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ABSTRACT

Time-frequency representation of seismic signals pro-

vides a source of information that is usually hidden in the

Fourier spectrum. The short-time Fourier transform and

the wavelet transform are the principal approaches to simul-

taneously decompose a signal into time and frequency com-

ponents. Known limitations, such as trade-offs between time

and frequency resolution, may be overcome by alterna-

tive techniques that extract instantaneous modal compo-

nents. Empirical mode decomposition aims to decompose

a signal into components that are well separated in the

time-frequency plane allowing the reconstruction of these

components. On the other hand, a recently proposed method

called the “synchrosqueezing transform” (SST) is an exten-

sion of the wavelet transform incorporating elements of em-

pirical mode decomposition and frequency reassignment

techniques. This new tool produces a well-defined time-

frequency representation allowing the identification of

instantaneous frequencies in seismic signals to highlight

individual components. We introduce the SST with applica-

tions for seismic signals and produced promising results on

synthetic and field data examples.

INTRODUCTION

This paper is a follow-up study of the empirical mode decompo-

sition (EMD) method (Han and Van der Baan, 2013). The EMD

method is an effective way to decompose a seismic signal into indi-

vidual components, called “intrinsic mode functions” (IMFs). Each

IMF represents a harmonic signal localized in time, with slowly

varying amplitudes and frequencies, potentially highlighting differ-

ent geologic and stratigraphic information.

EMD methods have evolved from EMD to ensemble EMD (Wu

and Huang, 2009) and recently to complete ensemble EMD

(CEEMD) (Torres et al., 2011). These extensions aim to solve

the mode mixing problem (Huang et al., 1999, 2003) while keeping

the complete reconstruction capability. Han and Van der Baan

(2013) investigate the difference between these EMD methods,

and discuss the suitability of EMD for seismic interpretation. They

conclude that CEEMD not only solves the mode mixing problem

but also provides an exact reconstruction of the original signal. In

terms of spectral resolution, the EMD-based alternatives outperform

the short-time Fourier transform (STFT) and the wavelet transform

(WT) methods. Yet, like other methods, the top-performing

CEEMD still has limitations when the components are not well sep-

arated in the time-frequency plane.

We extend our studies of time-frequency analysis with a recently

proposed transform called the “synchrosqueezing transform” (SST)

(Daubechies et al., 2011). SST is a wavelet-based time-frequency

representation that resembles the EMD method. Unlike EMD, it

has a firm theoretical foundation (Wu et al., 2011; Thakur et al.,

2013). SST is also an adaptive and invertible transform that im-

proves the readability of a wavelet-based time-frequency map using

frequency reassignment (Auger and Flandrin, 1995), by condensing

the spectrum along the frequency axis (Li and Liang, 2012). This

transform was originally proposed in the field of audio processing

(Daubechies et al., 2011) and has been successfully applied to pa-

leoclimate time series (Thakur et al., 2013) and to vibration mon-

itoring (Li and Liang, 2012). The SST is still limited by Gabor’s

uncertainty principle (Hall, 2006), but it approximates the lower

limit better, thus improving resolution.

In this paper, we show the suitability of SST in seismic time-

frequency representation. We contrast and compare SST with

CEEMD and the continuous wavelet transform (CWT). Our selec-

tion of CEEMD as a reference method for comparison is based on

its very low reconstruction errors (Torres et al., 2011) and the fact

that it was successfully applied to seismic signal analysis (Han and

Van der Baan, 2013), where the instantaneous frequencies are
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estimated as a posterior step. The CWT is also taken as a reference

because SST comprises a combination of this method with fre-

quency reassignment.

In the following section, we describe the theory behind EMD and

the SST. Next, we test the SST on a synthetic example and compare

its time-frequency representation and signal reconstruction features

with the CWT and CEEMD method. Finally, we apply SST on field

data showing its potential to highlight stratigraphic features with

high precision.

THEORY

A brief recap of EMD and siblings

EMD is a fully data-driven method to split a signal into compo-

nents, called IMFs (Huang et al., 1998). Recursive empirical oper-

ations (sifting process; see Huang et al., 1998) separate the signal

into high and low oscillatory components. The sum of all the indi-

vidual components reproduces the original signal. However, some

mode mixing appears in the classic EMD method, caused by signal

intermittency (Huang et al., 1999, 2003), that can produce difficul-

ties in interpreting the resulting time-frequency distribution. This

fact triggered the development of ensemble EMD (Wu and Huang,

2009), which is based on a noise-injection technique. Noise is

added prior to decomposition, and ensemble averages are computed

for resulting IMFs. This aids in better separation of independent

modes but does not guarantee perfect reconstruction.

Despite the improvement in mode separation using the noise-as-

sisted technique, reconstruction from individual components is im-

portant, and Torres et al. (2011) propose an elegant solution. In the

CEEMD, an appropriate noise signal is added at each stage of the

decomposition producing a unique signal residual for computing

the next IMF (Torres et al., 2011; Han and Van der Baan, 2013).

Computation of the instantaneous frequencies for each IMF then

produces the desired time-frequency representation (Han and

Van der Baan, 2013).

The synchrosqueezing transform

The SSTwas originally introduced in the context of audio signal

analysis and is shown to be an alternative to EMD (Daubechies and

Maes, 1996; Daubechies et al., 2011). SST aims to decompose a

signal sðtÞ into constituent components with time-varying harmonic

behavior. These signals are assumed to be the addition of individual

time-varying harmonic components yielding

sðtÞ ¼
X

K

k¼1

AkðtÞ cosðθkðtÞÞ þ ηðtÞ; (1)

where AkðtÞ is the instantaneous amplitude, ηðtÞ represents additive
noise, K stands for the maximum number of components in one

signal, and θkðtÞ is the instantaneous phase of the kth component.

The instantaneous frequency fkðtÞ of the kth component is esti-

mated from the instantaneous phase as

fkðtÞ ¼
1

2π

d

dt
θkðtÞ: (2)

In seismic signals, the number K of harmonics or components in

the signal is infinite. They can appear at different time slots, with

different amplitudes AkðtÞ, instantaneous frequencies fkðtÞ, and
they may be separated by their spectral bandwidths ΔfkðtÞ.
The spectral bandwidth defines the spreading around the central

frequency, which in our case is the instantaneous frequency; see

Barnes (1993) for a completed disentangling of concepts. This mag-

nitude is a constraint for traditional time frequency representation

methods. The STFT and the CWT tend to smear the energy of the

superimposed instantaneous frequencies around their center

frequencies (Daubechies and Maes, 1996). The smearing equals

the standard deviation around the central frequency, which is the

spectral bandwidth (Barnes, 1993).

SST is able to decompose signals into constituent components

with time-varying oscillatory characteristics (Thakur et al., 2013).

Thus, by using SST we can recover the amplitude AkðtÞ and the

instantaneous frequency fkðtÞ for each component.

From CWT to SST

The CWT of a signal sðtÞ is (Daubechies, 1992)

Wsða; bÞ ¼
1
ffiffiffi

a
p

Z

sðtÞψ�
�

t − b

a

�

dt; (3)

where ψ� is the complex conjugate of the mother wavelet and b is

the time shift applied to the mother wavelet, which is also scaled by

a. The CWT is the crosscorrelation of the signal sðtÞ with several

wavelets that are scaled and translated versions of the original

mother wavelet. The symbols Wsða; bÞ are the coefficients repre-

senting a concentrated time-frequency picture, which is used to ex-

tract the instantaneous frequencies (Daubechies et al., 2011).

Daubechies et al. (2011) observe that there is a limit to reduce the

smearing effect in the time-frequency representation using the

CWT. Equation 3 can be rewritten using Plancherel’s theorem, en-

ergy in the time domain equals energy in the frequency domain, i.e.,

Parseval’s theorem in the Fourier domain:

Wsða; bÞ ¼
1

2π

Z

1
ffiffiffi

a
p ŝðξÞψ̂�ðaξÞejbξdξ; (4)

where j ¼
ffiffiffiffiffiffi

−1
p

, ξ is the angular frequency, and ψ̂ðξÞ is the Fourier
transform of ψðtÞ. The scale factor a modifies the frequency of the

complex wavelet ψ̂�ðaξÞ, by stretching and squeezing it. Also, the

time shift b is represented by its Fourier pair ejbξ. The convolution

in equation 3 becomes multiplication in the frequency domain in

equation 4. Considering the simple case of a single harmonic signal

sðtÞ ¼ A cosðωtÞ with Fourier pair ŝðξÞ ¼ πA½δðξ−ωÞþ δðξþωÞ�,
equation 4 can then be transformed into

Wsða; bÞ ¼
A

2

Z

1
ffiffiffi

a
p ½δðξ − ωÞ þ δðξþ ωÞ�ψ̂�ðaξÞejbξdξ;

¼ A

2
ffiffiffi

a
p ψ̂�ðaωÞejbω: (5)

In the frequency plane, if the wavelet ψ̂�ðξÞ is concentrated

around its central frequency ξ ¼ ω0, then Wsða; bÞ will be concen-
trated around the scale a ¼ ω0∕ω (the ratio of the central frequency

of the wavelet to the central frequency of the signal). However, what

we actually get is that Wsða; bÞ often spreads out along the scale

axis leading to a blurred projection in time-scale representation.
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This smearing mainly occurs in the scale dimension a, for constant

time offset b (Li and Liang, 2012). Daubechies and Maes (1996)

show that if smearing along the time axis can be neglected, then

the instantaneous frequency ωsða; bÞ can be computed as the

derivative of the WT at any point ða; bÞ with respect to b, for all

Wsða; bÞ ≠ 0:

ωsða; bÞ ¼
−j

2πWsða; bÞ
∂Wsða; bÞ

∂b
: (6)

The final step in the new time-frequency representation is to map

the information from the time-scale plane to the time-frequency

plane. Every point ðb; aÞ is converted to ðb;ωsða; bÞÞ, and this op-

eration is called synchrosqueezing (Daubechies et al., 2011). Be-

cause a and b are discrete values, we can have a scaling step

Δak ¼ ak−1 − ak for any ak whereWsða; bÞ is computed. Likewise,

when mapping from the time-scale plane to the time-frequency

plane ðb; aÞ → ðb; winstða; bÞÞ, the SST Tsðw; bÞ is determined only

at the centers ωl of the frequency range ½ωl − Δω∕2;ωl þ Δω∕2�,
with Δω ¼ ωl − ωl−1:

Tsðωl; bÞ ¼
1

Δω

X

ak∶jωðak;bÞ−ωlj≤Δω∕2
Wsðak; bÞa−3∕2Δak: (7)

The above equation shows that the new time-frequency represen-

tation of the signal Tsðωl; bÞ is synchrosqueezed along the fre-

quency (or scale) axis only (Li and Liang, 2012). The SST

reallocates the coefficients of the CWT to get a concentrated image

over the time-frequency plane, from which the instantaneous

frequencies are then extracted (Wu et al., 2011).

Following Thakur et al. (2013), the discretized version of

Tsðωl; bÞ in equation 7 is represented by ~T ~sðwl; tmÞ, where tm is

the discrete time tm ¼ t0 þmΔt with Δt the sampling rate and

m ¼ 0; : : : ; n − 1; n is total number of samples in the discrete sig-

nal ~sm. More special considerations are described in Thakur et al.

(2013). The reconstruction of the individual components sk from the

discrete synchrosqueezed transform ~T ~s is then the inverse CWT

over a small frequency band lϵLkðtmÞ around the kth component:

skðtmÞ ¼ 2C−1
ϕ ℜe

�

X

lϵLkðtmÞ

~T ~sðwl; tmÞ
�

; (8)

where Cϕ is a constant dependent on the selected wavelet. As we

take the real partℜe of the discrete SST in that band, we recover the

real component sk. In this paper, we follow Thakur et al. (2013) in

which the reconstruction is done by a standard least-squares ridge

extraction method; different approaches are explored by Meignen

et al. (2012).

Parameter selection

The wavelet choice is a key issue in synchrosqueezing-based

methods (Meignen et al., 2012). In SST, we first construct the

time-frequency map through a CWT; thus, we need a mother wave-

let that satisfies the admissibility condition (i.e., finite energy, zero

mean, and bandlimited). At the same time, the wavelet must be a

good match for the target signal (Mallat, 2008). By definition, the

wavelet coefficients are the correlation coefficients between the tar-

get signal and dilated and translated versions of a given basic pattern

(Daubechies, 1992). In our implementation, we use a Morlet wave-

let with central frequency and bandwidth estimated from the seismic

signal.

The other parameter of interest is the wavelet threshold γ. It ef-

fectively decides the lowest usable magnitude in the CWT (Thakur

et al., 2013). It is a noise-based hard thresholding that Thakur et al.

(2013) set to 10−8 for the ideal noiseless case in double precision

machines. In real cases, when the noise level is unknown, it is

common practice to use the finest scale of the wavelet decomposi-

tion (Donoho, 1995) as the noise variance σ2η . This threshold works

in real signals as a noise-level adaptive estimator (Herrera et al.,

2006) and is defined as the median absolute deviation (MAD) of

the first octave (Donoho, 1995; Thakur et al., 2013):

ση ¼ medianðjWsða1∶nv ; bÞ
−medianðWsða1∶nv ; bÞÞjÞ∕0.6745; (9)

where Wsða1∶nv ; bÞ are the finest scale wavelet coefficients and

0.6745 is a normalizing factor being the MAD of a Gaussian dis-

tribution. The threshold is then weighted by the signal length n to be

asymptotically optimal with value γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p

· ση.

EXAMPLES

Synthetic data

In this section, we test the SSTwith a challenging synthetic signal

(Figure 1). This is the same synthetic example used by Han and Van

der Baan (2013). The signal is comprised of an initial 20 Hz cosine

wave, with a 100 Hz Morlet atom at 0.3 s, two 30 Hz zero-phase

Ricker wavelets at 1.07 and 1.1 s, and three different frequency

components between 1.3 and 1.7 s of, respectively, 7, 30, and

40 Hz. Note that the 7 Hz frequency component is split into three

parts less than a full period each, appearing at 1.37, 1.51, and 1.65 s.

Figure 2a shows the CWT, CEEMD, and SST time-frequency

representations. For comparison purposes, we include the CWT re-

sult, because the SST is an extension of the CWT. The STFT is

known to have suboptimal performance, as is shown in Figure 6

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Time series

Time (s)

A
m

p
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u
d
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Figure 1. Synthetic example: background 20 Hz cosine wave,
superposed 100 Hz Morlet atom at 0.3 s, two 30 Hz Ricker wavelets
at 1.07 and 1.1 s, and there are three different frequency components
between 1.3 and 1.7 s. Same as Figure 1 in Han and Van der Baan
(2013).
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of Han and Van der Baan (2013). In Han and Van der Baan (2013), a

2D Gaussian smoothing filter (7 × 7 samples) was applied to the

CEEMD and SST outputs to improve visualization. In our exam-

ples, we plot the actual outputs from each method, because the ob-

jective is to show the sharpness of the reconstructed instantaneous

frequencies.

CWT uses a Morlet mother wavelet and a total of 320 scales

(32 voices per octave) to provide the time-frequency map shown

in Figure 2a. Note that this is the same result as in Figure 7 of

Han and Van der Baan (2013) with a different color scale. Here,

we have added a graphical interpretation to illustrate how the syn-

chrosqueezed representation is derived from the CWT. The dashed

white line in the vicinity of 20 Hz in Figure 2a is the ridge obtained

from the instantaneous frequency in the wavelet domain from equa-

tion 6. The next step involves the reassignment of the CWT values

to the position indicated by the instantaneous frequency ωl in equa-

tion 7. This mapping process indicated by vertical arrows moves

each point ðb; aÞ to the location ðb; winstða; bÞÞ producing a new

time frequency representation that is shown in Figure 2c. CEEMD

(Figure 2b) uses 10% of injected Gaussian white noise and 100 real-

izations. The result obtained by the SST (Figure 2c) uses, likewise,

the CWT from which it was generated, a Morlet wavelet, and 32

voices per octave.

CEEMD and SST delineate the individual components equally

well; especially, the instantaneous frequencies for the harmonic sig-

nals are well resolved. Yet, CEEMD collapses the short 100 Hz

Morlet wavelet at 0.3 s more. The 7, 30, and 40 Hz frequency com-

ponents occurring between 1.3 and 1.7 s are resolved by both meth-

ods, but there is little indication that the 7 Hz component is not

continuous. SST and CEEMD show only minor differences, but

both display significantly less frequency smearing than the CWT

representation.

Unlike the CWT, SSTand CEEMD allow for the extraction of the

individual components. Here, we compare the performance of both

methods in extracting and reconstructing the modes in a signal. To

numerically evaluate the reconstruction error, for both decomposi-

tions, we use the difference between the original signal and the sum

of the modes (Torres et al., 2011). A more general metric based on

the mean square error (MSE) is used to score reconstruction with a

single value as

MSE ¼ 1

N

X

N−1

n¼0

jsðtÞ − ŝðtÞj2; (10)

where N is the number of samples, sðtÞ is the original signal, and

ŝðtÞ is the reconstructed signal from the sum of all modes.

Figure 3 shows the IMFs (IMFs) extracted with the CEEMD. The

CEEMD decomposition is able to unmix each individual compo-

nent giving an easily interpretable decomposition. On the other

hand, the SST method (Figure 4) shows some degree of mode mix-

ing of the components.

For the CEEMD method, the first IMF shows the 100 Hz Morlet

atom, which is also identified by SST IMF1, but SST also recovers

parts of the 30 Hz Ricker wavelets. IMF2 of both methods are the

residuals of the high-frequency components. IMF3 of the CEEMD

represents the higher oscillations in the upper band of the Ricker

wavelets, whereas IMF3 of the SST shows directly the 30 Hz Ricker

wavelets plus the 30 and 40 Hz component. For IMF4, the SST

method performs equally as well as the CEEMD does, but it in-

Figure 2. Time-frequency representation of the synthetic trace.
(a) CWT, displaying smearing along the frequency axis for the
harmonic signals with a sketch of the SST procedure. (b) CEEMD
output with 10% added Gaussian white noise and 100 realizations.
The instantaneous frequencies corresponding to individual compo-
nents are well delineated. (c) SSToutput, with similar results for the
harmonics as CEEMD.
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cludes the 20 Hz component between the two 30 Hz. IMF5 of the

CEEMD shows the 20 Hz component with some mixtures of the

30 Hz Ricker wavelets, whereas the SST shows a better represen-

tation of the 20 Hz with the 7 Hz mode. IMF6 is only informative

for CEEMD with an isolated 7 Hz mode. The remainder are small-

valued elements. These low-amplitude components in the CEEMD

method are low-amplitude frequency bands, derived during the sift-

ing process. IMFs are derived from the highest oscillating compo-

nents to the lower frequency ones. Like the Fourier transform, some

IMFs will have higher amplitudes than other components depend-

ing on the signal characteristics. This is visible in Figure 3, where

the second IMF has not only a different frequency content from IMF

1 and 3, but also a different maximum amplitude.

The reconstructed signals by both methods are shown in Figure 5.

CEEMD (top dotted gray) has a perfect reconstruction subjected

only to machine precision with an overall MSE value of

5 × 10−33 and a negligible reconstruction error as is shown in

the bottom plot. The SST method provides a good estimation

(top continuous line), but some areas are not reconstructed accu-

rately, especially in the amplitudes, as is shown in the bottom plot

(continuous line). The MSE for the SST is 0.0013, which is in the

range of what is considered good performance for a reconstruction

method (Meignen et al., 2012).

Application to field seismic signals

Single trace

In this section, we apply the SST to a field data set and compare

to the CWT and CEEMD methods. This is a data set from a sedi-

mentary basin in Canada (Figure 6), also analyzed by Han and Van

der Baan (2013) and Van der Baan et al. (2010). It contains a

Cretaceous meandering channel at 0.42 s between common mid-

points (CMPs) 75–105 and a second channel between CMPs

160–180 of this migrated 2D cross section. An erosional surface

is located between CMPs 35–50 around 0.4 s. The data also contain

evidence of migration artifacts (smiles) at the left edge between 0.1

and 0.6 s. There are bands of alternating high-frequency areas with

tightly spaced reflections and low-frequency regions, which are

mostly composed of blank intervals without much reflected energy

(Van der Baan et al., 2010). This makes this data set interesting for

testing time-frequency decomposition algorithms. It has been

shown that both channel intersections exhibit significantly lower

frequency content due to their increased thickness (Van der Baan
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Figure 3. Decomposition of the original signal, shown in Figure 1,
into its intrinsic modes by CEEMD. The decomposition gives 13
individual modes with little mode mixing.

−1
0
1

IM
F

1

SST modes

−1
0
1

IM
F

2

−1
0
1

IM
F

3

−1

0
1

IM
F

4

−1
0
1

IM
F

5

−1
0
1

IM
F

6

−1

0
1

IM
F

7

−1
0
1

IM
F

8

−1
0
1

IM
F

9

−1

0
1

IM
F

1
0

−1
0
1

IM
F

1
1

−1
0
1

IM
F

1
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0
1

IM
F

1
3

Time (s)

Figure 4. Decomposition of the original signal, shown in Figure 1,
into its intrinsic modes by SST. We use the same 13 levels to com-
pare to CEEMD output. Although the decomposition is able to iso-
late the individual components, still some degree of mode mixing is
appreciable in the SST components.
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et al., 2010), causing constructive interference in the low-frequency

components (Partyka et al., 1999).

We take the seismic trace at CMP 81, which is plotted in Figure 7,

and apply CWT, CEEMD, and SST as is shown in Figure 8. The

CWT and SST methods are based on a Morlet wavelet with 32 voi-

ces per octave. CEEMD uses 10% of added Gaussian white noise

and 50 realizations. Figure 12 in Han and Van der Baan (2013)

shows the corresponding STFT plot.

All time-frequency representations display some similar shapes

including the bright channel at 0.42 s and a decrease in frequency

content with time, most likely due to attenuation (Figure 8). The

SST and CEEMD show more features than the CWT, due to the

higher time-frequency resolution of both methods. SST and

CEEMD representations generally agree for the frequencies above

50 Hz but connect strong spectral peaks differently for the lower

frequencies. This demonstrates the value in examining a single time

series using various time-frequency analysis methods.

Vertical cross section

Next, we apply the three methods to all traces and compute the

frequency where the cumulative spectral energy is at 80% (C80) of

the total energy (Perz, 2001; Van der Baan et al., 2010). Our mo-

tivation to use this cumulative energy criterion comes from the fact

that frequency-dependent tuning effects are often analyzed using

spectral decomposition to detect variations in turbidite layers or me-

andering channels (Partyka et al., 1999; Van der Baan et al., 2010).

Low-frequency values in C80 indicate concentrations of energy

near the lower portion of the total bandwidth, whereas high-

frequency values imply a broader spectrum. In some cases, lower

values will thus indicate areas of larger attenuation of the propagat-

ing wavelet. In other situations, it can reveal shifts in the position

of a single notch in the locally observed wavelet, for instance, due

to a thickening or thinning of reflector spacing (Van der Baan

et al., 2010).

This frequency attribute is overlain onto the original seismic data

shown in Figure 6. Figure 9 shows the CWT, CEEMD, and SST

results. The color bar represents the frequency bands. This fre-

quency representation for the three methods shows high- and

low-frequency bands between 0.2 and 0.8 s due to variations in re-

flector spacing and a general decrease in high frequencies, which is

associated with attenuation of the seismic wavelet.

The CWT C80 representation, shown in Figure 9a, brings out a

broader picture of the spectral content of this spatial location; the

major features are indicated. The CEEMD result emphasizes the

most interesting features in the data set. Traces on the Cretaceous

meandering channels at 0.42 s have lower frequency content than

the neighboring traces. This low-frequency variation is due to the

increased thickness in the channels. The SST result exhibits an even

cleaner representation (Figure 9c). The thin layers around 0.8 s are
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Figure 5. Reconstructed signals and reconstruction errors. (a)
CEEMD estimate (gray dotted) over the original signal (continuous
gray); there is no appreciable difference between these two signals.
The reconstruction error is approximately zero, limited by the
machine precision in the order of 10−16 (b). (b) SST produces a
reasonable reconstruction (continuous line), especially for the sta-
tionary parts with an MSE value of 0.0013, which is a low
reconstruction error.
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Figure 9. Characteristic frequencies for the vertical cross section.
C80 attribute for (a) CWT, (b) CEEMD, and (c) SST. CEEMD and
SST show a sparser representation than the CWT. SST has even less
speckle noise, and the strong reflector at 0.9 s is better represented.

Figure 8. CMP 81. Time-frequency representation from (a) CWT,
(b) CEEMD, and (c) SST. All show a decrease in frequency
content over time, yet the CEEMD and SST results are least
smeared.
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equally well identified by all methods, but fewer speckle like pat-

terns are observed below this reflector in the CEEMD and SST

images. The strong uniform reflector at 0.9 s is better represented

by the SST method.

Horizontal slice

In our last test, we run the three algorithms on the entire seismic

cube, composed of 225 inlines and 217 crosslines with a regular

spacing of 25 m. Each trace is 450 samples long with a sampling

period of 2 ms. Figure 10 shows the time slice at 420 ms of the

seismic cube. Beside the channel, which is clearly shown through-

out the image, there is a subtle fault. We compare the results of

CWT, CEEMD, and SST centered at this time slice analyzing differ-

ent frequency slices. CWT and SST use a Morlet wavelet with 32

levels per octave, and CEEMD injects 10% of Gaussian white noise

using 50 realizations.

Figure 11 shows the resulting constant frequency slices for CWT

(a), CEEMD (b), and SST (c) at, respectively, 20, 40, and 60 Hz (top

to bottom). The channel and fault are more sharply represented by

CEEMD and SST than in the CWT maps. CEEMD and SST have

similar performance; however, only SST seems to show that the

60 Hz spectral component is fading.

The fault appears at the 40 and 60 Hz time slices of all three

methods. The CWT shows the main features on all three frequency

slices, yet their amplitude variations are less clear, which makes the

thickness calculation of the channel challenging during further in-

terpretation. Compared with CWT, the amplitude variation of

CEEMD and SSTalong the channel is better defined, which is help-

ful to calculate subtle thickness variations. The amplitude variations

between closely spaced frequencies are better resolved in the

CEEMD and SST result due to significantly reduced frequency

smearing and smaller spectral leakage than for the CWT and STFT

methods (Han et al., 2013). In addition, the CWT depicts a rather

homogeneous area in the zone to the right of the channel in all fre-

quency slices, whereas the CEEMD and SST results show more

variable magnitudes with areas of localized amplitude strengthening

and weakening plus several linear features.

DISCUSSION

SST can be used to accurately map time-domain signals into their

time-frequency representation. It has a well-grounded mathematical

foundation that facilitates theoretical analysis. Like the alternative

transform methods, it is a mathematically reversible function,

thereby allowing for signal reconstruction, possibly after removal

of specific components.

CEEMD performs exceptionally well overcoming mode-mixing

problems. The reconstruction error is around machine precision

(Torres et al., 2011). The computation of the instantaneous fre-

quency from the isolated modes leads to a well-defined time-

frequency representation. SST shares many of the advantages of

CEEMD in practice, with an acceptable reconstruction error. Thus,

both methods are suitable to decompose a seismic trace into indi-

vidual components with the advantage of frequency localization. It

may also aid in noise-attenuation problems in which the signal and

noise correspond to different components, likewise, a recently pro-

posed technique based on regularized nonstationary autoregression

(Fomel, 2013). As in this paper, Fomel (2013) also suggests seismic

data compression and seismic data regularization as possible appli-

cations for seismic data decomposition into spectral components.

Both approaches aim to decompose seismic data into a sum of os-

cillatory signals with smoothly varying frequencies and smoothly

varying amplitudes (Fomel, 2013; Thakur et al., 2013), which is

the principle of the decomposition using the CWT (Daubechies

et al., 2011).

CEEMD using 50 noise realizations is approximately 13 times

slower than SST using our parameter settings; SST has approxi-

mately the same cost as a WT, yet neither method is prohibitively

expensive. We found that by using a classical Morlet wavelet and 32

levels for the SST method, we get a good balance between speed

and resolution in the frequency representation. The improvement of

SST is clear compared with the CWT. The reassignment technique

plays an important role in the results, by reallocating the wavelet

energy to the corresponding time position.

CEEMD and SST are more appropriate than STFT and CWT

when better time-frequency localization is needed. On the other

hand, STFT and CWT remain very useful analysis methods, even

if they may be subject to more spectral leakage than the CEEMD

and SST methods, because they do not collapse spectra to narrow

frequency bands. For instance, many attenuation methods are based

on spectral ratios between two signals (Reine et al., 2009, 2012).

Spectral ratios are difficult to compute if only individual frequency

lines exist. On the other hand, it may be possible to use the fre-

quency-shift method (Quan and Harris, 1997) to estimate seismic

attenuation using the CEEMD and SST methods. SST, due to the

reassignment step, will concentrate the energy into a small spectral

band. Thus, it will be more appropriate when better time-frequency

localization is needed (such as stratigraphic mapping to detect chan-

nel structures or identification of resonance frequencies).

From our study, we find that SST and CEEMD perform equally

well for seismic time-frequency representation, with the advantage

of speed and a stronger mathematical foundation in the case of the

SST. A further difference is that in the SST method, one can specify

the frequency range of interest prior to decomposition via the CWT

scale parametrization. This can speed up computations in many
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situations, whereas in CEEMD, components are always estimated

sequentially starting with the highest frequency ones.

CONCLUSIONS

The SST has a strong mathematical foundation based on fre-

quency reassignment of WT decompositions. In simple applica-

tions, SST and CEEMD give comparable results, although in

more complex situations, SST can yield more favorable results be-

cause it has the ability to adapt the mother wavelet to the data under

consideration. On the other hand, the advantage of CEEMD and

variants is precisely the fact that no decomposition basis needs

to be specified, eliminating the possible requirement to test for per-

formance enhancements by changing the decomposition basis.

SST produces an acceptable reconstruction error, which improves

as we extend the level of decomposition. This frequency-based de-

composition method can reconstruct individual components from se-

lected frequency bands. SST is therefore attractive for high-resolution

time-frequency analysis of seismic signals.
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