ISSN 0709-9231

Cahier 8838

APPLICATIONS OF THE GB2 FAMILY OF
DISTRIBUTIONS IN MODELING INSURANCE
LOSS PROCESSES!

by
J. David Cummins*
Georges Dionne*x*
James B. McDonald***
and
B. Michael Pritchettx*x*

* Department of Insurance, Wharton School, University of Pennsylvania,
Philadelphia, PA 19104, U.S.A.

**  Département de Sciences économiques et Centre de recherche sur les
transports, Université de Montréal, C.P. 6128, Succursale A, Montréal
(Québec) CANADA H3C 3J7.

***  Department of Managerial Economics, Brigham Young University, Provo,
UT 84602, U.S.A.

November 1988

1 The Social Sciences and Humanities Research Council of Canada and the
Huebner Foundation provided financial support to Georges Dionne. Charles
Vanasse was very helpful in the estimation of the parameters made in

Montreal.

Ce cahier est aussi publié par :

Centre de recherche sur les transports - Publication #602




ABSTRACT

This paper investigates the use of a four-parameter family of pro-
bability distributions, the generalized beta of the second kind (GB2), for
modeling insurance loss processes. The GB2 family includes many common] y
used distributions such as the log-normal, gamma and Weibull. The GB2 a]sg
includes the Burr and generalized gamma distributions and has significant
potential for improving the distributional fit in many applications involy-
ing thin or heavy-tailed distributions. Members of the GB2 family can be
generated as mixtures of well-known distributions and provide a model for
heterogeneity in claims distributions. Examples are presented which con-
sider models of the distribution of individual and of aggregate losses.
The results suggest that seemingly slight differences in modeling the tails
can result in large differences in reinsurance premiums and quantiles for
the distribution of total insurance losses.

Key words : generalized beta of the first kind; generalized beta of the
second kind; log t; generalized gamma; Pearson; Burr; Kappa;
Pareto; lomax; Log Cauchy; Tlognormal; beta; gamma; Weibull,
Fisk; Rayleigh; uniform; exponential; inverse distributions;
reinsurance.

RESUME

Ce texte suggére 1'utilisation de l1a famille des distributions de
probabilités a quatre paramétres, la beta généralisée du deuxidme type
(GB2), pour analyser les pertes d'assurance. La GB2 a comme cas particulier
les distributions log-normale, gamma et Weibull. Elle comprend &galement
comme cas particuliers la Burr et la gamma généralisée et elle est trés
appropriée pour améliorer 1'estimation des distributions ayant des queues
tr8s épaisses. La plupart des membres de la famille de distribution propo-
sée peuvent @&tre obtenus par des combinaisons de distributions bien
connues. Les résultats démontrent que des faibles différences dans la
modélisation des queues peuvent générer des grandes différences dans Tle
calcul des primes de réassurance et dans les quantiles des distributions
des pertes assurées totales.

Mots-c1és : beta généralisée du premier et du second type; log t; gamma
généralisée; Pearson; Burr; Kappa; Pareto; Lomax; log Cauchy;
log-normale; beta; gamma; Wiebull; Fisk; Rayleigh; uniforme;
exponentielle; distributions inverses; réassurance.



APPLICATIONS OF THE GB2 DISTRIBUTION IN MODELING
INSURANCE L0OSS PROCESSES

1. Introduction

One of the classic problems in collective risk theory is the estimation
of the distribution of total annual claims, F(X),

n
X = } xi

i=1

where n denotes the number of claims in a time period and xi is the amount
(severity) of the ith claim. Thus, estimation of total claims usually
involves fitting the frequency and severity distributions, testing-for-
goodness of fit, and then combining the distributions to yield F(X). The
model of F(X) is then used to estimate premiums, risk loadings, reinsurance
premiums, and other decision variables such as the maximum probable yearly
aggregate loss (MPY).

Distributions used for frequency include the Poisson, the negative binomial
and the logarithmic series distribution (see, for example, Ferreira {1970},
Seal [1969], and Cummins and Wiltbank [1983]). Among the distributions that
have been considered for severity are the exponential, gamma, loggamma,
lognormal, Pareto, and log-t, (Beard, Pentikainen and Pesonen [1969], Benckert
[1962]), Cummins and Freifelder [1978], Cummins and Wiltbank ({1983}, Hewitt
[1970], Mandlebrot {1964], Paulson [1984], Seal [1969], and Shpilberg [1977]).

Traditionally, calculating F(X) directly was considered a difficult problem,
and various approximation formulas, such as the normal-power and gamma, received
considerable attention (see, for example, Beard, Pentikainen, and Pesonen
[1984]). 1In recent years, developments in risk theory and advances in
computing have made virtually exact calculation of F(X) quite feasible. The
most prominent approaches are simulation (e.g., Roy and Cummins [1985], fast
Fourier transforms (FFTs) (Paulson [1984]), and the Panjer recursion algorithm
(Panjer [1981]).

Paralleling the developments in the calculation of F(X) have been more
sophisticated approaches to the estimation of the frequency and severity
distributions. The traditional approach was the use of tractable one or
two-parameter distributions such as those mentioned above. In many cases,
these distributions were selected not necessarily because they were in some
sense "best" but because of the feasibility of estimating parameters and
computing fractiles. Because insurance claims distributions are often
heavy-tailed, restricting the set of candidate distributions can lead to
serious underestimation of tail fractiles reinsurance premiums, and other
variables (Cummins and Freifelder {1978]).

Recent advances have opened up a much wider range of preobability distri-
butions for use in modeling insurance claims processes. Hogg and Klugman




[1984] discuss many alternative models for loss distributions as well as
related issues of estimation and inference. Paulson has made extensive use
of the stable family of distributions, which includes the one-tail Pareto,
the normal, and the Cauchy distributions, among others, as special cases
(e.g., Paulson and Faris [1985]). Aiuppa [1986], utilizes a computer program
that can estimate parameters and compute percentile points of the distribution
functions for any member of the Pearson family.l McDonald (1984], considers
generalizations of the beta distribution of the first type (Pearson Type I)
and of the second type (Pearson Type VI), which will be denoted GB1 and GB2,
respectively. Venter [1984] introduced the GB2 in the actuarial literature
as the transformed beta. Applications of the GBl and GB2 in the economics
literature are described in McDonald [1984], McDonald and Butler [1987], and
McDonald and Richards [1984]).

The purpose of this article is to investigate the use of the GB2 family
as a model for continuous distributions in non-life insurance. Thus, the
GB2 is proposed as a potential model for both aggregate losses and loss
severity. The GB2 provides an extremely flexible functional form that can
be used to model highly skewed loss distributions such as those typically
observed in non-life insurance. The use of the GB2 is illustrated below by
modeling the fire losses of a major university, using the Cummins and Freifelder
[1978], data set.

In working with the GB2, our approach is to begin with the simplest
(one or two-parameter) applicable members of the family and to move up the
distribution tree to the most general (four parameter) GB2 distribution.
Improvements in goodness-of-fit obtained by moving to higher levels of the
tree are measured and discussed. The GB2 family can be used either with the
untransformed data or with natural logs of the data. The log-GB2 may be
better in some instances if the data are characterized by extremely heavy
tails. For our data set, the log transformation proved to be unnecessary.

Our model of the aggregate claims distribution is based on the moments
of a time series of observed total losses. Simulation is also used to
obtain F(X) from the underlying frequency and best-fitting severity distri-
butions. We do not formally consider other methods of compounding frequency
and severity to yield F(X). However, GB2 severity distributions could
easily be incorporated into the Panjer and FFT algorithms.

The paper is organized as follows: The generalized distributions are
discussed in section 2. Two applications of these distributions are then
considered: estimating the distribution of aggregate losses in section 3,
and estimating the severity distribution in section 4. Severity distributions
are estimated with both grouped and ungrouped data to explore the issue of
accuracy loss from using grouped data. Section 5 discusses the impact of
model selection and estimation technique on the severity fractiles, reinsurance
premiums, and simulated total claims distributions. Section 6 concludes the
paper.



2. The Generalized Distributions

It is useful to define three very flexible distributions: the generalized
gamma (GG), the generalized beta of the first kind (GBl) and the generalized
beta of the second kind (GB

(1) GG(x;a,b,p) = Ialx c 0 <= x
%P r(p)
=0 otherwise
ap-1 ) a,q-1
(2) GBl(x;a,b,p,q) = |alx A 0 < x? < b2
b*P B(p,q)
-0 otherwise
ap-1
(3) GB2(x;a,b,p,q) = |a]x"P 0 < x
+
%P B(p, ) (1 + (x/0)*)Pd
- 0 otherwise

The generalized gamma is a three parameter distribution and is a limiting
case of both the four parameter GBl and GB2 distributions. The parameters
in these distributions determine the shape and location of the density. The
parameter "b" is a scale factor; "b" is also an upper (lower) bound for GB1
variables as the parameter "a" is positive (negative). Unlike the GBl or the
beta of the first kind (Bl), which is mentioned in risk theory texts (for Bl
see, for example, Buhlmann [1970]), the GB2 has no upper limit and hence is
likely to be applicable for severity distributions and other risk theory
applications where the upper tail has no theoretical boundary. The GBl and
GG have defined moments up to order h where h/a > -p. For "a" positive,
moments of all positive integer orders are defined. The GB2 has integer
moments of order up to h where -p < h/a < q.

Thus, the GB2 provides models for distributions characterized by thick
tails. The relationship between the density and parameters is complex, but
generally speaking the larger the values of the parameters "a" or "q" the
thinner the tails of the density function. The relative values of "p" and
"q" are important in determining the skewness of the distribution and the
GB2 permits positive as well as negative skewness.

The moments and expressions for the distributions of the GG, GBl and
GB2 are given in Table 1. The terms oF1l 1 and 1F;{ 1, respectively,
denote the hypergeometric and confluent hypergeometric distributions and,
except for special cases, involve infinite series (Abramowitz and Stegun
[1965]). However, one very flexible member of the GB2 family, the Burr 12
(GB2 with p = 1) has a closed form distribution function; and the fractiles
of the four-parameter GB2 can be obtained by numerical integration.




Table 1
Distribution and Moments

Model Distribution function Moments
ap ) a h
- (x/B) " exp(-(x/B)") o [ 1,p+1: (x/8)2 ] b T'(p+h/a)
L(p+l) r(p)

GB

GB

ap h
1 MR [p,l-q;p+l;(x/b)a ] > Blprh/a,q)

pB(p,q) B(p,q)
P
[( (x/b)? )} h
2 E:Ef{gli 2F1 [ p,1l-q;p+l; _fffBZf_ } b B(p+h/a,q-h/a)
pB(p,q) 1+(x/b)8 B(p,q)
Figure 1
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The flexibility of these distributions can be illustrated using figure
1 (from McDonald and Richards [1987] or McDonald and Butler [1987]). The GB2
is seen to include the log-t (LT), generalized gamma (GG), beta of the
second kind (B2), Burr types 3 and 12 (BR3 and BR12), log-Cauchy (LC),
lognormal (IN), gamma (GA), Weibull (W), Lomax (L), Fisk, Rayleigh (R), and
exponential (EXP) as special or limiting cases. The GB2 family can also be
defined for the natural logs of the variable of interest, yielding the log-
GB2. This transformation may be useful for very heavy tailed distributions,
providing the restriction that log(x) > 0 does not create problems. The
GBl includes the beta of the first kind (Bl), power (P), uniform (U) and
generalized gamma with related distributions appearing as special or limiting
cases.

When the parameter "a" is negative, (1), (2) and (3) admit inverse
distributions. These are distributions of the random variable y, obtained
by making the reciprocal transformation x = l1/y. Examples are the inverse
Burr and the inverse gamma, which includes the Pearson type V as a special
case as well as inverse functions of other special and limiting cases related
to the generalized gamma. Thus the GBl and GB2 include many members of the
Pearson family of distributions (Ord [1972] and Elderton [1964]). Other
models included in the GB2 family, which are not Pearson distributions,
include the Burr types 3 and 12, Fisk, Weibull, generalized gamma and log-
t. Additional details are included in McDonald [1984], McDonald and Butler
[1987], McDonald and Richards [1987] or Venter [1984].

Each of these distributions may be well suited for a particular type of
data and not for another. For example, the exponential distribution often is
not applicable to insurance claims distributions because its mode is zero
and it imposes a restrictive relationship between the mean (equal to the
distribution’s one parameter, b) and the variance (bz)° Two-parameter
models allow increased flexibility in not only modeling the mean but possibly
the variance and then implying particular corresponding values for the
skewness and kurtosis. The four parameter models can allow for independent
adjustments to the skewness and kurtosis as well as the mean and variance.

Heterogeneity is a problem which is often encountered in insurance
data. Heterogeneity frequently results in distributions with thick tails.
Hogg and Klugman [1983] indicate how mixture distributions provide an approach
to modeling unobservable heterogeneity. The GB2 provides a mixture interpr-
etation which allows, but does nct require heterogeneity. The GB2 can be
shown to arise from a structural distribution which is GG{x;a,8,p) where the
scale parameter 8 is distributed as a GG(8;-a,b,q). The limiting case of
large values of q corresponds to homogeneity.

Each special case of the GB2 can be interpreted as a mixture. Some
important cases (LT, BR3, BR12, B2 and Lomax) are summarized in Table 2.
For example, the log-t has been shown to be a lognormal mixed with an inverse
gamma (Cummins and Freifelder [1978] and Hogg and Klugman [1984]).2 Hetero-
geneity can be tested by estimating the models in the first two columns of
Table 2 using maximum likelihood estimation and testing for significant
differences using a likelihood ratioc test. See McDonald and Butler [1987]
and Venter [1984] for more details. Thus, the GB2 has a theoretical Justifi-




cation as a representation of claims arising from a heterogeneous population
of exposures.

The distribution functions can be "evaluated" using numerical integration
or equivalent series representations. Either approach can be implemented on
a personal computer, given appropriate software. The distribution for the
GB2 can be obtained from the F distribution by utilizing the transformation:
y=(q/p) (x/b)2. If x is GB2, then y will be F with degrees of freedom dj =

2p and dg = 2q.

Table 2

Some Mixture Distributions
Observed Structural Parameter Mixing
Distribution Distribution Distribution
GB2(x;a,b,p,q) GG(x;a,8,p) GG(®;-a,b,q
LT(x;u,0%,q) IN(x%X;u,8) GG(8;a=-1,0°q,q)
BR3(x;a,b,p) GG(x;a,8,p) W(8;-a,b)
BR12(x;a,b,q) W(x;a,8) GG(@;-a,b,q)
BZ(X;brpvq) GA(X;G:P) GG(eia"l:b.Q)
L(x;b,q) EXP(x;8) GG(8;a=-1,b,q)

The importance of the GB2 distribution for risk theory is that it has great
flexibility due to the availability of four parameters. In additiom, it
encompasses many of the traditional distributions as special cases. For
riskier loss processes another set of distributions is provided by the log GB2.

3. Appregate Losses: The GB2 and MPY

The aggregate loss function descriptive of a portfolio of insurance policies
was defined in section 1. Computation of the Maximum Probable Yearly Aggregate
Loss (MPY) from the estimated distribution of X illustrates one use of the
generalized distributions. The MPY is identified by a value of X in the
upper tail of the distribution of total annual losses that will be equaled
or exceeded with a probability no greater than a specified value.

Several approaches to modeling the distribution of X have been considered
(see Cummins and Freifelder [1978]). As mentioned above, one method of
obtaining the aggregate loss distributions is by estimating and then compounding
frequency and severity distributions. One reason for decomposing the problem
in this way has to do with sample size. One year’'s observations on a relatively
large pool may prove sufficient to estimate frequency and severity distributions
with a high degree of confidence, providing that data have been maintained
in the appropriate degree of detail. By contrast, the aggregate losses of
the pool for that year constitute only one observation from F(X).



If the pool is relatively small and/or if frequency and severity data
have not been maintained in a sufficient degree of detail, it is sometimes
possible to estimate F(X) from a time series of observations on total claims,
X.3 If a sufficient number of observations on X is available, it may be
advisable to fit the GB2 distribution to this sample even if frequency and
severity data have also been maintained. In this instance, the GB2 distribution
fitted to the aggregate data provides an alternative to the distribution
obtained by compounding frequency and severity. Thus, fitting the GB2 to
the aggregate data will be useful, at a minimum, to check the reasonableness
and stability of the estimates obtained from the alternative methods.

The method of choice for estimating the GB2 from aggregate data is maximum
likelihood. This method can be applied either to individual observations or
to grouped data. In either case, N must at least exceed the number of
parameters, and a much larger sample is desirable. Maximum likelihood
estimates can be obtained by maximizing the usual loglikelihood function for
a sample consisting of individual observations on X or, for grouped data,
the loglikelihood function of the corresponding multinomial distribution.

The method of moments offers the intriguing possibility of using the
GB2 to model total claims when separate frequency and severity distributions
are available and when an adequate number of observations on X is not available.
In this regard, the method-of-moments GB2 would be an alternative to an
approximation method such as the normal power or to a compounding approach.
The prospects for this type of application are somewhat limited, however,
due to the fact that the moments of the GB2 distribution are not always
defined. (For one member of the family, the log-t, none of the moments are
defined.) The statistical efficiency of this method is questionable if the
data are from a population without the requisite number of theoretical
moments (Ord [1972]).%

Method of moments estimators are obtained by solving the system of four
nonlinear equations obtained by setting the first four theoretical moments
of the GB2 equal to the corresponding empirical moments.® The moments of X
can be computed directly from the sample or inferred from severity and
frequency data.

In this section we analyze the data on aggregate fire loss at a major
university reported in Cummins and Freifelder [1978]. These data are reproduced
in Table 3. The GB2, LT, GG, B2, BR3, BR12, LN, W, GA, Lomax and exponential
are fit to the data in Table 3 using maximum likelihood estimation. The estimated
parameter values and corresponding loglikelihood values are given in Table 4./
The estimates in Table & are obtained directly from the data on aggregate losses.

Under the usual procedures for analyzing loss distributions (see, for
example, Hogg and Klugman [1984]), one would not bother to estimate the
exponential for most claims distributions, due to its shape and restrictive-
ness with regard to moments. The reason for estimating the exponential
distribution when using the GB2 family is to facilitate comparisons of the
alternative members of the GB2 family.




Table 3
Fire Loss Experience of a Major University
Year Total Losses No. of Exposure Units
1950 71280 270
1951 3671 273
1952 18664 276
1953 8784 279
1954 3966 282
1955 30892 287
1956 631626 292
1957 11464 . 297
1958 127194 302
1969 4950 308
1960 30452 314
1961 8028 312
1962 14790 310
1963 9480 308
1964 8676 306
1965 114198 305
1966 5150 310
1967 105864 315
1968 32814 320
1969 ‘ 41340 325
1970 46284 329
1971 12230 330
1972 19418 322
Average 59183 303
mean =~ 59183 skewness = 3.94

Var = 1.61878 x 10ll kurtosis = 17.84



The likelihood ratio statistic can be used to test for statistically
significant differences between "nested" models. For such cases, twice the
difference between the loglikelihood values is asymptotically distributed as
a Chi-square with degrees of freedom equal to the difference between the
number of free parameters in the two models being compared. Based on the
log-likelihood values, several of the fitted distributions appear to be
"observationally" equivalent. In particular, the GB2, GG, B2 and Burr 3
distributions fit the data equally well. Other distributions could not be
rejected as population distributions, e.g. the LT, GG, Burr 12, Lognormal,
and Lomax distributions. However, 23 observations could hardly be expected
to validate the use of asymptotic tests.

Table 5 reports the MPY estimates (quantiles) based on the estimated models
reported in Table 4. The estimates for the .0l level reported by Cummins and
Freifelder using normal approximations, Chebyshev, and normal power methodologies
are also included in Table 5.

The alternative models provide very different results for the MPY.
Given the great diversity in the estimates of MPY, there appears to be an
open question as to the validity of some estimators. The Monte Carlo approach
also appears to be very sensitive to the assumed distributions. These
results reinforce the importance of using appropriate distributions.

In order to investigate this question further in another environment,
one in which the actual MPY is known, we assumed that annual losses were
distributed according to a known distribution. A random sample of total
losses was generated from a known hypothetical population and alternative
estimators of MPY obtained and compared with the "true" MPY.

The "true" distribution for total losses was assumed to be defined by:
GB2(L;a=1.25, b=10, p=100, g=5).

One hundred observations for total losses were generated from this population
using a random number generator. The sample skewness and kurtosis were 1.93
and 8.74 respectively and do not depart from normality as much as the fire
loss example considered previously. The GB2, B2, LT, and LN were fit to the
data using maximum likelihood estimation. The generated data were such that
the differences of fit among some alternative distributions were not
statistically significant. Of course, the parameters of GB2 could have been
selected to yield data in which the differences were significant. Quantiles
were calculated corresponding to each of these estimated distributions along
with three approximation method. The results are summarized in Table 6.

Some of the results of this example are as expected. The GB2 and
normal power provide the best estimates of the quantiles (.0l1) and appear in
this example to have thicker tails than either the LT or IN. The normal
power results are expected, given that skewness is less than 2.9 The Chebyshev
results are consistent with the comments of Cummins and Freifelder {1978},
that the high MPY’'s computed by this method tend to imply very conservative
(high) premium structures.
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Table 4
Parameter Estimates
Unadjusted Data

Model Parameter Estimates Loglikelihood
a(u) b(o) P q(d.£.) L
GB2 1.2688 4.3336 14078.1 .68389 -266.5
LT ' (9.9788) (1.2492) (60.166) -268.0
GG -1.2680 8068.25 .6844 -266.5
B2 1.0000 .7986 14731.3 .9742 -266.5
BR3 .9900 4.1936 2671.26 1.0000 -266.5
BR12 3.1856 6161.52 1.00 .2301 -267.1
LN (9.9933) (1.2704) -268.0
W . 70115 42927.7 1.0000 -271.9
GA 1.0000 95736.5 .6182 -273.6
LOMAX 1.0000 38471.5 1.0000 1.6088 -269.2
EXP 1 7

.0000 59183.3 1.0000 -275.

NOTE: LL refers to the log of the likelihood function. Parameters in parentheses
correspond to estimated parameters associated with the lognormal and log-t distri-
butions.

Table 5
Estimated Quantiles
Unadjusted data

Model a =.5 .1 .01

GB2(MLE) 16850 126600 1823000
LT(MLE) 21560 108830 426900
GG(MLE) 16850 126600 1823000
B2 (MLE) 17610 120360 1345000
BR3(MLE) 17560 117790 1264000
BR12 (MLE) 15610 142540 3297000
LN(MLE) 21880 111500 420300
W(MLE) 25450 141040 379000
GA(MLE) 31800 152890 350100
L{MLE) 20720 122490 635000
EXP(MLE) 41020 136270 272500
Normal Aprx ‘ 397200
Chebyshev 1373000
Normal Power 737500



Model
Population

GB2 (MLE)
LT(MLE)
GG(MLE)
B2(MLE)
BR3(MLE)
BR12(MLE)
LN(MLE)
W(MLE)
GA(MLE)
EXP(MLE)

Normal Aprx
Chebyshev
Normal Power

Cummins-Freifelder [1978] Severity Distribution
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Table 8
Estimated Models
(Grouped Data)

Model a(p) b(a) P q(d.£.) LL x2

GB2 1.5308 67.3722 71.1851 .5039 -17.6 2.6
LT (7.9885) (.9750) (2.6064) -21.3 10.0
GG -1.5087 1095.8 .51210 -17.6 2.6
B2 1.0000 .00359  520181. .9307 -17.8 3.0
BR3 .9687 .0247 57748. 1.0000 -17.9 3.1
BR12 2.9525 1095.4 1.0000 L2450 -17.6 2.8
LN (8.1378) (1.2378) -21.6 10.3
w .8275 5982.1 1.0000 -28.6 24 .4
GA 1.0000 7896.6 .82068 -29.7 27.3
L 1.0000 5839.7 1.00000 1.5507 -24 .4 15.4

NOTE: LL refers to the log of the likelihood function. Parameters in
parentheses correspond to estimated parameters associated with the lognormal
and log-t distributions.

Table 9
Severity Data
(Individual Observations)

Model au) b(o) P q(d.£.) LL X2
GB2 3.9658 1097.4 .8524 .1866 -784.6 3.
LT (8.0159) (1.0284) (4.4832) -791.6  10.
GG -1.0913 1656.2 .8401 -785.5 2.
B2 1.0000 20.437 96 . 4t .9664 -785.6 3.
BR3 .9918 31.991 62.194 1.0000 -785.6 3.
BR12 3.5284 1062.0 1.0000 .2125 -784.6 3,
LN (8.2151) (1.3490) -794.7 11
W .5810 7757.7 1.0000 -815.1  40.
GA 1.0000 39513. .4280 -830.9 68,
L 1.0000 4640.1 1.0000 1.2941 -796.6  15.
EXP 1.0000 16950, 1.0000 -859.0  110.

QWS PNE O

NOTE: LL refers to the log of the likelihood function. Parameters in
parentheses correspond to estimated lognormal and log-t parameters. The
Chi-square tests are based on the groupings in Table 7, with the last three
categories combined.



4. The Severity of loss Distribution

The Cummins and Freifelder severity data consist of 80 fire claims.?
These data are reported in grouped form in Table 7, and the ungrouped data
are presented in Appendix B. Cummins and Freifelder found that the lognormal
and gamma distributions did not have sufficiently heavy tails to describe
the data. The log-t distribution was found to provide a better fit to the
tail data.

Maximum likelihood estimation was used to estimate the members of the GB?
family. Both grouped and ungrouped data were used to analyze the impact of
information lost through grouping. In estimating the models based upon the
grouped data, the last three groups were combined as in Cummins and Freifelder.
The results are reported in Tables 8 and 9. There appears to be very close
agreement between the GB2, the two Burr distributions, the B2, and the GG
for both the grouped and ungrouped data. The corresponding likelihood ratio
tests are not statistically significant at the five percent level.

The Chi-square goodness of fit test does not provide the basis for rejecting
either the LN or LT as being consistent with the data. However, the GB2,
GG, B2, and the two Burr distributions provide statistically significant
improvements over either the LN or the LT. The Chi-square test should be
used with caution in this type of analysis, however, for two reasons: (1)
It is not a very powerful test for goodness of fit of continuous distributions,
and (2) it may fail to reject a distribution which provides an adequate fit
in the body of the distribution but a very poor fit in the tail. Underestimating
the tail can have seriocus consequences in an insurance context.

The Burr 12 results are very close to the GB2 results. Given the
flexibility and relative simplicity of the Burr 12, it deserves to be given
careful consideration in empirical work in this area. Another interesting
observation is that while the estimated parameter values for the GB2 in
Tables 8 and 9 appear quite different, the estimated distributions are very
similar. It is not uncommon to find examples in which the likelihood surface
is quite flat.

5. Applications of Estimated Distributions.

The estimated frequency, severity, and total claims distributions are useful
in numerous practical applications. The selection of distributional forms
can have a significant impact on estimates of reinsurance premiums, tail
fractiles (e.g., for MPY or ruin calculations), and other important statistics.
In this section, we investigate the effects of model selection on the tails
of the severity distribution, excess of loss reinsurance premiums, and
simulated total claims distributions. We compare the GB2, Burr 12, and
generalized gamma with the lognormal distributieon. The first three distributions
were selected because they fit the data best in terms of likelihood function
values, while the lognormal was chosen because it has been used frequently
in the prior literature, Recall that the lognormal could not be rejected
using the chi-square test.
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5.1. Tails of Severity Distributions, The tails (last 15 observations)
of the estimated Burr 12 severity distributions based on grouped and ungrouped
data are plotted in Figure 2. The tails of the two distributions differ
noticeably, and the differences are large enough to have a significant
impact on reinsurance premiums and other quantities. For the GB2 (not
shown), the tails based on grouped and ungrouped parameter estimates are
much more comparable than those of the Burr 12. Thus, one potential advantage
of using the GB2 is that the results may be less sensitive to the type of
data used in estimating the parameters.

The distribution function values, including the tails, of the GB2 and
Burr 12 based on ungrouped data are virtually identical. For grouped data,
the Burr 12 has a heavier tail than the GB2. In the latter case, the GB2
appears to fit the data slightly better than the Burr 12. The tails of the
Burr 12, the generalized gamma, and the lognormal based on ungrouped data
are presented in Figure 3. It is apparent that the tail of the lognormal is
much too light to represent the data. Visual inspection also suggests that
the Burr 12 fits the tail better than the generalized gamma.

5.2. Reinsurance Premiums, Reinsurance premium calculations were
based on excess of loss reinsurance with both upper and lower limits. The
calculations estimate the reinsurance company's expected severity. The
expected severities would be multiplied by expected (total) frequency to
give the reinsurance pure premium. The reinsurer’s obligation for any given
claim is the following:

0 =M
(13) XRE_ X -M for M <X <U
U-M = U
where Xpg = the reinsurer’s obligation,
X = loss amount, and
M,U = lower and upper boundaries of the reinsurance layer.

The reinsurance severity expectations are given by the following formula:

U
(16)  E(Xpp) -J h(X) dF(X) + h(U) [1-F(U)] - h(M) [1-F(M)]
M

where h(X) = a function of X: h(X) = X for distributions based on X and
h(X) = exp(X) for distributions based on 1In(X).

For illustrative purposes, the upper boundary was set at $1,000,000 and
the lower boundary allowed to vary between ln M = 7 (approximately $1,000)
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and $1,000,000. The upper boundary point was chosen to be slightly higher
than the largest observed claim (Xypx = $626,000).

The differences between expected reinsurance severity based on grouped
and ungrouped models tend to be quite noticeable. Consider, for example,
the expected severities for the grouped and ungrouped the Burr 12 distributions
shown in Figure 4. The differences in the premiums range from about 15
percent for lower values of M to about 22 percent for higher values of M.
Since the expected severities translate directly into pure premiums, the
pure premium differences would be of the same magnitude. This is especially
significant because the differences in the estimates could easily exceed the
expected profit loading. Thus, the choice of the "wrong" distribution could
result in inadvertently writing a policy at an expected loss (even ignoring
investment income).

3

The importance of the choice of a severity model is reinforced by
Figure 5, which presents the expected reinsurance severities based on ungrouped
data for the GB2, Burr 12, generalized gamma, and lognormal distributions.
The expected severities for the GB2Z and Burr 12 are at least twice as large
as those for the lognormal, over all values of M. The differences between
the generalized gamma and the GB2 and Burr 12 are approximately 25 percent.
This is especially significant in view of the fact that the generalized
gamma distribution is not significantly different from the GB2 at the 10
percent level of significance (likelihood test). The difference is stat