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Abstract

The method of the Lie theory of extended groups has recently been formulated for
Hamiltonian mechanics in a manner which is consistent with the results obtained using
the Newtonian equation of motion. Here the method is applied to the three-dimensional
time-independent harmonic oscillator and to the classical Kepler problem. The expected
constants of motion are obtained. Previously unobserved relations between generators
and invariants are also noticed.

1. Introduction

There is, it would seem, a never-ending search for methods which provide a way
of determining symmetries and invariants for dynamical systems. Two useful
methods are Noether's theorem (in its various forms) and the method of the Lie
theory of extended groups. The present application of both methods is to test
systems for the presence of exact symmetries and, if they exist, to determine the
associated constants of the motion. It would not greatly surprise us if in the
future they were, in some sense, used to determine approximate symmetries, for
example, of an adiabatic type.

The two methods are based on the concept of an invariance under an
infinitesimal transformation of the dynamical variables. For Noether's theorem,
the object which is left invariant is the Action Integral and, for the Lie method,
it is the equation(s) of motion. The latter method is less restrictive than the
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former and provides a greater number of invariants and/or allows a more
general class of problem to be treated.

Before proceeding further it is proper that we define the type of infinitesimal
transformation about which we speak. We are dealing with point transforma-
tions only. As an example of the greater generality of the Lie method we cite a
one-dimensional linear system. Allowing point transformations only, Noether's
theorem yields five generators of symmetry whereas the Lie method provides
eight. However, the more serious failings of Noether's theorem occur when
multi-dimensional systems are studied. It does not provide the Jauch-Hill-
Fradkin tensor for the harmonic oscillator nor the Runge-Lenz vector for the
classical Kepler problem. The Lie method does [5], [6].

To repair this deficiency in Noether's theorem, the use of velocity-dependent
transformations has been proposed [1], [4]. Certainly the constants mentioned
above satisfy the equations obtained with the more general type of transforma-
tion. Unfortunately, the wider class of admissible transformations results in an
infinite number of symmetries for which no systematic method of determination
exists. The same fault applies to the Lie method if the inclusion of velocity-de-
pendent transformations is allowed. However, the inclusion is not necessary for
the Lie method since all the useful invariants may be found with coordinate-de-
pendent transformations only. As far as we are aware, invariants of value in
describing the motion are either linear or quadratic in the velocities (momenta).
It is these invariants which we term useful here. The difficulties associated with
the use of velocity-dependent transformations in Noether's theorem are delin-
eated more fully in the Appendix.

Until recently [7], the application of the Lie method in mechanics has been to
the Newtonian equation of motion whereas Noether's theorem may be applied
in either a Lagrangian or Hamiltonian context. Once the Newtonian results were
obtained, the results could be translated into Hamiltonian form [2], but it
seemed to us to be a messy approach. As many problems occur in a Hamilto-
nian framework, we judged it better to formulate the Lie method in the
Hamiltonian framework in such a way that the results obtained would be
consistent with the results for the corresponding Newtonian system when it
exists. The formulation turned out to be very straightforward and we simply
quote the results here. The operator

y(q, p, 0 = £(q, 03/3/ + i,,(q, t)d/dq, + £,(* P- ')3/3/>, (1.1)

is a generator of a one-parameter Lie group for a Hamiltonian H(q, p, /) with
equations of motion

qt - dH/dPi = 0 and p, + dH/dq, = 0, (1.2)
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provided the action of the first extension of Y on equations (1.2) gives zero
whenever equations (1.2) are satisfied. The first extension is

<i> P. q, P, 0 = Y(q, p, t) + 7,P(q, p, /)3/9<7,. + tf'>(q, p, t)d/dplt (1.3)
where we have specifically written T)/!) and f,(1) as functions of q, p and t to
indicate that whenever qy appears it is replaced by dH/dpj and pj by -dH/dqj.
Thus

9/ dqj dqj 9p,. \ 9f Spj dqy) '

and

3 + + | +
3/ + 3/;, 3^ ty ty * 3*, \ 3/ + dPj d

When the set of generators { Y/} is determined, the associated invariants are
obtained as solutions to the pair of equations

r,(q. p, O'(q, p. 0 = o (i.6)
and

|{ / (q ,p ,0}=0. (1.7)

This is the main drawback with the Lie method in comparison with Noether's
theorem as the latter gives the invariant immediately. There are some instances
in which the integration of equations (1.6) and (1.7), or their equivalents in the
Newtonian picture, is not necessary. The time-dependent one-dimensional
harmonic oscillator [3] may be taken as an example. The generators for that
problem may be converted to the generators for the corresponding time-inde-
pendent oscillator by a common transformation. Applying the inverse transfor-
mation to the oscillator invariants, the invariants for the time-dependent prob-
lem are obtained immediately.

The plan of this paper is as follows. In Section 2 the generators for the class of
Hamiltonian systems to which the oscillator and the Kepler problem belong are
shown to have a particular form. This simplifies the algebra when the two
problems are considered in Sections 3 and 4.

2. Possible form of the generator

Suppose we have a Hamiltonian for which the equations of motion have the
form
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and

Pi + ft(q. 0 = 0, (2.2)

which is commonly the case when the basis is cartesian. The matrix [ftj\ is
regular and may, without loss of generality, be taken as symmetric, although this
is not necessary. Applying the first extension of the operator Y given in equation
(1.3) to equations (2.1) and (2.2) we have

i}J'> - y(q, p, %(')/>, = 0 (2.3)

and

#'> + Y(q, p, r)a(q, 0 = 0. (2.4)

On rearranging equation (2.3) we obtain

Sl=!%V-ifkWkj/*i)pJ, (2-5)

where [f'J] is the inverse offip that is,

/ % =«;. (2.6)

This expression for J, is substituted into equation (2.4). The terms of third order
in the momenta yield

Tih - ° (2-7)

and so

£(q, /) = a(t) + bt{t)qt. (2.8)

Collecting and rearranging the terms of second order in the momenta,

f

x {8,Am + BJ&m) = 0, (2.9)

where equation (2.6) has also been used. For equation (2.9), it is obvious that TJ
is at most quadratic in q. From the particular case j{J = 6^ we get

i?/(* 0 = H f t + cu{i)qj + d,(t). (2.10)

There is no point, at this stage, in considering the coefficients of first and
zero-th order powers of p since these contain the functions g,.(q, t). Had we
allowed the/_,•(/) to be functions of q as well, equation (2.10) would have been
much more complex. Such dependence would occur when curvilinear co-
ordinates are used and may, as a separate topic, be worthy of discussion.
However, the cartesian form which we are using here is sufficient for the present
purpose. To round off this section we complement equations (2.8) and (2.10)
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with the expression for f,(q, p, t) for the case when^y is S/y. It is

?,(q. P. ') = -4p, + bjqft + bjPjqt - bjPjPf + Cfjqj + ckjPj + dt. (2.11)

3. Harmonic oscillator

The three-dimensional time-independent harmonic oscillator has the
Hamiltonian

H = W + q2) = liPiPi + </.<?,)> i = 1» 3. (3.1)

Equations (2.2) and (2.3) become

T , P - ? , . = 0 and tf^ + T,,. = 0. (3.2)

Corresponding to the development in the previous section, the first of (3.2) gives
f, in terms of TJ,, £ and their derivatives. Using the second of (3.2), the general
formulae obtained for f(, TJ, and | , and separating by coefficients of powers of p
and q in turn, we obtain the following set of ordinary differential equations

*8* + cik = 0, dSik - 2cik = 0, |

^ + 6,. = 0, and 4 + 4< = 0. j
The solution of this set of equations is trivial and results in the following
expressions for £, 17 and f:

£(q, 0 = A + B sin It + C cos 2/ + (Dy sin / + £, cos f)fy (3.4)

^(q. 0 = (Dj cos / - Ej sin O<7,<7, + Fikqk

+ (B cos 2/ - C sin 2/)?, + G, sin / + 7/,. cos /, (3.5)

f,(q» P. 0 = - (B cos It - C sin 2f)/>, - (£, sin t + Ej cos

+ (Dy cos / — ̂  sin /)/>,-qr
I- — (Dj sin t + Ej cos

- 2(5 sin 2/ - C cos 2t)q( + FtjPj + C, cos t - Hi sin t. (3.6)

In all, for the three-dimensional problem, the generator contains twenty-four
constants of integration giving twenty-four linearly independent generators. In
passing, we note that for the corresponding «-dimensional system there are
n2 + 4/i + 3 constants and so an equal number of generators (compare with [1]).
From the expressions given in equations (3.4) to (3.6) we may write down the
individual generators. These are

Yu = sin / d/dq, + cos d/dpt, i = 1, 3, (3.7)

y2l = cos / 3/8,7,. ~ sin / 3/3/>,., / = 1, 3, (3.8)

Y3 = 3/3/ , (3.9)

74 = sin 2/ 8/3/ + q. cos It d/dqj - (2^. sin It + pj cos 2/)3/3/>y, (3.10)
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y5 = cos 2/ 3/3/ - qj sin 2/ 3/3^, - (2<?y cos 2/ - pj sin 2/)3/3p,., (3.11)

y6, = qf sin / 3/3/ + qtqt cos / 3/3^,

— (qtqj sin / — ptqj cos / — /y>, sin /)3/3p,, i = 1, 3, (3.12)

Y-u = ?,- cos / 3/3/ — qrfj sin / 3/3^-

— (?,^, cos / + prfj sin / + pj>j cos t)d/dpj, i = 1, 3, (3.13)

h <?,- 3/3ft + A- 3/3p,- + ÎPi 3/3p,-, i,y = 1, 3, (3.14)

?,. - ?,. 3/3^,. + />, d/dpi - Pi d/dpp i ¥=j = 1, 3. (3.15)

Note that the generators for y8(y and Y9iJ are obtained from the symmetric and
antisymmetric parts of F^, respectively.

We do not intend to discuss the group structure in detail here as it corre-
sponds with the results given by Prince and Eliezer [5] for the time-dependent
system, that is, the group is Sl(3 + 2, R). Furthermore, we shall not explore all
the invariants in detail. Of the generators with time-dependent coefficients, Yu

and Y2i are associated with the invariants which represent the initial conditions.
The others are not so informative about the motion.

However, we do wish to make some comment about the generators Y3, Y%ij

and Y9iJ. The antisymmetric generator Y9iJ produces the invariants

and

hifi = qf + q} + pf + pj' ' *h (3-17)

there being three of each type. The first type consists of the components of
angular momentum. To each component of the angular momentum there is one
invariant of the second type which represents a hypersphere in the four-dimen-
sional subspace of phase space given by the coordinates {qt, qJy pit pj). This
hypersphere is invariant under rotations. The symmetric generator YSiJ gives rise
to what might be described as the hyperbolic counterpart of the invariant
hypersphere. The two constants may be considered to be the orthogonal projec-
tions of a pair of rotating (hyper-) hyperboloids specified respectively by

/,(</„ qj, P,,Pj) = («? - ?/) - (Pf ~ Pf) (3-18)

and

fyPuPj) = liPi ~ ijPj- (3-19)

So we see that the symmetric generator is not of use to describe the motion
whereas the antisymmetric operator gives rise to the angular momentum and,
when summed, the energy, both of which are useful quantities.
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We have purposely left the simplest generator, that of time-translations, to the
last as it displays a richness of detail which is generally overlooked. We suspect
the reason for this lies in the consequence of the use of Noether's theorem as in
that context this generator gives rise to the conserved energy alone. However, we
are working within the scheme of the Lie method and shall display a far richer
result. We recall that an invariant associated with a generator satisfies the dual
conditions

y(q, p, t)I(q, P, 0 - 0 and /(q, p, t) = 0. (3.20)

For Y3 the associated Lagrange's system for the first of (3.20) is

dt/\ = dqJO = dpJO, i = 1, 3, (3.21)

whence, trivially,

M, = q, and t>, = />,. (3.22)

Rewriting the second of (3.20) in terms of the «, and u,, we have

dujduj = vi/vj, dvjdvj = ujuj and dvjduj = -ujvj. (3.23)

Taking the third of (3.23),

utduj + dVfVj = 0, (3.24)

and adding to it the same with / and 7 interchanged, we obtain

d{u,uj + Vivj) = 0. (3.25)

Integration of equation (3.25) gives the Jauch-Hill-Fradkin tensor
Aij = lilj + PiPj- (3.26)

Half the trace of Atj gives the energy. The first two of equation (3.23) may be
rewritten as

du^j — dttjVj = 0 and utdvj — Ujdvt = 0. (3.27)

When these are added and integrated we have the angular momentum tensor

*V =
 WJ ~ IJPI- (328>

The Jauch-Hill-Fradkin tensor does not arrive from the application of
Noether's theorem. The reason for this stems from two facts. The first is that
only one invariant is found per generator and the 3/8/ generator, by not
containing the coordinates specifically, can be regarded as a diagonal operator
which, in combination with a diagonal Lagrangian (Hamiltonian), gives a
diagonal invariant, the trace of the tensor. The second is that the only other
possible source could be one of the time independent generators Y8iJ and Y9iJ,
actually their Noether equivalents, and neither of these provides the tensor when
Noether's theorem is used.
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It must be emphasized that we are not promoting the use of the generator,
3/3/, to obtain all of the time-independent first integrals. This might require
considerable ingenuity, rather more, in fact, than is required when the generator
directly associated with the particular first integral is used. What we do wish to
demonstrate is that, in the Lie method, such first integrals are implied in the
generator of time translations.

4. Classical Kepler problem

The Hamiltonian for the classical Kepler problem is

H = tf-p/r (4.1)
and, in light of the development in Section 2, we take cartesian coordinates.
Equations (2.2) and (2.3) become

i j ^ - f t = 0 and «1) + ^ ( y r 3 - 3 4 % / r s ) - a (4.2)

Following the procedure used in Section 3 we find that

a(l) = At + B, 6,(0 = 0, )

Cij(t)=±A8iJ + CiJ and 4(0 = 0,]

where the constant matrix [C/y] is skew-symmetric. The generators of one-
parameter Lie groups are

Yx = 3/8/, (4.4)

Y2 = / d/dt + \qj d/dqj - \Pj d/dpj, (4.5)

y3IJ = <7, 9/dq, - qj 3/3.?, + p, d/dpj - Pj 9/3/>,, i *j = 1, 3, (4.6)

a total of five in all since Y3 is skew-symmetric.
Starting with Y3iJ, the associated Lagrangian system is

dt/0 = dqjqj = dq,/ (-?,) - dpjpj = dpj/ (-/>,), i +j, (4.7)

for which

- - ' • • ? - * * * 1 (4.8,
Vw = PT + Pf and v^j = qj>j - q^.j

From (4.8) and the equations of motion we have

= 2{qipi + qjPj), dvUJ/dux = -l

and dv2ij/du{ = 0. (4.9)
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From the third of equation (4.9) it follows immediately that v2iJ is a first integral,
in fact the angular momentum,

LtJ = Wj ~ QjPi- (4.10)

Combining the first two of (4.9),

* . , ; + (fA>ly=0. (4.11)

Summing this over the three permissible values of / and j and returning to the
canonical coordinates,

d(2p2) + 4/t dr/r2 = 0,

which, on integration, gives the conserved energy,

JE = / / = ' p 2 _ M / r .

For Y2 we have

dt/t = (dqj)/ ( | qj) = (dpj)/ (-fa), j =

and so

w, = 9,r2/3 and vi=pit
l/3, / = 1

From (4.15) and the equations of motion we have

dtdj 3t?j — 2M- do- Vj — 3 tut

where

P2 = .fciv

There are three possible solutions to equations (4.16), the
Runge-Lenz vector,

Rt = u,v,oj - ujViVj - pujP = qiPjPj - qjPiPj -

That the energy and angular momentum cannot be solutions

(4.12)

(4.13)

1,3, (4.14)

, 3. (4.15)

P"3

UJ

(4.17)

components of the

Wjr. (4.18)

may be verified by
allowing Y2 to act on each and noting that the result is non-zero.

The associated Lagrange system for y, is

dt/l = dqi/0 = dPl/0, i = l , 3 ,

and so

M, = 9, a n d Vj = p t , i = 1 , 3 .

From (4.2) and the equations of motion we have the relations

duj/dui = vj/vf, dvj/dv, = itj/u, and dvj/du, =

(4.19)

(4.20)

= -(/*",)/('•V)-
(4.21)
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The first and second of these may be combined to give

d(u,vj - u,v,) = 0, (4.22)

which yields the conserved angular momentum tensor

L,j = Wj ~ Wr (4-23)

Using the third of (4.21) in diagonal form and summing we have

v.dv. - »//(!/.r) = 0, (4.24)

which integrates to give the conserved energy

E = H=\tf-v/r. (4.25)
Now we take the third of (4.21) in its general form, multiply by K ^ and sum on
the repeated index to obtain

UjVjdvj - fiUjd{\/r) = 0 and UjV/dv, - iaijd(\/r) = 0, (4.26)

which may be combined to give

u,d(vjVj) - UjVjdv, - tut,d(\/r) = 0. (4.27)

Employing the first and third of equation (4.21), this may be rewritten as

diujVjVj - UJVJV, - pujr) = 0, (4.28)

which integrates immediately to the components of the Runge-Lenz vector
(4.18).

5. Comment

In this short note we have illustrated the use of the method of the Lie theory
of extended groups in the context of Hamilton's equations of motion. We have
demonstrated that the method may be applied in a self-contained way and yield
results consistent with those obtained by the more usual application of the
method to the Newtonian equations of motion. This consistency is achieved by
restricting the choice of infinitesimal transformations to point transformations.
The restriction is not unreasonable since it is well-known from the Lie theory of
differential equations that unrestricted transformations will lead to an infinite
number of generators which cannot be determined systematically.

The two problems which were chosen for this demonstration are well-known
for their properties and their usefulness in illustrating theory in mechanics. The
oscillator is the paradigm of linear systems and the Kepler problem the simplest
of the important non-linear systems. In using these well-worked problems we
have, even still, been able to make a point which, when made, is obvious, but
has not, to our knowledge, been made. The classical invariants which are used to
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determine the equations of the orbits, energy, angular momentum and Jauch-
Hill-Fradkin tensor/Runge-Lenz vector, may be found, in the Lie approach,
from the generator of time translations. Since, in Hamiltonian mechanics, the
Hamiltonian is the generator of time translations for time-independent quanti-
ties, any such quantity which has zero Poisson bracket with the Hamiltonian is
an invariant under time translation. That the same invariant arises from more
than one generator is not exceptional as, in the case of the free particle in
one-dimension, eight generators give rise to only three linearly independent
invariants when the Lie method is used.

The Lie method yields more than Noether's theorem, under the same type of
permitted transformations, for two reasons. The first is simply the possibility of
obtaining more generators. The second is that, for a given generator, the
equations of motion enter into the determination of possible invariants. We saw,
especially in dealing with the 8/3/ generator, that this permits manipulations
which are not possible with Noether's theorem since, for the latter, the relation-
ship between generator and invariant is predetermined.

In examining a particular problem with a view to establishing its orbit
characteristics, we are not interested in every possible invariant, but only those
which are of use in describing the orbit. Of the many invariants associated with
the harmonic oscillator only the energy, angular momentum and Jauch-Hill-
Fradkin tensor are used for this purpose. For the Kepler problem it happens
that all the invariants found are of this type and this may well be a feature of
non-linear systems. It has been noted elsewhere that linear systems are special
[9]. The Lie method does involve some further manipulation which could, in
some problems, depend upon the ingenuity of the investigator to determine the
invariants. The beauty of Noether's theorem is that the theory does not require
further ingenuity once the generators are known. The failure of Noether's
theorem is that it does not produce all the known orbit-determining invariants.
If Noether's theorem could be suitably generalized so that all of these invariants
are available, its utility would be greatly enhanced. For reasons already men-
tioned, velocity-dependent transformations are not suitable. The question is this,
is there some other way to generalize the theorem to produce the desired results?

Appendix

In the Introduction, the use of Noether's theorem with point transformations
was criticized on the gounds that it did not give rise to all of the known first
integrals. In particular, for the problems under consideration here, Noether's
theorem does not yield the Jauch-Hill-Fradkin tensor for the oscillator on the
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Runge-Lenz vector for the Kepler problem. Those first integrals may be
obtained if velocity-dependent transformations are admitted, the latter being
given as an example by Levy-Le Blond [4] and also in the text by Saletan and
Cromer [8]. However, the reader will recall that the introduction of velocity-de-
pendent transformations was also criticized in the Introduction as it gave rise to
an infinite number of generators of symmetry transformations for which there is
no systematic method of determination. The apparent contradiction in the last
two sentences is readily resolved. In the paper and text cited, the authors do not
derive their generators, but simple quote them and demonstrate that the
Runge-Lenz vector follows. The concern of the present paper is the determina-
tion of generators. The problems of finding velocity-dependent transformations
are demonstrated explicitly below.

Suppose that the Action Integral

J=f'l{pq-H(q,f>,t)}dt (Al)

is invariant under the infinitesimal transformation generated by

, Y(<b P. 0 = «(* P. 0 3/3 ' + ifa. P. 0 • 3/3q + ftq, P, 0 • 3/3p- (A2)
Then, from Noether's theorem, there exists a first integral

/(q> p> 0 = P • i(q, P> 0 - #(q. P. 0£(q> P. 0 - M ')> (A3)
where/(q, t) is the gauge-variant contribution. Note that the exclusion of p from
/ does not indicate any loss of generality. To determine the generator, (A3) is
differentiated with respect to time and set equal to zero. This gives rise to the
equation

- "(f

In view of the fact that £ and TJ have been assumed to contain p, (A4) cannot be
separated by coefficients of powers of pt as before. This is the basis for the
remark made above that the generators cannot be determined systematically
when velocity (momentum)-transformations are admitted.

It is, of course, possible to postulate forms for £(q, P> 0 an^ *j(q> P> 0 as
polynomials in p with undetermined coefficients, substitute these and determine
the coefficients. However, this procedure provides no guarantee of completeness
in the set of operators. In the case of the Kepler problem, for example, it may be
verified by direct substitution in (A4) that an operator is the generator of a
symmetry transformation, which is the case of the example given by Saletan and
Cromer ([8], page 82).
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It will be recalled that the use of velocity dependent transformations was also
criticized on the grounds that there exist in infinite number of them. This is a
well-known consequence of Lie's theory of differential equations, but may be
demonstrated in a very trivial fashion. Suppose that it has been shown that

Y(q, p, 0 = £(q, p, t)j-( + i,(q, p, t) • - ^ + tfq, p, /) • J - (A5)

is a generator of a symmetry transformation. Then, if G(I) is an arbitrary
function of invariants (denoted generically by / ) ,

f (q> P, >) = G(/mq, P, 0 (A6)

is also a generator. This follows from direct substitution in (A4). As an infinite
number of such functions G(/) exists, there is an infinite number of velocity-de-
pendent generators. For, even if the original Y were the generator of a point
transformation, its derivatives Y must be velocity-dependent since first integrals
are functions of p as well as of q (and /)•

In this Appendix it has been shown that Noether's theorem does have
disadvantages when velocity-dependent transformations are admitted. The basic
cause is very practical. How are generators to be found if (A4) cannot be
solved? This difficulty with Noether's theorem is compounded by the fact that,
without velocity-dependent transformations, it provides an incomplete set. For
those two reasons it is suggested that the method of the Lie theory of extended
groups, based on point transformations, is more satisfactory.
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