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APPLICATIONS OF THE SPACES OF HOMOGENEOUS

POLYNOMIALS TO SOME PROBLEMS ON THE BALL ALGEBRA

J. BOURGAIN

Abstract. Denote by B2 the unittiall in C2. The existence is shown of a uniformly

bounded orthonormal basis in H2( B2 ), by constructing such systems in the spaces of

homogeneous polynomials. In the second part of the paper, those spaces of homoge-

neous polynomials are exploited to disprove the existence of generalized analytic

projections, the so-called (ip-ftp) property, for the ball algebra.

Summary. In the first part of the paper we use a construction in the spaces of

homogeneous polynomials on the 2-dimensional complex ball B2 to generate an

orthonormal basis for the space H2(B2) which is uniformly bounded. The existence

of such a system answers a question raised by W. Rudin.1 The second part is devoted

to the failure of the (ip-tTp) theorem, known for the disc algebra A(D), in case of the

ball algebras A(Bm), m > 1. It is proved that the ideals of/^-summing and/7-integral

operators (p =£ 2) in A(B2) are distinct. This fact solves negatively a problem

considered in [2].

1. Introduction and terminology. Denote by ( , > the inner product on C2, by B2

the closed unit ball of C2, and by S2 = 352 = {£ g C2; ||£|| = (£, Q1/2 = 1} the

unit sphere. Under the parametrization f = (z, w), z = ifpe'e, and w — J\ — pef,

the normahzed Haar measure a on S2 is given by da = (1/4tt2) dp dO d\p (0 < p < 1,

0 < 6, ^ < 2tt). For 1 < p < oo, the spaces LP(S2) = LP(S2, o) are defined in the

usual way. The ball algebra A(B2) consists of continuous functions in B2 which are

analytic in the interior of B2 and identifies with a subspace of the space C(S2) of

continuous functions on S2 by restriction to the sphere. The spaces HP(B2) (1 < p

< oo) are obtained as the closure of A(B2) in LP(S2). They are generated by the

polynomial spaces @N = span{zjwN~J; j = 0,1,...,N}, N = 0,1,..., where IPN

consists of the homogeneous polynomials of degree N. A remarkable property is the

fact that the orthogonal projection onto ¿PN,

pNf =pf= civ1/(1), 07(0 Mi),    cN = j\z\2Ndo,
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278 J. BOURGAIN

is bounded under the L^-norm (1 < p < oo) independently of N. One has, indeed,

/N
\z\   da < c       (= numerical constant).

For f, tj g S2, let d(f, tj) = 1 - |{f, tj)|, which is the natural metric for the projec-

tive space P = P1. Notice that the modulus of a homogeneous polynomial on S2 can

be seen as a function on P. We mention [3] as a standard reference for function

theory on complex balls.

If X, Y are Banach spaces, Up(X, Y) and lp(X, Y) (1 < p < oo) denote the ideals

of ^-summing, respectively strictly /7-integral, operators from X to Y. The respective

norms are given by

*,(«) = sup{(l||u(x,)|f)1/;|{x,} c X, E|(x„ x*)f < 1

forx* G X*, ||x*|| < 1>

(«) = infill ||fi||

where this infimum is taken over all factorizations u = B ° I ° A, I: L°°(ß, fx) -*

LP(Q, ¡i) is the identity map, A: X -* L°°(n), and 2?: ¿'(/i) -> Y.

It is well known that irp(u) < ^(w) and ip(u) < cp2<irp(u)/(p - 1) (1 < p < oo,

c = numerical) whenever « is a p-summing operator on the disc algebra A(D) (the

reader will find details on this subject in [2]). The problem of whether or not this

so-called (ip-ttp) property holds for ball and polydisc algebras was considered in the

last section of [2]. The answer to this question turns out to be negative in both cases.

The polydisc case was settled in [1] and we present here the argument for the ball

algebra A(B2), relying on the spaces ¿PN defined above. The argument in the general

case yl(2?m) (m s* 2) is completely similar.

2. Construction of a uniformly bounded orthonormal basis. Since the spaces ¿? v are

mutually orthogonal in H2(B2), it will suffice to construct the basis in each of the

spaces !PN with a uniform bound on the L°°-norm of the systems. Our approach is

completely explicit. It is clear that the polynomials

(1) Sk = (N + 1)-1/2 £ ae™*/»+^ÇL        (k = 0,1,...,TV)
j = 0 VJW      J\\2

form an orthonormal basis for ¿PN , whatever the choice of the signs ay = ±1. We

claim that if {Oj}"_Q is a transform of Rudin-Shapiro type (that is, coefficients of a

Rudin-Shapiro polynomial [4, p. 33 for definition]) or any N + 1 consecutive

coefficients in some Rudin-Shapiro transform, then Hf*!!«, < c (0 < k < N), where

the constant c is independent of the degree N. Replacing z by z ■ e2"tk/N+i an(j

using the parametrization z = yfpe'6, w = ^1 — pe'*, the problem clearly reduces to

an estimation of

N
1/2(2) sup    (N+l)

0<p«l
0<0<2ir

¿Z nfrW-JfoV/2(l - p)(iV"y)/V
7-0
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In the sequel c denotes various numerical constants. We make use of the following

fact.

Lemma 1. For {ojjjln an interval of length N + 1 in a Rudin-Shapiro transform,

0 < a < b < N, and(Xj)a<j<ba monotone sequence,

I V/';
j = a

< csup|X7-| -(¿7 - a)
1/2

£»(n

Proof. By an argument of partial summation, we may, of course, take Xy = 1 and

verify the majorization of ||E*_aa7.e'-'9||L»(7.). If [a, b] is a dyadic interval in a

Rudin-Shapiro transform, {a-}*_a is in fact again such a transform, as a conse-

quence of their construction. Hence, |p)_«0/Cy'lt£«(r) < 2(¿ — a)1/2 in this case.

For a general interval we divide [a, b] into dyadic intervals of decreasing length, and

apply the previous estimate and the triangle inequahty to get the result. Details are

elementary and left to the reader.

To obtain a bound on (2) is a straightforward computation. Using the evaluation

j\(N-j)\
\\zJw»-rf2=  C pJ{l-p)N-Jdp

■>c\'o (N + 1)!

and Stirling's formula, we see that for fixed p, 0 < p < 1,

(3) «/= (TV + iyl/2\\zJw«-%lp"2(i - p)N-J/2

-1/2

= c(/v" + 1) -1/2 /: wm
N-j

du

is dominated by an expression of the form

(4) Cexp[-c(y - PN)2/Np(l - p)\ min(y, N -;)"1/4.

Moreover, taking a derivative with respect toy in the right member of (3), we verify

that {aj }jl0 increases untily = j0 ~ pN; then it decreases. We suppose 0 < p < 1/2,

the other case being symmetric.

Rewrite (2) as

(5)
>-0 A»<n

which we estimate by applying Lemma 1 and (4). Write

£ 'j«jeiJt

7=0 ¿„(i-)

Jo

E Oft
,'j»

7-0

+

N

L
7=7o + l

"jaje 'J*

where thus {ay}/°0 1S increasing and («/V/î-ju+i decreasing. We handle the first sum

and leave the details (essentially similar) for the second sum to the reader. Before

using Lemma 1, we need a further splitting of Ej°_0. Define inductively

k0 = 0,       kx = l,       kr+x = kr + [kx/2]    ([] = integer part),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



280 J. BOURGAIN

and let j be the largest integer for which ks < j0. By Lemma 1

/o

a¡a¡e ij6

7 = 0

j-1

< E
r=0

kr+i-X

e
j=kr

°jaje iß E <w■7«

»-*;

1

< C E «Jfcf+1(*r+l - *r) + C«7„(^0
r = 0

*.)
1/2

r = 0

.*^-+c ,JoV4.7oJ

where, by (4),

«70 < C-«*, < crc;1/4exp[-c'(>0 - kr)2/j0]    and

From the construction of the sequence {kr}sr_0, it is clear that

h ~kr> i;01/2min(i - rj^2).

Hence, one ends up with the series £*I0[e~':(i~'') + e'cj0], obviously converging.

Remark. The construction of the ^polynomials provide an explicit example of N

homogeneous polynomials p for which ||p||2 ~ HpH^,. They can be used to obtain

singular positive RP-measures /x on S2 and, hence, inner functions on the ball B2 (see

[3] for details). Denote by K the Cauchy kernel of B2 and define the operator T

acting on CX(S2) into C°°(S2) n ReA(B2) by

Tf=2ReK[f]-Reff.

Clearly T   = T. Define inductively

/o = L /y+i - T[fj{\ + RePj+x)] + Bj+1,

where /r+1 is a homogeneous polynomial of degree NJ+X chosen large enough and

ll/'y+illoo < 1> H/'y+ilU > ^ = constant. For e,+1 we take the smallest positive number

to insure the positivity of fJ+x. It is not hard to see that the N/s and p/s can be

chosen inductively such that Ee7 < oo and each w*-limit point of the sequence

{fjda} in M(S) yields a singular measure. Let us give some further details. By

taking Nj+X = degree(/7;+1) large enough, we can ensure that^+1 is an arbitrarily

small perturbation oifj(l + Re pJ+x) in the uniform norm. The point is that fj ■ pJ+x

is "almost" in A(B). To ensure that w*-limit points of {fjda} are singular

measures, we are led to force the Riesz product n(l + Repj+X) to determine a

singular measure. Assumepx,... ,pj is obtained. After choice of N = NJ+X, consider

the bounded orthonormal basis £ in ^N , which we introduced above. Since £ is

orthonormal, an invariance argument with respect to the unitary group acting on 5

shows that

(1) E (Re/>a,r= L\p(n\= i*h/v+i
/>e{U(/f) />e£

pointwise for f G S. Since, for |x| < 1,

1/2(1 + x)v¿ < 1 + cx2        (c > 0),
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we find by (1) (for 8= X2\\p\\-J),

—--  E   (f,l/2(l + 8Rep)1/2
2(N + 1)   ~ JJj    K y>

v '  P^ia

where £0 = £ U (/'£). For N large enough, the second term on the right side will

essentially vanish. So, for somep g £ u (¿£) and pJ+x = 5/7, it follows that

////2da<(l-c)////2da.

3. Absolutely summing operators. If ju is a positive Radon measure on S2 and

1 < p < oo, define Hp(n) as the closure of the space A(B2) in Lp(fi). The identity

map A(B) -» Hp(n) is a trivial example of a /7-summing operator on the ball

algebra. It turns out to be possible to find it, du/da = A g L^S), such that the

latter operator is not p-integral whenever p # 2 and does not extend to C(S) for

p > 2. The approach is virtually the same as the method described in [1] to disprove

the (ip-irp) property for the bidisc algebra A(D2). The following general lemma (see

[1, Lemma 6.1]) will be used again.

Lemma 2. Assume X is a linear subspace of a C(K)-space (K compact) satisfying

the (i p-TTp) property for a fixed p, 1 < p < oo, i.e. the ratio kp(x) = sup{ip(u)\ u is a

p-summing operator on X with Trp(u) < 1} is assumed finite. Further, let e > 0 and let

{<t>j }]=i be a finite sequence in the unit ball of X such that the sets [\§j\ > e] = {/ G

^| 1^/(01 > e} are mutually disjoint. Then there exists a decomposition in X,

<f>j = <t>j + <i>" with <¡>j, <¡>" G X, fulfilling the conditions

(i) \\4x^3kp(X)nm^2'py1e       (Kj<n),

(ii) i k < 3kp(X)nm^2'p'yl.

Of course, here K = S2, and X = A(B2), considered as a subspace of C(S2). Notice

that if <j>j g 0>N for some integer A, (1 <y < «) the existence of a decomposition for

{<í>y}"=1 in A(B) implies a decomposition with ty, </>" g ¡Pn again for eachy. This

fact is clear upon using the projection operators

RNf(S)= -h P" ñei$z,e'9w)e-"»de,       f = (z,w),
¿TT J0

from A(B) onto&>N.

Lemma 3. There exists a sequence {pj}"_x of homogeneous polynomials on B2,

d(pj) = degree(pj) = Nj,for which the sets [\pj\ > e] are disjoint and ||E"=1|?y| \\x >

ene whenever {Ç;}?»i are homogeneous polynomials, d(qj) < A^ and \\pj — qj\\x < c

(1 < j < n) (where c > 0 is numerical).
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To see that this gives the desired result, take e = (c/4)kp(X)-xn-maxÇL>pyl in

Lemma 2. Assuming kp(X) < oo for X = A(B2) gives, by Lemma 3 (<i>" = qf),

cne < 3kp(X)nma*^p'r\       ckp(X)2 > n^/2-m^P,P'y\

which leads to a contradiction by letting n -» oo if p # 2.

Lemma 4. Lei 1 = (1,0) andVs= {fe S2||(f,l>| > 1 - 8}. Then the inequality

stxp{\fU)\\^S\Vs}>c(l-8)N\f(l)\

holds whenever f G ¡PN .

Proof. For/ g L°°(S) the inequahty

ll/IU-W., > ctf(l - 8)-N (f(v)(l,r,)NX[M^-S]dv
Js

clearly holds. On the other hand, for/ g 9>n ,f = P^/,

Substitution yields

n/ik»(5\^)>civ2(i-5rA'|///a)(i),r>;v<i,Tj>A'x[hIi<i-Äi^^

Performing the integration in rj gives

f(n,S)%ri)\M<l-S]dv-«(l-8n  with«- 1.

So

IU-(s\k,)> cN(l - 8)' fmw >c'(l- 5)1/(1)1.

The proof of Lemma 3 is now very much in the spirit of Lemma 6.3 in [1]. For

a G S2 and a > 0, let B(a, a) = {f G 52|d(a, f) < a}, where d(f, t)) = 1 - |<f, tj>|

is the distance in prqjective space. Since ¿PN and d are invariant under the unitary

group acting on S2, Lemma 4 also imphes

ll/ViSS*«,,«» > c(l - a)"|/(a)|    if/G ^.

Moreover, this inequahty is, up to a constant, best possible, considering polynomial

Proof of Lemma 3. Fix n and e > 0. We introduce inductively positive numbers

and positive integers 1 = 8X > e, > 82 > e2 > • ■ • > t, > e, >■ • »• > 8n > en and

1 = Nx < N2 < ■ ■ • < Nj < ■ ■ ■ < Nn. For each j, £, will be a 5,-net in the set

Rj = S\\J{~\Uae£jfi(a, e,), and we assume 2?(a,^8,-) c Rj for all a g £y, We take

£, = {1}. The polynomials { />/}?-1 are given by

15,(0 -   E<f.«A
•«4

where Nj is chosen large enough to imply WPjW^ « 1 and

[!/>/> 4 c   \jB(a,ej),
16Í7
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where ey is defined by (1 — e,)^ = e/2. In the construction, N, depends on 8,. For Nj

sufficiently large, gj becomes arbitrarily small, in particular, t} < ^8j. Hence

Uae£ B(a, ey) c Rj and, consequently,

[\Pj\ >e] n[\pt\ > e] = 0    for* = l,...,j- 1.

Consider now a sequence {g^J^iS. t.gjg 3%. and||p, - g,.^ < & for/ = 1,...,».

We prove a minorization of ||23 |sy| lloo using a simple reasoning of successive

perturbations based on Lemma 4.

Proceeding by induction, we define inductively points xy g S so that Xj g £/+1

and \qs(xj)\ > ce for s = 1,... j*. Let us describe the inductive step. Since Xj g £.+1,

we have/>-+1(.x-) « 1, hence \qj+i(xj)\ > f. Define

A(? ) = (f. ^7)L?7+i(?)       (¿ to be specified),

which is of degree L + A^+i. Since \h(Xj)\ > | still, Lemma 4 yields a point x g S

satisfying d(xy, x) > e-+1 and \h(x)\ > c(l - ej+x)NJ+l + L. Thus if L = o(Nj+x), we

get, by definition of ej+x,

\<lj+i(x)\>\h(x)\> c'e.

Since also |(x, Xj)\L > c'e, it will follow that d(x, Xj) = o(8j+x) provided L is

sufficiently large (compatible with L = o(Nj+x)). Again, by construction, since

B(xj, jàSj+i) c Rj+X, we get x g Rj+1. Moreover, x € B(xj, eJ+x) and, since the

elements   of   £7+1   are   5y+1-separated   and   d(x, xy) = o(8J+x),   also   x €

Uoei    B(a, eJ+x). Hence, x g Rj+2 and xy+1 g £y+2 can be chosen with d(x, xJ+1)

< 28J+2. The fact that S/+2 is small enough with respect to NJ+X — d(qJ+x) implies

\aj+i(Xj+i)\ > c'e/2. Further, d(xy, xj+x) = o(8j+x), and the inequahties \qs(xJ+x)\

> ce, 1 < i < j, are therefore essentially preserved. This completes the argument.
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