
transactions of the
american mathematical society
Volume 262, Number 1, November 1980

APPLICATIONS OF THE FOURIER-WIENER TRANSFORM
TO DIFFERENTIAL EQUATIONS ON
INFINITE DIMENSIONAL SPACES. I

BY
YUH-JIA LEE1

Abstract. Let (H, i, B) be an abstract Wiener space andp, be the Wiener measure
on B with variance t. Let [B] be the complexification of B and S>a be the class of
exponential type analytic functions defined on [B]. We define the Fourier-Wiener
c-transform for any/in &a by

9J(y) = ff(x + iy)Pc(dx)

and the inverse transform by 9^ xf(y) = %f(-y). Then the inversion formula holds
and % extends to L2(B,px) as a unitary operator. Next, we apply the above
transform to investigate the existence, uniqueness and regularity of solutions for
Cauchy problems associated with the following two equations: (1) u, = -9L*m, (2)
u„ = -9l*u; and the elliptic type equation (3) -9l*u = f (k > 1), where A is the
Laplacian and <üiu(x) = -Au(jc) + (x, Du(x)).

1. Introduction. Gross [6] initiated the theory of differential equations on infinite
dimensional abstract Wiener spaces (H, i, B) [5]. H is a given real separable
Hilbert space with inner product < , ) and norm | | = V < , ) ; B is the completion
of H with respect to a measurable norm; i is the canonical embedding of H into B.
In [6], Gross showed that the solution of the Cauchy problem associated with the
infinite dimensional heat equation

u,(x, t) ={Au(x,t)

can be represented by an integral with respect to the Wiener measure p„ where the
Laplacian A of a real-valued function / on B is defined as the trace (on H) of the
second Fréchet-derivative D2f of / when the latter exists. Other second order
parabolic type differential equations also have this property. For example: (1)
Piech [13] represented the solution of the Cauchy problem associated with the
second order differential equation with variable coefficients

u,(x, t) = trace[A(x)D2u(x, r)]
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260 YUH-JIA LEE

as an integral with respect to a measure which is absolutely continuous with respect
to the Wiener measure; (2) in [14], Piech investigated the existence and regularity
of the Cauchy problem associated with the differential equation u,(x, t) =
-9lw(x, /), where 9L/(x) = -A/(x) + (x, Dfix)) (if it exists) and ( , ) denotes the
natural pairing of (B, B*). It turns out that the solution can be written as an
integral with respect to the transition measurep^^-z^e-'*, dy).

In the case of differential equations of order greater than two, less work has been
done. An approach has been considered recently by Uglanov [19]. There the
fundamental solutions of higher order elliptic and parabolic type differential
operators of the form (A ̂ , ^ )* (A is a constant matrix) are obtained in the sense
of generalized measures. However, both localization properties and regularity of
solutions are lacking.

In this paper, we shall apply the Fourier-Wiener transform [1] (see 3.1 for
definition) and integration by parts [10] to examine Cauchy problems associated
with the following types of differential equations:

(1) u,(x, t) = -?fiku(x, t),
(2) u„(x, t) = -9L*m(jc, 0,

and also the elliptic type differential equation
(3) -9l*«(x) = g(x)

where k > 1.
We owe the definition of the Fourier-Wiener transform to Cameron and Martin

[1]. There the Fourier-Wiener transform was defined on a class of mean exponen-
tial type analytic functionals on the classical Wiener space 6 (i.e. the Banach space
of continuous functions on [0, 1] vanishing at 0) and extended to L2(Q) as a unitary
operator (see [2]). Later, Segal [16] defined the Fourier-Wiener transform on the
class of polynomial cylinder functions on Hilbert space. Hida [7], following [2],
developed a more satisfactory Fourier analysis on the dual space of nuclear spaces.
However, the natural domain of definition of the Fourier-Wiener transform in [7] is
somewhat the same as that of [16]. As far as the applications of the Fourier-Wiener
transform are concerned we find that it is desirable to enlarge the (natural) domain
of definition of the Fourier-Wiener transform as much as possible (so that it at
least also contains a large class of functions other than cylinder functions).

For this purpose, we abstract [1] to define the Fourier-Wiener transform on the
class of exponential type analytic functions &a on [5]-the complexification of B.
Consequently, if the initial functions are assumed in &a, all the solutions can be
represented by series; (1) and (2) have their solutions in &a, (3) has its solution in
&a provided g G &a and /B g(x)px(dx) = 0. The nonhomogeneous cases of (1) and
(2) are also considered.

2. Preliminaries. Let H be a real separable Hilbert space with norm
I " I = V< , >. Let || • || be a fixed measurable norm on H (for definition, see, for
example, [5] or [10]) and B be the completion of H with respect to || ||. (H, i, B) is
called an abstract Wiener space [5], where i is the canonical embedding mapping
from H into B. If p, (/ > 0) is the Gauss cylinder set measure on H with variance /,
then ft, induces a cylinder set measure p, on B which in turn extends to a o-additive
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APPLICATIONS OF THE FOURIER-WIENER TRANSFORM 261

measure p, on (B, % (B)), where % (B) is the a-algebra of Borel sets in B. p, is
called the Wiener measure with variance t and the following properties hold:

Psl(E) = p,(s-x/2E)    fors>0;       p,(-E) = p,(E), (1)

Ps*p,(E)=Ps+l(E). (2)
We need the following theorem to prove Theorem 3.7 (integration by parts)

which is important in this paper.

Proposition 2.1 (Kuo). Let (H, i, B) be an abstract Wiener space. Then there
exist another abstract Wiener space (H, i0, B0) and an increasing sequence of orthogo-
nal projections {P„} converging strongly to the identity in H such that (1) the B0-norm
is stronger than the B-norm (hence B0 C B), (2) each Pn extends by continuity to a
projection Pn of B0, and (3) Pn converges strongly to the identity in B0 (w.r.t.
Bo-norm). (For a proof, see [11].)

Remark 1. It is easy to see that if p,,p, are the Wiener measures on B and B^
respectively, then

ff(x)pt(dx) = f f(x)p,(dx) (3)
JB JBa

for all nonnegative measurable or integrable functions/on B.   □
Notation. If A is an operator on H, we denote by || • U,, the trace norm of A and

by II ' IIh-s tne Hilbert Schmidt norm of A. We also denote by || • \\XY the operator
norm in L(X, Y).

Remark 2. We note that B* G H* « H G B and (x,y) = <x,y> for x G H,
y G B*.    D

Theorem 2.2 (Goodman). Let A be a bounded linear operator with range in B*
(hence A G L(B, B*)). Then A is a trace class operator on H. Moreover,

IMIk<  {\\x\\2Pi(dx).\\A\\B,B.. (4)JB

(We shall see by the next theorem that fB\\x\\yx{dx) < oo.)

Theorem 2.3 (Fernique). There exists ß > 0 such that

exp(ß\\x\\2)px(dx) < oo. (5)/.

Corollary 2.4. fB exp(ß\\x\\)px(dx) < oo for all ß > 0.

Remark 3. Skorohod showed that the above corollary is true for some ß > 0, at
approximately the same time as Fernique did in 1970. However, this is obviously
an easy consequence of Fernique's result.

For more details about abstract Wiener space we refer to Kuo [11] or the original
papers of Gross [3], [4], [5] and Segal [17]. For integration theory on Hilbert space,
we refer to Skorohod [19].    □

We shall denote by ([X], \\ • \\[X]) the complexification of a real Banach space X,
where [X] = {xx + ix2: xx, x2 G X}, and ||x, + x2\\[X] = Cll^illi- + H*all*)l/a.
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Let X, Y be real Banach spaces, and [X], [Y] be their respective complexifica-
tions. We then have

(i) L(X,Y)^L([X],[Y]) by extension and 1171^ = ||F||[Ar],m for F G
L(X, Y).

(ii) If F G L([X], [Y]), then there exists 7} (j = 1, 2) in L(X, Y) such that
T = Tx + iT2 (where we consider Tj as an operator in L([X], [ Y]) in the sense of
«)•

(nodir.i^y + iiF2ii^y)'/2 < imim>m <V2(\\tx\\2x,y + \\T2\\2x,ry'2.
Therefore, we may consider L([Ar], [ Y]) as the complexification of L(X, Y).

Remark 4. If B is a real Banach space, we define WQ = R and W„ =
L(B, W„_x), n = 1, 2,. . . . Then we have [Wn] = L([B], [W„_x]).

Now suppose / is an analytic function on some open set D g[B] (for more
details, we refer to [8], [9]). Then D"f(x) is realized as an operator in [Wn] and
Dnf(x) is of the form Tx(x) + iT2(x) with Tx(x), T2(x) G Wn and Tx(x), T2(x)
extend to [B] in the sense of (i).

3. The Fourier-Wiener transform on abstract Wiener space. Cameron and Martin
[1], [2] have defined the Fourier-Wiener transform on the classical Wiener space 6.
We shall generalize their results to abstract Wiener space. However, the proofs
below are quite different from those of [1].

Definition 3.1. Let (H, i, B) be an abstract Wiener space, and [B] the com-
plexification of B. If / is a function defined on [B], then for each y G [B], x G B,
f(x + iy) is a function of x defined on B. Assuming/(- + iy) G Lx(B,pc), we define

(%S)(y) = (S(x + iy)Pc(dx)
JB

and

($7'S)(y) = (S(x - iy)pc(dx)   where c > 0.
JB

We will call %S the Fourier-Wiener c-transform of /, and §r~l the inverse
Fourier-Wiener c-transform of /. When c = 2, ®s2f is customarily called the
Fourier-Wiener transform off.

Note that %f(y) = fBf(Vc^ + iy)Px(dx) and % xS(y) = %S(-y).
Notation. For notational convenience we use || || as the norm for both B and [B].

(Since if x G 5, ||x||B = ||x||[B].)
Definition 3.2. Denote by Sa the collection of functions defined on [B]

satisfying the following two conditions:
(i) |/(z)| < Kx exp(/¡:2||z||) for some constants Kx, K2 > 0.
(ii) For x,y G [B],f(x + Xy) is an entire function of X G C.
We denote by &a(B) those functions which are defined on B and have an

extension to Sa. (Note that if the extension exists, it is unique.)
Remark 1. We call &a the class of exponential type analytic functions. When

B = S, the classical Wiener space, &a contains the space Em of mean exponential
type analytic functionals defined and used by Cameron and Martin [1]. We shall
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identify &a(B) and &a if the domain of definition (i.e. B or [B]) does not play an
important role.

Proposition 3.3. (i) ^J and <5~xf exist for f G 6a.
(ii) %(&a) C &a and similarly, %x(&a) G Sa.

(We shall see later that %(&a) = Sa.)

Proof,   (i)  As  a  consequence  of  Fernique's  theorem  (see  Corollary  2.4)
exp(AT2||jc|j) G Lx(B,pc). Hence

[f(x + iy)\ < Kx exp(/C2||y||)exp(/:2||x||) G Lx(B,pc)

for every y G [B] and (i) follows,
(ii) It suffices to show that <$c(&a) G &a.
In fact,

\%S{y)\<{\S{x+iy)\pc(dx)J B

<Kxf exp(K2\\x + iy\\)Pc(dx)

< *,(_£ exp(tf2||x||)pc(</x))exp(tf2||y||).

So 3.2(i) is fulfilled.
Now observe that for any closed curve y in C,

¡(%S)(x + Xy) dX = (  [S(u + ix + iXy)pc(du) dX
Jy Jy JB

= f\fS((u + ix)+X(iy))dX

= [0-pc(du) = 0.
JB

3.2(h) follows by Morera's Theorem. Hence, *&<.(&„) C Sa.   D

Proposition 3.4. (a) &a is a vector space and is closed under multiplication.
ISS e Sa, we also have
(b)fis infinitely F-differentiable (hence continuous).
(c) D"f(z)hx ...hnGëa, where hx,...,hnG [B], n = 1, 2, ... .
(d) ||/>,y(z)ll[»'] ** Ki exP(Wjr^2)exP(^2llzll)/o;' some constants Kx, K2.
(e) For any c, > 0, there exist constants K(f, cx), which depends only on f and cx,

and Mj which depends only on f such that \\D"f(z)\\^wx < K(f, cx)M" for all \\z\\ <
cx.

(f) If x,y G [B], the Taylor's series (in y) fix + y) = 2"_0 Dnf(x)y"/n\ con-
verges absolutely and uniformly with respect to both x and y on every bounded set in
[B].

Proof.  By the definition of &a  and the Cauchy formula,  the proofs are
straightforward.    □

Moreover, we have
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Corollary 3.5./ G &a(B) iff
(a)/ is infinitely Fréchet-differentiable in B, and
(b) for any c, > 0, there exist constants K and M such that \\D"S(x)\\w < KM"

for all ||*|| < cx.

The following lemma is a consequence of [10, Theorem 1]. We state it without
proof.

Lemma 3.6. Let f be a continuously Fréchet-differentiable function from B into B*.
Assume that there is an r > 0 such that

(i) {B[supw<r\\Dfix + h)\\BB.]p,(dx) < oo,
(ü) fB\\Äx)\\2B-P,(dx) < oo.

Then fB Df(x)hpt(dx) = t~xfB(.x, h)>f(x)pt(dx) for h G H, where we regard < • , A>
as a measurable function on B (see, for example, [11]).

Referring to [10, Corollary 1], we have

Theorem 3.7. Let fix) be a continuously Fréchet-differentiable function from B into
B*. If in addition to the assumptions (i) and (ii) of Lemma 3.6, we assume

(iii) /B||Z>/(x)||trp,(¿x) < oo,
then fB(x,f(x))p,(dx) = tfB traceH(Df(x))pt(dx).

Proof. Let (H, i0, B0), {P„} be the Wiener space and projections respectively in
Proposition 2.1 and Pn be the extension of Pn to B0.

By Remark 1 in §2, we have

¡(x,f(x))pt(dx) = f (x,f(x))p,(dx),
JB JB0

where (, ) on the right-hand side is the (B0, 2?£) pairing (note that B* D B*).
Recall that Pn is extended from Pn by continuity, so Pn(B0) is the || ||0-closure of

Pn(H). Since P„(H) is finite dimensional, Pn(B0) = P„(H) (for | | and || || are
equivalent in Pn(H)).

Let {ey.j = 1, 2, . . . } be an orthonormal basis of H. Then

f (P„x,f(x))pl(dx)=f {Pnx,fix))p,(dx)
B0 J B0

= 2   f   {eJ,f(x)){Pnx,eJ)pt(dx)
y=l   JB0

(by the dominated convergence theorem)

= I   f {ej,f(x)){x,P*nej)pt(dx)
y=l   JB0

00    r= t S    I   {Df(x)P„ej, ej)p,(dx),    by Lemma 3.6.
7-1   JB0

Whence by (iii) and the dominated convergence theorem we have

f (Pnx,f(x))p,(dx) = tf   trace[ Df(x)Pn]p,(dx).
JB0 JB0
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(Note that if /is Fréchet-differentiable in B, then/|B is also Fréchet-differentiable
in B0 and Df(x\ = D(f\B^(x) for all x G B0.)

Recall that P„ -» IBa strongly, we have (Pnx, fix)) ^> (x, fix)). Also, since Pn -»
IH strongly, we have trace[F>/(x)PJ —* trace[F>/(x)]. Moreover,

|(Fnx,/(x))| < ||/(x)||i,.||x||flo < const||/(x)||s.||x||Ä0 G Lx(ßx),

by assumption (ii), §2, Remark 1 and Holder's inequality. Besides, |trace Df(x)P„\
< \\Df(x)\\tT.

Therefore by the dominated convergence theorem

f(x,f(x))pt(dx)= lim   f (P„x,f(x))p,(dx)

= iÍmc//   ^ceH[Df(x)P„]p,(dx)
B0

= tí   traceH[Df(x)]p,(dx)
B0

= tí tiaceH[Df(x)]p,(dx).   Q
J B

Remark 2. It is not hard to see that if g G &a(B), then Dg: B -^ B* satisfies (i),
(ii) and (iii) of Theorem 3.7. In fact (ii) follows by 3.2(1) and Corollary 2.4, and (iii)
follows by Goodman's theorem (2.2). For (i), we let r = 1. Then

sup    \\D2g(x + h)\\BJ}. <     sup     cg exp(2c; + c'\\x + h\\)
0<|A|<1 0<|A|<1

< cg exp((2 + cx)c'g)exp(cg\\x\\) G Lx(Pl),

where c, is the constant such that \\h\\ <c,|A|.    □

Lemma 3.8. Let T be a symmetric linear operator in [Wn]. Then for x,y G B,

í   f T(x + iy)"pc(dx)pc{dy) = 0   forn = 1,2, ... . (1)JB JB

Proof. For n = 1,

f   f T(x + iy)Pc(dx)Pc(dy) = f   [ It"* - iy)Pc(dx)Pc(dy)J B J B J B J B

= -[  f T(x + iy)pc(dx)Pc(dy),J B J B

sincepc is even; hence fB fB T(x + iy)pc(dx)pc(dy) = 0.
For n = 2,

/   Í T(x + iyfpc(dx)pc(dy) - [  f(Tx2- Ty2)pc(dx)pc(dy)j B j B j B j B

(since Í Txypc(dx) = 0]

= (   f Tx^Xdx) -if Ty^dy) = 0.j B j B j B j B
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For n > 2, we write

í   f T(x + iy)npc(dx)pc(dy) = Í   f (x, F(x + iy)n-l)pc(dx)pc(dy)
j B j B j B j B

+ if   f (y, T(x + iy)n-i)pc(dy)Pc(dx).     (**)
J r J rt' B JB

\n-lFor the first term, we let fix) = T(x + iy)"    . For the second term, we let
g(y) = T(x + iy)"~x. Then by Theorem 3.7, we get

(**) = c(n - 1) f   f trace« 7tx + iy)" 2pc(dx)pc(dy)
JB JB

-c(n-\)í   Í trace« F(x + iy)n-2pc(dy)Pc(dx) = 0,
J r Jr

where Dfix) = (n - \)T(x + iy)"~2 and Dg(y) = i(n - l)T(x + iy)""2 are inter-
preted as operators of the form Ax + iA2 with Ax and A2 in L(B, B*), whence
trace«(y4, + iA^ = trace« Ax + i trace« A2 makes sense.    □

Theorem 3.9. For f G &a, we have

^l%fiz)^f(z),       zG[B]. (2)

Proof. (Step 1) We claim that (2) holds for/(z) = Tz", n = 1, 2, . . . , with T a
symmetric operator in [ W„].

In fact,

W~l%(T(-)")(z) = í   í T(x+iy + z)"pc(dx)pc(dy)
J B JB

= Tz"+ í   Í   2  Tz\x + iy)"-Jpc(dx)pc(dy)
JB JB j = 0

= Tz"    by Lemma 3.8.
(Step 2) By Proposition 3.4, we have

Consequently,

fiz) =  2 (l/nl)D"f(0)z".
n = 0

%S(z)=  2 (\/n\)%(D"S(0)(-)")(z),
n = 0

by Lebesgue's dominated convergence theorem.
Finally, by Step 1 and the dominated convergence theorem again,

Kl%Âz)-  f (\/n\)<¥;x%(D"f(0)(-)n)(z)
n=0

=  f (l/n\)D"f(0)z"=f(z).       U
n = 0

Remark 3. Combining 3.9 and 3.3, we see that %(Sa) = Sa.   □
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Theorem 3.10. &a(B) is dense in L2(B,pc).

Remark 4. It is easy to see that if / G &a(B), then

Sy:x^f(x +y),       yGB,

f: x -*S(dx),        d G R,

are also in &a(B).   □
Proof of 3.10. By Remark 4, we may assume c = 1.
Let {ey j = 1, 2, . . . , n} be a set c B*. Define P„a(x) = II"_,(x, ejp where

a = (ax, a2, . . . , an) and a/s are positive integers. Obviously, P¡¡ G Sa(B) for all a
and n. Since the algebra generated by P° (i.e. the linear combination of products of
F„a's) is dense in L2(B,px) (see, for example [7], [15]), our conclusion follows
immediately.   □

Theorem 3.11 (Parseval's formula). For allf, g G &a(B), we have

í (%S)(y)g(y)pÁdy) = fS(y)%g(y)Pi(dy). (3)J B JB

Proof. It is not hard to see by direct computations and induction that (3) is true
for/(x) = Axm and g(x) = Tx" (where A and T are symmetric members in Wm
and Wn, respectively). The theorem then follows by Proposition 3.4 and Lebesgue's
dominated convergence theorem. (This provides a more direct proof for the
Parseval's formula without using the knowledge of the Hermite polynomials. See
also Remark 6.)    □

Corollary 3.12. (i) fB <S2S(y) • %g(y)Pi(dy) = fBS(x)g(-x)px(dy),
(ii) Íb %S(y) • %g{y)Pi(dy) = SBS(x)g(x)Px(dx),
(iii) /al^/OOftii^) = iaUixtp^dx).
Proof, (i) follows by Theorem 3.11. (ii) follows by the fact that %g(y) =

%2 lg(y) an<i (iii) follows from (ii).    □
Notation. We customarily use S to stand for ^2.
Remark 5. Following [2], we may also extend the Fourier-Wiener transform to

L2(B,px) in the following way.
If/ G L2(B,px) and {/„} is a sequence of functions in &a(B) such that/, —*fin

L2(B,px) (by 3.10), then we define the Fourier-Wiener transform of / by Sf =
L2-lim SS„.

It follows by Corollary 3.12(iii) that S extends to a unitary operator on
L2(B,Px),i.e. \\Sf\\Li = ||/||i2forall/ G L2(B,px).   D

Remark 6. Let hn = (-l)"(n\yx/2e*2/2(d"/dxn)e~x*/2 be the one-dimensional
normalized Hermite polynomial of degree n. Let e¡ be an orthonormal basis of H
which lies in B*. For any multiple indices I = (/„ i2, . . . , /„), we define h,(x) =
H"k-i nik((x, ek)). Then {h,} forms an orthonormal basis in L2(B,px) (see [15]).
Employing the computation of Hida [7], we get

<Sh,(y) = ,l%(y),       yGB. (4)
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(This identity obviously also implies Theorem 3.11.) Furthermore, for any / G
L2(B,px), we have/ = S7 a,h,(L2) and by (4) we get

'Sf=^a/%(L2). (5)

Since h¡ G &a(B), if we take (5) as the definition of the Fourier-Wiener transform
on L2(B,px), (5) is obviously equivalent to the definition given in Remark 5.   □

4. Application I. Let/be a function defined on B. We may regard/as a function
g defined in a neighborhood of the origin of H by restricting/ to the coset x + H
and defining g(h) = fix + h). If g is k-times Fréchet-differentiable at 0 then we
say that/ is &-times //-differentiable at x. We denote the &-times //-differentiation
of / at x by /w(x). After Gross [6], if / is a twice //-differentiable function on B
such that f"(x) is a trace class operator on H for each x G B then we define the
Laplacian A/(x) by trace«/"(x).

If / is twice Fréchet-differentiable in B then the second Fréchet-derivative
D2f(x) G L(B, B*) and /is automatically twice //-differentiable. Restricting to H,
D2S(x)\H = S"(x), where/"(x) is a symmetric member of L(H, H) and therefore of
trace class by Goodman's theorem (see [11]).

In this section, we apply the Fourier-Wiener transform to the Cauchy problem
below.

u,(x, t) = -9l*«(x, t);    u(x, 0) = fix)       (t > 0, x G B) (1)
where k is any integer > 1, and

9lw(x) = -Am(x) + (x, Du(x))    (if it exists). (2)
If u is twice Fréchet-differentiable in B, we may write

Am(x) = trace«[/)2w(x)]. (3)

Our goal is to show that for / G &a(B), there exists a unique solution for (1)
which is also in ëa(B).

Remark 1. When k = 1, Piech [14] has shown the existence of a solution for
equation (1) (with / a Lip-1 function) such that u(x, t)^>l_Mf(x) uniformly on
bounded sets. In [15], she also studied the semigroup associated with u, = -91« on
L2(B,px). A more general definition of 91 which does not require the existence of
both Au and (x, Du(x)) is also given in [15].    □

We shall separate our proof into two parts.
Part I (Existence). For c > 0, we let

9lcu(x) = -Am(x) + c(x, Du(x)) (4)

and

9l«(x) = (x, Du(x)). (5)

Lemma 4.1. For u G &a, we have
(i)A(Sa) c &a, 9L(ga) c &a and consequently, 9lc(Sa) c Sa.
(ii) (Sx/C%u)(y) = c§LCSx/cu)(y)fory G B (or [/?]).
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Proof, (i) Trivial.
(ii) Recall Remark 2 of §3. Let fix) = Du(x + iy) and t = l/c and apply

Theorem 3.7. We get

j (x, Du(x + iy))px/c(dx) = c~x j traceH[D2u(x + iy)]px/c(dx).

On the other hand,

f(x,Du(x + iy))px/c(dx)
jb

(where the differentiation is with respect to x)

= f 9L«(x + iy)px/c(dx) - i í (y, Du(x + iy))px/c(dx)
Jb •>b

= f §Lu(x + iy)Pi/c(dx) - ly, f iDu(x + iy)px/c(dx)\

(by the definition of vector valued integral)

= fjk*(x + iy)px/c(dx) - ly, ¡Dyu(x + iy)px/c(dx))

= ¡g^lu(x + iy)px/c(dx) - ly, o\ju(x + iy)pl/c(dx) j

(by the fact that u G &a and the dominated convergence theorem)

= %/c<5lu(y) - 9L(^1/C«)(y).

Thus, (Sx/C 9lcu)(y) = c$l(Sx/c«)(y) (see also [10]).    □
Now, by taking the Fourier-Wiener transform and letting v(y, t) = (Sxu)(y, t),

(1) becomes

v,(y, t) =-%kv(y, t);    v(y, 0) = Sx/(y)        (y G B, t > 0) (6)

provided that

vt(y,t) = (<Sxut)(y,t). (7)
By Theorem 3.9, if we assume/ G Sa, then it suffices to consider the Cauchy

problem (6) and the condition (7).

Lemma 4.2. Let T G Wn(T is not necessarily symmetric), and fix) = Tx". Then

Vlfix) = nfix),       xGB(or[B]).

Remark 2. The above lemma says that {1, 2, ... } are eigenvalues of 91 with the
associated eigenvectors in ëa. It is well known that (1, 2, . . . } is the spectrum of
91 when we regard 91 as a (selfadjoint) operator on L2(B,px) (see, for example,
[12], [14], [15]). Since ëa(B) c L2(B,px), hence there is no eigenvector of 91 in
&a(B) with eigenvalue other than {1, 2,... } (by Theorem 3.9).    Q

Proof of 4.2. It is easy to see that

Df(x)h = Tx"~xh + Tx"~2hx + • • •  + 77tx"A        x G B.
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Consequently,

%f(x) = Df(x)(x) = nTx" = nfix).    D

Lemma 4.3. Let T be as in Lemma 4.2, and u(x, t) = e~   Tx". Then
(a) m(x, i) satisfies u, = -9t*K aw¿ u(x, 0) = Fx".
(b) u(x, t)-*,_0 Tx" uniformly on bounded subsets qS[B].

Proof. By Lemma 4.2, -<Xku(x, t) = -nke~'""Tx" = -nku(x, t) = «,(x, /)• This
proves (a),

(b) is trivial.   □
Notation. We define for/ G Sa

M|„ = sup{l/(x)|:||x||<A}. (8)
Obviously, || • || N is a norm on S0.

Theorem 4.4. Suppose {Tn} is a sequence of bounded linear operators such that
Tn G Wn, n = 0, 1,2,.... Assume that there exist constants K and M such that

\\T„\\Wii < KM",       «=1,2,.... (9)
Then we have

(a) The series 2Jl0(l//!)F/x-' converges absolutely and uniformly on every bounded
subset of[B] to a function fin &a.

(b) If for t > 0, we let

u(x,t)=  f (e~'"k/n\)T„x", (10)
n=0

then this series converges absolutely, x-uniformly on bounded subsets and t-uniformly
on [0, oo). Also u(-, t) G &a.

(c) For each x G [B], u(x, t) G C°°([0, oo)).
(d) u(x, t) satisfies ut(x, t) = -9L*u(x, t) and u(x, 0) = fix).
(e) u(x, t) -*f(x) uniformly on bounded sets as t —» 0.

Proof, (a) Since

ll7;^lL<ii7;n^<^(^y
and

00

2 (l/j\)K(MN)/ = Kexp(MN) < oo,
J-0

hence, by the Af-test 2JL0(l//!)7}x^ converges absolutely and uniformly on every
bounded set. Consequently, for each pair of x,y G[B], 2°l0(l//'!)7}(x + XyY
converges X-uniformly on compact subsets of C. Thus fix + Xy) is an entire
function of X. Moreover, it is easy to see that |/(x)| < ÄTexp(M||x||) and (a)
follows.

(b) Observe that e~'n" < 1, and so (b) follows immediately from (a).
(c) Since   \L^o{-nkT(e~'"k/n\)Tnx"\ < 2?_0 "*m(*M7/j!)||x|r  for  every

m> \, hence u(x, t) G C°°([0, oo)) for each x G [B] and
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(dm/dtm)u(x,t)=  2 (-nk)m(e-'"k/nl)Tnx".
n=0

(d) Follows immediately by Lemma 4.3, (c) and the fact that 2"_0(«*/n\)(KM")
< oo.

(e) Follows from Lemma 4.3 and (b).

Corollary 4.5. If g G &a, we define

u(x,t)=^l(e-'""/n\)D"g(0)x"   for t > 0. (11)
n-0

Then (i) u(x, t) satisfies ut(x, t) = -9L*m(x, t); u(x, 0) = g(x).
(ii) u(x, t) -*,_M g(x) uniformly on bounded sets in [B].

Next we establish a class of functions satisfying condition (7).

Lemma 4.6. Suppose u(x, t) G &a for every t G [tx, t2] G R, and for every x G [B],
u(x, t) is a Cx-function of t in [tx, t2]. Assume that for each y G [B], there is a
function W*(x) G Lx(B,pc)such that if x G B

|(3/3/)m(x + iy, t)\ < W*(x)   for all t in [/,, t2]. (12)

Then we have

(d/dt)CScu)(y,t)=Sc((y^)u)(y,t).

Proof. Suppose t0, t0 + h G [tx, t2]. Then

\u(x + iy, t0+ h) - u(x + iy, t0)\/\h\

< |(3/3i)w(x + iy, t0 + 9h)\,    where 0 < 9 < 1,
< W*(x) G Lx(B,Pc),    by (12).

It follows by Lebesgue's dominated convergence theorem that

lim h-x(Scu(y> <o + h) - Scu(y, t0))
A->0

= lim   f h   x(u(x + iy, t0 + h) - u(x + iy, t0))pc{dx)
A-»0  Jß

= Í   lim h~x(u(x + iy, t0 + h) - u(x + iy, t0))pc(dx)
Jß  A-»0

= í(d/dt)u(x + iy,t0)pc(dx)
J R'B

= <sc((d/dt)u)(y,t0). n

Theorem 4.7. Suppose f G &a and g(y) = Sxj\y). Define

"(y, 0=2 {e-'"k/n\)D"g(0)y"
n=0

and

v(x, t) = Sxxu(x, t). (13)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



272 YUH-JIA LEE

Then (i) ü(x, i) solves the Cauchy problem (1) i.e. vt(x, t) = -9t*t>(x, t); v(x, 0) =
Kx).

(ii) v(x, t) -+,_oS(x) uniformly on bounded sets.

Proof. Obviously, v(x, 0) = $j~ xu(x, 0) = fix). By Corollary 4.5 and Proposi-
tion 3.3, we have g G &a and u,(y, t) = -^lSu(y, t). Employing Lemma 4.1, we get
(Sx ' 9L*w)(x, t) = 9l*u(x, t). Now, to prove (i), it remains to show that

(<Sxxu)(x,t) = vt(x,t). (*)

In fact, by 4.4(b), (c), we have

«,CM>- 2 e-'"\-nk/n\)D"g(0)y"
)

f      ( %e-k'(-nk/X"+x))g(Xy)dX.
•V| = 2\„ = 0 /

n = 0

2m

It follows that \u,(y, t)\ < (2£L0 nk/2")Kx exp(2AT2||y||), where Kx, K2>0 are
those constants such that |g(z)| < Kx exp(/T2||z||). In particular, for each y G [B],
say II y II < c,, we have for x G B

\ut(x + iy, t)\ < ( 2 nk/r\Kx exp(2/i:2c1)exp(2/:2||x||) G Lx(B,px).

Therefore condition (12) is fulfilled and (*) follows by Lemma 4.6. This proves (i).
(ii) Let ||x|| < cx; we have

\v(x,t)-jXx)\=\<Sx-lu(x,t).-9rlg(x)\
1 if      ( 2 (e-nkl-\)/X" + x)g(X(y - ix)) dXpx(dy)

•/¿A|A| = 2\„ = 0 I

Kxti 2"V2")exp(2/:2c1)( fg exp(2K2\\y\\)px(dy))j

t^O
0   uniformly on {||x|| < c,}.    □

Remark 3. We note that the formula (11) in Corollary 4.5 can also be written as

u(x, t) = (1/2*1) f      ( 2 e-yX^^Xx) dX
•V|=2\„=0 /

and (13) also has the following form

v(x, t) = Sxxu(x, t)

- VT f   iff      Í I e-»VA"+,W + ̂  + iXy) dX
¿m JB JB -/|x| = 2\ „ = o /

When k = 1, the solution of (1) is also given by

v(x, t) = <Sxx(g(e-'y))(x)

= f   f f(z + e-'x + ie-'y)Px(dy)Px(dz).
J B J B

Pi(dz)Pi(dy).

(14)

(15)
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It can be shown that the integral (15) can also be written as

ffi[e-'x +\/l-e-2'y)px(dy) = ( f(y)ot(x, dy), (15')
J B JB

where o,(x, E) = px_e-2,(e~'x, E).
We note that this is a well-known formula (see [14], [15]), and that the measures

o,(x, dy) are the transition measures of the infinite dimensional Ornstein-Uhlen-
beck process.    □

Part II (Semigroup theory and uniqueness). First of all, we shall study the
semigroup induced by the solution of the Cauchy problem (6). Using this as a tool,
we are able to show that there is only one solution in &a (see Definition 4.8) for (6)
under some /-smoothness assumption (see 4.14). Then the uniqueness of (1) follows
by applying the Fourier-Wiener transform.

Definition 4.8. Denote by &a the space of analytic functions / defined on [B]
such that \\f\\N = sup{|/(z)|: ||z|| < N} is finite for every N = 1, 2, 3,_

Obviously, &a G &a.

Proposition 4.9. (i) \\f\\N is a norm on &a and \\f\\N < \\f\\N+x /or N =
1  2 3

(ii) With the topology induced by \\ • \\N, &a forms a (sequentially) complete
met riz able locally convex space.

Proof, (i) Trivial.
(ii) Since || • ||N is a sequence of norms which separate "points" of ëa, hence Sa

forms a metrizable locally convex space. It remains to show that ëa is complete.
Suppose {/,} is a Cauchy sequence in &a. Then for each N, {/,} is also a Cauchy
sequence on {||z|| < A}; hence {/,} converges uniformly on (||z|| < N} to a
function, say A. We thereby define a function / such that/= A on (||z|| < A}.
Since || • Hjv < || • \\N+X,f is well defined and/, —>/ uniformly on every bounded
set. It follows that / is analytic. Moreover, for each fixed A, \\f„\\N < some
constant C, for all n. We conclude that \\f\\N < C„ i.e./ G &a.    □

Lemma 4.10. Every / G Sa has a Maclaurin expansion which converges absolutely
and uniformly on bounded sets.

Proof. Since /(Ax) has a Maclaurin expansion in X for each x G [B] we have
fix) = 2"=0(l/«!)F>"/(0)x". Furthermore,

(\/n\)D"f(0)x" = (l/2wi) Í      f(zx)/z"+x dz.
J\z\-2

Consequently, for ||x|| < A we have

(\/n\)\D"f(0)x"\ < 2-\\f\\2N (16)
and

2 (l/«!)|Z>"/(0)x"| < ( f 2-W* = 2\\f\\2N.
«=o \«=o      /

Thus we complete the proof.    □
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Proposition 4.11. &a is the completion of &a.

Proof. It suffices to show that &a is dense in &a. In fact, given any function
/ G Sa, Lemma 4.10 implies that asp -h> oo, 2*_0(l/"0ö"/(0)x" (GSa) converges
to/uniformly on every bounded set. Thus &a is dense in S0.    □

Now we define a family of operators { Tt} on &a in the following way.
Let k be the integer in the Cauchy problem (1) and let / G &a. For / > 0, we

define

TJ(x) = f (e-"k,/n\)D"f(0)x" (17)
n = 0

i.e. we multiply the "coefficient" of "x"" by e~"H for n = 0, 1, 2,-
Obviously, TJ G &a and by (16) we also have

\\TJ\\N <   sup   ( f {l/n\)D"f(0)x"\ < 2\\f\\2„.
||*||<JV I «=0 I

Hence T/s are continuous, i.e. Tt G L(&a, &a).

Proposition 4.12. {Tt} is an equicontinuous semigroup of class (C0) [20, Chapter
9).

Proof. Obviously,
Tl+S= T,TS   and    F0 =/. (18)

By the mean value theorem, we have (for t0 > 0)

IITS- VI* <  2_(l/n\)\e-k' - e-^ \\D"f(0)x"\\N
n=0

<\t - t0\ ||

by (16). Thus
lim TJ= T f   fori0>0. (19)

Finally, suppose q is any continuous seminorm on Sa. Then there exist A and a
constant C, such that q(f) < Cx\\f\\N. Consequently, q(TJ) < CX\\TJ\\N <
2C,||/||2A„ i.e. {Tt} is equicontinuous.    □

Proposition 4.13. -9L* is the infinitesimal generator of {Tt} and the domain of

-9L* = Sa.
Proof. Let/ G &a and |A| < 1. Then for each integer A we have

\h-\Th-I)f+$Lkf\N<.   sup
\\x\\<N

2 \(e-"k" - \)/h + nk\ \D"f(0)x"/n\\
n=\

<(|A|/2)(2i'2*/2")|l/l|2*-»>0   asÄ^O.

Therefore, limA^0 h~x(Th - /)/exists and equals -91*/    D
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Remark 4. As a consequence (see Yosida [20]), 91* is a closed operator on &a.
Furthermore, T, can be uniquely represented by

TJ =  ton   exp(/9l*(/ - /Agi*)-1)/.    □

Theorem 4.14. There is a unique solution v(y, t) for the Cauchy problem (6) such
that (i) v(-, t) G &a for each t > 0, (ii) v(y, t) is (strongly) differentiable in t (i.e.
(3/3r)u(y, t) exists uniformly on bounded sets). Moreover, the solution is given by
v(y,t)= Tt(Sxf\y).

Proof. Let g(y, s) be any solution for (6) such that (i) and (ii) hold.
Fix t > 0. Set F(y, s) = T,_sg(y, s) for t > s > 0, y G [B]. Since g(-, s) G &a,

the domain of -91*, it follows by [20, Chapter 9, Theorem 2] that F(y, s) is
strongly differentiable and

(d/ds)F(y, s) = 9L*F,_ig(y, s) + T,_s(d/ds)g(y, s)

(since T, is an equicontinuous semigroup and g satisfies (ii))

= F,_,9l*g(y, s) - Tt_s$lkg(y, s)
= 0,       y-uniformly on bounded sets.

This implies that F(y, s) = C (a constant) on [B] for 0 < s < t. In particular,
F(y, 0 = F(y, 0) = Ttg(y, 0) = T,(Sxf)(y). On the other hand, F(y, t) =
T0g(y, i) = g(y, O- We conclude that g(y, t) = Tt(<Sxf)(y).    Q

Corollary 4.15. The Cauchy problem (1) has a unique solution u(x, t) such that
(i) u(-, t) G &a for each t > 0, (ii) u(x, t) is a (strongly) Cx-function of t with the
property that for b, N > 0, supy>,||<Ar sup0<(<6|t<,(x + iy, t)\, as a function of x,
belongs to Lx(B,px).

Proof. Recalling Theorem 3.9, it suffices to show that "^«(y, r) satisfies the
conditions (i) and (ii) of Theorem 4.14. Obviously, by Proposition 3.3 and (i),
Sxu(y, t) satisfies condition (i) of Theorem 4.14. To show that <Sxu(y, t) satisfies
condition (ii) of Theorem 4.14, we let v(y, t) = Sxu(y, t) and write

e~x(v(y, t + e) - v(y, t)) = Í e~'(t/(x + iy, t + e) - u(x + iy, t))px(dx).
JB

Since

\e~x(u(x + iy,t + e) - u(x + iy, t))\ =\u,(x + iy, t + 9(x,y, t)e)\

where 0 < $(x, y, t) < 1, it follows that if e < 1

sup   e"'|«(x + iy, t + e) — u(x + iy, t)\ <    sup sup     \us(x + iy, s)\.
\\y\\<N \\y\\<N 0<j<i + f
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Hence, by the property (ii) and Lebesgue's dominated convergence theorem, we get

lim\\e-x(v(y, t + e) - v(y, t)) - t;,(y, OIL
»o'

< lim   I     sup   |e   x(u(x + iy, t + e) - u(x + iy, t)) - u,(x + iy, t)\px(dx)
e-»0  Jß  iiviKwll-Vll^

= /   lim    sup   |e   x(u(x + iy, t + e) — u(x + iy, t)) — ut(x + iy, t)\px(dx)
JB  «-»0   ||j,||<jv

= 0.
Moreover,

lim
e-»0

Í (u,(x + iy,t + e) - ut(x + iy, t))px(dx)
J B

< lim   |     sup   |m,(x + iy, t + e) — u,(x + iy, t)\px(dx)
£-►0   Jß   \\y\\<N

= I   lim    sup   \ut(x + iy, t + e) — ut(x 4- iy, t)\px(dx)
Jß  e-^.0   ll^l^*

= 0,

by the condition (ii) and the dominated convergence theorem.
Thus v(y, t) = Sxu(y, t) satisfies (ii) of Theorem 4.14.    □
As a further application of the Fourier-Wiener transform, Corollaries 4.5 and

4.15, we may consider the following nonhomogeneous Cauchy problem.

w,(x, t) + 9l*w(x, r) = h(x, t);       w(x, 0) = fix), (20)
where fix) G ëa  and h(x, t) is a sufficiently smooth function of / such that
h(-, t) G &a. More precisely, we have

Theorem 4.16. Suppose h(x, t): [B] X [0, oo)—»C has the following three proper-
ties: (i) h(x + Ay, t) is an entire function of X for each t G [0, oo] and x,y G [B]. (ii)
Let b > 0. There exist constants Kx, K2 such that sup0<t<b\h(x, t)\ < Kx exp(Ä"2||x||)
for every x G [B]. (iii) h(x, t) satisfies property (ii) of Corollary 4.15.

Then there exists a unique solution w(x, t) for the Cauchy problem (20) such that
w(x, t) satisfies (i), (ii) of Corollary 4.15. Moreover, w(x, t) is given by

w(x, t) = fT'i W,/))(*) + i'^ï\T,_s(Sxh))(x) ds. (21)•'0

Proof. By similar arguments as in the proof of Proposition 3.3 we have
(a) Sxh(y, t), Sx xh(y, t) also have the properties (i) and (ii).
(b) For every t > 0, h(x, t) G &a (by (i), (ii)).
(c) sup0<,<Ä||Zr/t(x, OIIto < *, exp(A:2«)exp(tf2||x||).

Next, by the same argument as in the proof of Corollary 4.15, we have
(d) Sxh(y, t) is a (strongly) C'-function of / (by all three properties (i)-(iii)).
To finish the proof, we consider the following Cauchy problem (which is the

Fourier-Wiener 1-transform of (20)):

wt(y, t) + 9L*w(y, /) = h(y, t);        w(y, 0) = f(y), (22)
where "~" means the Fourier-Wiener 1-transform.
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We claim that w(y, t) = TJ(y) + f0 Tt_sh(y, s) ds is the unique solution of (22)
satisfying conditions (i), (ii) of Theorem 4.14. In fact, if we let G(y, t) =
/ó Tt-sh\y, s) ds, then

i(L7(y, t + e)- G(y, t)) = -^j^ Tt+C_sh(y, *) ds - j\_sh(y, s) ds)

= £"'('   tTl+e_sh(y,s)ds
Jt

+ t-x(Te-I)[^T,_sh(y,s)ds).

Since h(y, s) is (strongly) continuous,

lim e"' f' + eTl+c_sh(y, s) ds = TQh(y, t) = h(y, t)
e—>0 Jt

(y-uniformly on bounded sets). Since f0 T,_sh(y, s) ds G &a, we have

lim e~\Tt - I)(f^Tt_sh(y, s) ds) = -9lk(f^T,_sh(y, *) ds).

Thus G(y, t) is (strongly) differentiable and

(3/3r)G(y, t) = -^jj,_sh(y, s) ds) + h(y, t). (23)

As a result,

(d/dt)w(y, t) = -9L*(F,/(y)) - t*(/V,_,^y, s) ds) + h(y, t),

or w,(y, t) + 9L*w(y, t) = h(y, t). Obviously, w(y, 0) = f(y).
By (23) and Theorem 4.14, the uniqueness follows. Finally, by taking the inverse

Fourier-Wiener transform, the solution of the Cauchy problem is represented by

w(x, t) = SrXfix) + Sxx[j\_sh(y, s) ds)(x, t).

Note that

\T,_,h\y - A*)| <  2 \{\/n\)D"h(0,s)(y - ix)"\
«=o

<Kxf (l/«!)exp(/:2rI)(||y||-r-||x||)''
n = 0

for 0 < s < t, (by (c))
= /ST, exp(e^||x||)exp(e^||y||) G Lx(B,px(dy)).

It follows by Fubini's theorem that

^x'l(f0'T'-^iy' s) *)(x't] = íftXT-firi** s) ds.
Hence, w(x, t) = Sxx(T,<Sxf)(x) + f0 <Sxx(T,_s<Sxh)(x, s) ds. Of course, w(x, 0) =
<&\X(T0<SxS)(,x) = S(x). Thus we complete the proof of Theorem 4.16.   □

Remark 5. We note that all functions of the form h(x, t) = P(t)fix) where P(t)
is C1 and/ G &a, satisfying the hypotheses of Theorem 4.16. Recall that &a(B) is
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dense in L2(B,px), so we have a rich class of functions h(x, t) satisfying (i)-(iii) of
Theorem 4.16.    □

Remark 6. Since Sxx(Tt_sSxh)(x, s) also has the property (ii), we see that

lim   í'<S7x(T,_sSxh)(x, s)ds = 0
t->o J0

uniformly on bounded sets. Therefore, w(x, t)—>f(x) also uniformly on bounded
sets.   □

5. Application II. We shall consider in the following two other types of equations
associated with the operator 91. The first one is

-9l*w(x) = fix), (1)
and the second one is the Cauchy problem

un(x, t) = -9l*M(x, /);    u(x, 0) = /,(x),    u,(x, 0) = /2(x). (2)

By means of the Fourier-Wiener transform, our approach is very much the same as
that of §4. Uniqueness of solutions of (1) and (2) and the nonhomogeneous
problem associated with (2) will also be considered.

Theorem 5.1. (i) In order that equation (1) has a solution in &a, it is necessary and
sufficient that f G &a and Sx fiO) — 0. (ii) The solution of (I) is unique in the sense
that if Wx(x), W2(x) G &a and each solves (1) then Wx — W2 is a constant.

Proof, (i) a. Necessity. Since 9l(Sa) c &a (Lemma 4.1), if u(x) is a solution in
Qa then 9L*m(x) G ëa so does/

Next, applying the Fourier-Wiener transform to (1), we get

- 9L*(^«)(y) = SxS(y). (3)
Therefore <SxS(0) = -^Lk(Sxu)(0) = 0.

b. Sufficiency (existence). Suppose/ G &a and 3,/(0) = 0. We let g(y) = ^,/(y).
Since g G &a, g(y) = 2^x(l/n\)D"g(0)y" (since g(0) = 0). It is easy to see that

v(y) = Sxu(y) = t;(0) - 2 (l/nkn\)D"g(0)y"
n-l

solves equation (3). Consequently,

u(x) = <SX-Xv(x) = v(0) - ^f'i 2 (l/«*«!)Z>ng(0)y',Vx) (4)

solves (1).
(ii) Uniqueness. Observe that if h G &a, then 9L/i = 0 if f h = a const. It follows

that if Wx, W2 are two solutions for (1) such that Wx, W2G &a and we let
H = Wx - W2, then we must have 91// = 0; hence §L(<SXH) = 0.

According to our observation SXH = Cx, a constant. Therefore H = <SXX(CX) =
C,.   D

Remark 1. Note that if / G &a with Sxf(0) = 0, then for x G [B] we have
\T,(Sxf)(y - ix)\ < (KxeK^xXX)e-*eK^n for some constants Kx, K2 and yGB.
Observing that jB /" e~* exp(K2\\y\\)px(dy) dt < oo, we may also write (4) (by
Fubini's theorem) as
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w(x) = f u(y)Px(dy) + f   <Sx-\T,(SxS))(x) dt, (5)J B J0

where T, is defined by (17) of §4.    □
In the remainder of this section, we first show the existence of a solution for (2).

Then by means of semigroup theory, we are able to prove uniqueness and also
obtain the solution of the nonhomogeneous equation

u„(x, t) + 9t*w(x, i) = h(x, t);    u(x, 0) = /,(*),    ut(x, 0) = /2(x).

The following theorem is straightforward; we omit the proof.

Theorem 5.2. Assume gx, g2 are functions in &a. Define

v(y, 0=2 (Pn(t)/n\)D"gx(0)y" + 2 {QnU)/n\)D"g2(0)y", (6)
n=0 rt=0

where   P„(t) = cos(Vw ft,   Q0(t) = t,   Qn(t) = (Vñyksin(Vñ ft   for   n =
1,2,3,-Then for t G R,

(i) v„(y, t) = -9L*u(y, 0; <y, 0) = gx(y) and vt(y, 0) = g2(y).
(ii) As t —* 0, v(y, t) —» gx(y), v,(y, t) —* g2(y) uniformly on bounded sets in [B],

Theorem 5.3. Assuming /,, f2 G &a and gj = Sxfj (j = 1, 2), we define u(x, t) =
Sx xv(x, t), where v is given by (6). Then

(i) u(x, t) solves the Cauchy problem (2).
(ii) As t -» 0, u(x, t)—>fx(x), u,(x, t) -»/2(x) uniformly on bounded subsets of [B].

Proof, (i) It is sufficient to show that

(Sx-xvll)(x,t) = (<Sxxv)„(x,t). (7)

To see this, we let w(y, t) = v,(y, t) i.e.
oo

w(y, 0 = - 2 (nk'2/n\)(sin(nk/2t))D"gx(0)y"
71=1

+ f ((cos(n*/20)/«!)/)"g2(0)yn.
n=l

It follows

|w,(y, 0| < (1/2*)/     ( f «*/2/2n+,)|g,(Ay)| \dX\
|X| = 2\n=l /

+ (1/2^^     ( 2 l/2"+1)|g2(Ay)| \dX\.

Employing arguments similar to the proof of Theorem 4.7(i), we see that condition
(12) of Lemma 4.6 is satisfied by w(y, t), and so (Sx~xw,(x, t) = (Sxxw),(x, t).

Applying the same argument once more, we obtain

{<Sxxw)^{Sxxvt) = {Sxxv)t.

(7) follows immediately from the preceding two identities.
(ii) follows by the same techniques in the proof of Theorem 4.7(ii).    fj
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Next,   we   define   the   semigroup   associated   with   the   problem   vu(y, t) =
-9l*t;(y, 0; v(y, 0) = gx(y) and v,(y, 0) = g2(y) as follows. Let

Pn{t)    Qn(t)

P'Ât)    &'(*).
Define for t > 0 a linear operator Tt on &a X ëa by

An(t)

gi
gi

1 D"gx(0)x"
D"g2(0)x" (8)

n = 0 "•

Let ||(g„ g2)|U = (II gifN + jjg2lli)1/2. A = 1, 2, 3, ... . Then {||( , )\\N} definesa
sequence of norms on &a X Sa. With the topology induced by (||( , )\\N}, &a X &a
obviously also forms a (sequentially) complete metrizable topological convex space
(see 4.9).

Obviously,
gi
g2

S„ X g„

It follows by (16) of §4 that

T. gi
g2

<

(2||*.|U + 2'||g2||2^)2 + {[^nk/2/2")\\^hN + M™)

2(max(2/,  2 («*/2/2")))||(g„ g2)||2^

1/2

(9)

i.e., Tt is continuous. Moreover, we have

Proposition 5.4. (i) Tl+S = TtTJor t, s > 0; T0 = /.
(ii)lim_oF([|.]=F(o[f.].
(iii) If S is a compact set in [0, oo), then the family {Ts: s G S} of operators is

equicontinuous. That is, given any continuous seminorm q on &a X &a, there is a
constant Cx and a seminorm such that

<m)< c, gl

g2

Remark 2. Tt is not an equicontinuous family of operators. To see this, let
gx(x) = 0, g2(x) = 1 in (8). We obtain

0^
1

= / —» oo    as í —» oo.

By standard computations, the following two propositions are obvious.

Proposition 5.5. Let

A = 0        /
-91*    0.

Then A is the infinitesimal generator of T, and the domain of A is &a X Sa.
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Proposition 5.6. Let Ut = e~'Tt, t > 0. Then the family of operators {U,} forms
an equicontinuous semigroup of class (C0) on &a X &a and its infinitesimal generator
is given by A — I.

Corollary 5.7. There is a unique solution W(x, t) such that both W(x, t) and
Wt(x, t) satisfy the conditions (i), (ii) of Theorem 4.14 and

W„(x, 0 + 2 W,(x, t) = -%kW(x, 0 - W(x, t), (10)
W(x, 0) = gx(x); W,(x, 0) = g2(x) - g,(x)

where gx, g2 are in &a. Moreover, the solution is given by W(x, t) = e~'v(x, t) where
v(x, t) is the function given by (6) in Theorem 5.2.

Proof. Let Hx = W,H2= W, + W; (10) becomes

Hi
H2

-(A-I) Hi
H2

where A = (   °       t\
\-9l*    0/

By Proposition 5.6 and a technique similar to the proof of Theorem 4.14, unique-
ness follows immediately.

Next, we show that if v(x, t) is any solution for the Cauchy problem (i) of
Theorem 5.2, then W(x, t) = e~'v(x, t) satisfies (10). Indeed,

W, = -e~'v + e~'v„        W„ = e~'v - 2e~'v, + e~'v„;

hence W„ + 2W, = - e~'v + e~'(-^lkv) = -%kW - W. Also,

W,(x, 0) = - v(x, 0) + v,(x, 0) = g2(x) - gl(x)

and
W(x, 0) = v(x, 0) = g,(x).    D

Corollary 5.8. The Cauchy problem (i) of Theorem 5.2 has a unique solution
v(x, t) such that v(x, t) and v,(x, t) satisfy the conditions (i), (ii) of Theorem 4.14.

Proof. Let v(x, t) be the solution given by (6) and u,(x, 0 be any solution. Then
as we have seen in the proof of Corollary 5.7, W(x, t) = e~'vx(x, t) must be a
solution of (10). By the hypotheses on vx, W(x, t) satisfies the hypotheses in
Corollary 5.7. It follows by the uniqueness, e~'v(x, t) = e-'t>,(x, 0 for t > 0; thus
v = vx.    U

Finally, we conclude that

Corollary 5.9. Assume fx,f2 are in &a. Then the Cauchy problem (2) has a unique
solution u(x, t) such that u(x, t) and u,(x, t) satisfy the conditions (i), (ii) of Corollary
4.15.

Proof. The uniqueness follows by taking the Fourier-Wiener 1-transform of (2)
and by Corollary 5.8.    □

As an implication of Proposition 5.6, we have
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Corollary 5.10. For each pair gx,g2 G &a, we have

3/   '
gi
gi = ATt

gi
g2

= T,A gi
g2 (11)

Proof. It follows from Proposition 5.6 and [20, Chapter 9, Theorem 2] that
3
9/ V, 8\

g2
= (A- I)U, gi

g2
= U,(A - I) Si

g2

Since Tt = e'Ut, we get

dt '
g\
g2

= (e't/, + e'(A-I)U,)

= (e'U, + e'U,(A - I))

= AT, gi
g2

= TA 8\
gi

gi
8*

gi

□

As a further application of Theorems 5.2, 5.3 and Corollaries 5.8, 5.9, 5.10, we may
consider the following Cauchy problem associated with (2).

u„(x, t) = -9l*w(x, 0 + h(x, t)   with u(x, 0) = /,(x),

«,(*,0)=/2(x),       fx,f2G&a. (12)
Analogous to Theorem 4.16, we have

Theorem 5.11. Assuming that h(x, t) satisfies the three conditions (i)-(iii) in
Theorem 4.16, then there is a unique solution u(x, t) for the Cauchy problem (12) so
that u(x, t) and u,(x, t) satisfy the conditions (i), (ii) of Corollary 4.15.

Proof. Reduction. We may assume /, = 0 by replacing u by u — fx. Then the
Cauchy problem becomes u,t(x, t) = - 9L*«(x, t) + h(x, t) - 9l*/,(x) with u(x, 0)
= 0, u,(x, 0) = f2. (Note that the three conditions (i)-(iii) remain valid for h(x, t)
- 9l*/,(x), by Remark 5 of §4.)

We see that (12) is now equivalent to the Cauchy problem below
vi
"2

0
h(x, t)

0       I
-91*    0.

with t>j = u, v2 = u,.
Imitating the proof of Theorem 4.16, we find that

0

i-0
(13)

= SXXT,SX
/2 + /Vr,_,§i-'n

0
h(x, t) ds

is the unique solution of (13). It follows that the solution of (12) (with /, = 0) is
given by

u(x, t) = §r!( ïo(Qn(t)/nl)D"f2(0)y"yx)

+ J^V( 2 (Qn0 - s)/n\)D"h(0,s)y"\(x)ds, (14)
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where "~" is the Fourier-Wiener 1-transform.    □
Remark 3. In the next paper we shall continue to apply the Fourier-Wiener

transform to investigate the existence and regularity of solutions of the following
two types of differential equations:

(i) u,(x, t) = (-l)*+1A*«(x, 0; "(x, 0) = fix).
(ii) u„(x, t) = (-l)*+1A*t/(x, 0; u(x, 0) = fix), u,(x, 0) = g(x).
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