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Abstract

The Creep–and–Merge (CAM) segmentation system (described in [3, 2]) is
a novel architecture for region-based segmentation; it is designed to be effi-
cient, insensitive to noise, scale and image geometry, capable of applying the
widest range of statistical models, and to contain no adjustable parameters.
This paper describes the continuing development of higher–level processing
models utilising this system: we present a geometric (“true”) corner detector
with good performance, and give qualitative and quantitative comparisons
with other leading systems.

1 Introduction

The most popular feature extractors for computer vision tasks are still edge and corner de-
tectors, based on local image measurements from a fixed–sized neighbourhood. Compet-
ing region–based schemes making use of more powerful global methods and constraints
currently suffer from poor computational performance and generality, and often fail to de-
liver the level of robustness and automation which this alternative technology promises.

Two region–based segmentation paradigms (the “snakes/balloons” framework put for-
ward in [7, 4], and generalised in [13], and split–and–merge/link, presented in [8, 1]) and
generalised in [11]) can be used to classify the majority of region–based approaches, but
these suffer from various problems. The former are still predominantly local methods,
and also suffer from troublesome discretisation of curvature and gradient terms, and topo-
logical difficulties (curve self-intersection, etc.); whereas algorithms in the latter class are
generally fragile. Since they progress in a fixed number of recursive passes through the
image, it is easy for them to overlook important minima in their energy functions.

More recent developments ameliorate these problems, but [11] still has problems with
regularisation of the number of regions, and resolution of extracted boundaries, as does
[13], even though it belongs to the second camp.

The CAM system may either be viewed as an explicit discretisation of a contour–
based scheme, or as an iterative enhancement to region splitting methods — it shares in
the good properties of both.
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2 Framework and Assumptions

2.1 Configuration

We model the image as a completely covered by non-intersecting connected regionsfRig.
Each region contains dataDi with Ni = Ni(Di) samples, drawn from�(Di), one of a
collection of models indexed by parameter vector�.

The configuration is optimised entirely in terms of quantities known asdiscriminabil-
itiesÆ(Di; Dj) of two sets of region contents, which are the only communication between
the geometric and statistical parts of the system. This function represents, in some suit-
able metric (mapping to real numbers), our view of the likelihood that the adjacent regions
truly are drawn from different models. In the simplest framework, this would be just a
function of grey-level differences.

A number of choices are suitable for this function, depending not least on the statis-
tical models chosen, but also the statistical paradigm adopted; however in generalÆ is to
have the dimensions of a log probability.

2.2 Discriminabilities

LetH! be thenull hypothesis, that two regions are described by the same model, andHa

be thealternative hypothesis, that they are described by different models.
In thefrequentistframework, these become the point hypothesesH! : �(Dij) = �̂ij

andHa : �(Di) = �̂i and�(Dj) = �̂j , where the hat symbol represents the maximum
likelihood estimate of the relevant parameter, andDij is the data formed by merging the
two regions; we apply theLikelihood Ratio Test, and a suitable choice forÆ is

The log level of confidence at which the null hypothesisH! thatDi andDj are drawn
from the same distribution would be rejected.

In the Bayesianframework, we are required to integrate over all possible values for
the parameters� under the respective hypotheses, andÆ becomes

The log Bayes factor(ratio of evidences) in favour of the hypothesis thatDi and
Dj are from the same distribution, against the hypothesis that they are drawn from
different distributions.

For illustrative purposes, we show the two possibilities forÆ in the case where our
models are univariate GaussiansG(x;�i; �i), and our parameters are the means�i and
standard deviations�i, and our models allow differences in both parameters. In this case,
both functions factor into three termsK(D), so thatÆ(Di; Dj) = K(Dij) �K(Di) �
K(Dj). This does not happen in general. Table 1 shows the values forK(D); s is the
maximum likelihood estimate for�.

Framework Discriminability Function
Frequentist N log(s2)
Bayesian log

�
�(N=2)

�� (N=2) log(s2)� log(N=2)

Figure 1: Terms in the discriminability functions under different paradigms for univariate
Gaussian distributions
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2.3 Comments

At this point, we note only that the Bayesian function involves significantly more com-
putation, and that although it performs fractionally better in our application than the fre-
quentist measure (as it must, given the proven optimality of the Bayesian framework in
general), this improvement is not justified by the increase in computation. We must bear
in mind that this function will be evaluated many millions of times in segmenting even
modest sized images.

Both quantities behave similarly – borders with lower (more negative) discriminabili-
ties are said to bestrongborders; these values can be much below -1000 for some artificial
images. Borders with higher (less negative) discriminabilites (close to 0) areweakbor-
ders. Bayesian discriminabilites can rise marginally above 0.

3 Optimisation

3.1 Operations

During optimisation, the configuration is perturbed repeatedly, by means of various oper-
ations; these comprise

� Splitting (Smashing) — a region is subdivided into smaller regions.

� Creeping — the boundary between two regions is deformed.

� Merging — two adjacent regions are combined.

Some algorithms lack one or more of these operations, and suffer often in efficiency,
and usually in performance — if the operation set is impoverished, it is very easy for a
system to get trapped in undesirable configurations.

There is not space here to describe the full system (see [2]); in outline, splitting and
merging occur when the discriminabilityÆ is on the wrong side of a confidence threshold
tc. This parameter represents the statistical certainty we require in order to maintain two
regions as distinct. A value of around -5, representing a confidence of about 98% in
decision-making, is appropriate, and does not need external adjustment.

3.2 Scale Uncertainty

The most important feature of the CAM algorithm is that it dynamically adjustsall of
its internal parameters in response to the image data. Many algorithms give spurious or
incorrect outputs when presented with image data that is only mildly corrupted by noise,
and few exhibit useful behaviour as noise becomes more severe. What [12] term the
Uncertainty Principlein image processing is the solution — the greater the difficulty of
the statistical decision task, the coarser the scale at which it can be reliably made.

It is therefore important that all region boundaries are only represented at an appropri-
ate scale for the discrimination that gave rise to them. In the CAM algorithm, we define,
using the discriminabilityÆ(Di; Dj) of two neighbouring regions, amagic numberN�,
which represents, in pixels, the minimum area by which the boundary can be perturbed
during Creeping to produce a statistically distinguishable configuration.
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To defineN�, we consider hypothetical subregionsRN
i of Ri with sizeN , which we

assume to give rise to the same maximum likelihood model vector�̂i. We define

N�(Di; Dj) = maxN such that Æ(DN
i ; Dj) < tc (1)

Since we use a quadtree framework in our current implementation, this indicates that
the boundary of the regionsRi andRj is kept sampled to a spatial resolution of close top
N� pixels, using square cells.

With these definitions ofN� andtc, the number of regions and the resolution of each
boundary in the system are continuously kept correctly adjusted, without the need for the
user to set scale or “busyness” parameters before work begins.

4 Performance
We present some quantitative results on the performance of the raw CAM system before
passing on to the higher-level systems that have been constructed on it.

[6] contains a description of a suite of test images and evaluation criteria that can be
applied to segmentation systems, together with a collection of test results for five com-
peting region– and edge–based systems. We apply the same tests to this algorithm —
the images segmented are similar to that in Figure 3, with differing signal–to–noise ratios
(SNR). Our definition of SNR is also taken from [6], since their definition is not the usual
one.
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Figure 2: Performance evaluation Figure 3: Typical image from [6]

Figure 2 shows the considerable superiority of our method in noisy images, contin-
uing to give good results in increasing noise long after the other systems have given up.
The system also performs very well in low–noise images – since it has no smoothness
regularisation, it misclassifies a few pixels in moderate noise. This could be remedied by
even a simple higher–level geometric system.

It should also be noted that the results presented for the other five systems are the result
of optimising the criterion with respect to their adjustable parameters, over several dozen
runs. Our system also scores heavily over the others in that it has no such parameters.

In the other direction, Figure 4(d) shows the successful segmentation of Figure 4(a),
taken from [13]; the current implementation correctly identifies the thin lines and blocks
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until quite narrow spacings at the left; the left–hand strip is seen to be a single, high–
variance region. The noisy boundary of the fifth bar from the right is due to sampling
problems in the quadtree. Enhancements are planned to enable the system to segment this
image completely correctly.

It should be noted that contrary to the claim made in [13], this success has been made
in a unified framework without the addition of any form of edge term.

(a) (b) (c) (d)

Figure 4: (a) Original degenerate image; (b) Result from Yuille+Zhu system[13]; (c) Split
and merge result; (d) CAM system.

5 Further Processing — Medical Images

Clearly, real images are not described by the piecewise Gaussian models of the previous
section — in order to address this issue, we may be tempted to adjust the confidence
parametertc downwards, in order to provide more “sloppy” segmentations, and hope
to “segment out” variations in the images we are not interested in; this is a common
approach.

There are two main problems with this idea; i) we have introduced an unsettable,
image–dependent parameter into the system, and ii) the use of an unnatural probability
threshold causes systematic bias in the resulting contour positions.

Therefore, all higher–level processing systems will make use of the CAM algorithm
in its natural, parameter–free form.

In this form, the system will clearly produce very many more regions than will be
desirable for most applications; it will “over–segment”. However, we can observe that
the algorithm has (hopefully) detectedall statistically significant boundaries within the
image, so the contours we are interested in, if they are visible at all, must be accurately
represented as a subset of the produced contours. Our problem is thus one of selection, a
much easier task than the original segmentation task.

As it transpires, the problem is so simple that an extremely crude higher level will
do a surprising amount of the work required to segment quite difficult images — we use
the “roundness” metric, which is the squared perimeter divided by the area of the region
formed by aggregating sub-regions produced by raw CAM.

Figure 5 shows the original ultrasound image, containing a considerable amount of
noise, and a fairly irregular contour. Figure 6 shows the raw CAM segmentation — it
can be seen that all parts of the required contour are represented in the “jigsaw” middle
image.

Starting from a central region that is darker than all of its neighbours, a simple op-
timised expands the contour by aggregating more of the small CAM regions, optimising
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Figure 5:
Original ultrasound image

Figure 6: Raw segmentation
Figure 7:
Aggregated result

the roundness criterion. The final result is shown in Figure 7. More details are found in
[2], and an interactive system based on this idea is described in [9]. Work is underway on
a more sophisticated higher–level system, based on the results in the next section, for the
segmentation of the most difficult images.

6 Corner Detection

6.1 Statistics

We will model pointsfxi; yig on the contour as arising with probability dependent on a
Gaussian function of their perpendicular distance from a straight line. Thus our models
have 3 parameters,a, b and c, the location parameters of the straight line segment in
question, described by the equationax + by + c = 0; we will encode�, the standard
deviation of the Gaussian, by1=

p
a2 + b2. In this case, we will not segment on the

parameter�.
Again, we have two choices of statistical test to apply, the Frequentist, and the Bayesian.

In this case, the behaviour of the two is more clearly differentiated — the Bayesian test
is given in terms of the Gaussian Hypergeometric functionF (�N;�N ; 1; x) whereN is
the number of data points, andx is a function of their angular spread. The derivation of
this is outside the scope of this paper — however, the series expansion for this function
converges extremely slowly, making this test almost two orders of magnitude slower than
the Frequentist form.

The Frequentist criterion (equivalent ofK(D) in Figure 1) is�(N=2) log(�), where
� is the minimum eigenvector of the matrixCovar(xi; yi). This can be easily evaluated,
and interestingly proved more sensitive to corners in low-data situations.

6.2 Algorithm

The generality of the CAM framework becomes apparent, since we will apply the 1–
dimensional version of thesame algorithmon the extracted contours to detect corners;
we will segment them into piecewise linear sections.
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In this case, hierarchical subdivision has no performance benefits, since the regions
are all just intervals - therefore splitting can occur at arbitrary points. The other stages of
the algorithm are unchanged.

6.3 Results

Figure 8: Harris detector Figure 9: SUSAN detector Figure 10: CAM detector

Figures 8, 9 and 10 show an automatically generated image containing five polygons,
amid a moderate amount of noise (signal 32 intensity units difference, noise standard
deviation 16). From left to right are shown the results of the Harris corner detector ([5]),
the SUSAN corner detector ([10]), and the CAM system.

Note that the first two systems have more than one adjustable parameter, and the
results shown were the best obtainable by sweeping these over their ranges — the Harris
corner was explictly told to look for less than 30 corners, and with the SUSAN detector
we hunted around until a threshold value oft = 30 gave better results (this is an inverse
scale — lower values oft produce more corners).

The CAM corner system may allow the adjustment of the parametertc for thesecond,
1–dimensional segmentation, but a value of -50 has been found sufficient for all images so
far examined. This much lower number reflects the many other sources of error factored
into the contour generation, such as statistical variations in the original image, segmenta-
tion errors, and discretisation errors. These indicate we require greater evidence in order
to reliably detect model changes (corners).

7 Performance Evaluation

System True Detects Total Detects Detect Quality RMS pos. error
Harris 16 17 64% 1.2
SUSAN 19 21 73.1% 0.48
CAM 22 23 88% 0.47

Figure 11: Corner detection performace for SNR = 8

Figure 11 clearly shows superior performance of CAM even in light noise; the image
used was similar to that of the figures above, but the noise was only of standard deviation
4 units, giving a SNR of 8. The image contains a total of 24 true corners — of these, one
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at the top of the scene is never detected by any scheme, since it lies exactly on the upper
edge of the image. We ascribe a “Detection Quality Rating” as the ratio of

True Detects
Total Actual Corners+ False Detects

(2)

We normalise the distance to the true position of the corner used as the basis of the
RMS calculation as follows: the “narrow angle”,�, of the corner, is defined as either the
angle in the corner, or its complement, depending on which of them is acute. We then
scale the component of the error vector parallel to the bisector of the “narrow” angle by
sin(�), and leave the perpendicular component unchanged. This is to prevent unavoidable
larger positional errors in narrow corners from swamping the total RMS measure.

7.1 Parameter Robustness

We return to the issue of parameter robustness — again, Figure 11 was generated by
searching over the parameter spaces of Harris and SUSAN for optimal results, while
CAM was run at its standard settings. The graph in Figure 12 examines in detail exactly
how stable the various algorithms are — we also allow thetc parameter of CAM to be
adjusted, to see the change in system performance.
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Figure 12:Parameter robustness for SNR = 8
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Figure 13:Parameter robustness for SNR = 2

This graph requires some explanation: the most important point is that the horizontal
scale has no common meaning for the different algorithms, since their individual thresh-
olds are in some arbitrary scale of units — the three systems have been plotted on one
graph purely for convenience. The dashed lines represent the RMS performance for each
algorithm, which should be referred to the right–hand axis; the solid lines represent the
detect performance, which for which the scale appears on the left axis. Finally, the top of
the graph represents better performance; lower RMS error, and better detect rating.

What matters is not the horizontal scale of the graphs, but their shape — a peaked
or curved shape indicates that the algorithm’s performance depends sensitively on the
parameter setting being varied, whereas a flattened shape indicates that the algorithm is
robust. Note that as well as being flat over a wide range, the line representing CAM detect
performance is significantly higher than that of the other systems.
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Regarding location performance, the Harris corner detector, as many studies report, is
here shown to be inferior in location performance, but SUSAN and CAM are equivalent
in this regard.

Note that although further processing can enable the SUSAN edge detector to give
subpixel output, the same does not seem to be true of the SUSAN corner detector. Since
for this test image, the true corner coordinates were in fact integers, a part of SUSAN’s
good location performance was due to getting a number of the corners precisely correct.
Further tests with subpixel test images are expected to show this performance to degrade.

Figure 13 plots the same quantities for SNR= 2, the same as that in the above figures.
The SUSAN performance now almost negligible, and the Harris performance has halved.
But note also that as well as still being peaked, the position of maximum performance of
these two algorithms haschangedin threshold space — the threshold parameters for these
algorithms are truly unsettable, since we cannot determine their optimum value without
first looking at the image. As well as being flat, the value -50 was still well within the flat
region for CAM.
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Figure 14: Breakdown of detection with decreasing SNR

7.2 Noise Breakdown

Finally, we show in Figure 14 the breakdown of the algorithms under increasing noise —
again, we use the same settings for CAM, and pick optimum ones for Harris and SUSAN;
by the time we reach the right–hand point of the graph, the optimum threshold value fort
had drifted up to 50. Note that for very low–noise images, the authors recommend a value
of t = 10. l Again, the CAM algorithm wins out uniformly in detect performance.

8 Notes on Performance

In addition to its function as a corner detector, the CAM algorithm, since it globally
segments the image, has other benefits too; we may output a richer set of descriptors
(angles, contrasts, distances, etc. ) that will aid a yet further stage of processing, for
example feature matching, or object recognition. Being statistically general, CAM is also
not limited to finding linear joints; future versions of the system are planned to discover
ellipse segments, and finally spline segments.
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However, this performance currently comes at a computational price; while the highly
optimised C implementation of SUSAN can process an entire image in 0.3 seconds, the
CAM system is more than an order of magnitude slower, taking around 15-20 seconds to
process an image with the (largely unoptimised) C++ backend, and a further 1-2 seconds
to detect corners with the Java frontend.

The system is still under development, but it is considered unlikely that the total pro-
cessing time could be brought to much under 5 seconds on today’s hardware. Thus, for
real–time applications, SUSAN remains the system of choice; however, for the future, and
for today’s offline reconstruction and matching applications, the CAM system promises
many benefits.
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