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Abstract: Recent studies on applications of  the information theoretic concepts to molecular 
systems are reviewed. This survey covers the information theory basis of the Hirshfeld 
partitioning of molecular electron densities, its generalization to many electron probabilities, 
the local information distance analysis of molecular charge distributions, the charge transfer 
descriptors of the donor-acceptor reactive systems, the elements of a “thermodynamic” 
description of molecular charge displacements, both “vertical” (between molecular 
fragments for the fixed overall density) and “horizontal” (involving different molecular 
densities), with the entropic representation description provided by the information theory. 
The average uncertainty measures of bond multiplicities in molecular “communication” 
systems are also briefly summarized. After an overview of alternative indicators of the 
information distance (entropy deficiency, missing information) between probability 
distributions the properties of the “stockholder” densities, which minimize the entropy 
deficiency relative to the promolecule reference, are summarized. In particular, the surprisal 
analysis of molecular densities is advocated as an attractive information-theoretic tool in the 
electronic structure theory, supplementary to the familiar density difference diagrams. The 
subsystem information density equalization rules satisfied by the Hirshfeld molecular 
fragments are emphasized: the local values of alternative information distance densities of 
subsystems are equal to the corresponding global value, characterizing the molecule as a 
whole. These local measures of the information content are semi-quantitatively related to 
the molecular density difference function. In the density functional theory the effective 
external potentials of molecular fragments are defined, for which the subsystem densities 
are the ground-state densities. The nature of the energetic and “entropic” equilibrium 
conditions is reexamined and  the entropy representation forces driving the charge transfer 
in molecular systems are introduced. The latter combine the familiar Fukui functions of 
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subsystems with the information densities, the entropy representation “intensive” conjugates 
of the subsystem electron densities, and are shown to exactly vanish for the “stockholder” 
charge distribution. The proportionality relations between charge response characteristics of 
reactants, e.g., the Fukui functions, are derived. They are shown to follow from the 
minimum entropy deficiency principles formulated in terms of both the subsystems electron 
densities and Fukui functions, respectively. 
Keywords: Atoms-in-Molecules; Density Difference Function; Density Functional Theory; 
Donor-Acceptor Systems; Electron Densities and Probabilities; Electronic Structure Theory; 
Fukui Function; Hirshfeld Analysis; Information Theory; Reactivity Theory; Subsystems; 
Surprisal Analysis;  Thermodynamical Approach. 

 

1. Introduction 
 

In chemistry an understanding of the electronic structure of molecules and reactive systems comes 
from transforming the experimental or computational results into statements in terms of chemical 
concepts, such as atoms-in-molecules (AIM), the building blocks of molecules, their collections, e.g., 
the functional groups, and the chemical bonds representing the AIM “connectivities”. The bonded 
atoms are known to be only slightly changed relative to the corresponding free atoms. The collection 
of the constituent free atoms, shifted to the actual positions R in a molecule, determines the 
“promolecule”, which constitutes the standard reference state for extracting changes in the electron 
distribution due to the formation of chemical bonds, represented by the familiar density difference 
function, 

∆ρ(r) =  ∆ρ(r; R) = ρ(r; R) − ρ0(r; R),        (1) 
 
where ρ(r) = ρ(r; R) and ρ0(r) = ρ0(r; R) = ∑α ρα0(r; R) stand for the molecular and promolecular  
electron densities, respectively, with the latter being determined by the free atom densities {ρα0(r) = 
ρα0(r; R)}. 

The information theory (IT) [1-3] provides both the entropic measures of the information distance 
(similarity) between the compared distributions of electrons in a given molecular system and the 
associated promolecule [2, 4-11], respectively, and a convenient device, the information entropy 
variational principle, for assimilating in the optimized electron density (or probability) distribution the 
physical information contained in the constraints and the appropriate references, in the most unbiased 
manner. This theoretical framework can also be used to extract the entropic (information) 
characteristics of the probability distributions of simultaneously finding several electrons in a molecule 
and the associated promolecule, respectively [7, 10, 11], both continuous and  discrete, e.g., in the 
AIM or molecular fragment resolutions. Such an approach can also facilitate a development of the 
information-theoretic indices of the chemical bond multiplicities [10, 11]. One can attempt to 
formulate within the IT a thermodynamic-like description of molecular systems and their fragments 
[5], by complementing the familiar energetic variational principles of  the wave-function quantum 
chemistry or the density functional theory (DFT) [12] with the corresponding entropy representation 
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principles from the IT. As it will be argued in the present work, such an approach is vital for extracting 
chemical concepts from the calculated molecular electron distributions. 

In this survey we review recent applications of the information theoretic concepts and principles to 
typical problems of a chemical interpretation of the electronic structure, including the definition of 
AIM [4-6] at various stages of their reconstruction in a molecular environment, with particular 
emphasis on the Hirshfeld [13] (“stockholder”) partitioning, and the chemical bond multiplicities [10-
11]. We shall also briefly address the surprisal analysis of molecular electron densities [5,8,9], and 
concepts combining the familiar charge response indices of DFT and the relevant information-distance 
densities [8,9]. We shall conclude with elements of a more general “thermodynamic” description 
within the information theory of molecular and reactive systems, including both the “vertical” 
displacements of the electronic structure (for the constant molecular density) and the “horizontal” 
transitions from one ground-state density to another [5].   
 
 
2. Information Distance Measures for Probability Distributions 
 

The Kullback-Leibler (KL) [2a] missing information (entropy deficiency, directed divergence) 
between the current [p(r)] and reference [p0(r)] normalized probability distributions, ∫ p(r) dr = ∫ p0(r) 
dr = 1,  
 

∆SKL[pp0] = ∫ p(r) log[p(r)/p0(r)] dr ≡ ∫ p(r) I [p(r)/p0(r)] dr ≥ 0,        (2)  
 
where the logarithmic part of the integrand determines the surprisal function I [p(r)/p0(r)], reflects the 
information content in p relative to that in p0. In other words the functional ∆SKL[pp0] measures the 
information “distance” or likeness of both distributions. Notice that its integrand is negative when 
I[p(r)p0(r)] < 0, or p(r) < p0(r).  

The integrand of the symmetrized entropy deficiency of Kullback (K) [2b], 
 

∆SK[p, p0] = ∆SKL[pp0] + ∆SKL[p0p] = ∫ [p(r) − p0(r)] I[p(r)/p0(r)] dr ≥ 0,       (3)  
 
called divergence, is always non-negative. 

An alternative information distance quantity is defined by Fisher’s (F) [3] referenced entropy for 
locality, called intrinsic accuracy,  
 

∆SF[pp0] = ∫  p(r) {∂I[p(r)/p0(r)]/∂r}2 dr  ≥ 0.        (4) 
  

It can be easily verified that, as intuitively expected, the minimum (zero) value of all these entropy 
deficiency measures, ∆S[pp0] = {∆SKL[pp0], ∆SK[p, p0], ∆SF[pp0]}, obtained in the minimum 
information distance principle including the global probability normalization constraint, ∫  p(r) dr = 1, 

 
δ{∆S[pp0] −  λ ∫  p(r) dr} = 0,         (5) 

 
is reached when the two distributions are identical, i.e., for p(r) = p0(r) [4]. 
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One also defines the associated missing information quantities using the AIM resolved one-
electron probabilities, p = {pi} and p0 = {pi

0},  ∑i pi = ∑i pi
0 = 1, of finding an electron on the i-th AIM 

and the i-th free atom of the promolecule, respectively [10, 11]: 
 

∆HKL(pp0) = ∑i pi log [pi/pi
0]  ≡ ∑i pi I[pi/pi

0]  ≥  0,       (2a) 
 

∆HK(p, p0) = ∆HKL(pp0) + ∆HKL(p0p) = ∑i [pi − pi
0] I[pi/pi

0] ≥ 0.               (3a) 
     

These probabilities of the discrete atomic description determine the corresponding one-electron 
Shannon entropies, 
 

H1(p) = − ∑i pi log pi,  H1(p0) = − ∑i pi
0 log pi

0,       (6a) 
 
and the corresponding displacement due to the formation of chemical bonds in a molecule: 
 

∆H1 =  H1(p) − H1(p0).         (6b) 
 

The corresponding two-electron joint probabilities P = {Pi,j},  of simultaneously finding a pair of 
electrons on atoms i and j in a molecule, and the corresponding promolecule probabilities P0 = {Pi,j

0},  
where ∑i,j Pi,j = ∑i,j Pi,j

0 = 1,   ∑i Pi,j = pj,  ∑i Pi,j
0 = pj

0, etc., define the associated displacement of the 
Shannon two-electron entropy in atomic resolution, 
 

H2(P) = − ∑i,j Pi,j log Pi,j, H2(P0) = − ∑i,j Pi,j
0  log Pi,j

0,   ∆H2 = H2(P) − H2(P0),        (7) 
 
the average conditional entropy [14], 
 

Hc(Pp) = − ∑i,j Pi,j log [Pi,j/pi] = − ∑i,j Pi,j log P(ji)  
 
     = − ∑i,j Pi,j log Pi,j + ∑i pi log pi = H2(P) − H1(p),        (8) 

 
and the average mutual information [14],  
 

∆HKL(PPind) = ∑i,j Pi,j log [Pi,j/(pi pj)]  
 

= ∑i,j Pi,j log P(ji) − ∑j pj log pj = H1(p) − Hc(Pp) = 2H1(p) − H2(P),     (9) 
           

measuring the information distance between the molecular two-electron probabilities and the 
corresponding distribution of independent electrons: Pind = {pi pj} [10, 11]. One also defines a related 
quantity  

∆HKL(PPM,P)= ∑i,j Pi,j log [Pi,j/(pi pj
0)] = H1(p) + H1(p0) − H2(P)  

 
= H1(p) − Hc(Pp0) = H1(p0) − Hc(Pp),        (10) 
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reflecting the entropy deficiency of the molecular two-electron probabilities in atomic resolution 
relative to the product of the independent one electron probability schemes, characterizing the 
promolecular (P) input (I, source) and the molecular (M) output (O, receiver), respectively: 
PM,P = {pi pj

0} [10, 11].  
The conditional probabilities characterize the “communication” channels [14] in the molecular 

probability network [10], in which a message of the AIM assignment of electrons is transmitted from 
the molecular “source” (promolecule) to the molecular “receiver” (molecule). In the molecule this 
signal is disturbed, compared to the promolecule, by the chemical “noise” reflecting an additional 
uncertainty in attributing electrons to AIM created by the delocalization of electrons through the 
network of chemical bonds. Therefore, the one-electron entropies of Eq. (6a) characterize the 
molecular output (or input),   
 

H1(p) ≡ H(IM) ≡ H(OM),     (11a)   
and the promolecular input, 
 

H1(p0) ≡ H(IP),      (11b)   
 

probability schemes, respectively. Similarly, the two electron entropy determines the average 
uncertainty associated with probabilities that two electrons are simultaneously found on the molecular 
input (I) and output (O):  
 

H2(P) ≡ H(IMOM).       (11c) 
 

One similarly interprets the remaining average uncertainties. The conditional entropy of Eq. (8) 
provides the average uncertainty of the molecular output given the molecular input,  
 

Hc(Pp) ≡ H(OMIM) ≡ H(IMOM),     (11d) 
 
while the mutual information measure of Eq. (10) represents the difference 
  

∆HKL(PPM,P) ≡  H1(IM) − Hc(OMIP) ≡ H1(IP) − Hc(OMIM).  (11e)   
  

The corresponding information theoretic quantities involving three-electron probabilities in atomic 
resolution have also been explored within the orbital approximation for model systems [11]. 

The above (physically dimensionless) uncertainty/information quantities are expressed in bits (a 
contraction of binary digit), when the logarithm is taken to the base 2: log ≡ log2. If any other base had 
been chosen, the result would be to multiply the entropy by an appropriate constant, which is 
equivalent to a scale change. This, to quote Shannon, “merely amounts to a choice of a unit of 
measure”. In considerations on the information distance variational principles  we  put, for reasons of 
simplicity, log ≡ ln.   
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3. Hirshfeld (“Stockholder”) Subsystems and “Vertical” Displacements of Electronic Structure 
 

Hirshfeld [13] has approached the classical problem of partitioning the known molecular ground-
state density ρ(r) into the corresponding AIM densities, ρ(r) ≡ {ρα(r)},  

   
ρ(r) = ∑α ρα(r),          (12)  

 
using the common sense assumption, that the AIM participates in ρ(r) (molecular “profit”) in 
proportion to its share wα

0(r) = ρα0(r)/ρ0(r) in ρ0(r) (the promolecule “investment”): 
  

ρα(r) = ραH(r) = wα
0(r) ρ(r) ≡ W(r) ρα0(r),    ∑α wα

0(r) = 1,     (13) 
 

where W(r) = ρ(r)/ρ0(r) = ραH(r)/ρα0(r) ≡ Wα
H(r),  represents the Hirshfeld AIM enhancement factor, 

common to all “stockholder” AIM.  
It has been shown [4] that this division scheme has a sound information theoretic basis, as 

minimizing the Kullback-Leibler missing information functional of Eq. (2), conveniently formulated in 
terms of the subsystem electron densities ρ and ρ0 ≡ {ρα0}, instead of the corresponding one-electron 
probability densities (shape factors), σ(r) = ρ(r)/N  and  σ0(r) = ρ0(r)/N0, where N = ∫ ρ(r) dr and N0  = 
∫ ρ0(r) dr denote the number of electrons in the molecule and promolecule, respectively,  ∑α σα(r) = 
ρ(r)/N ≡ σ(r)  and  ∑α σα

0(r) = ρ0(r)/N0 ≡ σ 0(r): 
 

∆SKL[ρ ρ0] = ∑α ∫ ρα(r) ln [ρα(r)/ρα0(r)] dr  ≡ ∑α  ∫ ρα(r) Iα[ρα(r)/ρα0(r)] dr   
     

            ≡ ∑α  ∫  ∆sα[ρα; r] dr  ≡ ∑α ∆Sα[ραρα0] 
 

= N {∑α ∫ σα(r) Iα[σα(r)/σα
0(r)] dr  + ln (N/N0)} ≡ N {∆SKL[σ σ0]+ ln (N/N0)}.   (14) 

 
It follows from the above expression that for the fixed N and N0 these normalizations of the 

subsystem electron densities do not affect the optimum solutions of a variational principle involving 
the Kullback-Leibler entropy deficiency functional. Nalewajski and Parr [4] have demonstrated, that 
the optimum densities resulting from the minimum entropy deficiency principle including the Lagrange 
term associated with the local constraint of the exhaustive partitioning of the known molecular density, 
∑α ρα(r) = ρ(r),  

δ{∆SKL[ρρ0] − ∫  λ(r) [∑α ρα(r) dr]} = 0,           (15)  
 
are the Hirshfeld subsystem densities of Eq. (13), ρ(r) = ρH(r) ≡ {ραH(r)}, for which the value of the 
information distance between the two sets of densities is determined by the corresponding global value 
of the entropy deficiency in ρ relative to ρ0: 
 
∆SKL[ρHρ0] = ∫ ρ (r) ln[ρ(r)/ρ0(r)] dr  ≡ ∫ ρ(r) I [ρ(r)/ρ0(r)] dr  ≡  ∫ ∆s[ρ; r] dr ≡ ∆S [ρρ0].   (16) 
 
The associated minimum entropy deficiency principle in terms of the shape factors, with  incorporated 
Lagrange term of the local constraint ∑α σα(r) = σ(r),  
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δ{∆SKL[σσ 0] − ∫ ν(r) [∑α σα(r)] dr } = 0,        (17) 
 
similarly gives: 

σα(r) = σαH(r) = [σα
0(r)/σ0(r)] σ(r) = W(r) σα

0(r),      (18)   
 

and  thus NσαH(r) = ραH(r). 
The same result is obtained when other information distance measures are used in the minimum 

entropy deficiency principle of Eq. (15) [5, 8, 9], e.g., the promolecule referenced Fisher [3] 
information measure for locality (intrinsic accuracy) of Eq. (4), formulated in terms of subsystem 
electron densities [5], 

∆SF[ρρ0] = ∑α ∫ ρα(r) {∇Iα[ρα(r)/ρα0(r)]}2 dr,       (19) 
 
or the Kullback’s [2b] divergence of Eq. (3) [8, 9]: 
 

∆SK[ρ, ρ0] = ∆SKL[ρρ0] + ∆SKL[ρ0ρ]  
 
       = ∑α ∫  [ρα(r) − ρα0(r)] ln [ρα(r)/ρα0(r)] dr ≡ ∑α ∫ ∆dα[ρα; r] dr ≡ ∑α ∆Dα[ρα, ρα0],    (20a) 
 

∆SK[ρH, ρ0] = ∫ [ρ(r) − ρ0(r)] I [ρ(r)/ρ0(r)] dr ≡ ∫  ∆d[ρ; r] dr ≡ ∆D[ρ, ρ0]. (20b)    
        

The Hirshfeld AIM exhibit several important properties [5], which make them attractive candidates 
for the atomic interpretation in chemistry. They preserve as much as possible of the information 
contained in the electron densities of the free atoms, exhibit a single cusp at the atomic nucleus and 
decay exponentially at large distances from it [6, 8, 9]. The bonded “stockholder” atoms in H2 [8, 9] 
reflect the intuitively expected changes due to formation of a single covalent bond: the overall 
contraction of the AIM electron distribution and its polarization towards the bonding partner.  

In DFT [12] such molecular fragments have also been shown to be the effective external potential 
representable [5]. More specifically, it has been demonstrated that the partial functional derivative 
with respect to the subsystem density of the non-additive part,  
 

Fn[ρ] = F[ρ] − Fa[ρ],       (21)   
 
of the universal Hohenberg-Kohn-Levy functional F[ρ] = F[∑αρα] ≡ F[ρ], where the additive part 
Fa[ρ] =  ∑α F[ρα], determines the embedding correction vαe(r), due to the subsystem chemical 
environment in a molecule, to the molecular external potential v(r) generated by the nuclei of all 
constituent atoms: 

vαeff(r) = vαeff[ρ; r] = v(r) + {∂Fn[ρ]/∂ρα(r)}β≠α ≡ v(r) + vαe(r);    (22) 
        

here the subscript β ≠ α denotes the fixed densities of the remaining subsystems. 
In other words, each embedded subsystem density can be viewed as representing the separate 

(free) system defined by the appropriate effective external potential. This observation introduces an 
important element of causality into the subsystem description. Namely, each manipulation on the 
molecular fragment densities can now be interpreted as the ground-state response to the concomitant 



Int. J. Mol. Sci. 2002, 3 
 

244

displacement in the effective external potential. Moreover, a non-equilibrium set of subsystem 
densities can be attributed an effective ground-state (equilibrium) interpretation, which is vital for the 
thermodynamic-like description of intermediate reconstructions of the electron distributions in 
molecular processes. 

The embedding energy Fn[ρ] determines the effective energy of the subsystem in  presence of its 
molecular environment [5]: 
 

εα[ρ, v] = {∫  v(r) ρα(r) dr + F[ρα]} + Fn[ρ] ≡ Ev[ρα] + Fn[ρ],     (23)  
 
where Ev[ρα] is the energy due to the ρα alone. Indeed, for such an external potential the subsystem 
density satisfies the global-like, ground-state Euler equation: 
 

 µα[ρ, v] ≡ {∂εα[ρ, v]/∂ρα(r)}v,β≠α = vαeff(r) + δF[ρα]/δρα(r)  
 

  = µ[ρ] ≡ {∂Ev[ρ]/∂ρ(r)}v = v(r) + δF[ρ]/δρ(r).       (24)   
  

Thus, as in all mutually opened subsystems giving rise to a given molecular ground-state density, 
ρ→ρ, the stockholder fragments exhibit the subsystem chemical potentials µ ≡ {µα[ρ, v] ≡ µα} = µ1, 
where 1 = (1, 1, …, 1), equalized at the global value µ[ρ] ≡ µ in accordance with the Sanderson 
principle of  the electronegativity equalization (EE) [15]:  
 

µα = µβ  = … = µ.         (25) 
 

It should be emphasized, however, that the above EE criterion does not distinguish within the fixed 
molecular density one set of mutually open subsystems from another. Only the complementary 
entropic description of the information theory identifies the Hirshfeld subsystems as the equilibrium 
pieces of the molecular density [4, 5]. The IT entropy representation within the subsystem resolution 
identifies the stockholder AIM as the stable, equilibrium subsystems [5], for which the non-additive 
part of the entropy deficiency functional, 

 
∆Sn[ρρ0] ≡ ∆S[ρρ0] − ∆S[ρρ0],      (26) 

 
exactly vanishes: ∆Sn[ρHρ0] = 0. 

The effective potentials of Eq. (22) can be determined for any set of well behaving, smooth and 
continuous fragment densities ρ, not only for the equilibrium ρ = ρH ones, so that  trial subsystem 
densities ρ(r) can always be viewed as the equilibrium, ground-state densities for the corresponding 
effective external potentials veff[ρ; r] ≡ {vαeff[ρ; r]}, with the one-to-one ground-state mapping 
 

veff[ρ; r] ↔ ρ(r).       (27) 
Therefore, for a given ground-state molecular density, corresponding to the fixed external potential 
due to the nuclei, a set of non-equilibrium subsystem densities ρ(r) can be attributed to the unique 
external potential constraints, veff[ρ; r], which determine ρ(r) through the Euler Eq. (24) as the 
equilibrium ground-state densities. 
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It follows from the Hohenberg-Kohn variational principle of DFT [12],  
 

δ{Ev[ρ] − µN[ρ]} = 0,      (28) 
 
where Ev[ρ] = ∫ v(r) ρ(r) dr + F[ρ], N[ρ] = ∫ ρ(r) dr, and the global chemical potential µ is the 
Lagrange multiplier for the density normalization constraint N[ρ] = N, from which the global Euler Eq. 
(24) directly follows, that the ground state molecular density minimizes the energy density functional 
Ev[ρ] subject to the subsidiary condition of the specified number of electrons: 
 

minρ {Ev[ρ] − µ(N[ρ] − N)} = Ev[ρ[N, v]] ≡ E[N, v],  (29a)     
and hence 
 

µ = µ[ρ[N, v]] ≡ µ[N, v] = (∂E[N, v]/∂N)v.    (29b) 
 

This energetical variational principle searches for the minimum of the electronic energy of a 
molecular system, and delivers the ground-state density matching the fixed external potential of the 
Born-Oppenheimer approximation: ρ =ρ[N, v]. 

The Levy constrained search construction [16] of the universal functional F[ρ] ≡ F[ρ→N], 
 

F[ρ→N] = min ψ→ρ(N) 〈ψ(N)Te(N)+ Vee(N)ψ(N)〉 ≡ F[ρ, N],    (30) 
 
where Te(N) and Vee(N) are the operators of the kinetic and repulsion energies of N electrons, 
respectively, searches over all wavefunctions of N electrons yielding the specified electron density 
ρ→N. Since a given ground-state density also fixes the system electronic energy, the Levy 
construction can be considered as “entropic” in character, by analogy to the ordinary thermodynamics 
[17],  with the value of the universal functional being determined by the search for constant energy 
E[N, v] = Ev[ρ[N, v]]. The physical nature of this search is revealed through the Legendre transformed 
interpretation of F[ρ, N] [18−21], which defines the thermodynamic potential for the system specified 
by the ground-state density alone, in the spirit of the Hohenberg-Kohn theorems [12]: 
 

F[ρ, N] = maxφ {E[N, φ] − ∫ {∂E[N, φ]/∂φ(r)}N φ(r) dr}  
 

 = maxφ {E[N, φ] − ∫ ρ(r) φ(r) dr} = E[N, v] − ∫ ρ(r) v(r) dr,      (31) 
 
where we have used the Hellmann-Feynman theorem: 
 

{∂E[N, v]/∂v(r)}N = ρ(r).       (32) 
 

Therefore, the construction of F[ρ→N] can be viewed as a search for the external potential φ(r), which 
matches a given ground-state density: φ = v[ρ→N] = v[ρ]. 

It follows from Eqs. (21) and (23) that the total electronic energy of a molecular system, 
 

Ev[ρ] = ∫ v(r) ρ(r) dr + F[ρ] = ∑α Ev[ρα] + Fn[ρ] ≡ Ev[ρ],     (33) 
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so that [see Eqs. (23)-(25)] 
 

{∂Ev[ρ]/∂ρα(r)}v,β≠α = {∂εα[ρ, v]/∂ρα(r)}v,β≠α = µα[ρ, v] = µ[ρ],    α = A, B, C, …    (34) 
 
These Euler equations, resulting from the associated variational principle of the system energy in the 
subsystem resolution, 
 

δ{Ev[ρ] − µ ∑α N[ρα]} = 0,     or     vαeff(r) = µ − δF[ρα]/δρα(r),   α = A, B, C, …,     (35) 
 
indicate that such a search for the minimum electronic energy Ev[ρ(N)] ≡ E[N, v], of the mutually open 
embedded subsystems in the externally closed molecule, can be interpreted as determining the 
subsystem densities matching the effective subsystem potentials of Eq. (22) for the specified 
subsystem electron populations N = {Nα} and the fixed molecular external potential v(r) due to the 
atomic nuclei: veff(r) = veff[ρ[N, v]; r] ≡ veff[N, v; r]. 

Replacing the external potential v(r) by its conjugate ρ(r) [Eq. (32)] in the list of state parameters 
again defines the Legendre transform F[ρ→N] = Ev[ρ] − ∫ {δEv[ρ]/δv(r)}ρ v(r) dr = F[ρ] as the 
relevant thermodynamic potential for this representation, in which the subsystem densities are the only 
state variables, which completely determine both the state of all subsystems and the molecular system 
as a whole. One can similarly define the related Legendre transform of the embedded subsystem 
energy of Eq. (23), for which the v-conjugate is the subsystem density [compare Eq. (32)]: 
 

{∂εα[ρ, v]/∂v(r)}ρ = ρα(r),       (36) 
  

Fα[ρ→N] = εα[ρ, v] − ∫ {∂εα[ρ, v]/∂v(r)}ρ v(r) dr} = F[ρα] + Fn[ρ].    (37)   
 
This functional also results from the following extremum principle [see Eq. (31)]: 
 
maxφ {εα[ρ, φ] − ∫ ρα(r) φ(r) dr} = εα[ρ, v] − ∫ ρα(r) v(r) dr = Fα[ρ→N],   α = A, B, C, …   (38) 
 

Finally, as we have already remarked above [see Eqs. (22), (24) and (34)], a collection of 
subsystem densities can be viewed as consisting of independent components of the overall molecular 
density, each coupled to its own effective external potential. In the language of DFT we could regard 
such a description as resulting from the adiabatic connection [22] from the real system, consisting of 
interacting subsystems, to the hypothetical system, consisting of non-interacting subsystems, with the 
same subsystem densities as those in the real system [23]. This collection of non-interacting 
subsystems can be obtained by scaling to zero the inter-subsystem electronic repulsion to zero, while 
retaining the full electron interaction within each subsystem, and by simultaneously (and separately) 
modifying  the scaled external potentials of subsystems φ(r) = {φα(r)} in such a way, that the 
interacting subsystem densities will remain unchanged. It then follows from our previous discussion, 
that the matching subsystem external potentials in the non-interacting subsystem limit, φs(r) = 
{φαs(r)}, must be identical with veff[ρ; r] of Eq. (22): φs(r) = veff[ρ; r]. 

The energy of such an effectively decoupled, open  subsystem α, corresponding to a given ground-
state molecular density ρ, ρα = ρα [ρ[ρ]],   
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Eα[ρα , φαs] = ∫ ρα(r) φαs(r) dr + F[ρα],      (39) 
 
determines the conjugates of these two local state-variables[see Eqs. (24) and (32, 36)]: 
 

{∂Eα/∂ϕα
s(r)}ρ = ρα(r) and {∂Eα/∂ρα(r)}ϕ = ϕα

s(r) + δF[ρα]/δρα(r) = µα = µ,    (40) 
   
where the subscripts ρ ≡ ρα and ϕ ≡ ϕα

s. The Legendre transform of the subsystem energy, 
corresponding to the representation, in which ϕα

s =ϕα
s[ρα]  is replaced by ρα in the list of the 

subsystem state-functions,  
 

F[ρα] = Eα[ρα , φα]  − ∫ {∂Eα/∂ϕα(r)}ρ ϕα(r) dr = Eα[ρα , φα]  − ∫ ρα(r) ϕα(r) dr,     (41)  
 
is determined by the maximum principle with respect to the subsystem effective external potential, 
 

maxϕ {Eα[ρα , φ] − ∫ ρα(r) φ(r) dr} = Eα[ρα , φαs] − ∫ ρα(r) φαs(r) dr = F[ρα],    (42) 
 
in which one searches for the effective external potential of the embedded subsystem which matches 
its electron density ρα(r), φαs = vαeff = vαeff[ρ[ρ]].  

The above “vertical” development can be summarized in terms of the following three basic 
postulates [5] of the information-theoretic, entropic theory of partitioning the fixed molecular density 
into densities of molecular fragments, e.g., AIM, reactants, functional groups, etc. These elements of 
the local “thermodynamic” description of the equilibrium partitioning of molecular density are in close 
analogy to the basic postulates of the ordinary thermodynamics [17]: 

 
Postulate I: Equilibrium Partitionings. 
Among all possible divisions of the molecular density ρ into the subsystem densities there exist 
particular fragments (called the equilibrium ones) that are characterized completely by ρ and the 
reference densities of free subsystems, represented by the Hirshfeld fragments of Eqs. (13) and (15, 
16). 
 
Postulate II: Minimum Entropy Deficiency.  
There exists a functional called entropy deficiency, ∆S, of the extensive subsystem parameters ρ = 
{ρα}, α = A, B, C, …, of any composite molecular system M = ABC…, defined for the 
equilibrium partitioning of ρ and having the following property: the values assumed by the 
extensive state-parameters in the absence of the internal constraints veff = {vαeff} are those that 
minimize ∆S over the manifold of the constrained equilibrium states. 
Postulate III: Additivity of Entropy Deficiency. 
The entropy deficiency of a composite system is additive over the constituent components. 

 
4. Information Distance Analysis of Molecular Electron Densities 
 

An important property of the “stockholder” molecular fragments is manifested by their  
equalization of the local values of a measure of the entropy deficiency density at the corresponding 
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global value, for the system as a whole [5, 8, 9]. An example of such a local information quantity is the 
Kullback-Leibler (directed divergence) integrand ∆sα[ραH; r] [Eq. (14)] per single electron of the 
promolecule: 
  

sα[ραH; r] ≡ ∆sα[ραH; r]/ρα0(r) = [ραH(r)/ρα0(r)] ln[ραH(r)/ρα0(r)] ≡ Wα
H(r) Iα [Wα

H(r)] 
 
     = s[ρ; r] ≡ ∆s[ρ; r]/ρ0(r) = [ρ(r)/ρ0(r)] ln[ρ(r)/ρ0(r)] ≡ W(r)I(r),     (43) 

 
where I(r) ≡ ln[ρ(r)/ρ0(r)] = ln[W(r)] is the global surprisal function, identical with that characterizing 
any Hirshfeld subsystem: Iα[Wα

H(r)] = ln[ραH(r)/ρα0(r)] = I(r). Therefore, the following equalization 
of the local missing information takes place for the “stockholder” fragment densities: 
  

sA [ρA
H; r] = sB [ρB

H; r] = … = s[ρ; r].        (44) 
       

The corresponding Kullback (divergence) density [see Eq. (20)], 
 

dα [ραH; r] ≡ ∆dα [ραH; r]/ρα0(r)} = d[ρ; r] ≡ ∆d[ρ; r]/ρ0(r) = [W(r)  − 1] I(r),    (45) 
 
is also inter-subsystem equalized: 
 

dA [ρA
H; r] = dB [ρB

H; r] = … = d[ρ; r].      (46)   
 

Alternative measures of the local information distance relative to the corresponding reference 
density are defined by the entropy deficiency intensive conjugates of the extensive (density) state-
variables. The Kullback-Leibler functional gives:   
 

Sα [ραH; r] ≡ δ∆Sα[ραHρα0]/δραH(r) = S[ρ; r] ≡ δ∆S[ρρ0]/δρ(r) = I(r) + 1,    (47) 
 
and hence:   
 

SA[ρA
H; r] = SB [ρB

H; r] = ... = S[ρ; r],     or     IA [WA
H(r)] = IB [WB

H(r)] = ... = I(r).    (48) 
   

The entropy deficiency intensive conjugate resulting from Kullback’s divergence functional, 
                

Dα [ραH; r] ≡ δ∆Dα[ραH, ρα0] /δραH(r) = D[ρ; r] ≡ δ∆D[ρ, ρ0]/δρ(r) = I(r) + 1 − W(r)−1,    (49) 
is also inter-subsystem equalized: 
  

DA [ρA
H; r] = DB [ρB

H; r] = ... = D[ρ; r].       (50) 
 

Several approximate, semi-quantitative relations linking the above information distance densities 
with the density difference function ∆ρ(r) of Eq. (1) have been derived and numerically tested for 
selected linear molecules [8, 9]. They result from the observation, that in general the molecular density 
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is only slightly changed relative to the promolecule density, as a result of the mainly valence shell 
reconstruction of the electron distribution: 
 

∆ρ(r)≡ρ(r) − ρ0(r)<< ρ(r) ≅ ρ0(r),   W(r) = ρ(r)/ρ0(r) ≈ 1.     (51) 
       

Therefore, the first-order Taylor expansion of the global surprisal function gives:  
 

I(r) ≅ ∆ρ(r)/ρ0(r) ≈ ∆ρ(r)/ρ(r),       (52) 
     

and the associated approximate expressions for the KL and K integrands: 
  

∆s[ρ; r] = ρ(r) ln[ρ(r)/ρ0(r)]  ≅ [ρ(r)/ρ0(r)] ∆ρ(r) ≈ ∆ρ(r),      (53) 
  

∆d[ρ; r] = [ρ(r) − ρ0(r)] ln[ρ(r)/ρ0(r)]  ≅ [∆ρ(r)]2/ρ0(r).          (54) 
 

The corresponding approximate expressions in terms of ∆ρ(r) for the remaining global entropy 
deficiency densities, identical with the corresponding quantities for the Hirshfeld subsystems,  read: 
            

s[ρ; r] ≡ W(r) I(r) ≅ W(r) ∆ρ(r)/ρ0(r) ≈ ∆ρ(r)/ρ0(r),   S[ρ; r] = I(r) + 1 ≅ W(r), 
 

d[ρ; r] = [W(r)  − 1] I(r) ≅ [∆ρ(r)/ρ0(r)]2,    
 

D[ρ; r] = I(r) + 1 − W(r)−1 ≅ ∆ρ(r)/{ρ(r) ρ0(r)/[ρ(r) + ρ0(r)]}  
 

 = ∆ρ(r)/Avh [ρ(r), ρ0(r)] ≈ I(r),      (55) 
 
where in the last equation Avh[ρ(r), ρ0(r)] stands for the harmonic average of the two densities, 
defining the so called reduced density. 

The approximate expressions of Eq. (55) also attribute to the familiar ∆ρ(r) function a new 
information theoretic content. It follows from the above expressions that the dominant feature of these 
alternative missing information densities is the global surprisal function I(r), related to the density 
difference per electron [Eq. (52)] and indicating the regions of the increased , I(r) > 0, or decreased, 
I(r) < 0, entropy deficiency with respect to the atomic promolecule reference. Information distance 
density plots can thus serve as additional tools, complementary to the familiar density difference 
diagrams, for diagnosing the electronic origins of the chemical bond. They exhibit typical 
displacements, reminiscent of those observed in the associated density difference diagrams, e.g., the 
contraction of the overall electron distribution in a molecule, the changes due to the bond covalency 
and/or ionicity [charge transfer (CT)], and those due to the accompanying atomic orbital 
hybridization, etc.  
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5. Information Distance Affinities for the Charge-Transfer in the Donor-Acceptor Reactive 
Systems 
 

Consider now the CT for the fixed external potential v(r) in the A→B reactive system, 
consisting of the B(basic) and  A(acidic) reactants. For such processes in the externally closed A−B 
system, for which NA + NB = N = const., the current overall electron populations in both 
complementary subsystems, N = (NA, NB), resulting from the integration of the reactant densities ρ = 
(ρA, ρB), determine the current amount of CT,  
 
    NCT   =  NA − NA

0  =  NB
0 − NB  >  0,      (56) 

 
which represents the independent reaction “coordinate” for such an internal electronic displacement.  

The subsystem densities for the specified N, ρ = ρ(N), can be obtained from the following 
minimum entropy deficiency principle (∆S[ρρ0] ≡ ∆SKL[ρρ0]) [5, 8, 9]: 

 
δ{∆S[ρρ0] − ∑α λα ∫ ρα(r) dr} = 0,     (57)  
 

where, for the case of the externally closed A-B system, i.e., for the fixed value of N = NA + NB, only 
one Lagrange term, due to the complementary subsystem density-normalization constraints, say for A,  
is required to simultaneously enforce the specified numbers of electrons on both reactants.  

Should one additionally require that the optimum subsystem densities reproduce a given molecular 
density, ∑β ρβ (r) = ρ(r), as is the case in the Hirshfeld division scheme, one has to include the 
additional local constraint of the exhaustive partitioning [as in Eq. (15)]: 

   
δ{∆S[ρρ0] − ∫ λ(r) [ρA(r) + ρB(r)] dr  − λA ∫ ρA(r) dr} = 0,   (58) 

  
since the overall density already constrains the overall number of electrons: ∫ ρ dr = N. The 
corresponding Euler equations for the unknowns {NA, ρA, ρB} are [9]: 
 

FA − ∫  λ(r)[ fA,A(r) + fA,B(r)] dr  − λA  = 0,   SA(r) − λ(r) − λA = 0,     SB(r) − λ(r) = 0,   (59) 
          
where the Fukui-functions (FF) [24] of reactants f(r) ≡ {fα,β(r) = [∂ρβ(r)/∂Nα]β≠α} and the subscript 
β≠α stands for the fixed electron populations of the other subsystem, satisfy the usual normalizations 
[20, 25]:  

∫  fβ≠α(r) dr = [∂Nβ/∂Nα]β≠α = 0    and            ∫  fβ =α(r) dr = [∂Nα/∂Nα]β≠α =  1.   (60) 
 

Equations (59) have the following solutions: 
  

ρA(r) ≡ρA[N, ρ; r] = ρA
0(r) C(r) D        and      ρB(r) ≡ ρB[N, ρ; r] = ρB

0(r) C(r),   (61) 
where ln C(r) = λ(r) − 1 and  ln D = λA. The C(r) function can be determined from the local 
constraint: 

C(r) = ρ(r)/[DρA
0(r) + ρB

0(r)],      (62)   
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with the constant D satisfying the integral equation: NA = ∫ ρA dr, to be solved numerically. It should 
be observed, that  the Hirshfeld densities are recovered for  D = 1, i.e., for λA = 0, when the extra 
global constraint term of Eq. (58) identically vanishes, thus yielding the minimum entropy deficiency 
principle of Eq. (15).     

Let us now introduce the entropy deficiency conjugates of the subsystem numbers of electrons [8, 
9], 

Fα  ≡ ∂∆S/∂Nα  = ∑β ∫ [∂ρβ (r)/∂Nα] [δ∆Sβ /δρβ (r)] dr  = ∑β ∫  fα,β (r) Sβ (r) dr,  α = A, B,   (63)          
 
which define the local “intensive”, “force” parameters associated with these “extensive” state variables 
of reactants. The derivatives FA and FB define the entropic force  ℱCT for the internal CT inside the 
externally closed A−B system [9], for which N = NA + NB = const. or  dNA = − dNB = dNCT  > 0, 
defined by the entropy deficiency representation “intensive” conjugate of the amount of CT of Eq. 
(56): 

ℱCT  ≡ ∂∆S/∂NCT = ∑β (∂Nβ /∂NCT) (δ∆S /δNβ ) = FA – FB  
  
           = ∫ {[fA,A(r) − fB,A(r)] SA(r) + [fA,B(r) − fB,B(r)] SB(r)} dr   
 
            ≡ ∫ {fA

CT(r) SA(r) + fB
CT(r) SB(r)} dr,      (64) 

    
where the reactant in situ FF  {fαCT(r) = ∂ρα (r)/∂NCT} = fCT(r) = [fA,A(r) − fB,A(r), fA,B(r) − fB,B(r)] [20, 
25]. The derivatives of Eqs. (63) and  (64) combine the entropic densities {Sα(r)} of reactants and the 
corresponding subsystem FF. The generalized force ℱCT can be called, by analogy to the irreversible 
thermodynamics [17], the CT affinity of the A−B system.  

Consider now the molecular density constrained CT, of the “vertical” electronic structure problem, 
for which the Hirshfeld electron populations of both subsystems, NH = {Nα

H = ∫ ραH dr}, with 
SA(r) = SB(r) = S(r), determine the optimum amount of CT: NCT

H = NA
H  − NA

0  = NB
0  − NB

H. Indeed, 
from the Euler Eqs. (59) it immediately follows that the CT affinity exactly vanishes for the Hirshfeld 
reactants [9]: 

(ℱCT)ρH  = (∂∆S/∂NCT)ρH = ∫ {[fA,A(r) +  fA,B(r)] − [ fB,B(r) +  fB,A(r)]}ρ S(r) dr 
  
                = ∫ {[∂ρ (r)/∂NA] ρ − [∂ρ (r)/∂NB] ρ} S(r) dr  = ∫ [∂ρ (r)/∂NCT]ρ,N  S(r) dr  = 0.    (65)  
   
6. Fukui Function Descriptors of Hirshfeld Reactants 
 

Consider again the A−B molecular reactive system and its A0−B0 promolecule reference, the latter 
consisting of the free  reactant densities brought to their current positions at a  finite separation 
between the two subsystems. It should be observed, that this hypothetical state also corresponds to the 
electrostatic stage of the interaction between the two complementary subsystems in A−B, when their 
electron distributions and geometries of the separated reactant limit (SRL) are held “frozen” in the 
reactive system at finite inter-reactant separations. When the Hirshfeld partitioning of the known 
overall ground-state density of A−B is performed, one obtains the uniquely defined, equilibrium 
subsystems of such a molecular reactive system. 
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Both A0−B0 and A−B then constitute a collection of the unique reactant subsystems, before and 
after their interaction at finite distances, respectively. It is of interest in the theory of chemical 
reactivity [20, 25] to determine how the reactivity indices of  these reactant pieces of the overall 
density change as a result of this interaction, and how their response properties relate to those of the 
system as a whole, at both these limits: the molecular, in A−B, and the corresponding SRL quantities, 
in A0−B0 [9]. 

Let us first examine the promolecule A0−B0, defined by the subsystem densities {ρα0 = ρα0(N0)} ≡ 
ρ0 = (ρA

0, ρB
0) and the overall density ρ0 = ρA

0 + ρB
0. A number of related FF-type derivatives of the 

electronic densities with respect to either N0  = (NA
0, NB

0)  or  N0 = NA
0 + NB

0 can be defined for this 
reference system [9], e.g.,  
 

f0(r) ≡ {fα,β
0(r) ≡ ∂ρβ0(r)/∂Nα

0} ≡ ∂ρ0(r)/∂N0,    f 0(r) ≡ ∂ρ0(r)/∂N0,    Φ0(r) = ∂ρ0(r)/∂N0.     (66) 
   
Similar density derivatives, with respect to either NH  = (NA

H, NB
H)  or  N = NA

H + NB
H = N0, can be 

defined for the molecular system A−B, consisting of the corresponding Hirshfeld reactant densities, 
{ραH = ραH(NH)} ≡ ρH = (ρA

H, ρB
H), which sum up to the overall molecular density ρ = ρA

H + ρB
H: 

 
fH(r) ≡ {fα,β

H(r) ≡ ∂ρβH(r)/∂Nα
H} ≡ ∂ρH(r)/∂NH,   f (r) ≡ ∂ρ(r)/∂N,   ΦH(r) = ∂ρH(r)/∂N.    (67)  

 
It directly follows from the explicit expressions of Eq. (13) for the densities of the Hirshfeld 

reactant subsystems, 
 

ρH(r) = [ρA
H(r), ρB

H(r)] = [ρ0(r)/ρ0(r)] ρ(r) ≡ w0(r)ρ(r),  w0(r) = [wA
0(r), wB

0(r)],     (68) 
 
that the FF quantities of the Hirshfeld (“stockholder”) reactant subsystems are the w0(r) fractions of 
the overall FF [7]: 

ΦH(r) = w0(r) [∂ρ(r)/∂N] ≡ w0(r) f(r).      (69) 
 

A similar relation can be derived for the partitioning of the promolecule FF, by reversing the roles 
of the Hirshfeld and the free reactant densities in the minimum entropy deficiency principle [9], so that 
now ρH(r)  play the role of the reference densities, while ρ0 are the optimized densities satisfying the 
constraint ∑α ρα0(r) = ρ0(r) [compare Eq. (15)]: 
 

δ{∆S[ρ0ρH] − ∫ ξ(r) [ρA
0(r) + ρB

0(r)] dr  } = 0.        (70) 
 
As expected by analogy to the ordinary Hirshfeld partitioning problem, the solutions of this modified 
missing information variational rule give: 
  

ρ0(r) = [ρA
0(r), ρB

0(r)] = [ρH(r)/ρ(r)] ρ0(r) ≡ wH(r)ρ0(r) = w0(r)ρ0(r).    (71) 
                    
Hence, the differentiation of these optimum free subsystem densities for the frozen Hirshfeld 
reference, gives: 

Φ0(r) = w0(r) [∂ρ0(r)/∂N0] = w0(r) f 0(r).      (72) 
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Finally, combining Eqs. (69) and (72) gives the following proportionality relation between FF of 
the reactant subsystems in these two reactive systems [9]: 

     
Φα

0(r)/Φα
H(r) = f 0(r)/ f(r),  α  = A, B.      (73) 

 
It implies, that the Hirshfeld subsystems change their FF in the molecular reactive system, relative to 
the promolecule reference, in the same proportion determined by the ratio of the corresponding global 
FF: 

ΦA
0(r)/ΦA

H(r) = ΦB
0(r)/ΦB

H(r) = f 0(r)/ f(r).      (74) 
 
It thus follows from this relation that the locally soft (hard) free reactant, of the reactive system 
promolecule, remains locally soft (hard) as the Hirshfeld reactant subsystem, of the molecular reactive 
system.  

The same proportionality relations follow from the entropy deficiency rules,  in which the KL 
functional is formulated directly in terms of the subsystem FF distributions, instead of the densities 
used in Eqs. (15) and (70) [9]:   
 

δ{∆S[ΦH Φ0] − ∫ ζ(r) [ΦA
H(r) + ΦB

H(r)] dr} = 0 ⇒ Φα
H(r) = Φα

0(r) [f(r)/f 0(r)]; 
 

δ{∆S[Φ0ΦH] − ∫ν(r) [ΦA
0(r) + ΦB

0(r)] dr} = 0 ⇒  Φα
0(r) = Φα

H(r) [f 0(r)/f(r)].   (75) 
 
Dividing the solutions of these two variational principles indeed yields Eq. (74). It should be realized, 
however, that the FF cannot be considered as “probability” distribution, since it can assume negative 
values. We would like to observe, however, that this quantity has indeed been successfully used in 
several overlap criteria of molecular similarity. 

It has also been demonstrated elsewhere [9], that analogous proportionality rule holds for the local 
softnesses of the reactant subsystems. It too results from the constrained minimum information 
distance principle using the entropy deficiency functional formulated directly in terms of the local 
softness distribution. 
  
 
6. “Horizontal” Displacements of the Electronic Structure  

 
The previously discussed “vertical” displacements of the electronic structure, from one partitioning 

of the fixed molecular density ρ(r) to another, are carried out for the constant energy of the system as a 
whole; only the missing entropy, energies of the embedded subsystems and related effective external 
potentials, distinguish one partitioning from another. We now turn to a more general problem of the 
“horizontal” displacement of the molecular electronic structure, along the ground-state energy 
“surface” [5],  

E[ρ] ≡ ∫ v[ρ ; r] ρ(r) dr + F[ρ] ≡ E[N[ρ] , v[ρ]],      (76)  
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where the external potential v[ρ ; r] changes in such a way, that it always matches a given v-
representable ground-state density: ρg.s(r) = ρ[N, v; r] ≡ ρ(r). We therefore consider in the 
“horizontal” development a transition between the two ground-state densities: 
 

ρ1(r) ≡ ρ[N1, v1; r] → ρ2(r) ≡ ρ[N2, v2; r].       (77) 
 

It should be emphasized, that the generalized density functional for the ground-state energy [Eq. 
(76)] differs from the familiar fixed-v density functional [12] of Hohenberg and Kohn [Eq.(28)]: Ev[ρ] 
≡ ∫ v(r) ρ(r) dr + F[ρ] ≡ E[N[ρ], v]. Only for  the true ground-state, ρ(r)=ρ[N, v; r], Ev[ρ] = E[ρ]; for 
trial densities ρ’, which do not match the external potential v(r),  Ev[ρ’] ≠ E[ρ’]. 

Let us briefly reexamine the Euler equation determining a given ground-state density ρ. The trial 
ground-state density ρ’ can be forced to give ρ as the solution of the variational principle through the 
local constraint ρ’(r) = ρ(r) built into the auxiliary density functional through an appropriate local 
Lagrange multiplier, ω(r) = ω[ρ; r] [5], as in the ZMP procedure [26, 27]. The resulting variational 
principle for E[ρ], 

δ{E[ρ’] – ∫ ω[ρ; r] ρ’(r) dr} = 0,      (78) 
 

identifies the Lagrange multiplier function as [see Eq. (24)]: 
 

ω[ρ; r] ≡ δE/δρ(r) = [∂E/∂ρ(r)]v + ∫ [∂E/∂v(r’)]ρ [∂v(r’)/∂ρ(r)]µ dr’ 
 

= {v[ρ; r] + δF[ρ]/δρ(r)} + ∫ ρ(r’) [∂v(r’)/∂ρ(r)]µ dr’  
 

≡ µ[ρ] + ∫ η(r, r’) ρ(r’) dr’ ≡ µ[ρ] + N h(r),      (79) 
 

where the hardness kernel η(r, r’) ≡ [∂v(r’)/∂ρ(r)]µ = δ2F[ρ]/δρ(r)δρ(r’) [20, 24] and the local 
hardness h(r) ≡ ∫ η(r, r’) [ρ(r’)/N] dr’ [28]. 

Therefore, the local quantity ω[ρ; r] is not equalized throughout the space, since in addition to the 
global chemical potential, the equalized level of the local chemical potential [Eq. (24)],  it also 
includes the local hardness contribution. The latter vanishes only when one fixes the external potential, 
as in the Hohenberg-Kohn functional [12], by putting [∂v(r’)/∂ρ(r)]µ = 0. 

A general information entropy S (or entropy deficiency ∆S) variational principle [5]: 
 

δ{S[ρ] − ∑k λk Ik[ρ]} = 0,       (80) 
 
where λk is the Lagrange multiplier for the k-th constraint, Ik[ρ] = Ik

0, represents a device allowing one 
to assimilate in the optimum density ρ  the physical information contained in the constraints (or in the 
reference densities of ∆S) in the most unbiased manner possible. In the single-component molecular 
system the natural “thermodynamic” constraints are the fixed number of electrons, N[ρ] = N0, and the 
fixed energy of the system, E[ρ] = E0. In this particular case the information entropy principle of Eq. 
(80) reads: 

δ{S[ρ] − τ −1E[ρ] + τ −1κ N[ρ]} = 0,      (81) 
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where the global “temperature” related Lagrange multiplier τ −1 = (∂S/∂E)N  and the global “chemical 
potential” related Lagrange multiplier τ −1κ = − (∂S/∂N)E . It should be realized, however, that the 
above constraints do not identify a single admissible ground-state density, but rather the ensemble of 
them.  

The conjugate, minimum energy principle for constant information entropy then reads: 
 

δ{E[ρ] − τ S [ρ] − κ N[ρ]} = 0.      (82) 
           

It identifies the two Lagrange multipliers as: τ  = (∂E/∂S)N  and  κ = (∂E/∂N)S, in perfect analogy with 
ordinary thermodynamics [17]. 

Consider now the limiting case of a single admissible density ρ’ = ρ. Again, this solution of the 
information entropy extremum principle of Eq. (80) can be enforced through the local constraint term, 
as in  Eq. (78), including the Lagrange multiplier function ω[ρ; r] of Eq. (79). However, by fixing the 
ground-state, v-representable density one automatically fixes the number of electrons and the energy of 
the system, so that the two global constraints in Eq. (81) are redundant. They vanish identically when  
τ −1 = 0, or τ → ∞.  This infinite information theoretic “temperature” then implies the infinite entropy 
“penalty” in Eq. (82), when the trial density deviates from the exact one. This is reminiscent of the 
infinite values of the Lagrange multipliers in the ZMP procedure [26, 27], which also introduces such a 
“penalty” in the variational procedure determining the effective one-body potential for a given 
molecular density. 

The above “thermodynamic” description of molecules is in the spirit of earlier thermodynamical 
transcriptions of  DFT [29]. 
 
 
6. Information Distance Approach to Bond Multiplicities and Many-Electron Probabilities  
 

We conclude this review  with a brief  summary of the information-theoretic approach to the 
chemical bond “order” problem [10, 11]. The entropic character of the bond multiplicity concept of 
chemistry has been explored within the information theory by interpreting a molecule as a 
“communication” system (see also Section 2), in which the signals are being transmitted in terms of  a 
finite set of possible allocations of N electrons to m constituent atoms. The one-electron probability 
schemes, of finding a single electron on  the free atoms of the promolecule, or on the bonded atoms in 
a  molecule, respectively, determine the input (source) and output (receiver) probability schemes in 
such a molecular “communication” system. The corresponding two-electron probabilities, which 
define the associated conditional two-electron probabilities in atomic resolution, similarly determine 
the network of communication channels, through which a unit signal (message) is transmitted from the 
promolecular input to the molecular output. As in real communication channels, the molecular system 
is characterized by disturbances of a random character (noise), which perturb the transmitted signal. It 
originates from the electron delocalization throughout the molecule, due to the formation of chemical 
bonds. 

The information theoretic concepts [10, 11, 14] used to characterize chemical bond multiplicity 
and its covalent/ionic composition include: the conditional entropy [Eqs. (8), (11d)], the mutual 
information (information distance) [Eqs. (9), (10), (11e)], and the entropy displacements relative to the 
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corresponding promolecule (separated atom limit, SAL) values [Eqs. (6b), (7)]. The average 
conditional entropy was found to reflect well the covalent component in model systems, while the 
mutual information has generated a satisfactory estimate of the ionic part of the chemical bond 
multiplicity. In the open-shell transition-states, which involve the concerted bond-breaking and bond-
forming mechanism, e.g., in the three-atom system, the entropic contributions from the simultaneous 
distribution of three-electrons are needed, for a correct reproduction of the intuitive chemical bond 
orders in the SAL and in the atom-diatom limit [11].  

Such an information theoretic treatment of chemical bond multiplicities calls for the Hirshfeld 
fragment resolution of the two- or three-electron probabilities. This has recently been achieved [7] by 
an appropriate extension the “stockholder” division principle to many-electron probability 
distributions. The optimum division scheme is obtained as the  solution of the following minimum 
entropy deficiency principle:     
  

δ{∆SKL[ΘΘ0] − ∫ λ(r, r’, r’’, …) ∑α ∑β  … ∑γ  Θαβ...γ(r, r’, r’’, …) dr dr’ dr’’...} = 0,      (83) 
 
where Θ(r, r’, r’’, …) = ∑α ∑β  … ∑γ  Θαβ...γ (r, r’, r’’, …)  and Θ0(r, r’, r’’, …) = ∑α ∑β  … 
∑γ Θαβ...γ 

0(r, r’, r’’, …) are the known k-electron probability densities in the AIM resolution, (α,β, ..., 
γ) = 1, 2, …, m, of the molecular system and its promolecule reference, respectively, given by the 
corresponding sums of the k-electron probability densities in atomic resolution to be determined, 
{Θαβ...γ (r, r’, r’’, …)}, and the known free-atom distributions {Θαβ...γ 

0(r, r’, r’’, …)}. The Kullback-
Leibler entropy deficiency functional is defined in the usual way: 
   

∆SKL[ΘΘ0] = ∑α ∑β  … ∑γ ∫ …∫ Θαβ...γ (r, r’, r’’, …) Iαβ...γ (r, r’, r’’, …) dr dr’ dr’’...,   (84) 
 
where the k-electron surprisal Iαβ...γ (r, r’, r’’, …) = ln[Θαβ...γ (r, r’, r’’, …)/Θαβ...γ

0
 (r, r’, r’’, …)]. The 

k-electron Lagrange-multiplier function λ(r, r’, r’’, … ) enforces the local constraint 
          

∑α ∑β  … ∑γ  Θαβ...γ (r, r’, r’’, …) = Θ(r, r’, r’’, …),      (85) 
 
where Θ(r, r’, r’’, …) stands for the known, molecular k-electron simultaneous probability density, 
which is to be divided into the optimum AIM resolved pieces, the least distant in their information 
content from the corresponding atomic contributions of the promolecule. 

The Hirshfeld-type solution of the variational principle of Eq. (83) reads [7]: 
 

Θαβ...γ 
H(r, r’, r’’, …) = [Θαβ...γ

0
 (r, r’, r’’, …)/Θ0(r, r’, r’’, …)] Θ(r, r’, r’’, …) 

 
       ≡ wαβ...γ

 (k),0(r, r’, r’’, …) Θ(r, r’, r’’, …) ≡ Θαβ...γ
0

 (r, r’, r’’, …) W(k)(r, r’, r’’, …).        (86) 
           
This information theoretic prescription again calls for the participation of the (αβ...γ) atomic cluster in 
the k-electron molecular “profit”, Θ(r, r’, r’’, …), in accordance with the cluster local share 
wαβ...γ

(k),0(r, r’, r’’, …) in the overall promolecular “investment”, Θ0(r, r’, r’’, …), determined solely 
by the relevant k-electron promolecule probability distributions. As already indicated in Eq. (86) this 
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partitioning scheme can also be viewed as locally amplifying all the promolecule cluster probabilities 
{Θαβ...γ

0
 (r, r’, r’’, … )} with the same unbiased amplifying factor:  

 
W(k)(r, r’, r’’, …) = Θ(r, r’, r’’, …) / Θ0(r, r’, r’’, …)  

 
= Θαβ...γ 

H(r, r’, r’’, …)/Θαβ...γ
0

 (r, r’, r’’, …) ≡ Wαβ...γ 
H(k)(r, r’, r’’, …),      (87) 

 
common to all mk atomic clusters, representing independent selections of k atoms from m constituent 
AIM. 
 
 
7. Conclusion 
 

As we have demonstrated in this survey, there is a wide range of problems in the theory of 
electronic structure and chemical reactivity, which can already be tackled using concepts and 
techniques of the information theory. They include the entropic definition of AIM, criteria of 
molecular similarity, the polarization promotion and the CT stage of the reorganization of atoms, when 
they form chemical bonds in a molecule, a thermodynamic-like description of molecular systems and 
the electron transfer phenomena in reactive systems, bond multiplicities, charge sensitivities, etc. 

The common-sense Hirshfeld partitioning scheme, which uses the free atom reference of the 
promolecule, has been given a solid information theoretic basis by demonstrating, that it results from 
the minimum entropy deficiency (information distance) principle, relative to the promolecule densities 
of the free atomic fragments. The same approach has resulted in a generalized “stockholder” scheme 
for dividing molecular many-electron probabilities. This information theoretic treatment of molecular 
subsystems also allows one to derive useful relations between the response properties (local softnesses 
or Fukui functions) exhibited by the Hirshfeld molecular fragments.  

Several important properties of these entropy deficiency equilibrium and stable  “stockholder” 
pieces of the molecular electron density have been discussed in some detail, which make these 
molecular fragments attractive concepts for chemical interpretations. The Hirshfeld subsystems satisfy 
the chemical potential equalization principle, as all the mutually open fragments of the molecular 
ground-state density, and they locally equalize the subsystem information distance densities with the 
information distance density for the system as a whole. These missing information densities have been 
semiquantitatively related to the density difference function, which uses the same promolecule 
reference and is widely used by chemist in their interpretation of the electronic origins of the chemical 
bond. With this novel development the importance of the surprisal function of the molecular electron 
density has been stressed and the density difference function has been attributed a new missing 
information interpretation.   

The presented information theoretic elements of a “thermodynamic” description of the electronic 
structure of molecules and reactive systems cover both the “vertical”, fixed ground-state density 
problems, and the “horizontal” transitions between the two ground-state densities. This development 
emphasizes the importance of the complementary energetic and entropic descriptions, with the 
information theory providing the hitherto missing the entropic part of the electronic structure 
interpretations in chemistry. The energetic and “entropic” variation principles in DFT have been 
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discussed. It has been argued, using the relevant Legendre transformed representations of the theory, 
that the energy minimum principle of DFT yields the ground-state density matching a given external 
potential due to the nuclei, while the “entropic”, fixed density search of Levy delivers the external 
potential matching a given v-representable density. The equilibrium criteria for electron distributions 
in molecular systems have been reexamined and the effective external potential representability of the  
molecular fragment densities have been discussed within DFT. The generalized forces driving changes 
in the electronic structure, e.g., the CT affinities, have been defined, which combine the familiar Fukui 
function response properties of molecular fragments with their information distance densities.  

These illustrative applications of the information theory to the electronic structure phenomena 
demonstrate the theory potential in extracting the chemical interpretation from the calculated electron 
distributions, in terms of atoms and bonds which connect them in a  given molecular environment. It 
allows one to describe various stages of the atomic density reconstruction and to determine the average 
uncertainties in transmission of the AIM allocation signals throughout the molecular “communication” 
system, which can be used to probe the covalent and ionic bond components. We have amply 
demonstrated how important this novel, complementary tool is for gaining a better understanding of 
the “chemistry” contained in the calculated molecular electron densities and probability distributions. 
In the future these information theoretic concepts should facilitate a more direct linkage between the 
ab initio results of computational quantum chemistry with the intuitive language of chemistry, in 
which such concepts as AIM, bond multiplicities, promotion energy, amount of charge transfer,  
electronegativity, and the hardness/softness characteristics of the electron gas in a molecule, are 
paramount [20, 30]. Central to chemistry is also the transferability of characteristic properties of 
functional groups in a variety of molecular environments. The axiomatic approach to the theory of 
molecular subsystems [31] reveals that the Hirshfeld partitioning indeed yields AIM and molecular 
fragments satisfying the objective criteria of transferability developed in this analysis. The information 
theoretic approach to the instantaneous distributions of electrons in a molecule and the charge flows 
between molecular fragments has also been developed [32], following the thermodynamic theory of 
fluctuations and irreversible processes [17]. 
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