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Abstract We develop a fairly explicit Kuznetsov formula on GL(3) and dis-

cuss the analytic behavior of the test functions on both sides. Applications

to Weyl’s law, exceptional eigenvalues, a large sieve and L-functions are

given.
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1 Introduction

The Bruggeman–Kuznetsov formula [4, 12, 27] is one of the most powerful

tools in the analytic theory of automorphic forms on GL(2) and the corner-

stone for the investigation of moments of families of L-functions, including

striking applications to subconvexity and non-vanishing. It can be viewed

as a relative trace formula for the group G = GL(2) and the abelian sub-

group U2 × U2 ⊆ G × G where U2 is the group of unipotent upper triangular

matrices. The Kuznetsov formula in the simplest case is an equality of the
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2
∑

j

λj (n)λj (m)

L(Ad2uj ,1)
h(tj ) + 1

π

∫ ∞

−∞

σt (n)σt (m)

|ζ(1 + 2it)|2 h(t) dt

= δn,m

∫ ∞

−∞
h(t) dspect +

∑

c

1

c
S(n,m, c)h±

( |nm|
c2

)
(1.1)

where

• n,m ∈ Z \ {0},
• δn,m is the Kronecker symbol,

• the sum on the left-hand side runs over an orthogonal basis of Hecke–

Maaß cusp forms uj for the group SL2(Z) having spectral parameter tj and

Hecke eigenvalues λj (n) for n ∈ N (and λj (−n) := ±λj (n) depending on

whether uj is even or odd),

• σt (n) is the Fourier coefficient of an Eisenstein series defined by

σt (n) =
∑

d1d2=|n|
d it

1 d−it
2 ,

• dspect = π−2t tanh(πt) dt is the spectral measure,

• h is some sufficiently nice, even test function, and

• h± is a certain integral transform of h, the sign being sgn(nm), described

in (1.2).

There have been many generalizations of the Kuznetsov to other groups of

real rank one or products thereof, see e.g. [5, 28, 31], the first of which covers

also the groups SL2(C), SO(n,1) and SU(2,1); see also [11, 15] for inter-

esting applications. For the groups GL(n), n > 2, Kuznetsov-type formulae

are available [17, Theorem 11.6.19], [36], but they are in considerably less

explicit form.

The power of the GL(2) Kuznetsov formula lies in the fact that one can

choose arbitrary (reasonable) test functions on either side of the formula, and

the relevant integral transforms are completely explicit in terms of Bessel

functions. In fact, we have

h±(x) =
∫ ∞

0

J
±(t, x)h(t) dspect (1.2)

where

J
±(t, x) = 2πi sinh(πt)−1

{
J2it (4π

√
x) − J−2it (4π

√
x)

I2it (4π
√

x) − I−2it (4π
√

x)

}
;
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this is best understood in terms of its Mellin transform:

Ĵ
±(t, s) =

∫ ∞

0

J
±(t, x)xs−1 dx = Gt (s)

Gt (1 − s)
∓ Gt (1 + s)

Gt (2 − s)

where

Gt (s) = π−sΓ

(
s + it

2

)
Γ

(
s − it

2

)
.

In addition, this transform can be inverted and is essentially unitary:

h(t) ≈
∫ ∞

0

J
±(t, x)h±(x)

dx

x
.

There is a subtlety, as in the + case the image of the map h �→ h+ is not dense,

but its complement is well-understood. These formulas together with standard

facts about Bessel functions make it possible to apply the Kuznetsov formula

in both directions. Unfortunately, such explicit knowledge is not available for

GL(n), n ≥ 3.

The aim of this article to provide a “semi-explicit” version of the

Kuznetsov formula for GL(3) together with some careful analysis of the

various terms occurring on both sides of the formula, and to give some ap-

plications in Theorems 1–4 below. On the way we will prove a number of

useful auxiliary results for GL(3) Whittaker functions, Eisenstein series and

Kloosterman sums that may be helpful for further investigation of GL(3)

automorphic forms. The proof of the Kuznetsov formula proceeds along clas-

sical lines: we compute the inner product of two Poincaré series in two ways:

by spectral decomposition and by unfolding and computing the Fourier ex-

pansion of the Poincaré series. The latter has been worked out in great detail

in [8].

The spectral side (8.1) of the GL(3) formula consists of three terms:

• the contribution of the cuspidal spectrum,

• the contribution of the minimal parabolic Eisenstein series,

• the contribution of the maximal parabolic Eisenstein series.

The arithmetic side (8.2) contains four terms:

• the diagonal contribution corresponding to the identity element in the Weyl

group,

• two somewhat degenerate terms1 corresponding to
(

1
1

1

)
and

(
1

1
1

)
,

• the contribution of the long Weyl element.

1In all our applications they will be negligible.
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Interestingly, the two remaining elements in the Weyl group do not con-

tribute as long as n1, n2,m1,m2 are non-zero; in fact, these two furnish the

GL(2) formula which is hidden in the degenerate terms of the Fourier ex-

pansion of the Poincaré series. On the arithmetic side, the various variables

n1, n2,m1,m2,D1,D2 appearing in the test function are explicitly coupled

similarly as on the right hand side of (1.1).

The spectral side (8.1) contains the weight function

h(ν1, ν2) =
∣∣∣∣
∫ ∞

0

∫ ∞

0

W̃ν1,ν2
(y1, y2)F (y1, y2)

dy1 dy2

(y1y2)3

∣∣∣∣
2

where W̃ν1,ν2
is a normalized Whittaker function on GL(3) and F is any com-

pactly supported test function (or with sufficiently rapid decay at 0 and ∞ in

both variables). In principle this integral transform is invertible: it has been

shown in [18] that a natural generalization of the Kontorovich–Lebedev trans-

form inversion formula holds for Whittaker functions on GL(n), hence we

have a recipe to find a suitable F to construct our favorite non-negative func-

tion h. Proceeding in this way would however considerably complicate the

analysis of the arithmetic side, and hence we take a different route which is

somewhat less precise, but more convenient for applications. In Proposition 3

below we show roughly the following: taking

F(y1, y2) =
(
τ1τ2(τ1 + τ2)

)1/2
f1(y1)f2(y2)y

i(τ1+2τ2)
1 y

i(2τ1+τ2)
2

for some fixed functions f1, f2 with compact support in (0,∞) yields a non-

negative smooth bump function h with h(ν1, ν2) ≍ 1 for νj = iτj +O(1) and

rapid decay outside this range. In other words, h is a good approximation to

the characteristic function of a unit square in the (ν1, ν2)-plane. Integration

over τ1, τ2 can now give a good approximation to the characteristic function

of any reasonable shape. Passing to a larger region in this way will in fact

improve the performance of sum formula and ease the estimations on the

arithmetic side.

The test functions on the arithmetic side are completely explicit in (8.3),

(8.4) and given as a multiple integral. At least in principle a careful asymptotic

analysis should yield a complete description of the behavior of this function,

but this seems very complicated. Nevertheless, we are able to give some non-

trivial (and in some cases best possible) bounds in Proposition 5 that suffice

for a number of applications that we proceed to describe.

The commutative algebra D of invariant differential operators of SL3(R)

acting on L2(SL3(R)/SO3) is generated by two elements (see [17, p. 153]),

the Laplacian and another operator of degree 3. One class of eigenfunctions

of D is given by the power functions Iν1,ν2
defined in (2.11) below. A Maaß

form φ for the group SL3(Z) with spectral parameters ν1, ν2 is an element in
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L2(SL3(Z)\SL3(R)/SO3) that is an eigenfunction of D with the same eigen-

values as Iν1,ν2
and vanishes along all parabolics, that is,

∫

(SL3(Z)∪U)\U
φ(uz) du = 0

for U =
{(

1 ∗
1 ∗

1

)}
and

{(
1 ∗ ∗

1
1

)}
(and then automatically for the minimal

parabolic). We choose an orthonormal basis {φj } = B ⊆ L2(SL3(Z)\SL3(R)/

SO3) of Hecke–Maaß cusp forms (i.e. Maaß forms that are eigenfunctions of

the Hecke algebra as in [17, Sect. 6.4]) with spectral parameters ν
(j)

1 , ν
(j)

2 . If

no confusion can arise, we drop the superscripts (j).

This can be re-phrased in more representation theoretic terms. Let SL3(R)

= NAK be the Iwasawa decomposition where K = SO3, N is the standard

unipotent subgroup and A is the group of diagonal matrices with determi-

nant 1 and positive entries, and let a be the Lie algebra of A. An infinite-

dimensional, irreducible, everywhere unramified cuspidal automorphic rep-

resentation π of GL3(AQ) with trivial central character is generated by a

Hecke–Maaß form φj for SL3(Z) as above. The local (spherical) represen-

tation π∞ is an induced representation from the parabolic subgroup NA

of the extension of a character χ : A → C×, diag(x1, x2, x3) �→ x
α1

1 x
α2

2 x
α3

3
with α1 + α2 + α3 = 0. In this way we can identify the spherical cuspi-

dal automorphic spectrum with a discrete subset of the Lie algebra a∗
C
/W

(W the Weyl group), where we associate to each Maaß form φj ∈ B the

linear form l = (α1, α2, α3) ∈ a∗
C
/W that contains the (archimedean) Lang-

lands parameters. A convenient basis in a∗
C

is given by the fundamental

weights diag(2/3,−1/3,−1/3), diag(1/3,1/3,−2/3) of SL3. The coeffi-

cients of l = (α1, α2, α3) with respect to this basis can be obtained by evalu-

ating l at the two co-roots diag(1,−1,0),diag(0,1,−1) ∈ a and are given by

3ν1,3ν2. We then have α1 = 2ν1 + ν2, α2 = −ν1 + ν2, α3 = −ν1 − 2ν2. With

this normalization, φ is an eigenform of the Laplacian with eigenvalue

λ = 1 − 3ν2
1 − 3ν1ν2 − 3ν2

2 = 1 − 1

2

(
α2

1 + α2
2 + α2

3

)
, (1.3)

and the trivial representation is sitting at (ν1, ν2) = (1/3,1/3). The Ramanu-

jan conjecture states that the Langlands parameters α1, α2, α3 of Maaß forms

are purely imaginary (equivalently, the spectral parameters ν1, ν2 are purely

imaginary). A Maaß form is called exceptional if it violates the Ramanujan

conjecture. Modulo the action of the Weyl group, we can always assume that

ℑν1,ℑν2 ≥ 0 (positive Weyl chamber). Switching to the dual Maaß form if

necessary, we can even assume without loss of generality 0 ≤ ℑν1 ≤ ℑν2.

A count of the Maaß forms φ ∈ B inside the ellipse λ ≤ T 2 described

by (1.3) is referred to as Weyl’s law. The number of such forms is known
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to be cT 5 + O(T 3) for some constant c, see [24, 29]. As a first test case

of the Kuznetsov formula we show a result of comparable strength as [24,

Proposition 4.5] that turns out to be a simple corollary of the Kuznetsov for-

mula. A similar upper bound has recently been proved by X. Li [26]. Let

L(φ × φ̃, s) be the Rankin–Selberg L-function (see (4.2) below). Then the

following weighted count of the cuspidal spectrum in a small ball of radius

O(1) in a∗
C

holds.

Theorem 1 There are absolute constants c1, c2 > 0, T0,K ≥ 1 with the fol-

lowing property: for all T1, T2 ≥ T0 we have

c1T1T2(T1 + T2) ≤
∑

|ν(j)
1 −iT1|≤K

|ν(j)
2 −iT2|≤K

(
res
s=1

L(φj × φ̃j , s)
)−1 ≤ c2T1T2(T1 + T2).

It is standard to estimate the residue from above, but due to possible Siegel

zeros a good lower bound is not known. If φ = sym2u for some Hecke–Maaß

form u ∈ L2(SL2(Z)\h2) with spectral parameter ν ∈ iR, then Ramakrishnan

and Wong [30] have shown that no Siegel zeros exist:

res
s=1

L
(
sym2u × sym2u, s

)
=
(
1 + |ν|

)o(1)
.

In general we will only be able to prove the following bounds: if φ has spectral

parameters ν1, ν2, then setting C := (1+|ν1 +ν2|)(1+|ν1|)(1+|ν2|) we have

C−1 ≪ res
s=1

L(φ × φ̃, s) ≪ Cε. (1.4)

In particular it follows (after possibly enlarging the constant K in Theorem 1)

that in each ball inside ia∗ of sufficiently large constant radius, there exist

cusp forms. We will prove (1.4) in Lemma 2 below.

Miller [29] proved that almost all forms are non-exceptional, that is, the

number of exceptional forms φj ∈ B with λj ≤ T 2 is o(T 5). This was, among

other things, strengthened in [24] to O(T 3). By unitaricity and the standard

Jacquet–Shalika bounds towards the Ramanujan conjecture2 (cf. (2.4) below)

the spectral parameters ν1, ν2 of an exceptional Maaß form are of the form

(assuming 0 ≤ ℑν1 ≤ ℑν2)

(ν1, ν2) = (2ρ/3,−ρ/3 + iγ ), γ ≥ 0, |ρ| ≤ 1/2,

see (2.8) below. It is an easy corollary of Theorem 1 that there are O(T 2+ε)

exceptional eigenvalues with γ = T + O(1), but more can be shown which

2Better bounds are available by the work of Luo–Rudnick–Sarnak, but this is not needed here.

Even the value of the constant 1/2 is irrelevant.
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can be viewed as a density theorem for exceptional eigenvalues and interpo-

lates nicely between the Jacquet–Shalika bounds and the tempered spectrum.

Theorem 2 For any ε > 0 we have

∑

φj exceptional

γj=T +O(1)

T 4|ρj | ≪ε T 2+ε.

Next we prove a large sieve type estimate for Hecke eigenvalues. Let

Aj (n,1) denote the Hecke eigenvalues of the Hecke–Maaß cusp form φj .

Theorem 3 Let N ≥ 1, T1, T2 ≥ T0 sufficiently large, and let α(n) be a se-

quence of complex numbers. Then

∑

T1≤|ν(j)
1 |≤2T1

T2≤|ν(j)
2 |≤2T2

∣∣∣∣
∑

n≤N

α(n)Aj (n,1)

∣∣∣∣
2

≪ε

(
T 2

1 T 2
2 (T1 + T2) + T1T2N

2
)1+ε‖α‖2

2

(1.5)

for any ε > 0 where ‖α‖2 = (
∑

n |α(n)|2)1/2.

The first term is optimal on the right hand side is optimal. Most optimisti-

cally one could hope for an additional term of size N (instead of T1T2N
2), but

in any case our result suffices for an essentially optimal bound of the second

moment of a family of genuine GL(3) L-functions. This seems to be the first

bound of this kind in the literature. For large sieve inequalities in the level

aspect (with very different proofs) see [14, Theorem 4] and [35].

Theorem 4 For T ≥ 1 and any ε > 0 we have

∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

∣∣L(φj ,1/2)
∣∣2 ≪ε T 5+ε.

More applications of the GL(3) Kuznetsov formula to the Sato–Tate dis-

tribution of GL(3) Hecke eigenvalues and a version of Theorem 2 for the

Langlands parameters at finite places will be given in a forthcoming paper [2,

Theorems 1–3].

After the paper was submitted, two other interesting approaches to the

GL(3) Kuznetsov formula have been developed independently by But-

tcane [10] and Goldfeld–Kontorovich [19]. The present technique, however,

gives the strongest bounds for the Kloosterman terms in the Kuznetsov for-

mula which are indispensable for applications to L-functions as in Theo-

rems 3 and 4. One may compare, for instance, with [19] for which the reader
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is referred to the appendix which features in Theorem 5 another result of

independent interest.

It would be very interesting to generalize the present results and techniques

to congruence subgroups of SL3(Z) of the type

Γ0(q) =

⎧
⎨
⎩γ ∈ SL3(Z)

∣∣∣γ ≡

⎛
⎝

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

⎞
⎠ (mod q)

⎫
⎬
⎭ .

The analytic parts of the present argument (in particular the bounds for Whit-

taker functions and the corresponding integral transforms) work without any

change. One needs a more general Bruhat decomposition to calculate the

Fourier expansion of the relevant Poincaré series, and it would be useful

to have an explicit spectral decomposition for the space L2(Γ0(q)\h3). This

along with further applications will be addressed in [1].

2 Whittaker functions

Let ν1, ν2 ∈ C. We introduce the notation

ν0 := ν1 + ν2 (2.1)

and (as in the introduction)

α1 = 2ν1 + ν2, α2 = −ν1 + ν2, α3 = −ν1 − 2ν2. (2.2)

The transformations

(ν1, ν2) → (−ν1, ν0) → (ν2,−ν0) → (−ν2,−ν1) → (−ν0, ν1)

→ (ν0,−ν2) (2.3)

leave {α1, α2, α3} invariant, and they also leave {|ℑν0|, |ℑν1|, |ℑν2|} invari-

ant. For convenience we assume the Jacquet–Shalika bounds towards the Ra-

manujan conjecture

max
(
|ℜα1|, |ℜα2|, |ℜα3|

)
≤ 1

2
, (2.4)

and we always assume unitaricity

{α1, α2, α3} = {−α1,−α2,−α3}. (2.5)

It is elementary to deduce from (2.4) that

max
(
|ℜν0|, |ℜν1|, |ℜν2|

)
≤ 1

3
(2.6)
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and to deduce from (2.5) that

ν0, ν1, ν2, α1, α2, α3 ∈ iR (2.7)

or

{α1, α2, α3} ∈ {ρ + iγ,−ρ + iγ,−2iγ },
{ν1, ν2, ν0} ∈ {2ρ/3,−ρ/3 + iγ, ρ/3 + iγ }

or its translates under (2.3)

(2.8)

with ρ,γ ∈ R and |ρ| ≤ 1/2 by (2.4). The choice

(α1, α2, α3) = (ρ + iγ,−ρ + iγ,−2iγ ),

(ν1, ν2, ν0) = (2ρ/3,−ρ/3 + iγ, ρ/3 + iγ )
(2.9)

is unique if we require ℑν2 ≥ ℑν1 ≥ 0, γ ≥ 0.

Let

h2 =
{
z =

(
1 x

1

)(
y

1

) ∣∣∣y > 0, x ∈ R

}

∼= GL2(R)/(O2Z2) ∼= SL2(R)/SO2 and

h3 =

⎧
⎨
⎩z =

⎛
⎝

1 x2 x3

1 x1

1

⎞
⎠
⎛
⎝

y1y2

y1

1

⎞
⎠
∣∣∣y1, y2 > 0, x1, x2, x3 ∈ R

⎫
⎬
⎭

∼= GL3(R)/(O3Z3) ∼= SL3(R)/SO3.

The group SL3(Z) acts faithfully on h3 by left multiplication.

The Whittaker function W ±
ν1,ν2

: h3 → C is given by3 (analytic continua-

tion in ν1, ν2 of)

W
±
ν1,ν2

(z) =
∫

R3
Iν1,ν2

⎛
⎝
⎛
⎝

1

1

1

⎞
⎠
⎛
⎝

1 u2 u3

1 u1

1

⎞
⎠ z

⎞
⎠

× e(−u1 ∓ u2) du1 du2 du3 (2.10)

with

Iν1,ν2
(z) = y

1+2ν1+ν2

1 y
1+ν1+2ν2

2 . (2.11)

3Some authors use different signs in the long Weyl element, but since the Iν1,ν2 function

depends only on y1, y2, this leads to the same definition.
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Compared to [7]4 we have re-normalized the indices νj → 1/3 + νj . By

the formula of Takhtadzhyan–Vinogradov we have W ±
ν1,ν2

(z) = e(x1 ±
x2)Wν1,ν2

(y1, y2) where5

Wν1,ν2
(y1, y2) = 8y1y2

(
y1

y2

) ν1−ν2
2

2∏

j=0

π
1
2 + 3

2 νj Γ

(
1

2
+ 3

2
νj

)−1

×
∫ ∞

0

K 3
2 ν0

(
2πy2

√
1 + 1/u2

)
K 3

2 ν0

(
2πy1

√
1 + u2

)
u

3
2 (ν1−ν2)

du

u
.

(2.12)

It is convenient to slightly re-normalize this function: let

cν1,ν2
:= π−3ν0

2∏

j=0

Γ

(
1

2
+ 3

2
νj

)∣∣∣∣Γ
(

1

2
+ 3

2
iℑνj

)∣∣∣∣
−1

(2.13)

and

W̃ν1,ν2
(y1, y2) := Wν1,ν2

(y1, y2)cν1,ν2

= 8π
3
2

2∏

j=0

∣∣∣∣Γ
(

1

2
+ 3

2
iℑνj

)∣∣∣∣
−1

y1y2

(
y1

y2

) ν1−ν2
2

×
∫ ∞

0

K 3
2 ν0

(2πy2

√
1 + 1/u)K 3

2 ν0
(2πy1

√
1 + u)u

3
4 (ν1−ν2)

du

u
.

If ν1, ν2 ∈ iR, this changes the original Whittaker function only by a constant

on the unit circle, in the situation (2.9) it changes the order of magnitude by

a bounded factor. Often the Whittaker function is defined entirely without the

normalizing Gamma-factors in the denominator of (2.12) in which case it is

often referred to as the completed Whittaker function. It is convenient not to

work with the completed Whittaker function here, see Remark 3 below. (Of

course, W̃ν1,ν2
is not analytic in the indices any more.)

4In [17, p. 154, third display] the values of ν1, ν2 are interchanged in the definition of I -

function, but the following formulas are again in accordance with Bump’s definition.
5The normalization is complicated: the leading constant in [17, (6.1.3)] should be 8 instead of

4, while the definition [33, (1.1)] differs from (2.10), in addition to the Gamma-factors, by a

factor 2.
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The GL(2)-analogue of this function is

Wν(y) := 2π
1
2

∣∣∣∣Γ
(

1

2
+ ν

)∣∣∣∣
−1√

yKν(2πy), (2.14)

see [17, p. 65].

We proceed to collect analytic information on the GL(3) Whittaker func-

tion. We have the double Mellin inversion formula ([17, p. 155], [7, (10.1)])

W̃ν1,ν2
(y1, y2) = y1y2π

3
2

∏2
j=0 |Γ (1

2
+ 3

2
iℑνj )|

× 1

(2πi)2

∫

(c2)

∫

(c1)

∏3
j=1 Γ (1

2
(s1 + αj ))

∏3
j=1 Γ (1

2
(s2 − αj ))

4π s1+s2Γ (1
2
(s1 + s2))

× y
−s1

1 y
−s2

2 ds1 ds2. (2.15)

This implies in particular that W̃ν1,ν2
is invariant under the transformations

(2.3) which is the reason for including the normalization constant cν1,ν2
. Note

that

W̃ν1,ν2
(y1, y2) = W̃ν2,ν1

(y2, y1) = W̃ν1,ν2
(y1, y2). (2.16)

Uniform bounds for Bessel functions are rare in the literature, but fre-

quently needed in the GL(2) theory. We are not aware of any uniform bound

for a GL(n) Whittaker function with n > 2. Although the proofs of Theo-

rems 1–5 do not require bounds for individual Whittaker functions, we record

here for future reference the following uniform result.

Proposition 1 Let ν1, ν2 ∈ C satisfy (2.6)–(2.8) and write θ = max(|ℜα1|,
|ℜα2|, |ℜα3|) ≤ 1/2. Let θ < σ1 < σ2 and ε > 0. Then for any σ1 ≤ c1, c2 ≤
σ2 we have

W̃ν1,ν2
(y1, y2) ≪σ1,σ2,ε

y1y2

(1 + |ν1| + |ν2|)1/2−ε

(
y1

1 + |ν1| + |ν2|

)−c1

×
(

y2

1 + |ν1| + |ν2|

)−c2

.

Remark 1 This result can be refined somewhat, in particular for small and

large y1, y2. In the “transitional range” it is not too far from the truth. For in-

stance, if ν1 = ν2 = iT are large (and purely imaginary) and y1 = y2 = 3
2π

T −
1

100
T 1/3, then the integral in (2.12) is non-oscillating, and it follows from

(2.12) and known properties of the K-Bessel function that W̃ν1,ν2
(y1, y2) ≍

y1y2/T 4/3, whereas our bound gives W̃ν1,ν2
(y1, y2) ≪ y1y2T

ε− 1
2 .
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Proof Let us first assume that ν1, ν2 are purely imaginary; we write ν̃j :=
ℑνj . By (2.16) and the invariance under (2.3) we can assume without loss of

generality that

0 ≤ ν̃1 ≤ ν̃2. (2.17)

By (2.15) and Stirling’s formula, we have

W̃ν1,ν2
(y1, y2)

≪σ1,σ2
y1y2

∫ ∞

−∞

∫ ∞

−∞

∏3
j=1(1 + |it1 + αj |)

c1−1

2
∏3

j=1(1 + |it2 − αj |)
c2−1

2

(1 + |t1 + t2|)
c1+c2−1

2

× exp

(
3π

4

2∑

j=0

|νj | −
π

4

3∑

j=1

|it1 + αj | −
π

4

3∑

j=1

|it2 − αj |

+ π

4
|t1 + t2|

)
y

−c1

1 y
−c2

2 dt1 dt2 (2.18)

for σ1 < c1, c2 < σ2. It is elementary to check that

3π

4

2∑

j=0

|νj | −
π

4

3∑

j=1

|it1 + αj | −
π

4

3∑

j=1

|it2 − αj | +
π

4
|t1 + t2| ≤ 0 (2.19)

with equality if and only if

ν̃1 − ν̃2 ≤ t1 ≤ ν̃1 + 2ν̃2, ν̃2 − ν̃1 ≤ t2 ≤ 2ν̃1 + ν̃2, (2.20)

or

−2ν̃1 − ν̃2 ≤ t1 ≤ ν̃1 − ν̃2, −ν̃1 − 2ν̃2 ≤ t2 ≤ ν̃2 − ν̃1. (2.21)

For a < b let wa,b(t) be defined by

wa,b := min
(
1, e− π

4 (t−b), e− π
4 (a−t)

)
;

then the exp-factor in (2.18) is bounded by

wν̃1−ν̃2,ν̃1+2ν̃2
(t1)wν̃2−ν̃1,2ν̃1+ν̃2

(t2) + w−2ν̃1−ν̃2,ν̃1−ν̃2
(t1)w−ν̃1−2ν̃2,ν̃2−ν̃1

(t2),

and hence we have
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W̃ν1,ν2
(y1, y2) ≪ y1y2

∫ ∞

−∞

∫ ∞

−∞

(
wν̃1−ν̃2,ν̃1+2ν̃2

(t1)wν̃2−ν̃1,2ν̃1+ν̃2
(t2)

+ w−2ν̃1−ν̃2,ν̃1−ν̃2
(t1)w−ν̃1−2ν̃2,ν̃2−ν̃1

(t2)
)

×
∏3

j=1(1 + |it1 + αj |)
c1−1

2
∏3

j=1(1 + |it2 − αj |)
c2−1

2

(1 + |t1 + t2|)
c1+c2−1

2

× y
−c1

1 y
−c2

2 dt1 dt2.

We consider only the first summand in the first line of the preceding display.

The second summand is similar. By a shift of variables, the first term equals

y
1−c1

1 y
1−c2

2

∫ ∞

−∞

∫ ∞

−∞
w0,3ν̃2

(t1)w0,3ν̃1
(t2)

× (1 + |t1 − 3ν̃2|)
c1−1

2 (1 + |t1|)
c1−1

2 (1 + |t1 + 3ν̃1|)
c1−1

2

(1 + |t1 + t2|)
c1+c2−1

2

×
(
1 + |t2 + 3ν̃2|

) c2−1

2
(
1 + |t2|

) c2−1

2
(
1 + |t2 − 3ν̃1|

) c2−1

2 dt1 dt2. (2.22)

It is straightforward to estimate this expression. For convenience we provide

the details. We recall our assumption (2.17) and split the t1, t2 integration into

several ranges. Let ν̃1 ≤ R ≤ ν̃2, and define

I− := {t1 ≤ ν̃1}, IR := {R ≤ t1 ≤ 2R}, I+ := {t1 ≥ 2ν̃2},
J− := {t2 ≤ ν̃1}, J+ := {t2 ≥ ν̃1}.

We estimate the double integral in all 6 ranges for c1, c2 > 0:

∫

I−

∫

J−
≪
∫ ν̃1

−∞

∫ ν̃1

−∞
min

(
1, e

π
4 t1
)

min
(
1, e

π
4 t2
)(

(1 + ν̃1)(1 + ν̃2)
) c1+c2

2 −1

× (1 + |t1|)
c1−1

2 (1 + |t2|)
c2−1

2

(1 + |t1 + t2|)
c1+c2−1

2

dt2 dt1

≪
(
(1 + ν̃1)(1 + ν̃2)

) c1+c2
2 −1

(1 + ν̃1)
3
2 ;

∫

I−

∫

J+
≪
∫ ν̃1

−∞

∫ ∞

ν̃1

min
(
1, e

π
4 t1
)

min
(
1, e

π
4 (3ν̃1−t2)

)
(1 + ν̃1)

− 1
2

× (1 + ν̃2)
c1+c2

2 −1
(
1 + |t1|

) c1−1

2
(
1 + |t2 − 3ν̃1|

) c2−1

2 dt2 dt1

≪
(
(1 + ν̃1)(1 + ν̃2)

) c1+c2
2 −1

(1 + ν̃1)
3
2 ;
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∫

IR

∫

J−
≪
∫ 2R

R

∫ ν̃1

−∞
min

(
1, e

π
4 t2
)
(1 + ν̃1)

c2−1

2 (1 + ν̃2)
c1+c2

2 −1

× (1 + R)
c1−c2−1

2
(
1 + |t2|

) c2−1

2 dt2 dt1

≪ (1 + ν̃1)
c2(1 + ν̃2)

c1+c2
2 −1(1 + R)

c1−c2+1

2 ;
∫

IR

∫

J+
≪
∫ 2R

−R

∫ ∞

ν̃1

min
(
1, e

π
4 (3ν̃1−t2)

)
(1 + ν̃1)

c2−1

2 (1 + ν̃2)
c1+c2

2 −1

× (1 + R)
c1−c2−1

2
(
1 + |t2 − 3ν̃1|

) c2−1

2 dt2 dt1

≪ (1 + ν̃1)
c2(1 + ν̃2)

c1+c2
2 −1(1 + R)

c1−c2+1

2 ;
∫

I+

∫

J−
≪
∫ ∞

2ν̃2

∫ ν̃1

−∞
min

(
1, e

π
4 (3ν̃2−t1)

)
min

(
1, e

π
4 t2
)
(1 + ν̃1)

c2−1

2

× (1 + ν̃2)
c1
2 −1

(
1 + |t1 − 3ν̃2|

) c1−1

2
(
1 + |t2|

) c2−1

2 dt2 dt1

≪ (1 + ν̃1)
c2(1 + ν̃2)

c1− 1
2 ;

∫

I+

∫

J+
≪
∫ ∞

2ν̃2

∫ ∞

ν̃1

min
(
1, e

π
4 (3ν̃2−t1)

)
min

(
1, e

π
4 (3ν̃1−t2)

)
(1 + ν̃1)

c2−1

2

× (1 + ν̃2)
c1
2 −1

(
1 + |t1 − 3ν̃2|

) c1−1

2
(
1 + |t2 − 3ν̃1|

) c2−1

2 dt2 dt1

≪ (1 + ν̃1)
c2(1 + ν̃2)

c1− 1
2 .

Combining all 6 previous bounds, and summing over dyadic numbers R, we

obtain the bound of the proposition if ν1, ν2 ∈ iR.

It remains to consider the situation (2.8). The exponential factor does not

change, but the fraction in the first line of (2.18) becomes now

(1 + |t1 + γ |)
c1+ρ−1

2 (1 + |t1 + γ |)
c1−ρ−1

2 (1 + |t1 − 2γ |)
c1−1

2

(1 + |t1 + t2|)
c1+c2−1

2

×
(
1 + |t2 − γ |

) c2+ρ−1

2
(
1 + |t2 − γ |

) c2−ρ−1

2
(
1 + |t2 + 2γ |

) c2−1

2 . (2.23)

This is independent of ρ, and the same calculation goes through. �

We recall an important formula of Stade [33] (cf. also (2.16) and observe

that Stade’s definition [33, (1.1)] of the Whittaker function has ν1 and ν2

interchanged, and his Whittaker function is, up to Gamma-factors, twice our

Whittaker function).
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Proposition 2 Let ν1, ν2,μ1,μ2, s ∈ C. We use the notation (2.1) and (2.2),

and define similarly μ0 and β1, β2, β3 in terms of μ1,μ2. Then we have an

equality of meromorphic functions in s:

∫ ∞

0

∫ ∞

0

W̃ν1,ν2
(y1, y2)W̃μ1,μ2

(y1, y2)
(
y2

1y2

)s dy1 dy2

(y1y2)3

=
π3−3s

∏3
j,k=1 Γ (

s+αj+βk

2
)

4Γ (3
2
s)
∏2

j=0 |Γ (1
2

+ 3
2
iℑνj )|

∏2
j=0 |Γ (1

2
+ 3

2
iℑμj )|

.

3 Integrals over Whittaker functions

For our purposes it is convenient to consider the double Mellin transform of

the product of W̃ν1,ν2
with some rapidly decaying function. We are not aware

of any explicit formula in the literature, but the next proposition gives an

asymptotic result which is sufficient for our purposes. This is one of the key

ingredients in this paper, and therefore we present all details of the lengthy

proof.

Proposition 3 Let A,X1,X2 ≥ 1, τ1, τ2 ≥ 0, and assume that τ1 + τ2 is suf-

ficiently large in terms of A. Let ν1, ν2 ∈ C satisfy (2.6)–(2.8) and in addition

ℑν1,ℑν2 ≥ 0. Let

t1 = τ1 + 2τ2, t2 = 2τ1 + τ2.

Fix two non-zero smooth functions f1, f2 : (0,∞) → [0,1] with compact sup-

port. Let ε > 0 and let

I = I (ν1, ν2, t1, t2,X1,X2)

=
∣∣∣∣
∫ ∞

0

∫ ∞

0

W̃ν1,ν2
(y1, y2)f1(X1y1)f2(X2y2)y

it1
1 y

it2
2

dy1 dy2

(y1y2)3

∣∣∣∣.

If X1 = X2 = 1, then

I ≪
(
|ℑν1 − τ1| + |ℑν2 − τ2|

)−A
2∏

j=0

(
1 + |νj |

)− 1
2 (3.1)

Moreover, there is a constant c depending on f1, f2 such that the following

holds: if

X1 = X2 = 1, τ1, τ2 ≫ 1, |ℑν1 − τ1| ≤ c, |ℑν2 − τ2| ≤ c,

(3.2)
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then

I ≍
2∏

j=0

(
1 + |νj |

)−1/2; (3.3)

and if ν1, ν2 are given by (2.9) and in addition

X2 ≫ 1, |ρ| ≥ ε, γ ≫ (X1X2)
ε, |γ − τ2| ≤ c, |τ1| ≤ c,

(3.4)

then

I ≍ X1X
1+|ρ|
2

2∏

j=0

(
1 + |νj |

)−1/2
. (3.5)

All implied constant depend at most on A,ε,f1, f2 and the sign ≫ should be

interpreted as “up to a sufficiently large constant”.

Remark 2 This should be roughly interpreted as follows: given t1, t2,X1,X2

as above, I as a function of ν1, ν2 ∈ {z ∈ C : |ℑz| ≤ 1/2} is under some tech-

nical assumptions a function with a bump at ℑν1 = τ1 and ℑν2 = τ2 of size

X1X
1+maxj |ℜαj |
2 (ν0ν1ν2)

−1/2 with rapid decay away from this point. Most of

the time we will put X1 = X2 = 1. Only if we need a test function that blows

up at exceptional eigenvalues we will choose X2 to be large. The asymmetry

in X1,X2 in (3.4) and (3.5) is due to the special choice (2.9).

Proof By Parseval’s formula and (2.15) the double integral in question equals

∫

(1/2)

∫

(1/2)

f̂1(−1 + it1 − u1)f̂2(−1 + it2 − u2)

X
−1+it1−u1

1 X
−1+it2−u2

2

×
∏3

j=1 Γ (1
2
(u1 + αj ))

∏3
j=1 Γ (1

2
(u2 − αj ))

4πu1+u2− 3
2 Γ (1

2
(u1 + u2))

∏2
j=0 |Γ (1

2
+ 3

2
iℑνj )|

du1du2

(2πi)2
(3.6)

Let us first assume that

|ν1| + |ν2| ≤
1

100
(τ1 + τ2). (3.7)

In this case the conditions (3.2) and (3.4) are void, so we only need to show

(3.1) and take X1 = X2 = 1. We apply Stirling’s formula to the Γ -quotient.
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We argue as in the proof of Proposition 1, see (2.19) and the surrounding

discussion. The exponential part is given by

exp

(
3π

4

2∑

j=0

|ℑνj | −
π

4

3∑

j=1

∣∣ℑ(u1 + αj )
∣∣− π

4

3∑

j=1

∣∣ℑ(u2 − αj )
∣∣

+ π

4

∣∣ℑ(u1 + u2)
∣∣
)

.

As before let us write ν̃j = ℑνj and assume without loss of generality (2.17).

Using (2.20) and (2.21) together with the rapid decay of f̂1 and f̂2 it is easy

to see that by our present assumption (3.7) we can bound I by

≪A,f1,f2
(t1 + t2)

−A.

In the range (3.7) this is acceptable for (3.1).

Let us now assume

|ν1| + |ν2| ≥
1

100
(τ1 + τ2). (3.8)

We want to shift the two contours in (3.6) to −∞. To check convergence, we

first shift the u1-integral to ℜu1 = −2A − 1 for some large integer A. We

observe that

f̂ (s) ≪B,f |s|−BCℜs+B

for ℜs > 0, any B ≥ 0 and some constant C > 0 depending only on f (one

can take C := sup{x > 0 | f (x) �= 0}). We also recall that the reflection for-

mula for the Gamma-function implies the uniform bound

Γ (−s) ≪ e− π
2 |ℑs|

( |s|
e

)−ℜs− 1
2

for ℜs > 0, minn∈Z(ℜs − n) > 1/50. It is now easy to see that the remain-

ing u1-integral for A → ∞ vanishes, and we are left with the sum over the

residues. Next we shift in the same way the u2-integral to −∞, and ex-

press (3.6) as an absolutely convergent double sum over residues. Let us first

assume that ν1 �= 0 so that α1, α2, α3 are pairwise distinct. For j ∈ {1,2,3}
we denote by k, l two integers such that {j, k, l} = {1,2,3}. Similarly for

r ∈ {1,2,3} let s, t be such that {r, s, t} = {1,2,3}. Then (3.6) equals
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∑∑

1≤j,r≤3
j �=r

Γ (
−αj+αk

2
)Γ (

−αj+αl

2
)Γ (αr−αs

2
)Γ (αr−αt

2
)

∏2
j=0 |Γ (1

2
+ 3

2
iℑνj )|4π−αj+αr− 3

2 Γ (
−αj+αr

2
)

×
∞∑

n=0

∞∑

m=0

4(−1)n+m(
−αj+αr

2
− 1)n+m

n!m!(−αj+αk

2
− 1)n(

−αj+αl

2
− 1)n(

αr−αs

2
− 1)m(αr−αt

2
− 1)m

× f̂1(−1 + αj + it1 + 2n)f̂2(−1 − αr + it2 + 2m)

X
−1+αj+it1+2n

1 X
−1−αr+it2+2m
2

. (3.9)

We can bound the second and third line of (3.9) by

∑

n,m

≪A,f1,f2
X

1−ℜαj

1 X
1+ℜαr

2

(
1 + |αj + it1|

)−A(
1 + |αr − it2|

)−A
. (3.10)

Here we have used that by (2.2) we have the following equality of multisets:

{−αj + αk,−αj + αl, αr − αs, αr − αt } \ {−αj + αr}
= {±3ν0,±3ν1,±3ν2} (3.11)

for a certain choice of signs (depending on j, r) whenever j �= r . In addition

we see that we have in the special case j = 3, r ∈ {1,2} (that is, αj = −ν1 −
2ν2, αr = 2ν1 + ν2 or −ν1 + ν2)

∑

(n,m) �=(0,0)

≪A,f1,f2
X

1−ℜαj

1 X
1+ℜαr

2

(1 + |αj + it1|)−A(1 + |αr − it2|)−A

min((1 + |ν1|)X2
2, (1 + |ν2|)X2

1)
.

(3.12)

We will now carefully analyze all 6 terms 1 ≤ αj , αr ≤ 3, j �= r in the main

term under the assumption τ1, τ2 ≥ 0,ℑν2 ≥ ℑν1 ≥ 0 and show that they all

satisfy the bound (3.1). Moreover, under the assumption (3.2), the term j = 3,

r = 1 is of order of magnitude (3.3) and dominates all other terms. Similarly

we will show (3.5). We will first make the extra assumption

|ν1| ≥ ε.

This ensures that α1, α2, α3 are not too close together (note that |ν2| must be

large by (3.8)). By Stirling’s formula, (3.11) and (2.9) (in the non-tempered

case),
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∣∣∣∣
Γ (

−αj+αk

2
)Γ (

−αj+αl

2
)Γ (αr−αs

2
)Γ (αr−αt

2
)

∏2
j=0 |Γ (1

2
+ 3

2
iℑνj )|Γ (

−αj+αr

2
)

∣∣∣∣
{

≪ε

∏2
n=0(1 + |νn|)O(1), {j, r} = {1,2} and ν1 ∈ R,

≍ε

∏2
n=0(1 + |νn|)−

1
2 , otherwise.

(3.13)

The non-negativity of f1, f2 implies that the absolute values of the Mellin

transforms |f̂1(−1 + α3 + it1)|, |f̂2(−1 − α1 + it2)| are bounded from be-

low in the range (3.2) and (3.4) if c is sufficiently small. Combining (3.13)

and (3.12), we see that under the assumption (3.2) the term j = 3, r = 1 satis-

fies (3.3). Note that (3.2) forces |ν1|, |ν2| to be sufficiently large and excludes

(2.8). Similarly, under the assumption (3.4) the term j = 3, r = 1 (if ρ > 0)

or the term j = 3, r = 2 (if ρ < 0) satisfies (3.5), whereas the other term is of

smaller order of magnitude. This is also consistent with (3.1).

It remains to show that all other terms satisfy (3.1), and are of lesser order

of magnitude than (3.3) and (3.5) under the respective conditions. Under the

assumption (3.2) all 5 terms (j, r) �= (3,1) satisfy |αj + it1| + |αr − it2| ≥
3 min(|ℑν1|, |ℑν2|) + O(1) and can therefore be bounded by (recall (2.17))

≪ε,A,f1,f2
|ν1|−A

2∏

n=0

(
1 + |νn|

)− 1
2

which is dominated by (3.3). Similarly, under the assumption (3.4) the 4 terms

(αj , αr) �∈ {(3,1), (3,2)} satisfy |αj + it1| + |αr − it2| ≥ 3|ℑν2| + O(1) and

can therefore be bounded by

≪ε,A,f1,f2
|ν2|−A

2∏

n=0

(
1 + |νn|

)− 1
2

which is again dominated by (3.5). We proceed now to show (3.1) for X1 =
X2 = 1. It follows from (3.10) and (3.13) that all 6 terms αj �= αr contribute

≪ε,A,f1,f2

(
(1 + |αj + it1|)(1 + |αr − it2|)

)−A

×
{∏2

n=0(1 + |νn|)O(1), {j, r} = {1,2} and ν1 ∈ R,
∏2

n=0(1 + |νn|)−
1
2 , otherwise

to the main term. This is in agreement with (3.1) if we can show

|ℑαj + t1| + |ℑαr − t2| ≥
1

2

(
|ν̃1 − τ1| + |ν̃2 − τ2|

)
.
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This is clear for j = 1 or r = 3 by the positivity assumption ν̃1, ν̃2, τ1, τ2 ≥ 0

(recall the notation ν̃j = ℑνj ), even without the factor 1/2. We check the

other 3 cases. In the case j = 3, r = 1 we have again the stronger inequality

|−ν̃1 − 2ν̃2 + τ1 + 2τ2| + |2ν̃1 + ν̃2 − 2τ1 − τ2| ≥ |τ1 − ν̃1| + |τ2 − ν̃2|

which follows from the easy to check inequality |a|+|b| ≤ |a+2b|+|b+2a|.
In the case j = 3, r = 2 we need to show

|−ν̃1 − 2ν̃2 + τ1 + 2τ2| + |−ν̃1 + ν̃2 − 2τ1 − τ2| ≥
1

2

(
|τ1 − ν̃1| + |τ2 − ν̃2|

)
.

If τ1 − ν̃1 and τ2 − ν̃2 are of the same sign, the first term dominates the right

hand side; if τ1 − ν̃1 ≤ 0, τ2 − ν̃2 ≥ 0, the second term dominates the right

hand side; in either case we do not need the factor 1/2. Finally if τ1 − ν̃1 ≥ 0,

τ2 − ν̃2 ≤ 0, we distinguish the two cases τ1 − ν̃1 greater or smaller than

ν̃2 − τ2: in the former case the second term dominates the right hand side,

because |−ν̃1 + ν̃2 − 2τ1 − τ2| ≥ 2(τ1 − ν̃1) − (ν̃2 − τ2), and in the latter the

first term dominates the right hand side, because |−ν̃1 − 2ν̃2 + τ1 + 2τ2| ≥
2(ν̃2 − τ2) − (τ1 − ν̃1). Finally the case j = 2, r = 1 amounts to showing

|−ν̃1 + ν̃2 + τ1 + 2τ2| + |2ν̃1 + ν̃2 − 2τ1 − τ2| ≥
1

2

(
|τ1 − ν̃1| + |τ2 − ν̃2|

)

which can be seen as above after interchanging indices.

Finally we need to treat the case 0 �= |ν1| < ε and |ν2| ≫ |τ1| + |τ2|. Here

the condition (3.4) is empty, and if τ1, τ2 are sufficiently large, the condition

(3.2) is also empty, so we only need to show the upper bound (3.1) for X1 =
X2 = 1. We return to (3.9) and partition the 6 terms (j, r) into three pairs

{
(3,2), (3,1)

}
,

{
(2,3), (1,3)

}
,

{
(2,1), (1,2)

}
.

The contribution of the first pair is

∞∑

n,m=0

(−1)n+m

n!m!

×
Γ (

3ν2
2

− n)Γ (
3ν0

2
− n)Γ (

3ν2
2

− m)f̂1(−1 − ν1 − 2ν2 + s1 + 2n)

Γ (
3ν2
2

− n − m)
∏2

j=0 |Γ (1
2

+ 3
2
iℑνj )|4π− 3

2 +ν1+3ν2

×
(

Γ (
−3ν1

2
− m)f̂2(−1 + ν1 − ν2 + it2 + 2m)

π−ν1

+
Γ (3ν1

2
− m)f̂2(−1 − 2ν1 − ν2 + it2 + 2m)

π2ν1

)
.
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For |ν1| < ε the second line can be bounded by the mean value theorem. Then

we use the functional equation sΓ (s) = Γ (s + 1) of the Gamma-function in

connection with Stirling’s formula as before and bound the preceding display

by

≪A,f1,f2

(
|α1 + it1| + |ν2 + it2|

)−A
2∏

n=0

(
1 + |νn|

)− 1
2

and argue as before. The same argument with different indices works for the

pair {(2,3), (1,3)}. The last pair is only a small variation; its contribution is

given by

∞∑

n,m=0

(−1)n+mπ3/2

n!m!4
∏2

j=0 |Γ (1
2

+ 3
2
iℑνj )|

(
f̂1(−1 − ν1 + ν2 + it1 + 2n)f̂2(−1 − 2ν1 − ν2 + it2 + 2m)

×
Γ (

−3ν2
2

− n)Γ (
3ν1
2

− n)Γ (
3ν0

2
− m)Γ (

3ν1
2

− m)

π3ν1Γ (
3ν1
2

− n − m)

+ f̂1(−1 + 2ν1 + ν2 + it1 + 2n)f̂2(−1 + ν1 − ν2 + it2 + 2m)

×
Γ (

−3(ν2+ν1)
2

− n)Γ (
−3ν1

2
− n)Γ (

3(ν0−ν1)
2

− m)Γ (
−3ν1

2
− m)

π−3ν1Γ (
−3ν1

2
− n − m)

)
.

For small ν1, this can again be estimated by the mean value theorem giving

the crude bound

≪A,f1,f2

(
|ν2 + it1| + |ν2 − it2|

)−A(
1 + |ν2|

)O(1)

which is admissible for (3.1). This completes the proof of the proposition

under the additional assumption that α1, α2, α3 are pairwise distinct, that is

ν1 �= 0. The case ν1 = 0 follows by continuity. �

An inspection of the proof, in particular (3.9)–(3.13), shows that for τ1, τ2

sufficiently large one has
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∣∣I (ν1, ν2, t1, t2,1,1)
∣∣2

∼ (2π)3

33|ν0ν1ν2|
∣∣f̂1(−1 + iτ1 − ν1 + 2iτ2 − 2ν2)

× f̂2(−1 + 2iτ1 − 2ν1 + iτ2 − ν2)
∣∣2 (3.14)

for ν1, ν2 ∈ iR in a neighborhood of iτ1, iτ2, respectively, and it is very small

outside this region.

4 Maass forms

Let Γ = SL3(Z). We denote by

P =

⎛
⎝

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

⎞
⎠⊆ Γ, P1 =

⎛
⎝

∗ ∗ ∗
∗ ∗ ∗
0 0 1

⎞
⎠⊆ Γ

the maximal parabolic subgroup, and by

U3 =

⎛
⎝

1 ∗ ∗
0 1 ∗
0 0 1

⎞
⎠⊆ Γ

the standard unipotent group. Analogously, let U2 :=
(

1 ∗
0 1

)
⊆ SL2(Z).

A Maaß cusp form φ : Γ \h3 → C with spectral parameters ν1, ν2 (that is,

of type (1/3 + ν1,1/3 + ν2) in the notation of [17]) for the group Γ has a

Fourier expansion of the type

φ(z) =
∞∑

m1=1

∑

m2 �=0

Aφ(m1,m2)

|m1m2|

×
∑

γ∈U2\SL2(Z)

W
sgn(m2)
ν1,ν2

⎛
⎝
⎛
⎝

|m1m2|
m1

1

⎞
⎠
(

γ

1

)
z

⎞
⎠ cν1,ν2

(4.1)

with W ±
ν1,ν2

as in (2.10) and cν1,ν2
as in (2.13). The Fourier coefficients are

given by

∫ 1

0

∫ 1

0

∫ 1

0

φ(z)e(−m1x1 − m2x2) dx1 dx2 dx3

= Aφ(m1,m2)

|m1m2|
W̃ν1,ν2

(
m1y1, |m2|y2

)
.
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We have

Aφ(m1,m2) = Aφ(m1,−m2),

see [17, Proposition 6.3.5]. Hence one can alternatively write the Fourier ex-

pansion as a sum over m1,m2 ≥ 1, γ ∈ U2\GL2(Z). We will use this obser-

vation in the proof of Lemma 1.

It is expected that ν1, ν2 are imaginary, but we certainly know that (2.6)–

(2.8) hold. If φ is an eigenfunction of the Hecke algebra (see [17, Sect. 6.4]),

we define its L-function by L(φ, s) :=
∑

m Aφ(1,m)m−s , and the Rankin–

Selberg L-function by

L(φ × φ̃, s) := ζ(3s)
∑

m1,m2

|Aφ(m1,m2)|2

m2s
1 ms

2

. (4.2)

It follows from [25, Theorem 2] or [6, Corollary 2] that the coefficients are

essentially bounded on average, uniformly in ν:

∑

m≤x

∣∣Aφ(m,1)
∣∣2 ≪ x

(
x
(
1 + |ν1| + |ν2|

))ε
. (4.3)

The space of cusp forms is equipped with an inner product

〈φ1, φ2〉 :=
∫

Γ \h3

φ1(z)φ2(z) dx1 dx2 dx3
dy1 dy2

(y1y2)3
.

It is known that L(φ × φ̃, s) can be continued holomorphically to C with the

exception of a simple pole at s = 1 whose residue is proportional to ‖φ‖2 [17,

Theorem 7.4.9]. The proportionality constant is given in the next lemma.

Lemma 1 For a Hecke eigenform φ as in (4.1) with Aφ(1,1) = 1 we have

‖φ‖2 ≍ ress=1 L(φ × φ̃, s).

Remark 3 This lemma shows that the normalization of the Whittaker func-

tions W̃ν1,ν2
is well chosen in the sense that an arithmetically normalized cusp

form Aφ(1,1) = 1 should roughly have norm 1. The main point is that W̃ν1,ν2

has roughly norm 1 with respect to the inner product

(f, g) :=
∫ ∞

0

∫ ∞

0

f (y1, y2)g(y1, y2)det

⎛
⎝

y1y2

y1

1

⎞
⎠ dy1 dy2

(y1y2)3
.
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Proof This is standard Rankin–Selberg theory. We use the maximal parabolic

Eisenstein series

E(z, s;1) :=
∑

γ∈P \Γ
det(γ z)s = 1

2

∑

γ∈P1\Γ
det(γ z)s, ℜs > 1.

It follows from (5.7) below that

‖φ‖2 = 3ζ(3)

2π
res
s=1

〈
φ,φE(., s̄,1)

〉
.

We follow the unfolding argument of [17, pp. 227–229] and [16, Sect. 3].

Unfolding the Eisenstein series, we see

〈
φ,φE(., s̄,1)

〉
= 1

2

∫

P1\h3

∣∣φ(z)
∣∣2(y2

1y2

)s
dx1 dx2 dx3

dy1 dy2

(y1y2)3
.

Let F denote a fundamental domain for
{(

1 ∗
1 ∗

1

)}
\h3, and let G̃L2(Z) :=

{( γ

1

)
| γ ∈ GL2(Z)

}
⊆ GL3(Z). Then P1\h3 is in 2-to-1 correspondence

with G̃L2(Z)\F . Inserting the Fourier expansion of one factor and unfolding

once again, we obtain

〈
φ,φE(., s̄,1)

〉

=
∞∑

m1=1

∞∑

m2=1

|Aφ(m1,m2)|2
|m1m2|2

∫ ∞

−∞

∫ ∞

−∞

∣∣W̃ν1,ν2
(m1y1, |m2|y2)

∣∣2

×
(
y2

1y2

)s dy1 dy2

(y1y2)3

= L(φ × φ̃, s)

ζ(3s)

∫ ∞

−∞

∫ ∞

−∞

∣∣W̃ν1,ν2
(y1, y2)

∣∣2(y2
1y2

)s dy1 dy2

(y1y2)3
.

The lemma follows now easily from Stade’s formula. �

We are now ready to prove (1.4).

Lemma 2 For an arithmetically normalized Hecke–Maaß cusp form φ with

spectral parameters ν1, ν2 as above we have

((
1+|ν0|

)(
1+|ν1|

)(
1+|ν2|

))−1 ≪ ‖φ‖2 ≪ε

((
1+|ν0|

)(
1+|ν1|

)(
1+|ν2|

))ε

for any ε > 0.
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Proof We conclude from Lemma 1 that as in (4.3) the upper bound follows

directly from [25, Theorem 2] or [6, Corollary 2]. We proceed to prove the

lower bound. The idea is taken from [13, Lemma 4]. We can assume that one

of ν1, ν2 is sufficiently large. Since Aφ(1,1) = 1, we have

W̃ν1,ν2
(y1, y2) =

∫ 1

0

∫ 1

0

∫ 1

0

φ(z)e(−x1 − x2) dx1 dx2 dx3.

for any y1, y2 > 0. By Cauchy–Schwarz we get

∣∣W̃ν1,ν2
(y1, y2)

∣∣2 ≤
(∫ 1

0

∫ 1

0

∫ 1

0

∣∣φ(z)
∣∣2 dx1 dx2 dx3

)1/2∣∣W̃ν1,ν2
(y1, y2)

∣∣.

Integrating this inequality and using Cauchy–Schwarz again, we find
∫ ∞

1

∫ ∞

1

∣∣W̃ν1,ν2
(y1, y2)

∣∣2(y2
1y2

)1/2 dy1 dy2

y3
1y3

2

≤
(∫ ∞

1

∫ ∞

1

∫ 1

0

∫ 1

0

∫ 1

0

∣∣φ(z)
∣∣2 dx1 dx2 dx3 dy1 dy2

(y1y2)3

)1/2

×
(∫ ∞

0

∫ ∞

0

∣∣W̃ν1,ν2
(y1, y2)

∣∣2y2
1y2

dy1 dy2

(y1y2)3

)1/2

.

Since [1,∞)2 × [0,1]3 is contained in a fundamental domain for SL3(Z)\h3

(see e.g. [21]), we obtain together with Proposition 2 that the right hand side

is

≪ ‖φ‖
( ∏3

j,k=1 Γ (
1+αj+αk

2
)

∏2
j=0 |Γ (1

2
+ 3

2
iℑνj )|2

)1/2

≍ ‖φ‖.

The left hand side is

≥
∫ ∞

0

∫ ∞

0

∣∣W̃ν1,ν2
(y1, y2)

∣∣2(y2
1y2

)1/2 dy1 dy2

y3
1y3

2

−
∫ ∞

0

∫ ∞

0

∣∣W̃ν1,ν2
(y1, y2)

∣∣2(y2
1y2

)1/4 dy1 dy2

y3
1y3

2

.

Again by Proposition 2, this is

≍
((

1 + |ν0|
)(

1 + |ν1|
)(

1 + |ν2|
))−1/2

+ O
(((

1 + |ν0|
)(

1 + |ν1|
)(

1 + |ν2|
))−3/4)

≫
((

1 + |ν0|
)(

1 + |ν1|
)(

1 + |ν2|
))−1/2

if one of ν1, ν2 is sufficiently large. �
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We briefly discuss cusp forms u : SL2(Z)\h2 → C for the group SL2(Z)

and spectral parameter ν ∈ iR (Selberg’s eigenvalue conjecture is known for

SL2(Z)). A cusp form u has a Fourier expansion

u(z) =
∑

m�=0

ρu(m)√
m

Wν

(
|m|y

)
e(mx)

where Wν was defined in (2.14). Similarly as in Lemma 1 we see that an

arithmetically normalized newform u has norm

‖u‖2 =
∫

SL2(Z)\h2

∣∣u(z)
∣∣2 dx dy

y2
= 2L

(
Ad2u,1

)
. (4.4)

Indeed, the Eisenstein series E(z, s) = 1
2

∑
γ∈U2\SL2(Z) ℑ(γ z)s has residue

3/π at s = 1, hence by (2.14)

‖u‖2 = π

3
res
s=1

∑

m�=0

|ρ(m)|2
|m|

4π

|Γ (1/2 + ν)|2

×
∫ ∞

−∞
|m|yKν

(
2π |m|y

)
Kν̄

(
2π |m|y

)
ys dy

y2

= 2π

3ζ(2)
L
(
Ad2u,1

) 4π

|Γ (1/2 + ν)|2

×
Γ (1+ν+ν̄

2
)Γ (1−ν+ν̄

2
)Γ (1+ν−ν̄

2
)Γ (1−ν−ν̄

2
)

8

= 2L
(
Ad2u,1

)
;

the evaluation of the integral follows from [20, 6.576.4] or Stade’s formula

for GL(2). Again we see that an arithmetically normalized cusp form u is

essentially L2-normalized, and Wν has roughly norm one with respect to the

inner product

(f, g) :=
∫ ∞

0

f (y)g(y)det

(
y

1

)
dy

y2
.

5 Eisenstein series

There are three types of Eisenstein series on the space L2(Γ \h3) according

to the decomposition

L2
(
SL2(Z)\h2

)
= L2

Eis ⊕ L2
cusp ⊕ C · 1.
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The first term gives rise to minimal parabolic Eisenstein series: for z ∈ h3

and ℜν1,ℜν2 sufficiently large we define the minimal parabolic Eisenstein

series

E(z, ν1, ν2) :=
∑

γ∈U3\Γ
Iν1,ν2

(γ z)

where Iν1,ν2
was defined in (2.11). It has meromorphic continuation in ν1 and

ν2, and its non-zero Fourier coefficients are given by

∫ 1

0

∫ 1

0

∫ 1

0

E(z, ν1, ν2)e(−m1x1 − m2x2) dx1 dx2 dx3

= A(ν1,ν2)(m1,m2)

|m1m2|
Wν1,ν2

(m1y1, |m2|y2)

ζ(1 + 3ν0)ζ(1 + 3ν1)ζ(1 + 3ν2)

= A(ν1,ν2)(m1,m2)

|m1m2|
W̃ν1,ν2

(m1y1, |m2|y2)c
−1
ν1,ν2

ζ(1 + 3ν0)ζ(1 + 3ν1)ζ(1 + 3ν2)
(5.1)

(cf. (2.12) and (2.13) for the notation) where

A(ν1,ν2)(m1,m2) = |m1|ν1+2ν2 |m2|2ν1+ν2σ−3ν2,−3ν1

(
|m1|, |m2|

)

and σν1,ν2
(m1,m2) is the multiplicative function defined by

σν1,ν2

(
pk1,pk2

)
= p−ν2k1

∣∣∣
( 1 pν2(k1+k2+2) p(ν1+ν2)(k1+k2+2)

1 pν2(k1+1) p(ν1+ν2)(k1+1)

1 1 1

)∣∣∣
∣∣∣
( 1 p2ν2 p2(ν1+ν2)

1 pν2 pν1+ν2

1 1 1

)∣∣∣
.

This is a combination of [7, (6.5), (6.7), (6.8), (7.3), Theorem 7.2]. An alter-

native description is given as follows: A(ν1,ν2)(m1,m2) is defined by

A(ν1,ν2)(1,m) =
∑

d1d2d3=m

d
α1

1 d
α2

2 d
α3

3

and the symmetry and Hecke relation

A(ν1,ν2)(m,1) = A(ν1,ν2)(1,m) = A(ν2,ν1)(1,m),

A(ν1,ν2)(n,m) =
∑

d|(n,m)

μ(d)A(ν1,ν2)

(
n

d
,1

)
A(ν1,ν2)

(
1,

m

d

)
,

(5.2)

cf. [17, Theorems 6.4.11 and 10.8.6] and note his different choice of the

I -function.
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Next we define maximal parabolic Eisenstein series. Let s ∈ C have suf-

ficiently large real part and let u : SL2(Z)\h2 → C be a Hecke–Maaß cusp

form with ‖u‖ = 1, spectral parameter ν ∈ iR and Hecke eigenvalues λu(m).

Then we define

E(z, s;u) :=
∑

γ∈P \Γ
det(γ z)su

(
π(γ z)

)
(5.3)

where

π : h3 → h2,

⎛
⎝

y1y2 x2y1 x3

y1 x1

1

⎞
⎠ �→

(
y2 x2

1

)

is the restriction to the upper left corner. It has a meromorphic continuation

in s, and as the minimal parabolic Eisenstein series it is an eigenform of all

Hecke operators; in particular for s = 1/2 + μ it is an eigenform of T (1,m)

with eigenvalue

B(μ,u)(1,m) =
∑

d1d2=|m|
λu(d1)d

−μ
1 d

2μ
2 ,

see [17, Proposition 10.9.3]. We extend this definition to all pairs of integers

by the Hecke relations (5.2). Coupling this with [17, Proposition 10.9.1], we

conclude that the non-zero Fourier coefficients

∫ 1

0

∫ 1

0

∫ 1

0

E(z,1/2 + μ;u)e(−m1x1 − m2x2) dx1 dx2 dx3

are proportional to

B(μ,u)(m1,m2)

|m1m2|
W̃

μ− 1
3 ν, 2

3 ν

(
m1y1, |m2|y2

)
, (5.4)

and the proportionality constant is

c

L(u,1 + 3μ)L(Ad2u,1)1/2
(5.5)

for some absolute non-zero constant c. This can be seen by setting m1 =
m2 = 1 and comparing with [32, Theorem 7.1.2] in the special case G =
GL(3), M = GL(2) × GL(1), m = 1, s = 3μ and observing (4.4).

A degenerate case of (5.3) occurs if we choose φ to be the constant function

(of course, this is not a cusp form). For ℜs sufficiently large and z ∈ h3 let

E(z, s,1) :=
∑

γ∈P \Γ
det(γ z)s . (5.6)



Applications of the Kuznetsov formula on GL(3) 701

This function has a meromorphic continuation to all s ∈ C, and it has a simple

pole at s = 1 with constant residue

res
s=1

E(z, s,1) = 1

3

(
Γ (3/2)ζ(3)π−3/2

)−1 = 2π

3ζ(3)
, (5.7)

see [16, Corollary 2.5].6 As the constant function on SL2(Z)\h2 is the residue

of an Eisenstein series on SL2(Z)\h2, the Eisenstein series (5.6) is a residue

of a minimal parabolic Eisenstein series and has only degenerate terms in its

Fourier expansion.

6 Kloosterman sums

As usual we write

S(m,n, c) :=
∑∗

d (mod c)

e

(
md + nd̄

c

)

for the standard Kloosterman sum. We introduce now GL(3) Kloosterman

sums; the following account is taken from [8].

For n1, n2,m1,m2 ∈ Z, D1,D2 ∈ N we define

S(m1,m2, n1, n2,D1,D2)

:=
∑∑∑∑

B1,C1 (modD1)
B2,C2 (mod D2)

(D1,B1,C1)=(D2,B2,C2)=1
D1C2+B1B2+C1D2≡0 (D1D2)

e

(
m1B1 + n1(Y1D2 − Z1B2)

D1

)

× e

(
m2B2 + n2(Y2D1 − Z2B1)

D2

)
(6.1)

where Y1, Y2,Z1,Z2 are chosen such that

Y1B1 + Z1C1 ≡ 1 (mod D1), Y2B2 + Z2C2 ≡ 1 (mod D2).

It can be shown that this expression is well-defined [8, Lemmas 4.1, 4.2].

Clearly it depends only on m1, n1 (mod D1) and m2, n2 (mod D2), and satis-

fies [8, Properties 4.4, 4.5]

S(m1,m2, n1, n2,D1,D2) = S(m2,m1, n2, n1,D2,D1)

= S(n1, n2,m1,m2,D1,D2). (6.2)

6Note that the Eisenstein series in [16, p. 164] differs by a factor two from our definition. In

[17, Theorem 7.4.4] our definition is used, but the factor 1/2 seems to have got lost in the last

display of p. 224 and the following argument.
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Moreover, if p1p2 ≡ q1q2 ≡ 1 (mod D1D2), then [8, Property 4.3]

S(p1m1,p2m2, q1m1, q2m2,D1,D2) = S(m1,m2,m1,m2,D1,D2).

Finally we have the factorization rule [8, Property 4.7]

S
(
m1,m2, n1, n2,D1D

′
1,D2D

′
2

)

= S
(
D′

1

2
D′

2m1,D
′
2

2
D′

1m2, n1, n2,D1,D2

)

× S
(
D1

2
D2m1,D2

2
D1m2, n1, n2,D

′
1,D

′
2

)
(6.3)

whenever (D1D2,D
′
1D

′
2) = 1 and inverses are taken with respect to the prod-

uct of the respective moduli, that is,

D1D1 ≡ D2D2 ≡ 1
(
mod D′

1D
′
2

)
, D′

1D
′
1 ≡ D′

2D
′
2 ≡ 1 (mod D1D2).

This implies in particular

S(m1,m2, n1, n2,D1,D2) = S(D2m1, n1,D1)S(D1m2, n2,D2),

(D1,D2) = 1.
(6.4)

For a prime p and l ≥ 1 we have [8, Property 4.10]

S
(
m1,m2, n1, n2,p,pl

)
= S(n1,0,p)S

(
m2, n2p,pl

)

+ S(m1,0,p)S
(
n2,m2p,pl

)

+ δl=1(p − 1). (6.5)

Essentially best possible (“Weil-type”) upper bounds for S(m1,m2, n1, n2,

D1,D2) have been given by Stevens [34, Theorem 5.1]. The dependence on

m1,m2, n1, n2 has been worked out in [9, p. 39].

Lemma 3 For any integers n1, n2,m1,m2 ∈ Z \ {0}, D1,D2 ∈ N and any

ε > 0 we have

S(m1,m2, n1, n2,D1,D2)

≪ (D1D2)
1/2+ε

(
(D1,D2)

(
m1n2, [D1,D2]

)(
m2n1, [D1,D2]

))1/2

where [., .] denotes the least common multiple. In particular,

∑

D1≤X1

∑

D2≤X2

∣∣S(m,±1, n,1,D1,D2)
∣∣≪ (X1X2)

3/2+ε(n,m)ε (6.6)

if mn �= 0. All implied constants depend only on ε.
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Proof It remains to show (6.6) which is straightforward:

∑

D1≤X1

∑

D2≤X2

∣∣S(m,±1, n,1,D1,D2)
∣∣

≪ (X1X2)
1/2+ε

∑

d1|m

∑

d2|n
(d1d2)

1/2
∑

D

∑

D1≤X1/D

∑

D2≤X2/D2

[d1,d2]|DD1D2

D1/2

≪ (X1X2)
3/2+ε

∑

d1|m

∑

d2|n

(d1d2)
1/2

[d1, d2]
≪ (X1X2)

3/2+ε(n,m)ε.
�

Next we define a different class of Kloosterman sums: If D1 | D2, we put

S̃(m1, n1, n2,D1,D2)

:=
∑∑

C1(D1),C2(D2)
(C1,D1)=(C2,D2/D1)=1

e

(
m1C1 + n1C1C2

D1

)
e

(
n2C2

D2/D1

)
.

Again this sum depends only on m1, n1 (mod D1) and n2 (mod D2/D1), and

for p1q1 ≡ 1 (mod D1), p2q2 ≡ 1 (mod D2) we have [8, Property 4.13]

S̃(m1p1, n1q1p2, n2q2,D1,D2) = S̃(m1, n1, n2,D1,D2).

We have the factorization rule [8, Property 4.15]

S̃
(
m1, n1, n2,D1D

′
1,D2D

′
2

)

= S̃
(
m1D

′
1, n1D

′
2, n2D

′
2

2
,D1,D2

)
S̃
(
m1D1, n1D2, n2D2

2
,D′

1,D
′
2

)

whenever (D2,D
′
2) = 1 and all terms are defined. Finally we have for a prime

number p and 1 ≤ l < k [8, Properties 4.16, 4.17]

S̃
(
m1, n1, n2,p

l,pl
)
=

⎧
⎪⎪⎨
⎪⎪⎩

p2l − p2l−1, pl | m1, pl | n1

−p2l−1, pl−1 ‖ m1, pl | n1

0, otherwise

and

S̃
(
m1, n1, n2,p

l,pk
)
= 0

unless

• k < 2l and p2l−k | n1, or

• k = 2l, or

• k > 2l and pk−2l | n2.
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In particular

S̃(m1, n1, n2,D1,D2) = 0 unless D2
1 | n1D2.

A sharp bound was proved by Larsen [8, Appendix]:

S̃(m1, n1, n2,D1,D2) ≪ min
(
(n2,D2/D1)D

2
1, (m1, n1,D1)D2

)
(D1D2)

ε.

(6.7)

7 Poincaré series

Let F : (0,∞)2 → C be a smooth compactly supported function (or suffi-

ciently rapidly decaying at 0 and ∞ in both variables). Let

F ∗(y1, y2) := F(y2, y1).

For two positive integers m1,m2 and z ∈ h3 let Fm1,m2
(z) := e(m1x2 +

m2x2)F (m1y1,m2y2). Then we consider the following Poincaré series:

Pm1,m2
(z) :=

∑

γ∈U3\Γ
Fm1,m2

(γ z).

Unfolding shows

〈φ,Pm1,m2
〉 =

∫

U3\h3
φ(z)Fm1,m2

(z) dx1 dx2 dx3
dy1 dy2

(y1y2)3

=
∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0

∫ 1

0

φ(z)e(−m1x1 − m2x2) dx1 dx2 dx3

× F(m1y1,m2y2)
dy1 dy2

(y1y2)3
(7.1)

for an arbitrary automorphic form φ. In particular, if φ is given as in (4.1), we

find

〈φ,Pm1,m2
〉

=
∫ ∞

0

∫ ∞

0

Aφ(m1,m2)

m1m2
W̃ν1,ν2

(m1y1,m2y2)F (m1y1,m2y2)
dy1 dy2

(y1y2)3

= m1m2Aφ(m1,m2)

∫ ∞

0

∫ ∞

0

W̃ν1,ν2
(y1, y2)F (y1, y2)

dy1 dy2

(y1y2)3
. (7.2)
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We want to apply (7.1) also with φ = Pn1,n2
where n1, n2 is another pair of

positive integers. The Fourier expansion of Pn1,n2
has been computed explic-

itly in [8, Theorem 5.1]: For m1,m2 > 0 we have

∫ 1

0

∫ 1

0

∫ 1

0

Pn1,n2
(z)e(−m1x1 − m2x2) dx1 dx2 dx3 = S1 + S2a + S2b + S3,

(7.3)

where

S1 = δm1,n1
δm2,n2

F(n1y1, n2y2),

S2a =
∑

ǫ=±1

∑

D1|D2

m2D
2
1=n1D2

S̃(ǫm1, n1, n2,D1,D2)J̃F (y1, y2, ǫm1, n1, n2,D1,D2),

S2b =
∑

ǫ=±1

∑

D2|D1

m1D
2
2=n2D1

S̃(ǫm2, n2, n1,D2,D1)

× J̃F ∗(y2, y1, ǫm2, n2, n1,D2,D1),

S3 =
∑

ǫ1,ǫ2=±1

∑

D1,D2

S(ǫ1m1, ǫ2m2, n1, n2,D1,D2)

× J (y1, y2, ǫ1m1, ǫ2m2, n1, n2,D1,D2).

The Kloosterman sums have been defined in Sect. 6 and the weight functions

are given as follows:

J̃F (y1, y2,m1, n1, n2,D1,D2)

= y2
1y2

∫

R2
e(−m1x1y1)e

(
n1D2y2

D2
1

· x1x2

x2
1 + 1

)

× e

(
n2D1

y1y2D
2
2

· x2

x2
1 + x2

2 + 1

)

× F

(
n1D2y2

D2
1

·

√
x2

1 + x2
2 + 1

x2
1 + 1

,
n2D1

y1y2D
2
2

·

√
x2

1 + 1

x2
1 + x2

2 + 1

)
dx1 dx2, (7.4)

J (y1, y2,m1,m2, n1, n2,D1,D2)

= (y1y2)
2

∫

R3
e(−m1x1y1 − m2x2y2)e

(
−n1D2

D2
1y2

· x1x3 + x2

x2
3 + x2

2 + 1

)

× e

(
−n2D1

D2
2y1

· x2(x1x2 − x3) + x1

(x1x2 − x3)2 + x2
1 + 1

)
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× F

(
n1D2

D2
1y2

·

√
(x1x2 − x3)2 + x2

1 + 1

x2
3 + x2

2 + 1
,

n2D1

D2
2y1

·

√
x2

3 + x2
2 + 1

(x1x2 − x3)2 + x2
1 + 1

)
dx1 dx2 dx3. (7.5)

8 Spectral decomposition

We have the following spectral decomposition theorem [17, Proposi-

tion 10.13.1]: If φ ∈ L2(Γ \h3) is orthogonal to all residues of Eisenstein

series, then

φ =
∑

j

〈φ,φj 〉φj +
∫

(0)

∫

(0)

〈
φ,E(., ν1, ν2)

〉
E(., ν1, ν2)

dν1 dν2

(4πi)2

+
∑

j

∫

(0)

〈
φ,E(.,1/2 + μ;uj )

〉
E(.,1/2 + μ;uj ) dμ

+ 1

2πi

∫

(0)

〈
φ,E(.,1/2 + μ;1)

〉
E(.,1/2 + μ;1)

dμ

2πi

where the first j -sum runs over an orthonormal basis of cusp forms φj for

SL3(Z) and the second j -sum runs over an orthonormal basis of cusp forms

uj for SL2(Z).

Therefore we have for 4 positive integers n1, n2,m1,m2 an equality of the

type

〈Pn1,n2
,Pm1,m2

〉
n1n2m1m2

=
∑

j

〈Pn1,n2
, φj 〉〈φj ,Pm1,m2

〉
n1n2m1m2

+ · · · (continuous spectrum).

We refer to the right hand side as the spectral side and to the left hand side as

the arithmetic side.

We proceed to describe the spectral side and the arithmetic side more pre-

cisely. We define an inner product on L2((0,∞)2, dy1 dy2/(y1y2)
3) by

〈f,g〉 :=
∫ ∞

0

∫ ∞

0

f (y1, y2)g(y1, y2)
dy1 dy2

(y1y2)3
.

Let {φj } denote an arithmetically normalized orthogonal basis of the space

of cusp forms on L2(SL3(Z)\h3) that we assume to be eigenfunctions of the
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Hecke algebra with eigenvalues Aj (m1,m2). Let {uj } be an arithmetically

normalized orthogonal basis of the space of cusp forms on L2(SL2(Z)\h2)

that we assume to be eigenfunctions of the Hecke algebra with eigenvalues

λj (m) and spectral parameter νj ∈ iR.

Proposition 4 Keep the notation developed so far. Let F : (0,∞)2 → C be

a smooth compactly supported function, and let m1,m2, n1, n2 ∈ N. Then for

some absolute constant c > 0 the following equality holds:

∑

j

Aj (n1, n2)Aj (m1,m2)

‖φj‖2

∣∣〈W̃ν1,ν2
,F 〉

∣∣2

+ 1

(4πi)2

∫

(0)

∫

(0)

A(ν1,ν2)(n1, n2)A(ν1,ν2)(m1,m2)

|ζ(1 + 3ν0)ζ(1 + 3ν1)ζ(1 + 3ν2)|2

×
∣∣〈W̃ν1,ν2

,F 〉
∣∣2 dν1 dν2

+ c

2πi

∑

j

∫

(0)

B(μ,uj )(n1, n2)B(μ,uj )(m1,m2)

|L(uj ,1 + 3μ)|2L(Ad2uj ,1)

∣∣〈W̃
μ− 1

3 νj , 2
3 νj

,F 〉
∣∣2 dμ

= Σ1 + Σ2a + Σ2b + Σ3, (8.1)

where

Σ1 = δm1,n1
δm2,n2

‖F‖2,

Σ2a =
∑

ǫ=±1

∑

D1|D2

m2D
2
1=n1D2

S̃(ǫm1, n1, n2,D1,D2)

D1D2
J̃ǫ;F

(√
n1n2m1

D1D2

)
,

Σ2b =
∑

ǫ=±1

∑

D2|D1

m1D
2
2=n2D1

S̃(ǫm2, n2, n1,D2,D1)

D1D2
J̃ǫ;F ∗

(√
n1n2m2

D1D2

)
,

Σ3 =
∑

ǫ1,ǫ2=±1

∑

D1,D2

S(ǫ1m1, ǫ2m2, n1, n2,D1,D2)

D1D2

× Jǫ1,ǫ2

(√
m1n2D1

D2

,

√
m2n1D2

D1

)
.

(8.2)
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The weight functions J̃ and J are given by

J̃ǫ;F (A) = A−2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
e(−ǫAx1y1)e

(
y2 · x1x2

x2
1 + 1

)

× e

(
A

y1y2
· x2

x2
1 + x2

2 + 1

)

× F

(
y2 ·

√
x2

1 + x2
2 + 1

x2
1 + 1

,
A

y1y2

·

√
x2

1 + 1

x2
1 + x2

2 + 1

)

× F(Ay1, y2) dx1 dx2
dy1 dy2

y1y
2
2

, (8.3)

Jǫ1,ǫ2
(A1,A2)

= (A1A2)
−2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e(−ǫ1A1x1y1 − ǫ2A2x2y2)

× e

(
−A2

y2
· x1x3 + x2

x2
3 + x2

2 + 1

)
e

(
−A1

y1
· x2(x1x2 − x3) + x1

(x1x2 − x3)2 + x2
1 + 1

)

× F

(
A2

y2
·

√
(x1x2 − x3)2 + x2

1 + 1

x2
3 + x2

2 + 1
,
A1

y1
·

√
x2

3 + x2
2 + 1

(x1x2 − x3)2 + x2
1 + 1

)

× F(A1y1,A2y2) dx1 dx2 dx3
dy1 dy2

y1y2
. (8.4)

Proof The spectral side (8.1) follows from7 (7.2) in combination with (5.1)

and (5.4), (5.5). Note that E(z,1/2 + μ,1) does not contribute because it has

only degenerate terms in its Fourier expansion.

Upon combining (7.1) and (7.3), we obtain the arithmetic side (8.2) after

applying a linear change of variables

y1 �→
√

n1n2

D1D2m1
y1, y2 �→ y2

m2

7Even though W̃ν1,ν2 just fails to be in L2((0,∞)2, dy1dy2/(y1y2)3), the inner products exist

by the decay properties of F .
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in (7.4) and observing m2D
2
1 = n1D2 (and with interchanged indices for

Σ2b), and

y1 �→
√

n2D1

m1D
2
2

y1, y2 �→
√

n1D2

m2D
2
1

y2

in (7.5). �

Formally (8.1) and (8.2) resemble the GL(2) Kuznetsov formula, but in its

present form it is relatively useless as long as we do not understand the trans-

forms |〈W̃ν1,ν2
,F 〉|2 and J̃ , J for a given test function F . The present formu-

lation has the important advantage that the weight functions on the arithmetic

side (8.2) do not depend on n1, n2,m1,m2,D1,D2 individually, but only in a

coupled fashion. This is, of course, a well-known phenomenon in the GL(2)

world.

We choose now

F(y1, y2) = Ff,X1,X2,R1,R2,τ1,τ2
(y1, y2)

:=
(
R1R2(R1 + R2)

)1/2
f (X1y1)f (X2y2)y

i(τ1+2τ2)
1 y

i(τ2+2τ1)
2 (8.5)

for X1,X2,R1,R2 ≥ 1, τ1, τ2 ≥ 0, τ1 + τ2 ≥ 1 and f a fixed smooth,

nonzero, non-negative function with support in [1,2]. Analytic properties of

〈W̃ν1,ν2
,F 〉 have been obtained in Proposition 3. We summarize some bounds

for the weight functions occurring on the arithmetic side in the following

proposition.

Proposition 5 With the notation developed so far, we have

‖F‖2 ≍ (X1X2)
2R1R2(R1 + R2). (8.6)

Let C1,C2 ≥ 0, ε > 0. Then

J̃ǫ;F (A)

⎧
⎨
⎩

≪ X2
1X2R1R2(R1 + R2)

(
1+A2/3

τ1+τ2

)C1,

= 0, if A ≤ (100X1)
−3/2 + (100X1X2)

−3/4,
(8.7)

and

Jǫ1,ǫ2
(A1,A2) ≪ (X1X2)

2R1R2(R1 + R2)

×
(

1 + A
4/3
1 A

2/3
2 (X1 + X2)

τ1 + τ2

)C1
(

1 + A
4/3
2 A

2/3
1 (X1 + X2)

τ1 + τ2

)C2

×
(
(X1 + A1)(X2 + A2)

)ε
,

Jǫ1,ǫ2
(A1,A2) = 0, if min

(
A1A

2
2,A2A

2
1

)
≤ (100X1X2)

−3/2.

(8.8)
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In the special case when A1,A2 ≤ 1, X1 = 1, X2 = X ≥ 1, R1 +R2 ≍ τ1 +τ2

this can be improved to

Jǫ1,ǫ2
(A1,A2) ≪ X2R1R2

(
1 + A

4/3
1 A

2/3
2 X

τ1 + τ2

)C1

×
(

1 + A
4/3
2 A

2/3
1 X

τ1 + τ2

)C2(
(R1 + R2)X

)ε
. (8.9)

Let g be a fixed smooth function with compact support in (0,∞). Then for

R1,R2 ≫ 1 sufficiently large we have

∫ ∞

0

∫ ∞

0

g

(
τ1

R1

)
g

(
τ2

R2

)
Jǫ1,ǫ2

(A1,A2) dτ1 dτ2

≪ (X1X2)
2R1R2(R1 + R2)

(
1 + A

4/3
1 A

2/3
2 (X1 + X2)

R1 + R2

)C1

×
(

1 + A
4/3
2 A

2/3
1 (X1 + X2)

R1 + R2

)C2

×
(
R1R2(X1 + A1)(X2 + A2)

)ε
. (8.10)

On the left hand side we have suppressed the dependence of Jǫ1,ǫ2
on τ1, τ2.

Remark 4 The bounds (8.7), (8.8), (8.10) are not best possible, but (8.9) is

likely to be best possible. The important feature is that (8.7) and (8.8) effec-

tively bound A1,A2 from below, and therefore D1,D2 in (8.2) from above.

For example, for the contribution of the long Weyl element, we can essentially

assume

D1 ≤ (m1n2)
1/3(m2n1)

2/3

τ1 + τ2
, D2 ≤ (m1n2)

2/3(m2n1)
1/3

τ1 + τ2

if X1 = X2 = 1. It is instructive to compare this with the GL(2) situation:

one can construct a sufficiently nice test function h on the spectral side with

essential support on [T ,T + 1] such that the integral transforms h± in (1.1)

are negligible unless c ≤ (nm)1/2

T
.

The bound (8.10) shows that integration over τ1, τ2 can be performed at

almost no cost, in other words, we save a factor (R1R2)
1−ε compared to trivial

integration.

Remark 5 Choosing f (y1, y2) = e−2π(y1+y2)(y1y2)
100 (say), the two y-

integrals in (8.4) can be computed explicitly using [20, 3.471.9], giving two
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Bessel-K-functions with general complex arguments. It is not clear how to

take advantage of this fact.

Proof Equation (8.6) is clear. We proceed to prove (8.7). Let us write

ξ1 := x2
1 + 1, ξ2 = x2

1 + x2
2 + 1

in (8.3). The support of f restricts the variables to

(X1A)−1 ≤ y1 ≤ 2(X1A)−1, X−1
2 ≤ y2 ≤ 2X−1

2 ,

X2/(2X1) ≤ ξ
1/2
2 ξ−1

1 ≤ 2X2/X1,

(
A2X1X

2
2

)−1 ≤ ξ
1/2
1 ξ−1

2 ≤ 8
(
A2X1X

2
2

)−1
.

(8.11)

The second set of conditions in (8.11) implies ξ1 ≍ A4/3X2
1 and ξ2 ≍

A8/3(X1X2)
2. Hence the second part of (8.7) is clear and a trivial estimation

shows

J̃ǫ;F (A) ≪ R1R2(R1 + R2)X
2
1X2.

In certain ranges this can be improved by partial integration. We have

J̃ǫ;F (A) = R1R2(R1 + R2)

A2−i(τ1−τ2)

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

(
x2

1 + 1
)− 3

2 iτ2

×
(
x2

1 + x2
2 + 1

)− 3
2 iτ1e(−Ay1ǫx1)

× e

(
y2x1x2

x2
1 + 1

)
e

(
Ax2

y1y2(x
2
1 + x2

2 + 1)

)
f (X1Ay1)f (X2y2)

× f

(
X1y2

√
x2

1 + x2
2 + 1

x2
1 + 1

)

× f

(
AX2

y1y2

·
x2 + i

√
x2

1 + 1

x2
1 + x2

2 + 1

)
y

−3i(τ1+τ2)
1 y

−3iτ1

2 dx1 dx2
dy1 dy2

y1y
2
2

.

We can assume that C1 is an integer. Then C1 successive integrations by parts

with respect to y1 yield an additional factor

≪C1

((
y1

τ1 + τ2

)(
A|x1| +

A|x2|
ξ2y

2
1y2

+ 1

y1

))C1

≪C1

(
1 + A2/3

τ1 + τ2

)C1

(8.12)

in the support of f .
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The bound (8.8) can be shown similarly, but the estimations are a little

more involved. Here we write

ξ1 := (x1x2 − x3)
2 + x2

1 + 1, ξ2 = x2
3 + x2

2 + 1 (8.13)

and truncate

(X1A1)
−1 ≤ y1 ≤ 2(X1A1)

−1, (X2A2)
−1 ≤ y2 ≤ 2(X2A2)

−1,

(
2X1X2A

2
2

)−1 ≤ ξ
1/2
1 ξ−1

2 ≤ 2
(
X1X2A

2
2

)−1
,

(
2X1X2A

2
1

)−1 ≤ ξ
1/2
2 ξ−1

1 ≤ 2
(
X1X2A

2
1

)−1
.

(8.14)

This implies

ξ2 ≍ Ξ2 := A
4/3
1 A

8/3
2 (X1X2)

2, ξ1 ≍ Ξ1 := A
4/3
2 A

8/3
1 (X1X2)

2 (8.15)

which yields in particular the second part of (8.8) as well as

x1 ≪ A
2/3
2 A

4/3
1 X1X2, x2 ≪ A

2/3
1 A

4/3
2 X1X2,

x3 ≪ A
2/3
1 A

4/3
2 X1X2, x1x2 − x3 ≪ A

2/3
2 A

4/3
1 X1X2.

(8.16)

For future purposes we study the volume of the set of (x1, x2, x3) defined by

(8.15) or by

ξ2 = Ξ2

(
1 + O(1/R2)

)
, ξ1 = Ξ1

(
1 + O(1/R1)

)
. (8.17)

Lemma 4 For Ξ1,Ξ2 ≥ 1 and any ε > 0 we have

∫ ∫ ∫

x1,x2,x3
satisfying (8.15)

dx1 dx2 dx3 ≪ (Ξ1Ξ2)
1/2+ε.

Moreover,

∫ ∫ ∫

x1,x2,x3
satisfying (8.17)

dx1 dx2 dx3 ≪ (Ξ1Ξ2R1R2)
ε (Ξ1Ξ2)

1/2

R1R2
.

We postpone the proof to the end of this section. A trivial estimation now

implies

Jǫ1,ǫ2
(A1,A2) ≪ R1R2(R1 + R2)

(A1A2)2

∫ ∫ ∫

x1,x2,x3
satisfying (8.15)

dx1 dx2 dx3

≪ R1R2(R1 + R2)(X1X2)
2
(
(X1 + A1)(X2 + A2)

)ε
.
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Alternatively we write

Jǫ1,ǫ2
(A1,A2) = R1R2(R1 + R2)

(A1A2)2A
i(τ1−τ2)
2 A

i(τ2−τ1)
1

∫ ∞

0

∫ ∞

0

(y1y2)
−3i(τ1+τ2)

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ξ

− 3
2 iτ1

1 ξ
− 3

2 iτ2

2

× e(−ǫ1A1x1y1 − ǫ2A2x2y2)e

(
−A2

y2
· x1x3 + x2

x2
3 + x2

2 + 1

)

× e

(
−A1

y1
· x2(x1x2 − x3) + x1

(x1x2 − x3)2 + x2
1 + 1

)
f (X1A1y1)

× f

(
X1A2

y2
·

√
(x1x2 − x3)2 + x2

1 + 1

x2
3 + x2

2 + 1

)
f (X2A2y2)

× f

(
X2A1

y1
·

√
x2

3 + x2
2 + 1

(x1x2 − x3)2 + x2
1 + 1

)
dx1 dx2 dx3

dy1 dy2

y1y2
(8.18)

using the notation (8.13). We can assume that C1,C2 are integers. Integrating

by parts C1 times with respect to y1 and C2 times with respect to y2 introduces

an additional factor

≪C1,C2

((
y1

τ1 + τ2

)(
A1|x1| +

A1|x2(x1x2 − x3) + x1|
y2

1ξ1

+ 1

y1

))C1

×
((

y2

τ1 + τ2

)(
A2|x2| +

A2|x1x3 + x2|
y2

2ξ2

+ 1

y2

))C2

and (8.8) follows by (8.16) and the same argument that led to (8.7).

The proof of (8.9) is a small variant of the preceding argument. We need

to save an additional power of R1 + R2 which comes from a more careful

treatment of the y1, y2-integral. Let η > 0 be small. If 1+A
4/3
1 A

2/3
2 X ≤ (R1 +

R2)
1−η, we replace C1 in (8.8) by C1 + η−1 saving a factor

(
1 + A

4/3
1 A

2/3
2 X

R1 + R2

)−1/η

≥ R1 + R2.
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The same argument works if 1 + A
2/3
1 A

4/3
2 X ≤ (R1 + R2)

1−η. In the remain-

ing case

1 + A
2/3
1 A

4/3
2 X ≥ (R1 + R2)

1−η and 1 + A
2/3
2 A

4/3
1 X ≥ (R1 + R2)

1−η

it is enough to show

Jǫ1,ǫ2
(A1,A2) dτ1 dτ2 ≪ R1R2X

2
(
(R1 + R2)X

)ε; (8.19)

then the bound (8.9) follows with ε+η(C1 +C2) instead of ε. To this end, we

combine as before (8.18) and the first part of Lemma 4, and need to show that

the y1 and y2 integral in (8.18) are both ≪ (τ1 + τ2)
−1/2 ≍ (R1 + R2)

−1/2.

Our present assumption X1 = 1, X2 = X ≥ 1, A1,A2 ≤ 1 together with the

size constraints (8.14)–(8.16) imply that the y1 integral is of the form

∫ ∞

0

y
−3i(τ1+τ2)
1 e(−ǫ1A1x1y1)w(A1y1)

dy1

y1
(8.20)

where w is a smooth function with support in [1,2] and w(j)(y) ≪j 1 uni-

formly in all other variables. We can assume that ǫ1 = sgn(x1) and |x1| ≍
τ1 + τ2, otherwise we can save as many powers of τ1 + τ2 as we wish by

repeated partial integration. In that case we make another change of variables

and re-write (8.20) as

∫ ∞

0

e

(
3

2π
(τ1 + τ2)(y1 − logy1)

)
w

(
3(τ1 + τ2)

2π |x1|
y1

)
dy1

y1
.

A standard stationary phase argument bounds this integral by (τ1 + τ2)
−1/2:

we cut out smoothly the region y1 = 1+O((τ1 + τ2)
−1/2) which we estimate

trivially. For the rest we apply integration by parts. The treatment of the y2

integral is very similar. Here our assumptions imply that the integral is of the

form ∫ ∞

0

y
−3i(τ1+τ2)
2 e

(
−A2

y2
· x1x3 + x2

x2
3 + x2

2 + 1

)
w̃(XA2w)

dy2

y2
,

and the same stationary phase-type argument gives a saving of (τ1 + τ2)
−1/2.

Finally we prove (8.10). Let

Z := R1R2(X1 + A1)(X2 + A2).

As before we see that we can assume

1 + A
2/3
1 A

4/3
2 (X1 + X2) ≥ (R1 + R2)

1−η and

1 + A
2/3
2 A

4/3
1 (X1 + X2) ≥ (R1 + R2)

1−η;
(8.21)
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otherwise we integrate trivially over τ1, τ2. In the situation (8.21) it is enough

to show8

∫ ∞

−∞

∫ ∞

∞
g

(
τ1

R1

)
g

(
τ2

R2

)
Jǫ1,ǫ2

(A1,A2) dτ1 dτ2

≪ R1R2(R1 + R2)(X1X2)
2Zε; (8.22)

then the bound (8.10) follows with ε + η(C1 + C2) instead of ε. In order to

show (8.22), we integrate (8.18) explicitly over τ1, τ2 and observe that

∫ ∞

−∞

∫ ∞

∞
g

(
τ1

R1

)
g

(
τ2

R2

)
A

i(τ1−τ2)
1 A

i(τ2−τ1)
2

(y1y2)3i(τ1+τ2)ξ
3
2 iτ1

1 ξ
3
2 iτ2

2

dτ1 dτ2

= R1R2g̃

(
R1

2π
log

A1

A2(y1y2)3ξ
3/2
1

)
g̃

(
R2

2π
log

A2

A1(y1y2)3ξ
3/2
2

)
.

Since g is smooth, g̃ is rapidly decaying, and up to a negligible error of Z−A

we can restrict ξ1, ξ2 to

ξ1 =
A

2/3
1

A
2/3
2 (y1y2)2

(
1 + O

(
1

R1Zε

))
,

ξ2 =
A

2/3
2

A
2/3
1 (y1y2)2

(
1 + O

(
1

R2Zε

))
.

(8.23)

We note that A
2/3
1 (A

2/3
2 (y1y2)

2)−1 ≍ Ξ1, A
2/3
2 (A

2/3
1 (y1y2)

2)−1 ≍ Ξ2 in the

notation of (8.15). Hence a trivial estimate bounds the left hand side of (8.22)

by

≪ (R1R2)
2(R1 + R2)

(A1A2)2

∫ ∫ ∫

x1,x2,x3
satisfying (8.23)

dx1 dx2 dx3

and the desired bound follows from the second part of Lemma 4. �

It remains to prove Lemma 4: the conditions ξ1 ≤ Ξ1, ξ2 ≤ Ξ2 are equiv-

alent to

x2
2 ≤ Ξ2 − 1, x2

3 ≤ Ξ2 − 1 − x2
2 ,

(
x1 − x2x3

x2
2 + 1

)2

≤ Ξ1 − 1

x2
2 + 1

−
x2

3

(x2
2 + 1)2

.

8Recall that Jǫ1,ǫ2 (A1,A2) depends on τ1, τ2 although this is not displayed in the notation.
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Hence

∫ ∫ ∫

ξ1≤Ξ1,ξ2≤Ξ2

dx1 dx2 dx3 ≤ 8

∫ Ξ
1/2
2

0

∫ Ξ
1/2
2

0

Ξ
1/2
1

(x2
2 + 1)1/2

dx3 dx2

≪ (Ξ1Ξ2)
1/2 log(1 + Ξ2).

This proves the first part of the lemma. The second part is more technical.

The conditions (8.17) imply

x2
2 ≤ Ξ2

(
1 + c

R2

)
− 1,

Ξ2

(
1 − c

R2

)
− 1 − x2

2 ≤ x2
3 ≤ Ξ2

(
1 + c

R2

)
− 1 − x2

2 ,

Ξ1(1 − c/R1) − 1

x2
2 + 1

−
x2

3

(x2
2 + 1)2

≤
(

x1 − x2x3

x2
2 + 1

)2

≤ Ξ1(1 + c/R1) − 1

x2
2 + 1

−
x2

3

(x2
2 + 1)2

(8.24)

for some constant c > 0. We separate four cases for the range of x3.

Case 1. If (Ξ1(1 + c/R1) − 1)(x2
2 + 1) < x2

3 , then the condition on x1 is

empty.

Case 2. Let us assume

(
Ξ1(1 − c/R1) − 1

)(
x2

2 + 1
)
≤ x2

3 ≤
(
Ξ1(1 + c/R1) − 1

)(
x2

2 + 1
)
. (8.25)

Then the volume of the x1-region is

≤ 2

(
Ξ1(1 + c/R1) − 1

x2
2 + 1

−
x2

3

(x2
2 + 1)2

)1/2

≤ 2

(
2cΞ1

R1(x
2
2 + 1)

)1/2

.

The region (8.25) and the second inequality in (8.24) have a non-empty inter-

section only if

Ξ2(1 − c/R2)

Ξ1(1 + c/R1)
− 1 ≤ x2

2 ≤ Ξ2(1 + c/R2)

Ξ1(1 − c/R1)
− 1. (8.26)

If R1,R2 > 2c (which we may assume), this condition is empty unless Ξ2 ≥
1
3
Ξ1. This implies x2

2 ≤ 3Ξ2/Ξ1 and x2
2 + 1 ≍ Ξ2/Ξ1. In the following we

will frequently use the inequality
√

A−
√

B ≤ (A−B)A−1/2 for A ≥ B ≥ 0.
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Since we are assuming that Ξ1,Ξ2 are sufficiently large, we can deduce from

(8.25) and the second inequality in (8.24) that the volume of the x3-region is

≪ min

(
Ξ

1/2
2

R2
,
Ξ

1/2
2

R1

)
(8.27)

(uniformly in x2) and hence the total contribution under the assumption (8.25)

is

∫

x2∈(8.26)

(Ξ1Ξ2)
1/2

R
1/2
1 (R1 + R2)(x

2
2 + 1)1/2

dx2 ≍
∫

x2∈(8.26)

Ξ1

R
1/2
1 (R1 + R2)

dx2.

The region (8.26) describes an interval of length O((R−1
1 + R−1

2 )Ξ2/Ξ1) for

x2
2 , hence the total contribution is

≪ Ξ1

R
1/2
1 (R1 + R2)

Ξ
1/2
2

Ξ
1/2
1

(
1

R
1/2
1

+ 1

R
1/2
2

)
≪ (Ξ1Ξ2)

1/2

R1R2

as claimed.

Case 3. For a parameter 1/3 ≤ α ≤ c/R1 consider the region

(
Ξ1(1 − 2α) − 1

)(
x2

2 + 1
)
≤ x2

3 ≤
(
Ξ1(1 − α) − 1

)(
x2

2 + 1
)
. (8.28)

The procedure here is very similar to case 2. The x1-volume is at most

≤ 4Ξ1c/R1

(x2
2 + 1)1/2

(
Ξ1

(
1 + c

R1

)
− 1 −

x2
3

x2
2 + 1

)−1/2

≪
Ξ

1/2
1

R1(x
2
2 + 1)1/2α1/2

.

The region (8.28) and the second inequality in (8.24) have a non-empty inter-

section only if

Ξ2(1 − c/R2)

Ξ1(1 − α)
− 1 ≤ x2

2 ≤ Ξ2(1 + c/R2)

Ξ1(1 − 2α)
− 1. (8.29)

In particular this implies x2
2 + 1 ≍ Ξ2/Ξ1. As in (8.27) we see that the x3-

volume is ≪ Ξ
1/2
2 min(R−1

2 , α), hence the total contribution in the present

subcase is

≪
∫

x2∈(8.29)

Ξ1 min(R−1
2 , α)

R1α1/2
dx2 ≪

Ξ1 min(R−1
2 , α)

R1α1/2

Ξ
1/2
2

Ξ
1/2
1

(
1

R
1/2
2

+ α1/2

)

≪ (Ξ1Ξ2)
1/2

R1R2
.
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Case 4. Finally we consider the region x2
3 ≤ (Ξ1/3 − 1)(x2

2 + 1). In this

case the x1-volume is

≤ 4Ξ1c/R1

(x2
2 + 1)1/2

(
Ξ1

(
1 + c

R1

)
− 1 −

x2
3

x2
2 + 1

)−1/2

≪
Ξ

1/2
1

R1(x
2
2 + 1)1/2

.

The length of the x3 interval is at most

≤ 4cΞ2

R2(Ξ2(1 + c/R2) − 1 − x2
2)1/2

.

Hence the total contribution is at most

≪
∫

x2
2≤Ξ2(1+c/R2)−1

Ξ
1/2
1 Ξ2 dx2

R1R2(x2 + 1)1/2(Ξ2(1 + c/Rj ) − 1 − x2
2)1/2

≪ (Ξ1Ξ2)
1/2

R1R2
+
∫

1≤x2
2≤Ξ2(1+c/R2)−1

Ξ
1/2
1 Ξ2 dx2

R1R2x(Ξ2(1 + c/Rj ) − 1 − x2
2)1/2

.

This last integral can be computed explicitly:

∫
dx

x(Z − x2)1/2
= log(x) − log(Z +

√
Z(Z − x2))√

Z
,

and the desired bound follows. This completes the proof of the lemma. �

9 Proofs of the theorems

For the proof of Theorem 1 we choose n1 = n2 = m1 = m2 = 1 and combine

(8.1), (8.2), Lemma 1 and Propositions 3 and 5. We choose τ1 = R1 = T1,

τ2 = R2 = T2 and X1 = X2 = 1 in (8.5), fix a function f and drop all these

parameters from the notation of F . By the second part of (8.7) and (8.8), the

Kloosterman terms Σ2a,Σ2b,Σ3 are finite sums over D1,D2 and hence are

O((T1T2)
−100) by the first part of (8.7) and (8.8). The diagonal term (8.6) is

≍ T1T2(T1 + T2). On the spectral side, we drop the Eisenstein spectrum and

large parts of the cuspidal spectrum to conclude by (3.3) and Lemma 1 the

upper bound

∑

|ν(j)
1 −iT1|≤c

|ν(j)
2 −iT2|≤c

(
res
s=1

L(s,φj × φ̃j )
)−1 ≪ T1T2(T1 + T2)
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for some sufficiently small c and T1, T2 ≥ T0, and hence

∑

|ν(j)
1 −iT1|≤K

|ν(j)
2 −iT2|≤K

(
res
s=1

L(s,φj × φ̃j )
)−1 ≪K T1T2(T1 + T2) (9.1)

for any K ≥ 1 by adding the contribution of OK(1) balls. To prove the lower

bound, we choose (once and for all) K so large that

∑

max(|ν(j)
1 −iT1|,|ν(j)

2 −iT2|)≥K

‖φj‖−2
∣∣〈W̃ν1,ν2

,F 〉
∣∣2 ≤ 1

2
‖F‖2

which is possible by (9.1) and (3.1). We bound the Eisenstein spectrum triv-

ially: the second line of (8.1) contributes O((T1 + T2)
ε) by known bounds

for the zeta function on the line ℜs = 1, the third line contributes similarly

O((T1 + T2)
1+ε) by Weyl’s law for SL2(Z) and lower bounds for the L-

functions in the denominator [22, 23]. Hence we obtain

∑

|ν(j)
1 −iT1|≤K

|ν(j)
2 −iT2|≤K

‖φj‖−2
∣∣〈W̃ν1,ν2

,F 〉
∣∣2 ≥ 1

2
‖F‖2 + O

(
(T1 + T2)

1+ε
)
,

and the lower bound in Theorem 1 follows from (3.1) and (8.6) for T1, T2

sufficiently large. �

The proof of Theorem 2 proceeds similarly. As mentioned in the introduc-

tion, as a direct corollary of Theorem 1 we find that the number of exceptional

Maaß forms φj with γj = T + O(1) is O(T 2). In order to prove Theorem 2,

it is therefore enough to consider those Maaß forms with |ρj | ≥ ε. Moreover,

by symmetry it is enough to bound only Maaß forms satisfying (2.9). In (8.5)

we take τ2 = R2 = T , R1 = 1, τ1 = 0, X1 = 1, X2 = X = T δ for some δ > 0

to be chosen later. With this data, the spectral side, after dropping

• the tempered spectrum,

• the Eisenstein spectrum, and

• those parts of the non-tempered spectrum not of the form (2.9) with

|ρj | ≥ ε,

is by (3.5) (note that (3.4) is satisfied) and the upper bound of (1.4) at least

≫ T −εX2
∑

φj as in (2.9)

γj=T +O(1)

|ρj |≥ε

X2|ρj |.
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On the arithmetic side, the diagonal term is ≍ T 2X2 by (8.6). Next by (8.7)

we have

Σ2a ≪ T 2X
∑

D1≪1

|S̃(±1,1,1,D1,D
2
1)|

D3
1

T −102 ≪ XT −100

and

Σ2b ≪ T 2X2
∑

D2≪X1/2

|S̃(±1,1,1,D2,D
2
2)|

D3
2

T −102 ≪ X2+εT −100

by (6.7). (Note that we are exchanging X1 and X2 for Σ2b.) The long Weyl

element contributes at most

(
T X2

)1+ε
∑

D1,D2≪X

|S(±1,1,1,1,D1,D2)|
D1D2

(
1 + X/D2

T

)−C1

×
(

1 + X/D1

T

)−C2

≪
(
T X2

)1+2ε X

T
(9.2)

which follows by combining (8.9) and (6.6). Choosing X = T 2 completes the

proof of Theorem 2. �

We proceed to prove Theorem 3. Again we choose X1 = X2 = 1, R1 = T1,

R2 = T2 in (8.5), fix a function f and then drop R1,R2,X1,X2, f from the

notation of F and keep only τ1, τ2. We also fix a suitable non-negative smooth

function g with support in [1/2,3] as in Proposition 5. Let T := max(T1, T2).

The left hand side of (1.5) is, by (3.3) and the upper bound of (1.4),

≪ T ε
∑

j

1

‖φj‖2

∫ 2T1

T1

∫ 2T2

T2

∣∣〈W̃ν1,ν2
,Fτ1,τ2

〉
∣∣2 dτ1 dτ2

∣∣∣∣
∑

n≤N

α(n)Aj (n,1)

∣∣∣∣
2

.

We cut the n-sum into dyadic intervals, insert artificially the function g and

bound the preceding display by

≪ (NT )ε max
M≤N

∑

j

1

‖φj‖2

×
∫ −∞

−∞

∫ ∞

−∞
g

(
τ1

T1

)
g

(
τ2

T2

)∣∣〈W̃ν1,ν2
,Fτ1,τ2

〉
∣∣2 dτ1 dτ2

×
∣∣∣∣

∑

M≤n≤2M

α(n)Aj (n,1)

∣∣∣∣
2

.
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Next we add artificially the continuous spectrum getting the upper bound

(NT )ε max
M≤N

(∑

j

∫ ∞

−∞

∫ ∞

−∞
g

(
τ1

T1

)
g

(
τ2

T2

) |〈W̃ν1,ν2
,Fτ1,τ2

〉|2
‖φj‖2

dτ1 dτ2

×
∣∣∣∣

∑

M≤n≤2M

α(n)Aj (n,1)

∣∣∣∣
2

+ 1

(4πi)2

∫

(0)

∫

(0)

∫ ∞

−∞

∫ ∞

−∞

g
(

τ1
T1

)
g
(

τ2
T2

)
|〈W̃ν1,ν2

,Fτ1,τ2
〉|2

|ζ(1 + 3ν0)ζ(1 + 3ν1)ζ(1 + 3ν2)|2
dτ1 dτ2

×
∣∣∣∣

∑

M≤n≤2M

α(n)Aν1,ν2
(n,1)

∣∣∣∣
2

dν1 dν2

+ c

2πi

∑

j

∫

(0)

∫ ∞

−∞

∫ ∞

−∞

g
(

τ1
T1

)
g
(

τ2
T2

)
|〈W̃ 2

3 νj ,μ− 1
3 νj

,Fτ1,τ2
〉|2

|L(1 + 3μ,uj )|2L(1,Ad2uj )
dτ1 dτ2

×
∣∣∣∣

∑

M≤n≤2M

α(n)Bμ,uj
(n,1)

∣∣∣∣
2

dμ

)
.

We open the squares and apply the Kuznetsov formula, that is, we replace the

three terms of the shape (8.1) with the four terms (8.2). We estimate each of

them individually. The diagonal term contributes by (8.6)

≪ (NT )ε max
M≤N

∑

M≤n≤2M

∣∣α(m)
∣∣2

×
∫ ∞

−∞

∫ ∞

−∞
g

(
τ1

T1

)
g

(
τ2

T2

)
T1T2(T1 + T2) dτ1 dτ2

≪ (NT )εT 2
1 T 2

2 (T1 + T2)‖α‖2
2.

This is the first term on the right hand side of (1.5). In the term Σ2a in (8.2)

the condition D1 | D2, D2
1 = nD2 is equivalent to D1 = nd , D2 = nd2 for

some d ∈ N; hence its contribution is at most

≪ (NT )ε max
M≤N

∑

M≤n,m≤2M

∣∣α(n)α(m)
∣∣ ∑

ǫ=±1

∑

d

|S(ǫm,n,1, nd,nd2)|
n2d3

×
∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
g

(
τ1

T1

)
g

(
τ2

T2

)
J̃ǫ,F

(
m1/2

nd3/2

)
dτ1 dτ2

∣∣∣∣.
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By (8.7), the d-sum is finite, hence in combination with (6.7) this is bounded

by

≪ (NT )ε max
M≤N

∑

M≤n,m≤2M

∣∣α(n)α(m)
∣∣T −101 ≪ NεT −100‖α‖2.

In the term Σ2b in (8.2) the condition D2 | D1 is redundant, and the argu-

ment of J̃ǫ,F ∗ equals (n/(mD3
2))1/2. As before we see that this contributes at

most NεT −100‖α‖2.

Finally the long Weyl element finally contributes by (8.10)

≪ (NT )ε max
M≤N

∑

M≤n,m≤2M

∣∣α(n)α(m)
∣∣

×
∑

ǫ1,ǫ2=±1

∑

D1,D2

|S(ǫ1m,ǫ2, n,1,D1,D2)|
D1D2

×
∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
g

(
τ1

T1

)
g

(
τ2

T2

)
Jǫ1,ǫ2

(√
mD1

D2
,

√
nD2

D1

)
dτ1 dτ2

∣∣∣∣

≪C1,C2
(NT )ε max

M≤N
T1T2(T1 + T2)

∑

M≤n,m≤2M

∣∣α(n)α(m)
∣∣

×
∑

ǫ1,ǫ2=±1

∑

D1,D2

|S(ǫ1m,ǫ2, n,1,D1,D2)|
D1D2

(
1 + M/D2

T1 + T2

)C1

×
(

1 + M/D1

T1 + T2

)C2

(9.3)

for any C1,C2 ≥ 0. Recalling the notation T = max(T1, T2) and using (6.6),

it is straightforward to see that the previous display is

≪ (NT )ε
(
T1T2N

2
)
‖α‖2

2.

This is the second term on the right hand side of (1.5). �

Finally we prove Theorem 4. To this end, we express L(φj ,1/2) by an

approximate functional equation. As we are summing over the archimedean

parameters of the L-functions, we need an approximate functional equation

whose weight function is essentially independent of the underlying family.

This has been obtained in [3, Proposition 1], and we quote the following spe-
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cial case. For a Maaß form φj as in Theorem 4 put

(ηj )1 = 1

4
+

2ν
(j)

1 + ν
(j)

2

2
, (ηj )2 = 1

4
+

−ν
(j)

1 + ν
(j)

2

2
,

(ηj )3 = 1

4
+

−ν
(j)

1 − 2ν
(j)

2

2
ηj = min

1≤l≤3

∣∣(ηj )l
∣∣≍

∣∣(ηj )2

∣∣,

Cj =
3∏

l=1

∣∣(ηj )l
∣∣.

Moreover, for a multi-index n ∈ N6
0 we write |n| = n(1) + · · · + n(6) and

η−n
j :=

3∏

l=1

(ηj )
−n(2l−1)
l (ηj )

−n(2l)
l .

Proposition 6 Let G0 : (0,∞) → R be a smooth function with functional

equation G0(x)+G0(1/x) = 1 and derivatives decaying faster than any neg-

ative power of x as x → ∞. Let M ∈ N and fix a Maaß form φ as above.

There are explicitly computable rational constants cn,ℓ ∈ Q depending only

on n, ℓ, M such that the following holds for

G(x) := G0(x) +
∑

0<|n|<M
0<ℓ<|n|+M

cn,ℓη
−n
j

(
x

∂

∂x

)ℓ

G0(x).

For any ε > 0 one has

L(φj ,1/2) =
∞∑

n=1

Aj (1, n)√
n

G

(
n√
Cj

)
+ κj

∞∑

n=1

Aj (1, n)√
n

G

(
n√
Cj

)

+ O
(
η−M

j C
1/4+ε

j

)
, (9.4)

where |κj | = 1 and the implied constant depends at most on ε, M , and the

function G0.

It is now a simple matter to prove Theorem 4. We can assume that T is

sufficiently large. Let

Gℓ(x) :=
(

x
∂

∂x

)ℓ

G0(x).
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Then the Mellin transform Ĝℓ(s) is rapidly decaying on vertical lines ℜs =
σ > 0. By (9.4) and Mellin inversion we have

∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

∣∣L(φj ,1/2)
∣∣2

≪M,ε

∑

ℓ≤2M

∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

(∣∣∣∣
∑

n≤T 3/2+ε

Aj (n,1)√
n

Gℓ

(
n√
Cj

)∣∣∣∣

+ O
(
η−M

j C
1/4+ε
j + T −100

))2

≪M,ε T ε
∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

(∫ T ε

−T ε

∣∣∣∣
∑

n≤T 3/2+ε

Aj (n,1)

n1/2+ε+it

∣∣∣∣dt

+ O
(
η

−M+1/4
j T 1/2+ε + T −100

))2

,

noting that Cj ≪ ηjT
2 ≪ T 3. This is at most

≪ T ε

(
max
|t |≤T ε

∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

∣∣∣∣
∑

n≤T 3/2+ε

Aj (n,1)

n1/2+ε+it

∣∣∣∣
2

+ T
∑

T ≤|ν(j)
1 |,|ν(j)

2 |≤2T

(
1 +

∣∣ν(j)

1 − ν
(j)

2

∣∣)−2M+1/2
)

.

By Theorem 3 and (4.3) the first term is O(T 5+ε). By Theorem 1 or (9.1) it

is easy to see that the second term is also O(T 5+ε). This completes the proof

of Theorem 4. �
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Appendix: A theorem of Goldfeld–Kontorovich

A very nice application of the GL(3) Kuznetsov formula has been given re-

cently in [19]. The purpose of this appendix is to illustrate how the methods

of this paper directly yield a version of [19, Theorem 1.3] with considerably

better error terms and without assuming the Ramanujan conjectures. We keep

the notation developed so far.

Theorem 5 For n1, n2,m1,m2 ∈ N, P = n1n2m1m2, T sufficiently large,

one has

∑

j

Aj (n1, n2)Aj (m1,m2)
hT (ν1, ν2)

‖φj‖2

= δm1=n1
m2=n2

∑

j

hT (ν1, ν2)

‖φj‖2
+ O

((
T 2P 1/2 + T 3P θ + P 5/3

)
(T P )ε

)

where θ ≤ 7/64 is a bound towards the Ramanujan conjecture on GL(2).

Here hT is non-negative, uniformly bounded on {|ℜν1| ≤ 1/2} × {|ℜν2| ≤
1/2}, hT ≍ 1 on {(ν1, ν2) | c ≤ ℑν1,ℑν2 ≤ T , |ℜν1|, |ℜν2| ≤ 1/2} for some

absolute constant c > 0, and hT (ν1, ν2) ≪A ((1 + |ν1|/T )(1 + |ν2|/T ))−A.

For comparison, the error term in [19, Theorem 1.3] (scaled down by

T −3R) is O(T 3+εP 2), but see also [19, Remarks 1.8, 1.19] where possible

improvements are mentioned. A more precise discussion on the asymptotic

behavior of the test function hT can be found in Remark 6 below.

Injecting Theorem 5 into the estimates of [19, Sect. 9] and using only θ <

1/3, we obtain the following corollary. For a Hecke–Maaß form φ for SL3(Z)

let ρ(φ) be one of φ, sym2φ or Adφ. Let ψ be a smooth test function whose

Fourier transform has support in (−δ, δ) for some δ > 0. Define D(ρ(φ),ψ)

as in [19, Sect. 1.4].

Corollary 6 (Goldfeld–Kontorovich) Assume the generalized Riemann hy-

pothesis and the Ramanujan conjectures. Suppose

δ < 5/23, ρ(φ) = sym2φ or Adφ,

δ < 10/13, ρ(φ) = φ.

Then one has
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(∑

j

hT (ν1, ν2)

‖φj‖2

)−1∑

j

D
(
ρ(φj ),ψ

)hT (ν1, ν2)

‖φj‖2

=
∫

R

ψ(x)Wρ(x) dx + O

(
log logT

logT

)
,

where

Wρ(x) = 1, ρ(φ) = φ or sym2φ,

Wρ(x) = 1 − sin(2πx)

2πx
, ρ(φ) = Adφ.

In particular, the symmetry types are unitary or symplectic, respectively.

This improves the range of the support of ψ̂ by about a factor 3 compared

to [19, Theorem 1.13] (see also [19, Remarks 1.18, 1.19]).

Proof of Theorem 5 Let g be a fixed, smooth, non-negative, compactly sup-

ported test function. Let R1,R2 be sufficiently large, and write R = R1 + R2.

We choose F as in (8.5) with X1 = X2 = 1 and integrate the equality in

Proposition 4 against

∫ ∞

0

∫ ∞

0

g

(
τ1

R1

)
g

(
τ2

R2

)
dτ1 dτ2

as in (8.10). From Proposition 3, the above mentioned lower bounds for L-

functions [22, 23] on the line ℜs = 1 and Weyl’s law for GL(2) we conclude

that the Eisenstein contribution in (8.1) is O(R3+εP θ+ε). From Proposition 3

and Proposition 5 we conclude by the same calculation as in (9.3) that the long

Kloosterman sum Σ3 in (8.2) contributes O(R2+εP 1/2+ε). Similarly, if P <

R3−ε , the other two Kloosterman contributions Σ2a +Σ2b are O(R−100), and

are otherwise O(R5+ε) which follows after a straightforward estimate using

Proposition 5 and (6.7). Hence in either case their contribution is O(P 5/3+ε).

We conclude

∑

j

Aj (n1, n2)Aj (m1,m2)
hR1,R2

(ν1, ν2)

‖φj‖2

= δm1=n1
m2=n2

HR1,R2
+ O

((
R2P 1/2 + R3P θ + P 5/3

)
(RP )ε

)
(10.1)

where

hR1,R2
(ν1, ν2) =

∫ ∞

0

∫ ∞

0

g

(
τ1

R1

)
g

(
τ2

R2

)∣∣〈W̃ν1,ν2
,F 〉

∣∣2 dτ1 dτ2
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and HR1,R2
=
∫∞

0

∫∞
0 g(

τ1
R1

)g(
τ2
R2

)‖F‖2 dτ1 dτ2, but we only need to know

that this quantity is independent of n1, n2,m1,m2.

The weight function hR1,R2
is uniformly bounded and non-negative. It fol-

lows directly from Proposition 3 that

hR1,R2
(ν1, ν2) ≍ 1 for |ℜν1|, |ℜν2| ≤ 1/2,

ℑν1

R1
,
ℑν2

R2
∈ supp(g), (10.2)

and rapidly decaying outside the region
|ν1|
R1

,
|ν2|
R2

∈ supp(g). In other words,

hR1,R2
is a good approximation of the characteristic function on the square

ℑν1 ≍ R1, ℑν2 ≍ R2.

Applying (10.1) with n1 = n2 = m1 = m2 = 1, we see that

HR1,R2
=
∑

j

hR1,R2
(ν1, ν2)

‖φj‖2
+ O

(
R3+ε

)
.

Hence we obtain

∑

j

Aj (n1, n2)Aj (m1,m2)
hR1,R2

(ν1, ν2)

‖φj‖2

= δm1=n1
m2=n2

∑

j

hR1,R2
(ν1, ν2)

‖φj‖2
+ O

((
R2P 1/2 + R3P θ + P 5/3

)
(RP )ε

)

whenever R1,R2 are sufficiently large. Piecing together dyadic squares, we

obtain Theorem 5. �

Remark 6 The proof of Proposition 3 gives much more precise information

on the weight function hT in Theorem 5. By (3.14), we see that hR1,R2
de-

scribed in (10.2) satisfies the more precise asymptotic relation

hR1,R2
(ν1, ν2) ∼ c

R1R2(R1 + R2)

|ν1ν2(ν1 + ν2)|
g

( |ν1|
R1

)
g

( |ν2|
R2

)
, ν1, ν2 ∈ iR,

for R1,R2 → ∞, where the constant c > 0 is given by

c = (2π)3

33

∫

R

∫

R

∣∣f̂ (−1 − ix − 2iy)f̂ (−1 − 2ix − iy)
∣∣2 dx dy

= (2π)3

34

(∫

R

∣∣f̂ (−1 − ix)
∣∣2 dx

)2

for the weight function f in the Poincaré series (8.5). In particular, by varying

g one has the flexibility to prescribe asymptotically any reasonable bump

function on the tempered spectrum.
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