-
veal biomarkers useful in the identification of ASD.
Furthermore, since specific features were correlated with out-
comes of behavioral measurements, such features may also
prove useful in monitoring symptoms over time.

Supervised Machine Learning in ASD Text Mining

Text mining is the process of analyzing collections of texts
with the aim of discovering “hidden” patterns. The Internet
provides researchers practically unfettered access to current
publications, but given the abundance of literature, it is nearly
impossible to manually keep up to date in the field. Text min-
ing tools allow new ways to find, sort, and discover knowl-
edge from existing literature.

Many of the articles reviewed below applied a number
of different supervised machine learning methods towards
the goal of text mining. Of the 10 articles discussed, with a
number of studies reporting success with more than one
model, SVM algorithms were successfully used in four,
Naive Bayes was used in three, RF was used in two,
Bayesian network was used in one, LASSO was used in
one, finite state machine transfer network (FSMTN) was
used in one, Apriori algorithm was used in one, linear
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variance analysis (LVA) was used in one, random walk was
used in one, and ridge regression was used in one. Each of
these techniques will be discussed in turn. Table 2 provides
a summary of the reviewed text mining articles and the
supervised machine learning methods applied.

Bayesian Network

Bayesian networks are probabilistic directed graphical models
where nodes represent random variables with a corresponding
conditional distribution. The arrows leaving a node point to
the variable on which the distribution is conditioned. These
models provide a compact representation of joint probability
distributions and are a useful tool when probabilistically in-
ferring posterior distributions or information, given new ob-
servation data (Bishop 2006). Bayesian networks have been
used to resolve inconsistencies in research on molecular
pathways.

Genetic Data Rzhetsky et al. (2006) used Bayesian network to
reconcile inconsistencies in published research on molecular
pathways. The authors built a generalized Bayesian network
of nodes and arcs from random variables to automate recon-
ciliation endeavors on a large scale. Since it is not computa-
tionally efficient to explicitly find the joint probabilities for all
states of all variables, the authors utilized a Gibbs sampler
version of a Markov chain Monte Carlo technique to estimate
the joint distribution values. They tested their method on 3161
research articles pertaining to the molecular interactions
among genes possibly related to ASD, Alzheimer’s, bipolar
disorder, and schizophrenia. The resulting network included
288 nodes and 353 arcs. The prior distributions were comput-
ed by examining 14,780 journal abstracts referring to the
genes of interest. Approximately 10% of the published molec-
ular interactions were found to be logically incompatible.
These findings show the potential of text mining to resolve
inconsistencies in published research that may be applied on a
large scale across various disciplines.

Naive Bayes

Naive Bayes is a probabilistic classifier that utilizes Bayes
theorem to make the (naive) assumption that all input features
are linearly independent and then compare the probability of
each possible classification given a set of independent features
(Bishop 2006). The naive Bayes classifier is relatively simple
and computationally inexpensive to train, and it can be com-
petitive with more complex models like the SVM in areas like
text categorization, making it still a preferred choice for spam
filtering. Naive Bayes has been used in the reviewed literature
to leverage data from social media applications in order to
learn more about the ASD community and to determine if
ASD can be detected based on samples of writing.

Summary of articles using supervised machine learning in ASD text mining

Table 2

Prediction goal

Method(s)

Data type

Sample size

Authors

Predict AQ scores from personal blogs

Naive Bayes; SVM

Online blogs

n= 75 blogs; n= 750,000

Bennett (2015)

words

Leverage Twitter to learn about the ASD community

LASSO; Ridge regression; naive

Tweets

3,493,742

n=

Beykikhoshk et al.

Bayes

FSMTN

(2015)
Gong et al. (2011)

Gong et al. (2012)

Developed text mining tool AutMiner to identify ASD candidate genes

Developed KF algorithm to identify ASD susceptibility genes

PubMed abstracts

9276
n= 16,869

n=

Apriori algorithm

RF

PubMed abstracts
Developmental

Differentiate children who meet ASD surveillance requirements

601 ASD; n=561 TD

n=

Maenner et al. (2016)

evaluation
PubMed articles

Discover rare connections in ASD research

SVM

214

n=

Petric et al. (2007)

Build a molecular network with genes linked to ASD, Alzheimer’s, bipolar

Bayesian network

Research articles

3161

n=

Rzhetsky et al. (2006)

disorder, and schizophrenia

Investigate outlier documents in knowledge discovery

Naive Bayes, RF, SVM

LVA; SVM

PubMed abstracts
Text documents

n=15243

Sluban et al. (2012)

Develop information sharing scheme, which conceals sensitive personal

=550

Song and Marsh (2012) »

information
Developed Lynx, an online database and knowledge extraction engine

Genes Random Walk

n=483

Sulakhe et al. (2014)
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Social Media Text mining was applied to Twitter posts by
Beykikhoshk et al. (2015) to gain knowledge about the ASD
community. From an initial dataset of 11 million tweets, the
authors used ASD-related keywords to identify over 5.6 mil-
lion tweets that were ASD related. Of those, 3,493,742 were
found to be original tweets created by 1,771,274 unique users.
Both ASD and control corpora were found to obey Zipf’s law,
suggesting that current text representation and analysis tools
could be applied. The authors explored message length, word
frequency, hashtag analysis, and part-of-speech analysis with
classical statistics before investigating tweet classification.
After splitting the data in half for training and testing sets,
naive Bayes, ridge logistic regression, and LASSO classifica-
tion models were conducted. With the ASD-related keywords
used to identify the ASD tweets eliminated from the analyses,
naive Bayes and logistic regression achieved approximately
80% accuracy, while LASSO had up to 70% accuracy. The
authors suggested that analyses such as these could potentially
yield valuable information from within the ASD community
(e.g., views on current initiatives and legislature) that may be
of interest to public health officials and policy makers.

Bennett (2015) also used classification algorithms to eval-
uate whether personal blogs could predict Autism Spectrum
Quotient (AQ; Baron-Cohen et al. 2001) scores. The AQ is a
questionnaire developed to aid in the diagnosis of ASD.
Searching Wordpress.com for blogs containing self-reported
AQ scores, Bennett identified 75 blogs (35 male, 40 female)
posted after 2009 with each blog containing over 10,000
words. Analyses were conducted to determine if blog content
could predict whether the authors” AQ scores fell above or
below the cutoff point for ASD. Significant differences in
the number and type of useful features between male and
female bloggers were found. The highest predictive accuracy,
90.9%, was achieved for males using LIWC dimension selec-
tion and a naive Bayes classifier. Females were classified with
an 88.7% accuracy using 3-g models with naive Bayes. These
finding show the potential in the use of machine learning to
detect ASD from samples of text.

Finite State Machine Transfer Network

FSMTN is a transfer learning model. A transfer learning ap-
proach utilizes knowledge gained from an input source to help
solve a target problem (Aggarwal and Zhai 2012). FSMTN
has been used in the reviewed ASD literature to explore ASD
candidate genes.

Genetic Data Gong et al. (2011) developed the text mining
tool AutMiner to explore ASD-related genes. Using
PubMed’s E-Utilities, the authors created a dataset of 9276
abstracts related to ASD. An FSMTN was used to identify
candidate genes, and biomedical ontologies were used to filter
the results. A total of 691 genes were identified as potentially
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related to ASD. To validate the results, the identified genes
were compared to 161 known ASD susceptibility genes. Of
the 691 candidate genes, 127 genes matched known ASD
susceptibility genes with 34 known susceptibility genes not
appearing among the identified candidate genes. The ASD-
related genes were stored in the AutMiner database, and
ASD-gene and gene—gene networks were constructed. The
authors proposed that AutMiner may be used by geneticists
implementing genetic screenings for individuals with ASD.
These findings reveal the potential of text mining in identify-
ing ASD candidate genes.

Apriori Algorithm

Apriori algorithms look to find the k most common terms
across a dataset. At each pass over the data, the algorithm adds
to its prior terms other terms that appear frequently alongside
the term sets it has collected previously. The Apriori algorithm
is useful because it is straightforward and can be used on
massive datasets relatively quickly. It generally relies on the
assumption that a set cannot be frequent unless its subsets are
frequent. These frequent sets are used to create association
rules that expose trends in the dataset (Agrawal and Srikant
1994). It has practical uses in areas like advertising and retail
sales because it is able to group items that are viewed or
purchased together frequently. Like FSMTN, this algorithm
has been used in the reviewed ASD literature to investigate
ASD candidate genes.

Genetic Data Gong et al. (2012) extended the work of Gong
et al. (2011) using association rules. The authors extracted
genes from 16,869 PubMed biomedical journal abstracts re-
lated to ASD. Based on prior knowledge, the identified genes
were classified as either seed (i.e., recognized ASD suscepti-
bility genes) or candidate. To predict new ASD susceptibility
genes, association rules were created between the identified
seed and candidate genes. Motivated by the Apriori algorithm,
the authors developed the KF algorithm to find key factors of
the candidate genes. The KF algorithm used a seed gene list,
candidate gene list, and document-gene table as inputs. A total
of 27 ASD susceptibility genes were found, and 43 possible
susceptibility genes were predicted. These findings further
underline the promising use of text mining to identify new
genes potentially associated with ASD.

Support Vector Machines

SVM algorithms, described earlier in this paper, have been
used in the reviewed text mining articles to reveal potentially
valuable links in existing ASD research and to help protect
private health information shared over the Internet.
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Electronic Health Records SVMs have also been used in text
mining to help protect personal health information shared on
the Internet. Song and Marsh (2012) developed a new infor-
mation sharing scheme, which conceals sensitive personal in-
formation. Each patient is identified by a small set of discrim-
inant words, which can be used to measure similarities in
health conditions. The authors developed a new keyword ex-
traction method, called linear variance analysis (LVA), which
uses SVMs to calculate the variances from a centroid of the
population. LVA was found to be a more effective measure of
similarity than existing measures across various sets of text
documents collected from online health forums, including 250
text documents with stories and experiences shared by parents
of children with ASD and ADHD, 100 health descriptions
related to respiratory infections, and 200 assessment reports
of children being evaluated for ASD. These findings show
promise in the use of text mining to help protect private health
information shared over the Internet.

Ontologies Petric et al. (2007) used text mining to uncover
infrequent connections between ASD research articles in the
hope of revealing new areas of exploration for researchers. A
total of 214 publicly accessible articles relating to ASD were
obtained from the PubMed database. The tool OntoGen
(Fortuna et al. 2006) was used to create and explore various
ASD ontologies. Ontologies are useful in sharing a common
understanding of domain structure, explicitly formalizing do-
main assumptions, and analyzing domain knowledge. First,
frequent research topics were explored. Using the word—
vector text representation, OntoGen employed clustering to
identify seven subconcepts in the ASD domain. Keywords
used to describe the subconcepts were generated using a con-
cept centroid vector and an SVM-based linear model. Rare
connections between articles were also explored within the
ontology. The authors specifically highlighted the relationship
between ASD and calcineurin to be a potential area of future
investigation. These findings demonstrate the potential of text
mining to reveal infrequent and potentially valuable links
within large collections of research.

Random Forest

RF, described earlier in this paper, has been used in the
reviewed text mining research to explore outlier literature that
link different domains.

Ontologies Sluban et al. (2012) extended the work of Petric
et al. (2007), which identified a rare connection between ASD
and calcineurin (a protein that activates T cells) via text min-
ing. Using terms that bridge ASD and calcineurin, the authors
obtained 15,243 abstracts from the PubMed database. To iden-
tify sets of outlier documents that connect ASD and calcine-
urin, the authors employed naive Bayes, RF, and SVM

classification algorithms. The authors also compiled union
and “majority” sets of outliers identified from at least two of
the classification algorithms. Less than 5% of all the docu-
ments in the dataset were found to contain between 70 and
90% of the bridging terms across the five outlier subsets.
Although RF was found to perform best, the authors recom-
mended the majority set for bridging concepts. These findings
reveal that text mining may be useful in filtering through lit-
erature to identify a subset of content that connects separate
domains, making such research efforts less cumbersome.

ASD Monitoring RF has also been used for ASD monitoring
and surveillance. The Autism and Development Disabilities
Monitoring (ADDM) Network is charged with population-
based surveillance of ASD in 8-year-old children across the
USA. Traditionally, clinicians manually review developmen-
tal evaluations to determine a child’s diagnostic status.
Looking for a more efficient way to identify children who
meet the ASD surveillance criteria, Maenner et al. (2016)
trained an RF classifier on the 2008 Georgia ADDM data. A
total of 5396 evaluations from 601 children with ASD and 561
children with TD were preprocessed using a bag-of-words
approach with term-frequency-inverse-document-frequency
(Tf-idf) weighting. RF classifiers were used to (1) identify
words and phrases useful for classifying ASD and (2) classify
ASD or TD. The classification model was tested on 9811
evaluations from 754 children with ASD and 696 children
with TD from the 2010 Georgia ADDM data. The final RF
of 3000 trees achieved 86.5% accuracy, 84% sensitivity,
89.2% specificity, and an AUC of .932. The authors note that
machine learning can help differentiate children who meet the
surveillance requirements; however, this model should be
used more as a filter than a tool for final classification.

Random Walk

Random walk is a way to explore a space using a series of
probabilistically determined steps. The probability that the
next step will be in a certain direction can be predetermined.
Random walks are used to calculate both expected distance
after n moves as well as the probability of landing in certain
regions after n steps (Bishop 2006). Random walks have been
used to simulate complex behavior in many applications from
sports analytics to stock prices. In the reviewed text mining
literature, random walk has been used in the development of a
biomedical database used to promote knowledge discovery
across many disorders of interest.

Ontologies Sulakhe et al. (2014) created Lynx, an online da-
tabase and knowledge extraction tool to aid in the analysis of
biomedical data. Lynx consists of an integrated
knowledgebase, LynxKB, and knowledge extraction services,
including the use of the text mining system GeneWays
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(Rzhetsky et al. 2004) and the Vista project (Visel et al. 2007).
Gene prioritization was accomplished with five propagation
algorithms: simple random walk, heat kernel diffusion,
PageRank with priors, HITS with priors, and K-step
Markov. The authors conducted a case study using Lynx to
investigate the genes and molecular mechanisms associated
with the occurrence of seizures in ASD. A total of 59 genes
were found to be associated with ASD and seizures. After
ranking the identified genes, 31 were found to be potentially
related to the symptom of seizures in ASD. These findings
demonstrate how text mining can be harnessed to extract
knowledge from vast collections of biomedical data.

Discussion

The purpose of this paper was to review literature that has
applied supervised machine learning approaches to the study
of ASD. A total of 45 articles that used supervised machine
learning algorithms in ASD research and text mining initia-
tives were identified and reviewed. In the 35 reviewed ASD
research studies, the most commonly used supervised ma-
chine learning algorithms were SVM and ADtree.
Supervised machine learning algorithms were used in these
studies to make binary predictions (often based on diagnoses)
to aid ASD diagnosis and screening efforts, explore genetic
underpinnings of ASD, and identify potential ASD bio-
markers (e.g., using neuroimaging). In the 10 reviewed text
mining articles, the most commonly used algorithms were
naive Bayes, SVM, and Random Forest. Supervised machine
learning algorithms were used in the reviewed text mining
articles to explore topics of interest in online ASD communi-
ties, to identify candidate ASD genes, and to investigate ob-
scure links between ASD and other domains.

The findings presented in this paper demonstrate that there
is great value in and practical applications for the use of su-
pervised machine learning in ASD research. Large and rich
datasets, including genetic datasets, such as Krishnan et al.
(2016), benefit greatly from the more flexible machine learn-
ing methods presented in this paper because these methods
allow for multidimensional data to be fully utilized. Since
the time from first concern to an ASD diagnosis is often over
2 years (Zwaigenbaum et al. 2009) and access to early inter-
vention has been shown to improve outcomes (Dawson et al.
2010), the works reviewed including Duda et al. (2016b) and
Abbas et al. (2018) present promising screening tools to help
decrease the length of time and cost required for diagnosis.
Unsupervised machine learning methods also provide practi-
cal, clinical classification tools that can be used in the field to
classify or filter incoming data.

For datasets that do not have attached classification labels,
supervised learning is not useful. Since outside classification
can take time, money, and effort, these data can be limited.
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However, huge amounts of labeled data are being created in
the field every day and are well fitted to this kind of supervised
learning. Another limitation of machine learning comes with
the complexity of the models. While the more sophisticated
machine learning models often outperform their simpler
counterparts, there is a tradeoff between performance and
understanding. For example, the neural network presented
by Linstead et al. (2017) easily outperformed a simple linear
regression; however, the internal parameters of neural net-
works cannot be easily interpreted. Researchers should con-
sider if this understanding is more important than the results
when selecting a machine learning model.

Many of the above limitations and strengths apply to the
field of Big Data and Machine Learning as a whole. Acquiring
datasets large enough in terms of observations and explanato-
ry variables to train complex models can be difficult, but with
appropriately sized data, ML models often outperform simpler
models. However, it is also important that these datasets are
representative of the population of interest in order to avoid
models that are systematically biased. While the predictive
accuracy of ML models can be quite high, the models them-
selves are not always easily used for inferential conclusions
which may decrease the adoption of such solutions. The added
complexity of a ML model leads to an increase computation
necessary to deploy in practical settings. This is where the
science of Big Data and ML need to have the appropriate
computational platform capable of handling both the data
and the additional complexity of a ML model. Further re-
search applying supervised machine learning methods to
ASD research is needed. The reviewed literature has primarily
applied machine learning to identify potential genetic markers
and diagnosis; however, with estimates of 2% of the children
diagnosed with ASD in the US (Zablotsky et al. 2015), in
addition to expanding on the abovementioned areas of inves-
tigation, researchers should also investigate treatment
methods, intensity, duration, and outcomes.

Auvailability and affordability of data collecting devices
have opened doors for the use of machine learning in ASD
research. In the last decade, a growing number of supervised
machine learning research studies have emerged in the field of
ASD. Although limited, the existing literature described in the
current review has demonstrated the potential of machine
learning in ASD research. The capability of machine learning
to extract knowledge from large collections of data is promis-
ing for future ASD research endeavors.
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Appendix

Appendix A: PRISMA 2009 Flow Diagram
Applications of Supervised Machine Learning in Autism Spectrum
Disorder Research: A Review
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