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ABSTRACT:

Different data sources for the determination of a digital terrain model (DTM) are available. New measurement techniques like laser
scanning (LS) and interferometric synthetic aperture radar (InSAR) allow a high degree of automation and dense sensing. They
pushed the development of new methods for data modelling. This paper presents robust methods for the automatic determination of
a DTM from point cloud data. These robust methods operate on the original data points and allow the elimination of off-terrain
points and the modelling of the terrain surface within one process. After a short description of the algorithms the paper focuses on
the results of this technique applied to datasets from different sensors (airborne LS, terrestrial LS, satellite LS, tacheometry and
photogrammetry).

* Corresponding author.

1. INTRODUCTION

For the determination of a digital terrain model (DTM) different
methods for data capturing do exist. The choice of the most
appropriate measurement system depends on the specific
application. Apart from the “classical sensors” like
photogrammetry and tacheometry, new measurement systems
like laser scanning and interferometric synthetic aperture radar
(InSAR) have been developed in the last years and offer new
possibilities such as increasing measurement density and higher
degree of automation. These systems pushed the development of
new methods for DTM determination.

This article presents algorithms developed at our institute for
the generation of DTMs from irregular distributed point cloud
data (sec. 3). Robust methods for error reduction and
elimination are integrated into the modelling process and are
used for the classification into terrain and off-terrain points.
Finally, the results of these techniques applied to datasets
obtained by different sensors (airborne LS, terrestrial LS,
satellite LS, tacheometry and photogrammetry) are presented.
This demonstrates the generality of the proposed method (sec.
4). However, we expect that other algorithms developed for the
elimination of off-terrain points in airborne laser scanner data
(sec. 4.2) can be used in a more general context, too. In this
section we also present different strategies for data densification
and homogenisation in order to close data holes. Although it is
an extrapolation of the measured points, it is necessary for many
DTM applications.

It shall be made clear, that the algorithm for robust DTM
generation has already been presented elsewhere (e.g. Kraus and
Pfeifer, 1998), nevertheless the formulas are given in the
appendix. Its versatile application possibilities have not been
published so far and we expect that the general concept is very
useful for all who have data with gross errors and want to
interpolate a surface (not only a DTM) from it.

2. ERRORS WITH RESPECT TO THE DTM

In the context of this paper the term “error” is used for the
disagreement between the z-value of the measured point and the
“true” terrain surface. We speak of residuals if we mean the
“true” height (t) minus the observed height (z). Under filter
value (f) we understand the negative residual, thus: t + f = z.
Because we restrict our applications to 2.5d-problems, which
means that the surface is the graph of a bivariate function, the
errors are measured in z-direction only.

As mentioned above, the data used is a cloud of points. This
point of view can be characterized as data driven and has the
advantage that it is very general and independent from the
sensor type. However, the parameters for the model derivation
as well as those of the derived models depend on the
characteristics of the sensor, which will be seen in the examples
section. On the other hand, the consideration of measurement
errors with respect to the individual sensor components would
allow a closer look on the realisation of all the measurements
for one point observation. Modelling and filtering all sorts of
errors (see below) in such a model would yield the most precise
solution (approaches for the consideration of systematic errors
in airborne laser scanner data can be found in Burmann, 2000;
Filin, 2001 and Schenk, 2001).

We aspire a surface determination technique considering errors
in the measured points in the modelling process (i.e. generating
the DTM). Apart from random errors we have to consider gross
and systematic errors in the z-values of our data points.

Random errors Depending on the measurement system, the
points measured on the terrain surface have a more or less
random distribution with respect to the “true” terrain surface. In
general this random error distribution is characterized by the
standard deviation of the measurement system and should be
considered in the DTM generation process.

Gross errors Gross errors can occur in all datasets. Especially
automatic systems like laser scanners produce a high number of
gross errors with respect to the terrain surface. In the case of



laser scanning these errors can be split in “real” measurement
errors (e.g. so-called long ranges caused by multi-path effects)
and errors caused by reflecting surfaces above the terrain (e.g.
on vegetation or houses). A method for the automated
elimination or at least reduction of gross errors is necessary.

Systematic errors In the case of systematic errors we have to
distinguish between gross systematic errors, which have similar
characteristics like gross errors, and small systematic errors (e.g.
in the case of LS too short ranges caused by reflection in low
vegetation or even in grass rather than on the soil). The
influence of these small errors will be small in magnitude and it
will be difficult to eliminate these errors without any further
information. Systematic gross errors have the property that they
appear with the same magnitude at many points. One example
for such an error is a shift in the orbit of a LS platform.

3. ALGORITHMS

In the following, algorithms considering the 3 types of
measurement errors (random, gross and systematic) are
presented. If possible, systematic errors in the data should be
avoided in the measurement process or corrected with suitable
models before the surface model generation. However, it can be
seen in the examples section that we are able to eliminate gross
systematic errors (sec. 4.4) if enough error-free data is given.
Small systematic errors can not be excluded from the DTM
derivation.

Our method for the interpolation of randomly distributed point
data - the linear prediction - has quite a long history, but still
plays a centre role. The technique of robust interpolation
developed for the generation of a DTM from airborne laser
scanner data in wooded areas and its extension in a hierarchical
set-up have stand a lot of tests for the DTM generation from
laser scanner data. In the following, these algorithms are
summarized and their consideration of errors are presented. The
formulas can be found in the appendix.

3.1 Interpolation

For the interpolation of the DTM we use linear prediction,
which is very similar to kriging (Kraus, 1998). This approach
considers the terrain height as a stochastic process. Depending
on the data its covariance function (corresponding to the
variogramm of kriging) is determined automatically. This
function describes the co-variance of measured point heights
depending on the horizontal Euclidian point distance. In the
algorithm used (Gaussian covariance) it attenuates
monotonously. The interpolation is applied patch wise to the
data which results in an adaptive (i.e. patch wise) setting of the
covariance function.

The variance of measured heights (covariance at point distance
zero) contains the variance of terrain heights plus the variance
of the measurement errors. Subtracting the variance of the
measurement error, which is a prior knowledge of the
measurement, yields the variance of the terrain. Details on the
computation of the covariance and the linear prediction (also
known as surface summation with Gaussian basis functions) can
be found in (Kraus, 2000, sec. H.3). The covariance functions
are centred on each data point and factors for these functions
are determined for each point in a linear system of equations.
The sum of the (vertically) scaled functions is the interpolated
surface. With the variance of the measurement errors the
smoothness of the resulting surface can be influenced.

3.2 Robust Interpolation

This method was originally developed for the generation of a
DTM from laser scanner data in wooded areas. For this purpose
a solution was found, which integrates the elimination of gross
errors and the interpolation of the terrain in one process. The
aim of this algorithm is to compute an individual weight for
each irregularly distributed point in such a way that the
modelled surface represents the terrain.

It consists of the following steps:
1. Interpolation of the surface model considering individual

weights for each point (at the beginning all points are
equally weighted).

2. Calculate the filter values1 (oriented distance from the
surface to the measured point) for each point.

3. Compute a new weight for each point according to its filter
value.

The steps are repeated until a stable situation is reached (all
gross errors are eliminated) or a maximum number of iterations
is reached. The results of this process are a surface model and a
classification of the points in terrain and off-terrain points.

The two most important entities of this algorithm are the
functional model (step 1) and the weight model (step 3). For the
functional model linear prediction (sec. 3.1) considering an
individual weight (i.e. individual variance for the measurement
error) for each point is used. The elimination of the gross errors
is controlled by a weight function (fig. 3, 6 and 12). The
parameter of this function is the filter value and its “return
value” is a (unit less) weight. The weight function is a bell
curve (similar to the one used for robust error detection in
bundle block adjustment) controlled by the half width value (h)
and its tangent slope (s) at the half weight. Additionally it can
be used in an asymmetric and shifted way (fig. 6) in order to
allow an adaptation to the distribution of the errors in respect to
the “true” surface. The asymmetry means, that the left and right
branch are independent, and the shift means, that the weight
function is not centred at the zero point. With the help of two
tolerance values (t− and t+, fig. 3) points with a certain distance

to the computed surface can be excluded from the DTM
determination process. In general it can be said that the
algorithm relies on a “good” mixture of points with and without
gross errors in order to iteratively eliminate the off-terrain
points. Finally, the classification into accepted and rejected
points is performed by tolerance values (thresholds for the filter
value). A detailed description of this method can be found in
(Kraus and Pfeifer, 1998).

3.3 Hierarchic Robust Interpolation

As mentioned before the robust interpolation relies on a “good
mixture“ of points with and without gross errors. Therefore this
algorithm is not able to eliminate gross errors, which occur
clustered in large areas. To cope with this problem we use the
robust interpolation in a hierarchic set-up, which is similar to
the use of image pyramids in image processing. With the help of
the data pyramids we provide the input data in a form that we
are able to eliminate all gross errors with this coarse-to-fine
approach. The coarse level surfaces obtained from the coarse
level point sets are used for densification (i.e. adding finer level
point data). The resulting fine level DTM consists of all
measured terrain points.

1 In previous publications the term residual was used instead
of filter value.



The hierarchic robust interpolation proceeds like the following:
1. Create the data pyramids with the lower resolutions.
2. Apply robust interpolation to generate a DTM, starting at

the coarsest level.
3. Compare the DTM to the data of the higher resolution and

accept points within a certain tolerance band.

The steps 2 and 3 are repeated for each finer level of detail. The
sequence of the hierarchic robust interpolation on a synthetic
laser scanner profile in a build-up area is presented in fig. 1.

Further details about hierarchical robust interpolation, its
implementation in the software package SCOP++ and the
results for an OEEPE dataset can be found in (Pfeifer et al.,
2001).

4. EXAMPLES

In the following the results of these algorithms applied to
different datasets are presented. As it will be seen the procedure
is adapted to the characteristics of each dataset.

4.1 Robust Interpolation of Tacheometric and Photo-

grammetric Data

The Municipality of Vienna ordered a test project for the
determination of a DTM from available digital map data. In the
streets the data was captured with total stations Photo-
grammetric measurements were used for eaves, park areas and a
few other features. The initial classification of terrain points was
performed by point attributes stored in a database. The resulting
dataset with all classified terrain points was very
inhomogeneous due to the fact that there were a lot of points
along the streets and only a few points in backyards and park

regions. Therefore we decided to densify the data to get a
complete DTM over the whole test area. The densification was
performed by exporting a regular 5m raster after a triangulation
of the data. The DTM was computed by linear prediction
considering different point class accuracy. Therefore we were
able to give the originally measured points a higher accuracy in
contrast to the densified data (a small measurement variance of
25cm² vs. 1m² for the densification points).

Figure 2: Perspective view of the DTM (5m grid with) from the
selected terrain points (from the database) after densification

This leads to a DTM, which is mainly influenced by the
measured data. The interpolated grid is only used to get a
complete surface model. A perspective view of a part of this
model can be seen in fig. 2. The terrain in this area is rather flat,
but a few spots indicate data errors caused by false point
attributes. A closer look at the data in combination with a geo-
referenced vector map of the building blocks showed, that there
are some misclassified points on the houses due to a false
attribute and there where also a few points with obviously false
z-values. Therefore it was necessary to eliminate these gross
errors.

a) b)

c) d)

Figure 1: Sequence of the hierarchic robust interpolation
a) Creation of a data pyramid, small points: original data, thick points: data pyramid (lowest point in a regular 5m interval).
b) DTM generation in the coarse level by robust interpolation, the remaining point on the house is eliminated with an

asymmetric and shifted weight function. The surface in the first and last iteration is shown.
c) Coarse DTM with a tolerance band, all original points within the tolerance band are accepted.
d) DTM generation in the fine level by robust interpolation using an asymmetric and shifted weight function. Again, the first

and the last iteration is shown.



The first idea was to use a terrain shading and contour lines to
locate these errors and to eliminate these false points manually,
but it took quite a long time to go through this dataset with
more than 300,000 points. To automate this process we applied
the robust interpolation technique presented in sec. 3.2. The use
of the hierarchic set-up was not necessary, because of the low
point density and the low number of gross errors. However we
had to adapt the weight function to the error distribution of this
dataset. Unlike to laser scanning this dataset includes gross
errors above and below the terrain and therefore we had to use a
symmetric weight function to eliminate points with positive and
negative filter values f. This weight function p(f) with a sharp
decline in the positive and negative branch is displayed in fig. 3.
With the help of this weight function and a maximum number
of three iterations the algorithm was able to eliminate these
gross errors and a refined classification in terrain and off-terrain
points with the help of tolerance values of ±0.3m was possible.

Figure 3: Symetrical weight function for the elimination of
points with high positive and negative residuals with a half

width value of 0.2m

Figure 4: Perspective view of the DTM after robust Interpol-
ation (automated elimination of off-terrain points, 5m grid with)

Photogrammetric measured break lines were included in the
modelling process, which improved the automatic result. These
break lines are treated as gross error free, which means that only
the random measurement error is filtered. For the robust
filtering this means that they have the weight 1 for all iterations.
A perspective view of this DTM is presented in fig. 4. A
comparison of this automated result with the manually corrected
DTM by a difference model showed that the automatic process
was very successful und led to similar results. Currently the
complete data of the digital map (13 mio. points, ~ 400km²) is
processed in this way.

4.2 Hierarchic Robust Interpolation of Airborne Laser

Scanner Data

The generation of a DTM from airborne laser scanner (ALS)
data is the “classical” use of the robust interpolation technique.
A lot of different algorithms for this task do exist (e.g.
Axelsson, 2000; Elmqvist et al, 2001; Vosselmann and Maas,
2001). As mentioned before, this algorithm was originally

designed for the determination of a DTM in wooded areas
(Kraus and Pfeifer, 1998). A pilot project with a dataset in the
city of Vienna showed the limitations of this technique in build-
up areas where large areas without terrain points do exist.
Therefore we developed the hierarchical robust interpolation
(sec. 3.3), which is also very useful in dense vegetated areas,
which have similar characteristics for the DTM generation
(large areas without ground points) like build-up areas. In the
meantime the use of the hierarchical set-up, which strengthens
the robustness and reduces computation time with two to three
data pyramid levels, proved to be very useful in many test
projects (see Pfeifer et al., 2001).

In this section the results of the DTM generation process in the
Vienna test suite are presented (fig. 5). The accuracy of the
DTM was checked by 816 tacheometric measured control
points. The root mean square error (RMS) of the DTM was
0.11m.

For the robust interpolation in each data pyramid level an
asymmetric shifted weight function must be used (fig. 6) in
order to give high weights to points on the terrain surface,
whereas the influence of off-terrain points (e.g. on the
vegetation, houses and cars) is iteratively reduced by low
weights.

Figure 5: Perspective views of the digital surface model (DSM)
and the DTM computed by hierarchical robust interpolation of

the Vienna test suite

Figure 6: Typical weight function for the elimination of off-
terrain points above the terrain. The value of g is determined

automatically.



The effect of the elimination of off-terrain points can also be
seen in the comparison of the empiric variogramms computed
from all measured laser scanner points and from the classified
ground points. In the geostatistical literature the variogramm is
defined as the variance of the height difference between the
heights zi and zj (Var[zi-zj]) at the locations xi and xj = xi + h.
Under the hypothesis of 2nd order stationarity of the heights
(considering them as the realisation of a random function), the
variogramm does only depend on h and not on xi (Journel and
Huijbregts, 1978). This has also been described in sec. 3.1 for
the covariance function.

An example of such an empiric variogramm computed from a
dataset in a wooded area around Vienna (point distance of ~3m)
is presented in fig. 7. For the classified terrain points we get, as
expected, a horizontal tangent in the origin, which corresponds
to a smooth (differentiable) surface and a nugget effect
(measurement variance) close to zero. On the other hand the
empiric variogram from all points shows a large nugget effect of
135m², corresponding to a standard deviation of ±12m for the
height difference of very close neighboured points.
Additionally, the tangent at the origin is not horizontal,
indicating a continuous but not differentiable surface.

Figure 7: Empiric variograms of all original points and of the
classified terrain points

4.3 Hierarchic Robust Interpolation of Terrestrial Laser

Scanner Data

The generation of a DTM from terrestrial laser scanner (TLS)
data proceeds similar to ALS data. Again the task was to
eliminate points above the terrain surface and therefore the
weight function has to be asymmetric and must be shifted. The
difference to the ALS data lies in the point density. In the
neighbourhood of the sensor we have a point density of nearly
1000points/m² whereas for larger distances this density is
4points/m². The laser scanner used is the Riegl LMS-Z210
(Riegl, 2002). Therefore the generation of data pyramids for
homogenisation is necessary.

The parameters for the hierarchical robust interpolation are
similar to the ALS case. The results from a test dataset of the
company ArcTron (2002) are presented in the figures 8 and 9.
The surface of this countryside area (~0.2km²) consists of
wooded and open terrain. A visual inspection and a difference
model showed that the algorithm did quite a good job. In the
centre of this test suite the DTM is rather rough, which can be
explained by the high point density, which allows a very
detailed description of the terrain.

For the computation of the DTM in the last step we used a
conditional data densification with the help of a distance

transformation (chamfering) (Borgefors, 1986). Therefore, the
ground plan locations of the terrain points are set as feature
pixels in a digital image with a pixelsize of 0.5m. The distance
transformation assigns each pixel the distance to its nearest
feature pixel (i.e. the nearest measured point). In areas within a
certain distance interval [1m,10m] we densified the terrain point
set to close data holes. The heights of these densification points
(1m grid) were sampled from a DTM, which was computed
from a thinned out (low resolution) data set of the classified
ground points. Therefore some extrapolation band exists around
the terrain points and small areas without data are closed in the
DTM of fig. 9.

Figure 8: DSM of the thinned out TLS data (lowest point in
0.2m raster)

Figure 9: Shading of the DTM of the thinned out classified
terrain points with conditional densification

4.4 Elimination of Scan Errors in Satellite Laser Scanner

Data from Mars

The Institute of Photogrammetry and Remote Sensing is
participating as co-investigator in the “Mars Express” project of
the European Space Agency (ESA). Within this project, several
computations on the global Mars data from NASA’s MOLA
(Mars Orbiter Laser Altimeter) sensor were performed. This
sensor can be characterized as a laser scanner profiler without a
deflection unit for the laser beam. Therefore only a very
inhomogeneous point distribution is available.

Presently the delivered MOLA data consists of about 640 mio.
surface points, which contain scan errors due to referencing
errors of the spacecraft. A DTM shading from a small part
(250000 points) of this dataset is presented in fig. 10, where



Figure 10: Shading of the DTM with gross errors in the MOLA
dataset

Figure 11: Shading of the DTM after automatic gross error
elimination

these gross errors can be recognized. Of course, the generation
of a DTM from the whole Mars surface by manual correction is
not practicable and therefore an automatic procedure for error
elimination is required.

In the first test we tried to use hierarchical (due to the very
inhomogeneous point density) robust interpolation to eliminate
these errors. The elimination of the scan errors was possible
with this technique, but due to the roughness of the Mars
surface we also eliminated points in regions without scan errors.
The rough surface did not fit to our functional model of linear
prediction, which is able to generate very smooth surfaces.

Better results were obtained by analysing scan line segments
instead of the residuals of each individual point. It showed up
that the average filter value of a segment (i.e. RMS of the
residuals of the points belonging to this segment) could be used
to eliminate those segments with gross errors. Due to the fact
that correct scan line segments next to a segment with gross
errors also get a higher RMS it was necessary to apply this gross
error elimination in an iterative manner. Because not all points
along a scan line segment are affected by gross errors we
analysed the discrepancies of all eliminated points in respect to
a DTM computed without these gross error segments and
accepted all previous eliminated points within a certain user
defined threshold value.

This iterative method proceeds like the following:
1. Compute a DTM with all points.
2. Compute the RMS per scan line segment and eliminate lines

with a high RMS.
3. Compute a DTM with the accepted scan line segments.
4. Former eliminated points are accepted if they are within a

certain tolerance to the DTM .
5. Compute a new DTM.

Figure 12: Symmetric box weight function with decreasing
extend in each iteration step for the elimination of scan line

segments

The steps 2 to 5 are repeated with iteratively decreasing
tolerance values until the tolerance of the RMS per line reaches
a user defined threshold value. The results of this process can be
seen in fig. 11.

This method corresponds to the robust interpolation with a box
weight function with decreasing extend in each iteration step
(fig. 12). In contrast to the previous examples, the weight
function is not applied to the filter values of single points but
for complete scan line segments.

5. CONCLUSIONS

We have presented a very general concept of gross error
elimination for DTM generation (surface computation) and
achieved good results for the presented datasets. What can be
seen in the example section is that the general concept for gross
error elimination is the same for all projects. Only a few
parameters must be adapted to the characteristics of the specific
datasets (weight function, number of hierarchical levels). This
adaptation is performed manually. We have derived standard
parameters, which are adapted to the characteristics of each
project. This is performed in a trial and error basis with 2 or
maximal 3 repetitions of the computation. Of course only the
interpretation of the intermediate results requires human
resources, the computation itself is performed totally
automatically. In our experience most of the adaptations are
necessary in the coarse levels. The functional model for surface
computation is in the presented examples linear prediction, but
any model can be used, which is capable of considering
individual weights for the given points.

Additionally two methods of data densification have been
presented (sec. 4.1 and 4.3).

In the future we will have to consider new measurement
systems, which will provide further information of the sensed
objects like laser scanner systems, which allow now the
registration of multiple echoes and the intensities of the
returned signal and in future even full waveform capture. An
other important topic will be sensor combination. Nowadays
sensor systems, which combine laser scanner sensors with
digital line cameras, already do exist. The big task for the future
will be to integrate all these information sources into one
modelling process in order to achieve better results.



REFERENCES

ArcTron, 2002. http://www.arctron.de/ (accessed 13 March
2002)

Axelsson, P., 2000. DEM generation from laser scanner data
using adaptive TIN models. International Archives of
Photogrammetry and Remote Sensing, Vol. XXXIII, Part B4,
Amsterdam, Netherlands.

Borgefors, G., 1986. Distance Transformations in Digital
Images, Computer Vision, Graphics and Image Processing,
CVGIP 34 (3), pp. 344-371.

Burmann, H., 2000. Adjustment of laser scanner data for
correction of orientation errors. International Archives of
Photogrammetry and Remote Sensing, Vol. XXXIII,
Amsterdam, Netherlands.

Elmqvist, M., Jungert, E., Lantz, F., Persson, A., Södermann,
U., 2001. Terrain Modelling and analysis using laser scanner
data. International Archives of Photogrammetry and Remote
Sensing, Volume XXXIV-3/W4, Annapolis, Maryland, USA.

Filin, S., 2001. Recovery of systematic biases in laser altimeters
using natural surfaces, International Archives of
Photogrammetry and Remote Sensing, Volume XXXIV-3/W4,
Annapolis, Maryland, USA.

Journel, A. G., Huijbregts, Ch. J., 1978. Mining Geostatistics.
Acad. Press, New York.

Kraus, K., 1998. Interpolation nach kleinsten Quadraten versus
Krige-Schätzer. Österreichische Zeitschrift für Vermessung &
Geoinformation, 1.

Kraus, K., 2000. Photogrammetrie Band 3. Topographische
Informationssysteme. 1st ed., Dümmler Verlag, Köln.

Kraus, K., Pfeifer, N., 1998. Determination of terrain models in
wooded areas with aerial laser scanner data. ISPRS Journal of
Photogrammetry and Remote Sensing 53, pp. 193-203.

Pfeifer, N., Stadler, P., Briese, Ch., 2001. Derivation of digital
terrain models in the SCOP++ environment. Proceedings of
OEEPE Workshop on Airborne Laserscanning and
Interferrometric SAR for Detailed Digital Terrain Models,
Stockholm, Sweden.

Riegl, 2002. http://www.riegl.com/ (accessed 1 July 2002)

Schenk, T., 2001. Modeling and Recovering Systematic Errors
in Airborne Laser Scanners. Proceedings of OEEPE Workshop
on Airborne Laserscanning and Interferometric SAR for
Detailed Digital Terrain Models, Stockholm, Sweden.

Vosselmann, G., Maas, H., 2001. Adjustment and Filtering of
Raw Laser Altimetry Data. Proceedings of OEEPE Workshop
on Airborne Laserscanning and Interferometric SAR for
Detailed Digital Terrain Models, Stockholm, Sweden.

ACKNOWLEDGEMENTS

This research has been supported by the Austrian Science
Foundation (FWF) under Project No. P14083-MAT.

APPENDIX A. ROBUST LINEAR PREDICTION

In the following the basic functions for linear prediction with
individual weights are presented. This means that a surface is

interpolated from a cloud of points, but each point has an
individual accuracy. It can be used for robust interpolation by
modulating the weights (accuracies) depending on the filter
value (negative residual) of the observations in an iterative
manner. The filter values of one iteration are used to determine
the weights for the next surface interpolation. More details can
be found in (e.g. Kraus and Pfeifer, 1998 and Kraus, 2000).

A.1 Linear prediction with individual weights

Given are n points Pi with the heights zi, which have been
reduced by subtracting a trend surface (e.g. a plane). After this
reduction the expectancy of the observed heights is zero. The
height z at a position P is determined by Eq. (1):
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The function C(PiPk) describes the covariance between two
points on the surface in the following way (Gaussian model):
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with:
C(0) = covariance for a distance of zero
PiPk = horizontal Euclidian distance between the two

surface points Pi and Pk

c = factor (estimated from the given points) for
controlling the steepness of the covariance function

Vzzpi
in Matrix C of Eq. (4) is the variance of the given points,

which is the sum of C(0) and the variance of the measurement
σi². The points are considered to have the same σ0² (a priori
accuray), but different weights pi. The accuracy σi² of a point Pi

is obtained from:
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The variance of each point Pi can be computed by:
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A.2 Robust weight function

The weight pi depends on the filter value fi, which is the
oriented distance from the prior computed surface (in the first
step all points are equally weighted) to the measured point. The
weight function (a bell curve), which can have different
parameters (a, b) for the left and right branch, is given by:
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fi = filter value
g = shift value, determined automatically from the filter

values
a = h/1
b = sh +4
with the half width value h and the slant s at the half weight.

Additionally thresholds are used to set the weight of a point
with a higher or lower filter value to zero so that it is excluded
completely from the modelling process.


