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APPLICATIONS OF THE GENERAL SIMILARITY SOLUTION OF THE HEAT
EQUATION TO BOUNDARY-VALUE PROBLEMS*
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GEORGE W. BLUMAN

University of British Columbia

1. Introduction. Using Lie theory, Bluman and Cole [2] derive the general similarity
solution of the heat equation. In this paper we consider the application of group methods
to boundary-value problems for the one-dimensional heat equation.

It will be shown that the initial-value problem for the; well-known fundamental
solution of the heat equation for an infinite bar is invariant under a three-parameter
Lie group. This leads to the solution in an elegant fashion.

An inverse Stefan problem for the melting of a finite bar is considered. Analytical
solutions are obtained for a two-parameter class of moving boundaries, extending the
previous work of Sanders [5] and Langford [4]. A new solution expressible in terms of
a Fourier series is derived for a phase change boundary moving at a constant velocity.

2. Group of the heat equation. Consider the one-dimensional heat equation for a
material with constant thermal properties

cp(dB/dt) - k(d2Q/dx2) = 0 (1)

where c = specific heat, p = density, and k = thermal conductivity are parameters
and 0(x, t) is the temperature at position x at time t. For a given problem, by a suitable
scaling of the variables 0, x, and t, (1) is equivalent to the partial differential equation

(du/dr) — (d~u/dy2) = 0. (2)

In [2] it was shown how to find the Lie group leaving invariant (2) by the use of
infinitesimal transformations. If

U* = U*(y, T,u;e) = u + eri(y, r, u) + 0(e2),

y* = Y*(y, r, u; e) = y + tY(y, r, u) + 0(e2), (3)

r* = T*(y, t, U) e) = r + tT(y, r, u) + 0(t2),

is a one-parameter Lie group leaving invariant (2), then

v(y, T, u) = f(y, t)u + rj(y, r), (4)

where g(y, r) is any solution of (2) and

Y(y, r, u) = Y(y, t) = k + 8t — fry — 7ijt,
T(y, T, u) = T(t) = a — 2/3r — yr2, (5)

Ky> t) = — i by + \y[y2 + 2r] + X.

* Received September 1, 1972. The writer is grateful to Fausto Milinazzo for the numerical calcula-
tions.
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Wc consider the case where g(y, t) = 0.
Effectively (3), is a six-parameter Lie group of transformations leaving invariant

(2). Each parameter (or combination of parameters) can in turn be used to generate
a similarity solution.

The corresponding general similarity solution generated by this six-parameter
family of transformations is derived by integrating out the characteristic equations

dy/Y(y, r) = dr/T(r) = du/f(y, t)u (6)

to obtain a similarity form

u(y, r) = F({)G(y, r) (7)

where i'(y, t) = const, is the integral of the first equality of (6) and G(y, r) is known
explicitly. Substitution of (7) into the partial differential equation (2) leads to an ordinary
differential equation for F(f).

For the application of similarity solutions to a boundary-value problem it is necessary
that the given problem have a unique solution. For a direct application it is necessary
that a subgroup of (3) leaves invariant each of the boundary conditions and corre-
sponding boundary curves. Each parameter of the subgroup leads to a similarity form
(7) for the solution.

In Sec. 6 an application is considered in which one of the boundary conditions is
not invariant. A superposition of similarity solutions satisfies the "non-invariant"
boundary condition.

3. Group properties of the fundamental solution. As an application of the group (5)
we derive the fundamental solution of the heat equation in an infinite bar.

The governing equation is (1) subject to the boundary conditions

9(x, 0) = Qd(x)/pc, lim 0(x, t) = 0, (8)
X—»± 00

where 5(x) is the Dirac delta function and Q measures the strength of the source located
at x = 0 at time t = 0. The solution to the boundary-value problem (1), (8) is unique.

Let

y = x, t = kt/cp, u = (pc/Q) 0. (9)

Then (1) is equivalent to (2) and the corresponding transformed boundary conditions
are:

u(y, 0) = 5(j/), lim u(y, r) = 0. (10)
y-±cD

The group (5) leaves invariant (2). However, for direct application to the given
boundary-value problem we must leave invariant the given boundaries r = 0 and
y = ± °° and the corresponding boundary conditions. Trivially the full group (5) leaves
invariant «(±00, t) =0.

Invariance of r = 0 implies that

t* = t + tT(r) = 0 when r = 0,

i.e., T(0) = 0, and hence a = 0.
u*(y, 0) = 8(y*)
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implies that
u(y, 0) + ef(y, 0)u(y, 0) = 8(y) + eY(y, 0)8'(y). (11)f

Thus invariance of the source condition further requires that

f(y, O)S(y) = Y(y, 0)8'(y). (12)
Formally,

yt'iy) = -Ky)
=>A(y)8'(y) =

= -A'(0)8(y) if A(0) = 0.
Moreover, if B(0) — 0 then B(y)o(y) = 0. Hence (12) is satisfied if

7(0, 0) = 0, /(0, 0) = ~(dY/dy)(0, 0). (13)
Thus k = 0 and X = /3. Hence the three-parameter group

Y = St — (5y — yyr,

T = — 2(3t — 7 t2, (14)

/ = Sy + 0 + h\y2 + 2t]
leaves invariant the differential equation (2) and the boundary conditions (10).

4. Invariance under a multi-parameter group. Each of the parameters (5, /3, 7)
in (14) can be taken in turn to generate a similarity form for the fundamental solution.
From uniqueness of the solution we can equate the functional forms corresponding
to any two of these parameters [1], Solving the resulting functional equation, we obtain
a solution containing some arbitrary constant which is computed from the initial source
condition.

Theorem 1. Let

I - Yfn, ,) I + T(r) I + /(», r)u £ (15)
represent the infinitesimal operator generating the similarity form

u(y, t) = F(Z)G(y, r). (16)

If u — <t>(y, t) = 0 is a similarity solution corresponding to invariance under a one-
parameter group whose infinitesimal operator is X, then

- <t>(y, t)} =0.
Proof: First it should be noted that by definition the similarity form (16) contains

all similarity solutions corresponding to X, i.e., 4>(y, r) corresponds to a particular choice
of F(t).

From the characteristic equations (6) f(y, r) and u/G(y, t) are independent in-
variants corresponding to X, i.e.

X$(u/G(y, t), t(y, t)) = 0 (17)
f 0(e2) terms can be neglected since we are dealing with a Lie group of transformations.



40G G. W. RLUMAN

for any differentiate function ff of (■u/G(y, r)) and t(y, r).

X{u - FtfMy, r)} = *((?[(| - TO)]
= [| - F(f)]xc + r;xj| - F(f)|-

Hence if u — F(£)G(y, r) = 0 then Xjit — F(t;)G(y, r)} =0.
For any values of the parameters 5, /3, and 7, (14) leaves invariant (2) and (10).

Let

Xi <_> 5 = 1, 0 = 7 = 0,

£2 0 = 1, 5=7 = 0,

I. «-»7 = 1, (3=5 = 0.

Then

h = Tdij-2'JUdu' (18)

$2 = — i/ -7- — 2t J- + u J- , (19)dy dr du

+ + (20)

Let %i{y, t), u/GiQj, r) = F,(f,) be the independent invariants of £,■ , i = 1, 2, 3.
Then the functional form corresponding to X, is

u = Fi(^i)Gi(y, t),

where F,(f,) is some arbitrary function of fv , i = 1, 2, 3.
From uniqueness of the solution the following functional equations are satisfied

by the unknown functions Fi(fi), F2(f2) and F:,(f;)):

Fi(£i)G,(ij, r) = F2(i;2)G2(y, r) = F.,^,)G,(y, r). (21)

Solving the first equality of (21), we determine F,(f,) (or equivalently F2(f2)) ex-
plicitly except for an arbitrary constant.

It, is easy to show that f2 is functionally independent of f, iff $2 $ <x(ij, t)X, for
some function a(y, t). Hence from (18), (19) we sec; that f2 is functionally independent
«f fi •

To solve the functional equation

F\(Si)Gi{y, r) = F2(f2)(,'2(;y, r)

we let fi and f2 be the new variables and express // and r in terms of f, and f2 . Then
we differentiate each side of the equality with respect to , say. As a result Pi(f,)
satisfies a simple linear homogeneous first-order ordinary differential equation, namely

(IF, _a_
af. log I), F, = 0. (22)
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Alternatively, G2/Oi = A(f,)B(f2) for some known functions ^4(fi) and B(f 2).

=* F^x) = cA(r.)

where c is an arbitrary constant.
Hence the solution of the first functional equation of (21) leads to the similarity

solution

u - c<t>(u, t) = 0 (23)

of (2), (10) where <f>{y, r) is known explicitly and c is determined from the initial source
condition.

By Theorem 1, — c<j>(y, t)} = £2{u — c<t>(y, r)} =0.
From uniqueness of the solution £:i {u — c<j>(y, r)} =0. Hence there must exist

functions Xi(y, r) and \2(y, r) such that

& = Xi(y, t)Xi + \2(y, t)X2 -

It turns out that

(y> T) = h, *2(y, t) = -\y.

5. Derivation of the fundamental solution. Corresponding to I2

fl = t

Gi(y, r) = exp = y/Vr,

(>2{y, t) = 1/a/t, G2/0i = (l/Vfi) exp

=*■ A(f,) = 1/Vfi = i/Vt
=3 c ( y
=>M = _rap(__

The source condition implies that c = 1/\/47r.
Note that a standard way to derive this solution is to consider a similarity form

corresponding to invariance with respect to £2 (stretching in variance or dimensional-
analysis argument) and then to solve the resulting second-order ordinary differential
equation.

6. Group properties of an inverse Stefan problem. As another application of group
methods to a boundary value problem we consider transient heat conduction in a melting
slab [4], [5]. A finite slab originally extending from x = 0 to x = a is melted in such a
way that the face x = 0 is insulated and the other face is melted with heat flowing into
the melting face at a rate h{t). It is assumed that all of the molten material is removed
immediately upon formation. At time t the melting face is located at x = X(l) with
X(0) = a.'

Let Qm be the melting temperature and 90(x) be the initial temperature distribution
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in the bar. Then the governing partial differential equation is (1) for 0 < x < X(t),
t > 0 and the appropriate boundary conditions during melting are:

e(X(<), t) = e,„, t> o,
(de/dx)(o, o = o, t > o,

0(x\ 0) = 90(x), 0 < x < a,

h(t) = k(dQ/dx)(X(t), t) — pL(dX/dt), t > 0,
where L = latent heat of fusion. Note that there are two unknowns in this nonlinear
Stefan problem: the temperature distribution 6(x, t) and the moving (free) boundary
X(t).

We non-dimensionalize (1), (24) by letting

y = x/a, r = kt/cpa, s(r) = X(t)/a,

u(y, t) = (9(.t, t) - Qm)/em , H(t) = (ca/Lk)h{t), (25)

K = (c/L)Qm , <%) = (0o(.t) - em)/em.

Then (1), (24) become

du/dr = d2u/dy2, 0 < y < s(r), r > 0 (26)

m(s(t), r) = 0, r > 0, (27)

(du/dy)(0, r) = 0, r > 0, (28)

u(y, 0) = $((/), 0 <y <1, (29)
«(0) = 1, (30)

77(t) = K(du/dy)(s{T), r) — ds/dr, r > 0. (31)

The unknowns are now t<(?/, r) and s(r).
Instead of solving the direct problem we consider the inverse Stefan problem where

s(t) is specified and the solution is found which satisfies all of the boundary conditions
except (31). The generated solution fixes the value of H(r). Tn effect this is a "control"
type of problem. In a future paper it will be shown how to solve numerically the direct
problem by piecing together appropriate inverse solutions.

Using similarity we seek the most general expression for s(r) leading to analytical
solutions and find the corresponding temperature distribution u(y, r) and heat flux H(t).

Before proceeding to construct such analytical solutions we show that the solution
to the inverse Stefan problem (26)—(31) is unique. Say u = ux and u = u2 are solutions
corresponding to a particular fixed s(r). Let v — u2 — ih ■ Then v satisfies

dv/dr = d2v/dy2, 0 < y < s(t), r > 0, (32)

v(s(t), t) = 0, r > 0, (33)

(,dv/dy)(0, r) > 0, r > 0 (34)

v(y, 0) = 0, 0 < y < 1. (35)

Let R (Fig. 1) be the region bounded by the curves y = s(r), r = 0, y = 0 and r = r'
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[0 < s(r') < 1]. Since v satisfies (32) in R, v also satisfies the identity

d_
dy V dy/ 2 dr \dy/

in R. Let dR be the boundary of R. Then by Green's theorem

( dv\ \dv2 (dvY {Ofi\
["*,)- 2^" W <36)

'f„ I "'d»+'%dT- ~JJ (f) ■>' <<»■ <37)
From the boundary conditions along dR, (37) reduces to

I I(S) dTCly + ll Ay> T'} dy = o-
Hence dv/dy = 0 in i?. Thus « = F(t) for some function of r in R. But since v satisfies

(32) in R and the boundary condition (35), we see that F(r) = const. = F„ = 0. Hence
the solution u(y, r) is unique if s(r) is specified.

If the group (5) leaves invariant y = s(t) and y = 0 [s(0) = 1] then s(r) satisfies

7(0, r) = 0, Y(s(t), r) = rs'(r), s(0) = 1 (38)
=>

k = 8 = 0, a = 1

Thus

s(r) = (1 — 2/3r — yt2)1/2, 13 > 0 (39) f

Case I: j32 ^ —7. Integrating out the characteristic equations (6), we obtain the
similarity variable

f = 2//(1 — 2/5t - tt"')172- (40)

t T > — if the slab is to melt completely. If 7 < —/32 then x < ( — 0/y) and Smi,, = (1 + 02/v)lli-
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The similarity curves fill the region 0 < f < 1, f = 0 <->?/ = 0, J" = 1 <-> y = s(r).
The corresponding similarity solutions are:

1(a): y > —/3 :

u(y, r) = 
(1 — 2 jSr — yr2)1

c + f3 + yr exp [Jf (/3 + yr)], (41)
C — (3 — yr

where j(z) satisfies a differential equation of confluent hypergeometric type, namely

d21/dz2 + [i + „ - |z2]f = 0. (42)

1(b): y < —ft2:

u(y, r) = (1 _ 2/3r _ yT2y7* ex[) 2p tan"1 + | f2(£ + 7t) | (43)

where f(z) satisfies the differential equation:

d'j/dz" + + v + \z~]f — 0- (44)

In both subcases 1(a) and 1(b), C = (|/32 + y\)W2, z = fVC, " is an arbitrary constant
and p = \v + \.

The boundary conditions (27), (28) imply that j(z) satisfies a Sturm-Liouville
problem with boundary conditions /'(0) = j(y/C) = 0.

Consider 1(a)

/'(0) = 0

=> f(z) = exp (-|-z2)yl/(-|«, y2)

where AI (a, b, z) is Rummer's function. j(s/C) - 0 leads to the eigenvalue equation

M(-b, i, iC) = 0.
Let {»„} and {/„}, n = 1, 2, • • • , be the corresponding eigenvalues and eigenfunctions:

/„(«) = exp ( ~4~z'J)M( 2V„ , h 5Z2)

rVc
Jg fjz)fn(z) dz = 0 if n ^ m ^

= N„ if n = m,

where Nn is the normalizing factor. Hence a formal solution satisfying the boundary
conditions (27), (28) is:

exp
u(y, t) =

7 +yr)
ITT- Z) A»fn(z)[1 + 2(3t — yt ]

C + 0 + yr
C — /3 — y t (46)

The constants \An\ are determined from the initial condition (29) and the orthogonality
relations (45):

AAn~ N„
C - /3
C +

l/2vn + l/4 r\

f exp (-iPtfWVCm) df, n = 1. 2. • • • . (47)
Jo
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Correspondingly we generate a two-parameter family of heating fluxes

tt( _ KVC-CXp [K|8 + 7r)]
[T) (1 - 2/3 r - 7t2)3/4

■ E C -f- j3 + 7t
C — /3 — 7t

l/2kn + 1/4 , X

+ (1 - 2(8t - 7t2)3/2' ^

The subcase 7 = 0 was considered by Sanders [5] following the work of Landau
[3], The moving boundary is eliminated by a clever change of variables. Then separation
of variables is applied with v playing the role of an eigenvalue in superposition of solu-
tions of the form (41) where 7 = 0. Langford [4] also only considers the case 7 = 0.

Case II: y = —f}2. In this case the melting boundary s(r) moves at a constant
velocity — 0:

s(r) = 1 — /3t, (49)

and the similarity variable is

r = y/( 1 - j8r), 0 < r < 1, (50)
where

f = 0 <-* y = 0, f = 1 <-> y = s(t) = 1 - j3t.

The similarity curves are straight lines (Fig. 2) in the y — r plane, filling a triangular
region. When r = 1//3 the bar has melted completely. From the characteristic equations
the similarity form for the solution is:

»<»•') - a"3?;r °p [*r(1 - w ~ «i 1 m] (51)

Fig. 2. Similarity curves for Case II: y = —/32.
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Fig. 3. Heat flux vs. time for initial temperature distribution <P(y) = —exp ( + /3y2/4) cos (tt/2)j/.

where F(f) satisfies the elementary differential equation

d2F/dl2 + vF = 0. (52)

The boundary conditions (27), (28) imply that F( 1) = F'(0) = 0. The corresponding
Sturm-Liouville problem for F(£) has as eigenvalues {e„} and eigenfunctions {F„(f)}:

K = (n — |)7r, F„(f) = cos j>„f, n = 1, 2, • ■ • . (53)

Hence a general formal solution satisfying (26), (27) and (28) is

exP (4" ^ 2 \
t) =  (i - gT)"»  5 A" C°S "" reXP Ul - fir)/' (54)t

From the initial condition (29) we see that

t If (3 = 0, i.e. the boundary y = 1 is fixed, then 1he solution (54), (55) corresponds to the well-known
Fourier series solution satisfying the boundary conditions (27), (28) and (29) which is obtained by
separation of variables.
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An = 2 exp (+——^JL) \q Hy)Fn(y) exp dy, n = 1,2, ■■■ . (55)

Correspondingly the heating flux is

tt, , K exp (|/?(1 - /3r)) ^ , 1VI+1 , ( vn2
H(r) = _ 3/2 E (-1) exp [-ffTZTM + /3. (56)(1 - /3r)^ 7 " " F V 0(1 - pT)}

As an example, consider

<%) = —B exp cos | y, 0 < y < 1 (57)

where /3 < tt2/2, 0 > 0. For this initial temperature distribution

A! = —B exp (^J , An = 0, n > 1.

Fig. 4. Heat flux vs. time for fixed initial temperature distribution 3>(?/) = y2 — 1: dependence on
melting rate /3.
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The resulting solution is

U(lJ' C0S W'hr) 6XP

where

2 02 2 ~I* - P y
_4/3(/3t - 1)J

^(t) = 2(1 - 0r)3/2 6XP
<3(1 - flr) /  1 
. 4 t4\lt 0(0T - 1)

(58)

(59)

7. Numerical calculations. In Figs. 3-6 for the case of a boundary moving at a
constant velocity the nondimensional heat flux H(t) is plotted against the nondimen-
sional time r (K = 1). For values of the melting rate 0 = 0, 0.5, 1.0, 1.25 and 1.5 Fig. 3
shows the dependence of the heat flux for an initial temperature distribution $(//) =
— exp (+03;/2/4)) cos (ir/2)y. For the same values of 0 Fig. 4 shows the dependence
of heat flux on the melting rate for a fixed initial temperature distribution $(?/) =

0.4 _ #.5time z

Fig. 5. Heat flux vs. time for melting rate 0 = 1, <{>(0) = —1: dependence on initial temperature
distribution.
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0.4 0.5
Tift r

Fig. 6. Heat flux vs. time for melting rate ft = 1, 4>'(1) = 1: dependence on initial temperature distribu-
tion.

if — 1. In Figs. 3 and 4 $(0) = —1. In Figs. 5 and 6 the effects of various initial tem-
perature distributions are shown for a melting rate /3 = 1. In Fig. 5 $(0) = — 1 and in
Fig. 6 <P'(1) = 1.

8. Conclusions. New classes of analytical solutions for an inverse Stefan problem
have been derived using group methods. In the case of a phase change boundary moving
at a constant velocity the solution is of a simple form for computational purposes.
In a future paper we will show how to solve a quite general direct Stefan problem by
a numerical procedure based on these similarity solutions.
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