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ABSTRACT 

Researcher: Casey Richardson 

Title: APPLICATIONS OF THE TECHNOLOGY ACCEPTANCE MODEL 

TO INTEGRATION OF THE AUTOMATIC GROUND COLLISION 

AVOIDANCE SYSTEM IN FIGHTER AIRCRAFT OPERATIONS 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2017 

The leading cause of F-16 fighter aircraft and fighter pilot losses is ground collisions.  In 

an effort to curb this hazard, an automatic ground collision avoidance system (AGCAS) 

was formally fielded for use in routine U.S. Air Force active-duty F-16 operations in 

2014.  AGCAS uses a high-level automation design capable of altering the aircraft’s 

flight control system independent of pilot action.  

This study explored an application of the Technology Acceptance Model (TAM) 

to integration of the AGCAS in fighter aircraft operations. Using data from a survey of 

active-duty U.S. Air Force F-16 operational fighter pilots (n=142), collected shortly after 

initial AGCAS fielding, an AGCAS-specific TAM was analyzed using the structural 

equation modeling technique. Hypotheses describing the relationships between an 

AGCAS-TAM’s latent variables: AGCAS perceived usefulness, AGCAS perceived ease 

of use, and AGCAS usage behavior.  The results provided evidence of the validity and 

utility of an AGCAS-TAM to user acceptance of high-level automation in fighter aircraft 

operations.  
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CHAPTER I 

INTRODUCTION 

In 2014, the United States Air Force (USAF) released the Automatic Ground 

Collision Avoidance System (AGCAS) as part of the operational F-16 fighter fleet’s 

operational flight program (OFP) for variants of the aircraft utilizing digital flight control 

computers.  This release encompassed the vast majority of active duty U.S. F-16 

squadrons worldwide.  AGCAS represents a significant leap in the automation level of 

collision avoidance protection for pilots and for aircraft systems in general, because 

unlike previous collision avoidance systems, AGCAS is capable of automatically 

maneuvering the aircraft away from the ground, independent of pilot action.  In the event 

of an imminent collision with the ground, AGCAS overrides pilot flight control inputs, 

rolls the aircraft to approximately wings level, and begins a pull upward to avoid impact 

with a ground terrain database.  This study did not delve deeply into the hardware or 

software technical details except to emphasize the significance of what makes AGCAS 

unique among collision avoidance technology.   

Heretofore, collision avoidance systems onboard fighter aircraft have exclusively 

relied on human action to effect a change in an aircraft’s flight path to avoid ground 

collision.  Past systems aimed at reducing or eliminating flight into terrain hazards by 

providing pilots guidance and / or warning information of various forms and degrees, but 

all past systems have required pilot intervention to affect a change in aircraft flight path.  

AGCAS does not require pilot intervention and can take action if the pilot is directing a 

flight path into terrain, is spatially-disoriented, or if the pilot is completely incapacitated.  

With AGCAS active, the entire cycle of information gathering, decision-making, and 
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action-taking normally relegated to pilots operating fighter aircraft while avoiding ground 

collision hazards is complete.  AGCAS does provide an optional limited visual 

representation to the pilot of its information gathering and decision making processes in 

the form of a Heads-Up-Display (HUD) indication, but only after an AGCAS collision 

avoidance activation has begun (whereby the flight control system commands inputs 

independent of the pilot) is the pilot alerted to the system’s decision to begin an 

avoidance maneuver.  Activations can and do also occur absent the HUD displayed 

indication, known as chevrons due to their display shape.  Therefore, AGCAS represents 

a jump in automation level that is unprecedented in fighter aircraft operations which 

inherently involve pilots performing high risk tasks with small time margins to avoid 

ground collision.   

A business case evaluation for automatic collision avoidance technology (ACAT) 

that included AGCAS and an air-to-air collision avoidance system (Auto ACAS), 

performed in 2006, projects that ACAT will prevent the loss of $843.3 million in materiel 

assets for the F-16 fleet alone over a period of 24 years.  Should ACAT be implemented 

in other fly-by-wire aircraft across the USAF and U.S. Navy fleets, the systems are 

projected to prevent the loss of 136 aircraft, 78 pilots, and $6.7 billion in materiel assets 

for the DoD. This represents a return on investment of $6.2 to $1 over the same time 

period (Defense Safety Oversight Council, 2006). 

In December 2014, Lockheed Martin company presented data at the annual F-16 

System Safety Group that showed relative percentages for F-16 total operational losses, 

whereby the aircraft was damaged beyond repair, for all F-16 airframes worldwide prior 
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to December 2014.  These relative percentages and the associated cause of the loss is 

shown in Figure 1.   

 

 

Figure 1.  Total F-16 aircraft losses worldwide prior to Dec 2014.  Adapted from “F-16 
Total Operational Losses”, by Lockheed Martin, 2014.   

 

The entire right side of the graphic in Figure 1, 48% of total losses, represents all 

F-16 aircraft losses associated with ground collision.  The acronyms associated with the 

relevant losses include controlled flight into terrain (CFIT), spatial disorientation (SDO), 

and g-induced loss of consciousness (GLOC).  There are subtleties with the assignment 

of these labels to the individual causes of aircraft losses and not all F-16 organizations 

agree among the definitions.  However, what is important to note is the majority of 

aircraft losses are the result of impact with the ground for F-16 operations, in general. 

AGCAS flight test data has shown that 98% of the historical incidents involving ground 

collision in the F-16 would have been prevented by AGCAS (Swihart et al., 2011).  
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AGCAS, therefore has potential to prevent up to 47% of total aircraft losses based on 

historical aircraft mishap data.    

Because the added benefits of a system like AGCAS are so compelling, it may 

seem obvious that AGCAS was a safety system worth implementing as quickly as 

possible.  However, the system’s research history paints a clear picture of a system 

developed mostly in significant fits and starts (Niedober et al., 2014).  Development and 

research to make this technology possible began thirty years ago, and many stakeholders 

have been involved along the way (Moore, 2013).  Unfortunately, during AGCAS’s 

developmental history there have been many stakeholders and budgetary decision-makers 

who were convinced that this type of technology would either not be technically viable in 

the field and / or would ultimately cause more harm than good.  Stated another way, 

AGCAS was significantly delayed, and many aircraft and pilots were lost over the last 

thirty years because of a lack of acceptance and trust in such a system despite 

overwhelming technical achievement and inflight demonstration of the system’s potential 

capability to prevent ground collisions.  Many key institutional decision-makers between 

1984 and 2014 were simply unconvinced that the community of fighter pilots was 

capable of accepting an automated system that could override pilot flight control 

commands.   

Despite the low support afforded AGCAS development during its long and 

frenzied history, a few champions of the technology kept the program alive by 

associating its development with other research programs (Moore, 2013).  In 2003, the 

technology received a significant boost when the Secretary of Defense’s initiative to 

reduce fighter aircraft mishaps, for which flight into terrain represented the most 
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significant cause of aircraft losses, was reinvigorated.  Around this time, the program was 

re-baselined around a guiding philosophy that recognized human limitations would 

require a fully automated system in order to realize actual reductions in ground collisions.  

This re-baselining was inspired by flight test research that clearly demonstrated why 

ground collision avoidance systems that were not fully automated had all failed to 

significantly reduce aircraft losses due to ground collisions (Swihart et al., 2011).    

The renewed effort was supported by the Defense Safety Oversight Council in 

2007 when it invested $2.5 million to start a program collectively known as the 

Automatic Collision Avoidance Technology (ACAT) / Fighter Risk Reduction Program 

(FRRP) (Niedober et al., 2014).  The ACAT/FRRP initiative provided funding and other 

resource support that revitalized AGACS.  Additionally, ACAT was re-organized around 

a simple over-arching strategy with three design principles: 1) Do no harm, 2) Do not 

impede, and 3) Avoid collisions (Niedober et al., 2014).  These three goals were 

rigorously and methodically pursued in priority order during system development and 

flight testing until the system was proven to be extremely mature.  After hundreds of test 

flights, excruciating analyses and improvements to the system over another decade of 

developmental work, the decision was finally made to release AGCAS to the field.  In 

2014, operational F-16 pilots began flying with AGCAS in training and in combat.  As of 

the spring of 2017, AGCAS has already prevented the loss of at least four F-16 aircraft 

and saved four pilot’s lives. 

The system’s final stage of research was principally spearheaded by the U.S. Air 

Force Research Laboratory (AFRL) because it recognized the significance of this 

milestone and its uniqueness for study of the human element as well as the technical 
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parts.  As such, the AFRL’s Office of Scientific Research initiated case studies of 

AGCAS during its early research and development phases as well as during its 

operational release.  Prior to release, AFRL researchers studied AGCAS stakeholders to 

include experimental test pilots, managers, and engineers.  Studies, such as those done by 

Koltai et al. (2014a) and Koltai et al. (2014b) provided a window into the expected 

perceptions of the operational users and offered predictions of the end users likelihood of 

successful incorporation of AGCAS.  Test pilots, managers, and engineers thus served as 

the only available population at the time to act as AGCAS users for study.  Since the 

release of AGCAS, the AFRL has extended this research into a longitudinal study with 

the intent to directly observe and measure the actual end users, the operational pilots, 

during their integration and use of AGCAS in the field.  This ongoing study is organized 

under the name Enhancing and Supporting Auto-GCAS Acceptance and Trust 

Calibration: A Longitudinal Field Study of Auto-GCAS Implementation (Fergueson et 

al., 2016; Lyons et al., 2016; Lyons et al., in press).   

In the fall of 2015, the first round of data collection for the Lyons study, which 

included surveys and in-person interviews of operational pilots, was conducted.  This 

dataset represents the only available data to describe integration of a high-level 

automated system capable of overriding pilot commands during high-risk, low-time-

available flight tasks.  The Lyons study is organized to focus on the concept of trust and 

trust antecedents as they develop in a community of pilots over a long period of several 

years (Lyons et al., 2015).  The independent analysis of an AGCAS based TAM 

described herein was symbiotic to Lyons et al. (2015) but focused instead on the concept 

of acceptance behavior rather than the concept of trust.  The Lyons et al. (2015) study 
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centers on a dynamic trust model described by Lee and See (2004).  The goal of this 

study was to determine the influence of factors in the core technology acceptance model 

(TAM), first suggested by Davis (1986), that affected the positive acceptance behavior of 

pilots with respect to their use of AGCAS.  This study may also provide useful 

suggestions for effectively integrating high-level automated systems into flight operations 

on a shorter timeline than was required during AGCAS’s developmental history.  In the 

future, technology developers may want to focus on those factors that are important for 

increasing positive initial pilot acceptance behavior.   

To date, much effort has been expended researching and solving the technical and 

programmatic challenges involved with designing, testing, and fielding ACAT.  

However, there is a dearth of understanding of the acceptance and trust of the 

technology’s end users.  The principal reason for this lack of understanding surrounding 

integration of ACAT systems is that it is a fundamentally new type of safety system in 

fighter aircraft operations.  At first glance, it is easy to assume that ACAT systems are 

much like other types of automation already commonplace in aircraft operations.  

However, ACAT is significantly different than any previously integrated automated 

system.  Another contributing factor for the lack of research into pilots’ trust and 

acceptance of ACAT systems was the resource constrained environment in which the 

technology was created.   

For decades, research into ACAT type technologies have enjoyed support of 

aviation safety stakeholders but struggled with gaining budget stakeholders buy-in.  The 

lack of budgetary buy-in for ACAT systems have historically been driven by doubts 

about technical feasibility, return on investment potential, and organizational and cultural 
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factors.  As a result, ACAT was developed by a few persistent research “champions,” and 

now that the technology has been demonstrated as both technically achievable and 

financially viable, end users have been extremely supportive of integration of ACAT into 

their operational aircraft fleets.   

Ideally, end user considerations are normally considered early in aircraft system 

development.  However, because of the reasons already mentioned, ACAT was 

developed and fielded without a deep understanding of end user considerations that 

would garner rapid user acceptance.  Specifically, there exists significant potential for the 

pilots who will use these systems to have adverse reactions to ACAT system integration.  

Research findings from the experimental test pilots involved with the development of 

ACAT’s first useable system, AGCAS, indicated that there was a significant possibility 

of pilots becoming mis-calibrated to the technology’s capability (Niedober et al., 2014).  

The threat of this mis-calibration is that the pilots may either underuse or overuse ACAT 

in ways that were not intended by the developers.  Analogous examples of this type of 

mis-calibration of trust or lack of acceptance by an automated system’s end user from 

other non-aviation industries have revealed that potential safety benefits may be 

significantly reduced or lost entirely.  If the user of a safety system does not develop a 

calibrated trust or if the user fails to accept the system, the entire system is not optimized 

regardless of the capability of the specific physical hardware or software.  The Lyons et 

al. (2015) study is focused on understanding calibrated trust, and this study focused on 

understanding the user’s acceptance of AGCAS. 

 

 



9 
 

 
 

Significance of the Study 

High-level automation systems capable of overriding pilot flight control 

commands have heretofore been excluded from fighter aircraft operations which require 

high risk activities with short reaction times in order to avoid catastrophic hazards.  

AGCAS represents a significant opportunity to study an early adoption of such a high-

level automation system by end users in a field setting.  To date, no other research study 

has analyzed AGCAS, or any other ACAT-like system, with respect to the users’ 

acceptance behavior.  A few studies were conducted before AGCAS release to make 

predictions about potential threats to users’ acceptance and trust of AGCAS, but these 

studies used developmental test pilots, engineers, and program managers as respondents.  

The dataset from the Lyons et al. (2015) study represents the first and only response data 

from the actual users, operational F-16 fighter pilots, ever collected or analyzed.  

The USAF and other Department of Defense (DoD) agencies are already 

researching other similar ACAT systems for integration into its operational aircraft fleets.  

Lessons learned from AGCAS development and operational integration may provide a 

vital first look into what future stakeholders of these systems may want to consider 

during research, development, and effective fielding to their end users in order to 

promote pilots’ positive acceptance behavior.   

 

Statement of the Problem 

Integration of highly automated aircraft systems holds the potential to overcome 

some human limitations.  Within the DoD, many new systems are being considered for 

integration into aircraft operations to improve safety and mission effectiveness.  The 
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benefits of automated systems cannot be realized if pilots reject them.  Knowledge gained 

from studying pilots’ acceptance behavior with respect to AGCAS may allow future 

stakeholders to make reasonable inferences about some factors that are important to 

achieving positive pilot acceptance of highly automated aircraft systems.  This study 

presents an AGCAS-specific version of the technology acceptance model (AGCAS-

TAM) for analysis with respect to F-16 pilots’ acceptance of AGCAS.  The AGCAS-

TAM describes the interaction among users’ perceived utility, perceived ease of use, and 

usage behavior. 

 

Purpose Statement 

This study capitalized on the release of AGCAS as the first ACAT system to 

operational fighter pilots in order: 1) to gain a better understanding of the pilots’ 

acceptance behavior with respect to a high-level automated system capable of overriding 

pilot commands during high-risk, low-time-available flight tasks.  This study: 2) 

demonstrated the validity and utility of the AGCAS-TAM as a model for future research 

efforts that involve ACAT-like systems.  The core TAM, upon which the AGCAS-TAM 

was built, provided a starting framework with a robust model (King & He, 2006) that was 

developed with the goal of evaluating a proposed system’s likelihood of success in its 

development (Davis, 1986).  This study: 3) provided useful suggestions for future ACAT 

or ACAT-like programs to promote effective user acceptance of high-level automated 

systems. 
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Research Question and Hypotheses 

With respect to F-16 pilots’ acceptance of AGCAS, what are the relationships 

among the factors: AGCAS perceived usefulness, AGCAS perceived ease of use, 

AGCAS behavioral intent, and AGCAS usage behavior?  

The hypotheses to be tested with respect to the application of an AGCAS-TAM 

are: 

• H1: Pilots’ perceived usefulness of AGCAS (APU) has an influence on 

pilots’ AGCAS behavior intention (ABI). 

• H2: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ perceived usefulness of AGCAS (APU). 

• H3: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ AGCAS behavioral intention (ABI). 

• H4: Pilots’ AGCAS behavioral intention (ABI) is related to pilots’ 

AGCAS usage behavior (AUB).   

 

Delimitations 

This study leveraged quantitative data from the closed-ended survey questions 

from the Lyons et al. (2015) study to explore the applicability of an AGCAS-TAM built 

on the core TAM first suggested by Davis (1986) to initial user acceptance of AGCAS.  

The quantitative variable data supported quantitative data analysis techniques.   

The archival Lyons et al. (2015) data represented the best and only available data 

for this study.  There are significant bureaucratic barriers to entry for performing research 

on a group of government employees which would prevent direct measurement of F-16 
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operational pilots specifically for the purpose of exploring the construct of acceptance.  

The Lyons et al. (2015) AGCAS study was built first around the construct of trust with 

acceptance only as a secondary construct of interest.  In some instances where these two 

constructs differed, individual survey questions were prioritized to capture trust concepts 

in order to meet AFRL’s organizational and funding needs.  However, the author was an 

active participant in the development of the Lyons et al. (2015) survey instrument and 

data collection.  Therefore, the closed-ended survey questions intended for SEM analysis 

were planned to correspond with TAM constructs of acceptance behavior as well.   

Focusing on the closed-ended survey questions will permit structural equation 

model (SEM) analysis techniques that measure the relationships of the TAM as it relates 

to AGCAS acceptance behavior.  The open-ended survey question responses and the in-

person interview responses in the Lyons et al. (2015) study were not quantifiable in a 

manner conducive to SEM analysis methods, and were not used in this study.  

Finally, the original TAM first suggested by Davis (1986) was chosen for this 

study because it represents a core foundation of a model that has been widely cited and 

modified across a wide spectrum of disciplines with consistent validity (King & He, 

2006).  The initially proposed AGCAS-TAM was built using the core TAM.  The final 

modified AGCAS-TAM described in Chapters IV and V was the result of model fit 

analysis using the survey data.  During analysis, it was discovered that the survey data 

was collected too late to describe behavioral intent in a meaningful way.  This 

modification and it’s ramifications on the research question and hypotheses is discussed 

further in Chapter V. 
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Limitations and Assumptions 

As of the writing of this study, AGCAS has been successfully and effectively 

integrated in to the operational F-16 fleet.  There have been a few minor localized 

setbacks and several individual flying units have imposed short-term, temporary internal 

restrictions on AGCAS use at various times.  However, these restrictions have, to this 

point, been isolated events related to hardware issues identified shortly after release.  

These hardware issues are not inherently part of AGCAS itself and, as hardware 

problems have been resolved, system use has predominantly followed a common policy 

across the community of F-16 pilots in general. The common use policy in the F-16 

operational pilot community mirrors closely with policies in place among the test pilots 

who have been flying with AGCAS for several years.  As a whole, this study assumed 

that the community of F-16 pilots flying with AGCAS have accepted it for use in daily 

operations, and short-term hardware issues in individual flying units did not appreciably 

affect the survey question values.    

A limitation of this study was that the sample size is fixed because the data used is 

archival. As described in the methodology section of this study, the sample size was 

sufficient for SEM analysis methods only for a limited number of latent variables.  The 

nature of SEM is that the inclusion of more latent variables typically requires a larger 

sample size in order to achieve meaningful results. The sample size available for analysis 

supported up to four latent variables.  The inclusion of more latent variables would have 

required methodology considered outside the scope of this study.  
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Definitions of Terms 

Acceptance  means to voluntarily choose to use.  In addition to key 

decision-makers in the DoD who choose to release a 

system to the users, it is possible for individual pilots to 

choose not to use AGCAS.  The system can be disabled by 

each pilot via an in-cockpit interface.   

Automatic  implies a transfer of control from human to a machine 

system. 

Behavioral Intention  describes an individual’s stated evaluation of his or her 

intent to perform certain actions. 

Usage Behavior  describes the actual actions taken by a person or groups of 

persons. 

F-16  is an aircraft, but it is also a system of systems.  It is a 

multi-role fighter aircraft capable of a wide variety of 

training and combat operations.   

Operational Pilot  refers to the typical training or combat oriented pilot who is 

focused on operating the F-16 for a purpose beyond 

evaluation of the aircraft or aircraft subsystems themselves.  

Operational pilots are the end-users of the F-16.   

Perceived Usefulness  describes the operational pilot’s perception of the utility of 

AGCAS as a system which promotes safe flight operations. 

Perceived Ease of Use describes the operational pilot’s perception of workload to 

use AGCAS.   
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Test Pilot  refers to developmental and experimental test pilots who 

are the first to fly and evaluate any new aircraft systems or 

subsystem with the goal of maximizing system utility for 

the operational pilot. 

. 

List of Acronyms 

AAM Automation Acceptance Model 

ABI AGCAS Behavior Intention 

ACAT Automatic Collision Avoidance Technology 

AFRL Air Force Research Laboratory 

AGCAS/Auto GCAS Automatic Ground Collision Avoidance System 

AGFI Adjusted Goodness-of-Fit Index 

AMOS Analysis of Moment Structures 
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APU Perceived Usefulness of AGCAS 
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CFI Comparative Fit Index 
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DoD Department of Defense 

DTED Digital Terrain Elevation Data 
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FRRP Fighter Risk Reduction Program 

GFI Goodness-of-Fit Index 

HUD Heads Up Display 

ICAS Integrated Collision Avoidance System 

INS Internal Navigation System 

IRB Institutional Review Board 

MCAR Missing Completely at Random 

MI Modification Indicators 

NFI Normed Fit Index 

OFP Operational Flight Program 

PGCAS Predictive Ground Collision Avoidance System 

RMSEA Root Mean Square Error of Approximation 

SEM Structural Equation Model 

SPSS Statistical Package for the Social Sciences (SPSS) software 

TAM Technology Acceptance Model 

TPB Theory of Planned Behavior 

TRA Theory of Reasoned Action 

TSPI Time, Space, and Position Information 

USAF United States Air Force 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

This chapter includes three sections.  The first section discusses the uniqueness of 

AGCAS over previous collision avoidance systems.  AGCAS will be compared to two 

legacy F-16 collision avoidance systems already fielded but which have had little impact 

on reducing ground collision incidents.  The second section will discuss the state of the 

theory in the literature regarding technology integration concepts as they relate to higher 

level automation schema acceptance.  Particular emphasis will be made on technology 

acceptance in this study in order to complement ongoing AGCAS trust behavior research 

efforts and establish a baseline for understanding AGCAS acceptance behavior.  Finally, 

this chapter concludes with a discussion of the research framework and hypotheses, to 

include the original proposed theoretical model’s pre-analysis pairing of observed 

variables with latent variables based on subject matter opinion. 

 

Uniqueness of AGCAS 

To automate means to transfer control of a task from human to a machine system.  

Parasuraman, Sheridan, and Wickens (2000) describe automations as having:  

… a computer carry out certain functions that the human operator would normally 

perform.  The automation can differ in type and complexity, from simply 

organizing the information sources, to integrating them in some summary fashion, 

to suggesting decision options that best match the incoming information or event 

to carry out the necessary action.  (p. 287) 
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Parasuraman, Sheridan, and Wickens (2000) describe the type and complexity of 

automation as applying to four broad classes of functions that are notionally 

accomplished serially for any given task to be accomplished.  These four functions are 

information acquisition, information analysis, decision and action selection, and action 

implementation.  While these four serial functions are simple and not all inclusive of all 

the facets of any given task in general, they are useful for making comparisons between 

various types of automated systems.  A comparison of the various systems applicable to 

ground collision avoidance in the F-16 can be made using this simple model.   

 The F-16 includes several systems that provide guidance or warning to the pilot in 

order to prevent undesirable ground impact.  For example, two such systems include 

database terrain cueing (DBTC) and predictive ground collision avoidance system 

(PGCAS).  DBTC is a guidance system that provides a visual indication to the pilot via 

the heads-up display (HUD) about where to maneuver the aircraft’s flight path in order to 

avoid the ground by a pilot-selectable terrain clearance altitude.  Using DBTC requires 

the pilot to turn on DBTC guidance, select a desired above ground level (AGL) altitude, 

and to make flight control commands which position the aircraft’s displayed flight path in 

sync with a DBTC cue in the HUD.  DBTC provides flight path guidance based on time, 

space, and position information (TSPI) provided by the aircraft’s internal navigation 

system (INS) solution and pre-loaded digital terrain elevation data (DTED).  DBTC is a 

passive guidance system that does not actively look for obstacles or confirm the accuracy 

of the INS or DTED information provided.  Additionally, if the pilot chooses not to 

follow DBTC indications, the system provides no additional feedback to the pilot of 

impending ground collision hazards.  Using an automation level analysis similar to 
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Parasuraman, Sheridan, and Wickens (2000), it is possible to evaluate DBTC’s 

automation level at each functional class.  This analysis is shown in Figure 1.   

 

 

Figure 2.  DBTC automation level analysis. 

 

Compared with DBTC, PGCAS operates at a higher level of automation, as 

shown in Figure 2.  Unlike DBTC, PGCAS does not require pilot action to activate the 

system.  PGCAS is on at aircraft startup. Like DBTC, PGCAS automatically compares 

the aircraft’s INS solution TSPI to DTED information in order to predict ground collision 

hazards.  PGCAS also automatically decides when to display warning information to the 

pilot based on the remaining time available before ground collision is unavoidable.  Only 

the last functional class, action implementation, requires pilot intervention. 
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Figure 3.  PGCAS automation level analysis. 

 

 Comparing these guidance and warning systems with the Parasuraman, Sheridan, 

and Wickens (2000) scales makes it relatively easy to visualize the differences between 

types of collision avoidance systems.  This same analysis can be applied to AGCAS and 

illustrate why it is fundamentally different and worthy of study. 
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Figure 4.  AGCAS automation level analysis. 

 

Figure 4 shows an analysis of the four functional classes for AGCAS.  Of 

particular note is the final step in the process, action implementation.  This step is 

accomplished by AGCAS automatically, and the system only necessarily informs the 

human after taking action, which is consistent with a level 7 automated system on 

Parasuraman, Sheridan, and Wickens’ (2000) ten-level scale of automation of decision 

and action selection shown in Figure 5. 
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Figure 5.  Comparison of F-16 ground collision avoidance systems to the levels of 
automation of decision and action .  Adapted from “A model for types and levels of 
human interaction,” by Parasuraman, Sheridan, and Wickens, 2000, IEEE Transactions 
on Systems, Man and Cybernetics, Part A: Systems and Humans, 30(3), 286-297. 

 

Compared with past systems, such as DBTC and PGCAS, AGCAS is a significant 

jump from a level 3 or 4 system to a level 7 automated collision avoidance system.  It is 

this leap that makes AGCAS fundamentally so different than any past collision avoidance 

system and thus makes it worthy of focused research.  In particular, significant time and 

effort has already been spent researching the technical aspects of AGCAS, but there is a 

dearth of understanding of how to integrate a high-level automated system capable of 

manipulating an aircraft’s flight path independent of pilot action into real-world fighter 

aircraft operations.   

 

 

 



23 
 

 
 

Past and Ongoing AGCAS Integration Research 

Prior to AGCAS release for operational F-16 pilot usage, studies such as those by 

Koltai et al. (2014a), Koltai et al. (2014b), and Niedober et al. (2014) focused on 

predicting end user trust behavior from observations among stakeholders in the 

development and testing of the system.  These studies used responses from system 

designers, flight test engineers, management stakeholders, and F-16 test pilots to make 

estimates and inferences about dynamic trust behavioral implications.  Following the 

release of AGCAS to the F-16 operational pilot community in 2014, studies such as 

Lyons et al. (2016), Lyons et al. (2015), and Lyons et al. (in press) have focused on 

observing end user trust behavior and comparing observed F-16 pilot AGCAS trust 

behavior with the previously predicted behavioral implications.  These studies rely on the 

theory by Lee and See (2004) who proposed that organization trust behavior evolves and 

is a dynamic behavior that eventually settles on a long-term equilibrium, whereby user 

trust behavior becomes calibrated with an automated systems’ capabilities.  

This study was complementary to the ongoing trust development studies but does 

not duplicate effort.  Rather than exploring longitudinal trust behavior, this study 

leverages existing data from the trust studies to explore initial pilot acceptance behavior.  

There are no existing studies to document pilot acceptance of a high-level automated 

system, such as AGCAS, that is capable of arresting control from the pilot during 

intentional high risk, low-time-available flight conditions.  Understanding pilot 

acceptance behavior with respect to AGCAS will fill a gap in understanding pilot 

acceptance behavior for these type of systems.  This study helped realize Davis’ (1986) 

practical goal to “provide valuable information for systems designers and implementers.  
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Designers would be better equipped to evaluate design ideas early in the system 

development process and make informed choices among alternative approaches” (p. 12). 

There are several high-level automation technologies in various stages of 

development currently being considered by the DoD that would likely benefit from a 

deeper understanding of pilot acceptance behavior.  For example, the F-16 development 

community has already begun flight testing of an automatic air collision avoidance 

system (Auto ACAS) targeting the next leading cause of aircraft losses, mid-air 

collisions, as shown in Figure 1 (Richardson, Eger, & Hamilton, 2015). The current plan 

for Auto ACAS is to integrate it with Auto GCAS into a combined system under the 

umbrella name of integrated collision avoidance system (ICAS) (Norris, 2016).  The 

release of ICAS to the operational pilot community will likely affect similar behavioral 

responses as Auto GCAS, therefore stakeholders would probably benefit from knowing 

how the end user’s come to accept these types of systems.  

Because this study found quantitative evidence that the widely-accepted 

technology acceptance model (TAM) is useful in describing Auto GCAS acceptance 

behavior, it may be reasonable to expect that the large body of literature related to TAM 

may also prove useful for stakeholders of similar systems.  For example, to date, ICAS 

system designers and implementers are developing their systems while relying only on 

qualitative results or informal analysis methods of inconsistent anecdotal sources of 

feedback from a few key points-of-contact in the F-16 pilot community.  A unifying 

theory, supported by quantitative evidence, to describe how operational fighter pilots 

come to accept high-level automated systems, which can intervene during high-risk, low-

time-available flight maneuvers, has not yet been documented.  Therefore, designers and 
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implementers of these types of systems lack a reliable method to predict pilots’ 

acceptance behavior.  This study provided a first quantitative look at the F-16 operational 

pilot community’s acceptance behavior with respect to unique Auto GCAS 

operationalized constructs and may serve to justify future exploration of theoretical 

extensions of TAM to better describe pilot acceptance behavior. 

 

Technology Acceptance Model Background 

The researcher proposes to analyze the validity of the TAM (Davis, 1986) to 

AGCAS integration into fighter operations.  The TAM was primarily chosen as a starting 

framework for this study for two reasons.  First, the practical goals that Davis (1986) 

cited as reasons for developing this model are closely aligned with the goals of this 

research study.  Principally, having a valid theoretical basis for user acceptance would 

provide useful information for evaluating the “relative likelihood of success of proposed 

systems early in their development, where such information has greatest value” (Davis, 

1986, p. 7).  Secondly, the TAM has been used and evaluated extensively in the literature 

and has proven to be a robust model for many applications well beyond its origins (King 

& He, 2006). 

The TAM was first suggested by Davis in his 1985 dissertation (published in 

1986).  It has undergone many iterations and taken various forms as researchers have 

attempted to modify the TAM to the needs of each individual research topic.  In 2006, 

King and He performed a meta-analysis of 88 TAM empirical studies that demonstrated 

the model to be valid and robust.  While the core TAM constructs have been modified 
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and added to in many ways, the core constructs have remained “highly reliable and may 

be used in a variety of contexts” (p. 751).  The core TAM is shown in Figure 6. 

 

 

Figure 6.  Core TAM describing user motivation. Adapted from “A technology 
acceptance model for empirically testing new end-user information systems”, by F. 
Davis, 1986, Massachusetts Institute of Technology. 

 

King and He (2006) state that “TAM is based on the theory of reasoned action 

(TRA), a psychological theory that seeks to explain behavior” (p. 740).  Also, with 

regards to construct reliability, these “reliabilities are consistently high with low variance, 

leading to the conclusion that these simple four to six measures have widespread 

potential utility in technological utilization situations”(King & He, 2006, p. 743).   

In his meta-analysis of Fishbein and Ajzen’s theory of reasoned action (TRA), 

Callahan (1998) argues that “the lack of support for the bivariate assumption of the early 

studies, i.e., that attitude is the sole predictor of behavior, led many to suggest that 



27 
 

 
 

attitude towards an object is only one variable that influences behavior” and that “[o]ther 

factors such as habits, past experience, social norms, and situational considerations 

needed to be addressed” (pp. 1-2).  Wicker (1969) provided a comprehensive review of 

the early evolution of this bivariate relationship assumption, between attitude and 

behavior, whereby he concludes that there is “little evidence to support the postulated 

existence of stable, underlying attitudes within the individual which influence both his 

verbal expressions and his actions” (p. 75).  As a result, other theories emerged that 

attempted to explain and predict human behavior.  One of these theories was the TRA, 

which was suggested and developed over time in several publications, such as Fishbein 

(1967), Ajzen and Fishbein (1970, 1974), Fishbein and Ajzen (1975), and Fishbein and 

Ajzen (1980).  Before 1980, TRA was known as the model of behavioral intentions 

(Callahan, 1998).  Davis (1986) used the TRA as “a starting point, a fairly general, well-

established theoretical model of human behavior in psychology” (p. 13).   

Davis (1989) expanded on the TAM by developing and validating measurement 

scales for observed variables related to the latent variables in the model perceived 

usefulness and perceived ease of use.  Quantitative data used for the Davis (1989) scales 

investigation exhibited “significant empirical relationships” and “were found to have 

strong psychometric properties” with “self-reported measures of usage behavior” (p. 

333).  Davis (1993) tested the TAM with a field study of users and two end user systems.  

The underlying model was supported by the data, but analysis results also prompted the 

author to conclude that “research should consider the role of additional variables within 

TAM” (p. 483).  Venkatesh and Davis (2000) developed an extended version of the 

TAM, which they called TAM2, using longitudinal field studies to explore the influences 
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of social influence and cognitive instrumental processes on the latent variables perceived 

usefulness and usage intentions.  Again, the underlying model was supported by the data, 

and the addition of external influences showed promise in accurately explaining reported 

behavior with some significant differences between the acceptance of “mandatory” and 

“voluntary” information systems.  Venkatesh and Davis (2000) also concluded that 

“future research should seek to further extended models of technology acceptance to 

other important theoretical constructs,” (p. 200) suggesting that the TAM could serve as a 

framework for customizing models of behavior to other systems operating under a wide 

variety of environments or conditions. 

King and He (2006) performed their meta-analysis of the TAM using 88 studies 

with more than 12,000 observations, found consistent reliable results, and made several 

conclusions, to include: 

(a) TAM measures (perceived ease of use, perceived usefulness, and behavioral 

intention) are highly reliable and may be used in a variety of contexts. 

(b) TAM correlations, while strong, have considerable variability, suggesting that 

moderator variables can help explain the effects.  The experience level of users 

was shown to be a moderator in a number of studies but was not pursued here 

because of the difficulty in identifying the experience level in studies that did not 

report it.  It was possible to identify two moderators given the data from the 

sampled studies. 

(c) The influence of perceived usefulness on behavioral intention is profound, 

capturing much of the influence of perceived ease of use.  The only context in 
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which the direct effect of (perceived ease of use) on (behavioral intention) is very 

important is in internet applications. 

(d) The moderator analysis of user groups suggests that students may be used as 

surrogates for professional users, but not for ‘‘general’’ users.  This confirms the 

validity of a research method that is often used for convenience reasons, but 

which is rarely tested. 

(e) Task applications and office applications are quite similar and may be 

considered to be a single category. 

(f) This sample sizes required for significance in terms of most relationships is 

modest.  However, the (perceived ease of use)-(behavioral intention) direct 

relationship is so variable that a focus on it would require a substantially larger 

sample. 

These conclusions led King and He (2006) to the summary conclusion that their “meta-

analysis rigorously substantiates the conclusion that has been widely reached through 

qualitative analyses: that TAM is a powerful and robust predictive model” (p. 751). 

Ghazizadeh, Lee, and Boyle (2012) argued that “[o]ften joint human-automation 

performance depends on the factors influencing the operator’s tendency to rely on and 

comply with automation,” and that there are sufficient parallels between automation 

acceptance and information system acceptance such that TAM may serve to 

“complement the human-automation interaction perspective from the cognitive 

engineering community” (p. 39).  Ghazizadeh, Lee, and Boyle (2012) suggest a form of 

the TAM that they call the automation acceptance model (AAM), which they proposed as 

a model for describing the successful formation of human-technology coagency over 
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time.  This coagency is akin to Lee and See’s (2004) concept of human automation trust 

whereby reliance and dependence behaviors are dynamic.   

Although analysis of an AGCAS-TAM built on a more complex version of the 

TAM may be interesting, this study only investigated the applicability of the AGCAS-

TAM built on the core TAM for two reasons.  The first reason was to initially limit the 

number of unsubstantiated variables to be explored with a limited sample size.  The 

dataset size only supports SEM analysis for a model with four latent factors, and 

therefore, it is impractical to attempt SEM with a model based on more than four latent 

factors.  Secondly, recent TAM variations, such as the AAM, tend to be inherently 

dynamic models with feedback mechanisms that cannot be supported with the static 

archival data available.  The data available for this study came from the first and only 

data collected from operational F-16 pilots using AGCAS to date.  No longitudinal data 

yet exists to support analysis of a dynamic model.  

The core TAM does have potential weaknesses and has been critiqued in the 

literature.  Bagozzi (2007), a Davis colleague and collaborator, criticized Davis’ (1986) 

TAM model as being too simplistic and that most follow-on efforts to expand upon the 

core TAM have only “constituted a broadening of TAM in the sense of introducing 

additional predictors for either perceived usefulness or intentions,” and “almost no 

research has deepened the TAM in the sense of explaining perceived usefulness and 

perceived ease of use, reconceptualizing existing variables in the model, or introducing 

new variables explaining how the existing variables produce the effects they do” Bagozzi 

(2007, p. 244).  Bagozzi (2007) was thorough in his review and critique of several 

popular behavioral models including TAM, the theory of planned behavior, and the 
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theory of reasoned action.  Among other critiques, Bagozzi (2007) takes issue with the 

deterministic nature of these models and describes many potential pitfalls in the linkages, 

the assumptions underlying the variables themselves, and the lack of feedback 

mechanisms to describe dynamic behavior changes.  He also suggests a solution for these 

weaknesses by providing his own model called the “technology user acceptance decision 

making core”, which he argues is more “universal” and more capable of capturing 

potential gaps in past models (Bagozzi, 2007, p. 250).  His new model uses as a 

framework latent variables such as goal desire, goal intention, action desire, action 

intention, and a feedback mechanism he calls self-regulation, that he presumes will better 

capture more of the complexities that exist in human acceptance behavior in general.  

However, Bagozzi (2007) does not dismiss the TAM, or other popular theories 

such as TRA or theory of planned behavior (TPB), outright.  Instead, he states that “by 

any measure, TAM qualifies as a remarkable accomplishment,” that “TAM has stood the 

test of time by being the leading model for nearly two decades”, and “TAM has 

consistently outperformed the TRA and TPB in terms of explained variance across many 

studies (Bagozzi, 2007, p. 244).  For the purpose of this study, which is a first exploration 

into acceptance behavior for a novel technology, the consistency of TAM is precisely 

what is needed to start research into ACAT-like systems.  Davis (1986) “identified two 

distinct beliefs, perceived usefulness and perceived ease of use, that were sufficient 

enough to predict the attitude of a user toward a system” (Marangunic & Granic, 2015, p. 

85).  For this study, the simplicity and deterministic nature of TAM are not expected to 

be weaknesses.  The measure of a model’s value is not necessarily its accuracy at 
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describing a complex system of systems, but instead a model may be valued for its 

precision and practical utility.   

The TAM is a robust model with a long history of reliability and validity (King & 

He, 2006).  While there are many man-machine systems that rely on automation, as 

argued previously, AGCAS is a fundamentally new and different type of automation that 

does not have a direct analogous technology by which to accurately compare.  By using a 

model with a solid foundation, this new object of study can be grounded in a model with 

a solid foundation in the literature.  A quantitative SEM analysis of the core TAM as it 

pertains to AGCAS provides a solid foundation for potentially fruitful future exploration 

of TAM variants that will probably require qualitative or mixed methods to draw useful 

conclusions.  Without an initial quantitative analysis of the core TAM, inferences from 

analysis of TAM variations that rely on qualitative methods alone will have reduced 

persuasive strength.   

The methods chosen for this study’s use of TAM were consistent with typical 

research involving the TAM.  King and He’s (2006) description and summarizations 

from their meta-analysis of the 88 TAM empirical studies collected from indexed sources 

suggest the preponderance of TAM studies that yielded useful quantitative results 

involved collecting response data from technology users and then performing linear 

regression or structural equation modeling analysis methods.  The archival data from the 

Lyons et al. (2015) study were consistent with past methods of TAM research and, as 

described later in this study, was sufficient for detecting medium effect sizes for an 

AGCAS-TAM given the fixed sample size and number of variables.   
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Research Theoretical Framework and Hypotheses 

The proposed theoretical framework of the AGCAS-TAM that will describe 

AGCAS acceptance is shown in Figure 7.  This framework was developed based on the 

literature review and with consultation with Lyons both before and after his team’s data 

collection effort for the Lyons et al. (2015) study.  The proposed hypotheses are also 

shown. 

Table 1 shows the operational definitions of this study’s constructs as it applies to 

AGCAS acceptance by operational (non-test) F-16 pilots.   

 

Table 1   

Operational Definitions of the Study Constructs 

Construct Operational Definition  

AGCAS Perceived Usefulness 
(APU) 

The pilots’ reported degree to which AGCAS 
serves its intended purpose. 

AGCAS Perceived Ease of Use 
(APEU) 

The pilots’ reported effort required to use AGCAS.   

AGCAS Behavioral Intention 
(ABI) 

The pilots’ reported future AGCAS usage behavior.    

AGCAS Usage Behavior (AUB) The pilots’ reported AGCAS interactions.   

Note.  Adapted from Davis’ (1986, 1989, and 1993) descriptions of TAM to describe an 
AGCAS-specific model, AGCAS-TAM.   
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Figure 7.  Graphic representation of the hypotheses between latent variables in the 
AGCAS-TAM. 

 

The TAM is based on the theory of reasoned action (King & He, 2006).  The 

theory of reasoned action (Ajzen and Fishbein 1980; Fishbein & Ajzen, 1975) is not the 

only popular theory for describing human behavior, but it “has been widely used as a 

model for the prediction of behavior intentions and/or behavior” (Madden, Ellen, & 

Ajzen, 1992, p. 3).  In 1989, Davis expanded his 1986 introduction of TAM with 

descriptions of the latent variables in the model: 

• “Perceived usefulness is defined here as the degree to which a person believes 

that using a particular system would enhance his or her job performance.  This 

follows from the definition of the word useful: capable of being used 

advantageously … a system high in perceived usefulness, in turn, one for which a 

user believes in the existence of a positive use-performance relationship” (Davis, 

1989, p. 320).  

• “Perceived ease of use, in contrast, refers to the degree to which a person believes 

that using a particular system would be free of effort.  This follows from the 

definition of ease: freedom from difficulty or great effort” (Davis, 1989, p. 320). 
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• Behavioral intention “is a measure of the strength of one’s intention to perform a 

specified behavior” (Davis, Bagozzi, & Warshaw, 1989, p. 984).  

• Usage behavior “can be predicted reasonably well from their intentions” (Davis, 

Bagozzi, & Warshaw, 1989, p. 997).  

In his original proposal of TAM, Davis (1986) provided “empirical support” for 

“TAM’s relationships except for the ease of use-usefulness link” (p. 67).  Davis (1986) 

first described the relationship between perceived ease of use on perceived usefulness by 

stating that “since, all else being equal, a system which is easier to use will result in 

increased job performance for the user”.  The directional relationship between perceived 

ease of use and perceived usefulness accounts for cases where the “performance benefits 

of usage are outweighed by the effort of using the application” (Davis, 1989, p. 320).  

The TAM model’s original proposed directional relationships have demonstrated 

consistency across the “accumulated body of knowledge regarding self-efficacy, 

contingent decision behavior and adoption of innovations” (Davis, 1993, p. 323).  The 

original empirical support and the demonstrated broad utility of the model in the 

literature across a wide spectrum of disciplines and industries (King and He, 2006; 

Marangunic and Granic, 2015) suggest that the TAM model’s relationships will likely 

hold true for AGCAS acceptance behavior as well.   

A note on behavioral intention.  One of the original authors of the theory of 

reason action, upon which the TAM was founded, Ajzen (2002) described behavioral 

intention as the “antecedent of behavior” and “given a sufficient degree of actual control 

over the behavior, people are expected to carry out their intentions when the opportunity 

arises” (p. 665).  Behavioral intention was originally proposed by Davis (1986) as 
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attitude toward using and subsequently labeled simply attitude for many uses 

(Marangunic & Granic, 2015).  However, attitude “did not fully mediate the perceived 

usefulness and the perceived ease of use” variables, and so “Davis and his colleagues 

suggested that there would be cases when, given the system which was perceived useful, 

an individual might form a strong behavioral intention to use the system without forming 

any attitude” (Marangunic & Granic, 2015, p. 85).  Marangunic and Granic (2015) refer 

to this early TAM modification as the parsimonious TAM.  For the sake of this study, the 

term parsimonious will not be used in discussion, but this updated form of the TAM 

model, which includes this early modification by the original model’s creator, was used 

and referenced as the core TAM.  It represents the most consistently used basic form of 

the TAM. 

AGCAS-TAM hypotheses.  The directional relationships between the latent 

variables in the AGCAS-TAM are: 

• H1: Pilots’ perceived usefulness of AGCAS (APU) has an influence on 

pilots’ AGCAS behavior intention (ABI). 

• H2: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ perceived usefulness of AGCAS (APU). 

• H3: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ AGCAS behavioral intention (ABI). 

• H4: Pilots’ AGCAS behavioral intention (ABI) is related to pilots’ 

AGCAS usage behavior (AUB).   
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Summary of the Literature Review 

By comparing three of the ground collision avoidance systems in the F-16 using 

automation level analysis, this literature review described the uniqueness of AGCAS as a 

fully automated system when compared to guidance and warning systems.  Past and 

ongoing research of AGCAS integration centered on trust as a dynamic construct within 

the DoD have been described. Arguments from meta-analyses of the TAM, popular in the 

literature on automation, were summarized to highlight the enduring strengths of the 

theory.  Finally, an AGCAS specific version of a core TAM has been proposed with a 

theoretical framework and associated hypotheses included.  
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CHAPTER III 

METHODOLOGY 

This chapter describes the methodology for assessing the AGCAS-specific TAM 

measurement and theoretical models’ validities using quantitative variables from archival 

operational USAF F-16 pilots’ survey response data.  First, the research approach, to 

include a proposed initial measurement model, will be described.  The dataset will also be 

described, to include population and sampling, source of the data, and the treatment of 

the data process.  Finally, acceptable values for proposed indexes and estimates in the 

SEM model will be provided which will validate the theoretical model and test the 

hypotheses.   

 

Research Approach 

The research methods suggested by Hair et al. (2010) were used.  For analyzing 

dependent relationships with multiple relationships of dependent and independent 

variables, Hair et al. (2010) recommends structural equation modeling (SEM).  SEM is 

also a commonly used analysis method for research using the TAM (King & He, 2006). 

 

Design and procedures. 

The dataset already exists and was provided with permission for this study. 

Therefore, this study was inherently archival in nature.  For a study where empirical 

results already exist, three steps are required: (1) assess measurement model validity, (2) 

specify structural model and (3) asses structural model validity (Hair et al., 2010).   In 

general, this study used confirmatory factor analysis (CFA) tools in Analysis of Moment 
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Structures (AMOS) and reliability tests in Statistical Package for the Social Sciences 

(SPSS) to assess measurement model validity, used AGCAS-TAM as the structural 

model, and used SEM tools in AMOS to assess model validity.  Hypotheses were tested 

by the estimates and their associated critical ratio significance tests that result from the 

SEM analysis in AMOS. 

 

Apparatus and materials.  The dataset was provided in an excel spreadsheet 

with interval numerical values from the survey respondents organized by questions as 

observed variables.    

 
 
 

 

Figure 8.  Proposed theoretical framework of an AGCAS acceptance technology 
acceptance model (AGCAS-TAM) with observed variables from Lyons et al. (2015) 
survey data.   
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In Figure 8.  Proposed theoretical framework of an AGCAS acceptance 

technology acceptance model (AGCAS-TAM) with observed variables from Lyons et al. 

(2015) survey data, the question numbers (e.g. Q#) refer to the survey question numbers 

in the Lyons et al. (2015) study, for ease of cross referencing the original dataset.   

Table 2   

Question Numbers Sorted by Latent Variableshows the actual questions on the 

survey that correspond to each question label in Figure 8.  Proposed theoretical 

framework of an AGCAS acceptance technology acceptance model (AGCAS-TAM) with 

observed variables from Lyons et al. (2015) survey data, sorted by respective latent 

variable. 

 

Table 2   

Question Numbers Sorted by Latent Variable   

Number/name Actual question  

Perceived Usefulness 
Q10.5 I think Auto-GCAS was designed to help me 
Q10.7 Auto-GCAS is reliable 
Q10.9 Auto-GCAS was designed to have my best interests in mind 
Q20.2 After flying in a plane equipped with Auto-GCAS, what was your 

perception of the overall usefulness of Auto-GCAS? 
Q21.1 Auto-GCAS effectively prevents CFIT 
Q21.2 I benefit from having Auto-GCAS installed on my plane 
Q21.3 Other pilots benefit from having Auto-GCAS installed on their planes 
 
Perceived Ease of Use 
Q10.1 Auto-GCAS is designed in such a way to minimize nuisance to the 

pilot 
Q10.2 I understand the purpose of Auto-GCAS 
Q10.3 I understand how Auto-GCAS senses the environment 
Q10.4 I understand when Auto-GCAS will activate  
Q10.6 I understand how Auto-GCAS works 
 
Behavioral Intention 
Q26.1 I feel more confident flying with Auto-GCAS installed on my plane 
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Q26.2 I feel confident Auto-GCAS will protect me if I experience spatial 
disorientation, G-induced loss of consciousness (G-LOC), or loss of 
consciousness 

Q14 If I experience an Auto-GCAS activation, I am comfortable reporting 
the activation 

Q10.8 Auto-GCAS does not interfere with my ability to fly 
 
Usage Behavior 
Q26.3 I can count on Auto-GCAS to work when needed 
Q26.4 I can count on Auto-GCAS to work in emergency situations 
Q26.5 I can count on Auto-GCAS to work during combat 
Q26.6 I can count on Auto-GCAS to work during low-altitude flying 

Note.  Adapted from “Trust of an automated collision avoidance technology: A fighter 
pilot perspective,” Lyons, J. B., Ho, N. T., Fergueson, E., Sadler, G., Cals, S., 
Richardson, C., & Wilkins, M, 2015, Unpublished manuscript.    

 

Population and Sampling 

The dataset included survey responses from 142 F-16 pilots from various U.S. Air 

Force bases around the world where AGCAS had been implemented into daily 

operations.  According to the USAF F-16 system program office, the population of USAF 

F-16 pilots actively flying at the time of the data collection was 967, with 495 of those 

pilots flying an AGCAS capable version of the F-16 (S. Baker, personal communication, 

September 4, 2015).  The sample size, n=142, therefore represents a 28.69% response 

rate among the population of pilots that are flying with AGCAS.  However, it should also 

be noted that not all respondents answered all survey questions, and for at least one 

question, Q14, the actual sample size was as low as n=109, which is a response rate of 

22.02% among pilots actively flying with AGCAS.   

The dataset was archival and the sample size was therefore fixed.  No more data 

was available for analysis besides that provided from the Lyons et al. (2015) study.  Hair 

et al. (2010) recommend a minimum sample size of 100 for SEM analysis for models 

with five or fewer constructs and 150 for models with up to seven constructs.  For 
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quantitative analysis of the AGCAS-TAM with respect to AGCAS applicability, the 

sample size available from the Lyons et al. (2015) study should be sufficient to support 

the four constructs listed in Table 1 and shown in Figure 8.   

 

Source of the Data  

The data provided for this study was archival and was provided, with permission 

to be used for this study, by the authors of Lyons et al. (2015).  Permission to use the data 

is attached as Appendix A.  The Lyons et al. (2015) survey was administered via email, 

through official U.S. government email servers, to provide every pilot flying with 

AGCAS at 10 different U.S. Air Force installations around the world the opportunity to 

complete the survey.  The 10 installations included in the survey distribution were chosen 

after consultation with several relevant government agencies such that the sample would 

be representative of the entire population of F-16 pilots using AGCAS.  

Additionally, the Lyons et al. (2015) data were collected after formal review by a 

USAF institutional review board (IRB) process, and the IRB’s instructions for protecting 

survey respondents were strictly followed.  The archival data provided from the Lyons et 

al. (2015) study for this study were made anonymous before transmittal, and none of the 

information is individually identifiable.  No response data can be traced back to any 

specific person, location, or military unit.  Therefore, Protection of Human Subjects 45 

C.F.R. § 46 does not apply, and this study did not involve human subjects (U.S. 

Department of Health & Human Services, 2014).  Additionally, exempt status was 

confirmed by the Embry Riddle IRB.  This exemption is attached as Appendix B.  
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The Lyons et al. (2015) study included closed-ended and open-ended questions. 

For this study, only responses from the closed-ended questions were used.  These closed-

ended questions used Likert-scale style response choices to the questions statements 

shown in Table 2.  The Lyons et al. (2015) study used the response data from these 

questions under the determination that the data were continuous during analysis.  

However, Likert-scale style response choices have been argued by some in the literature 

to primarily consist of ordinal data.  Fortunately, SEM has been demonstrated to be a 

robust analysis method for Likert scale style data whether it is considered continuous or 

nonmetric (Awang, Afthanorhan, and Mamat, 2006; Byrne, 2010; Hair, Black, Babin, 

and Anderson, 2010).  Byrne (2010) summarized reviews of the issue of SEM categorical 

versus continuous data by establishing conditions whereupon continuous methods may be 

used with categorical variables: (a) where the number of category response choices is at 

least five; (b) the variables do not exhibit opposite skew; and (c) the data approximates a 

normal distribution.  The archival data from Lyons et al. (2015) used in this study met 

these requirements, and, therefore, the data was considered continuous. 

  

Instrument reliability.  Reliability of the instrument was tested using Cronbach’s 

alpha (α) on a random sample of the survey responses to determine internal consistency 

of the scales.  This test was performed on the data using SPSS software.  Values for α of 

0.7 or greater achieve the standards for general acceptability (Hair et al., 2010).  In the 

event low α values were found, recommendations from Field (2009) were planned for 

use, which include consideration of inter-item correlations of observed variables.  

However, this contingency did not need to be exercised in this study.  
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Instrument validity.  Construct validity was tested using CFA in SPSS and with 

AMOS software.  CFA helped determine correlation between variables (Brown, 2015).  

Construct validity testing included convergent and discriminant validity tests.  Average 

variance extracted (AVE) and construct reliability (CR) techniques were both used as 

indicators of convergent validity.  Discriminant validity was suggested by comparing 

AVE to the square of the correlation estimate (Hair et al., 2010).  Acceptable values for 

construct validity followed the suggested values from Hair et al. (2010), to include 

loading estimates above 0.5, AVE of 0.5 or greater, AVE estimates for any two factors 

greater than the square of the correlation between the two factors, and CR of 0.7 or 

greater.   

 

Treatment of the Data Process 

The dataset was sanitized with respondent identification information removed 

before transferal from the Lyons et al. (2015) authors to the author of this study.  Each 

respondent’s response data was given a unique coded label that does not link to the 

respondent’s identity.  Therefore, all the respondents’ data were anonymous.  As a further 

precaution, however, this unique coded label for each respondent was only used to 

organize data during analysis and not presented anywhere in this work. 

Respondents who only answered demographic information were excluded from 

the sample to be used in this study.  This exclusion resulted in only four respondent’s 

surveys being removed.  There was no recognizable pattern or observable reason that this 

small number of respondents only provided demographic information and failed to 
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answer the quantitative scale survey questions.  No technical glitch was found in the 

administration of any survey.  It was suspected that respondents who provided 

demographic style information only may have been limited by time constraints beyond 

the control of the researchers in the Lyons et al. (2015) study.  This exclusion rate, 4 out 

of 146 respondents, did not have any significant effect on results. 

For the remaining 142 responses, listwise deletion was the preferred method for 

handling missing values.  There were 109 listwise responses, meaning there are n=109 

responses after the surveys with incomplete responses for the relevant observed variables 

were removed.  The minimum sample size, discussed previously in this chapter, was 100 

for SEM analysis, given the number of latent and observed variables in the AGCAS-

TAM.  Therefore, while listwise deletion reduces the sample size, a large enough sample 

remains for SEM analysis.  If the missing data are missing completely at random, then 

listwise deletion does not introduce bias into the SEM estimates (Allison, 2003).  A 

comparison of the surveys with missing responses with demographic information for 

each respondent revealed no reason to suggest that the missing data was anything other 

than missing completely at random.  Therefore, the sample remaining after listwise 

deletion is “effectively a random sample from the original sample” and “any statistical 

method may then be applied” (Allison, 2003, p. 547).  Results of statistical tests 

supporting the random nature of the missing data were also calculated and are included in 

Chapter IV.   

SEM analyzes covariance structures and therefore kurtosis may negatively impact 

results (Byrne, 2010).  This negative impact of kurtosis may be minimized by obtaining a 

large enough sample size.  Byrne (2010) recommends a ratio of 10, and Hair et al. (2010) 
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recommends a ratio of 15 respondents for each parameter to be estimated.  However, the 

proposed measurement model in Figure 8 includes too many parameters when compared 

to the number of respondents in the dataset to meet either recommended ratio threshold.  

Therefore, if analysis had shown no acceptable adjustments to achieve acceptable model 

fit, tests for normality conducted in AMOS may have revealed variables with univariate 

kurtosis that contribute most to multivariate kurtosis.  However, for the AGCAS-TAM 

analysis, good model fit was achieved with the measurement model using the most 

common estimation technique, the maximum likelihood method, as recommended by 

Byrne (2010) without the requirement to transform any variable to correct for kurtosis.  

Finally, outlier detection was conducted with the dataset using the technique 

recommended by Byrne (2010) in order to detect multivariate outliers.  AMOS output for 

Mahalanobis distance was evaluated for each case in order to compare the standard 

deviation units for each case, and the sample means for all variables and outliers would 

have been those variables which stand “distinctively apart from all the other” distance 

values (Byrne, 2010, p. 106).  Analysis revealed no variable outliers with distinctive 

Mahalanobis distance values. 

 

Hypothesis testing.   

Hypothesis testing was performed using SEM tools in the AMOS add-on to SPSS 

using methods suggested by Byrne (2010) and Hair, Black, Babin, and Anderson (2010).  

SEM was the preferred method for analysis and hypothesis testing because it “takes a 

confirmatory (i.e, hypothesis-testing) approach to the analysis of a structural theory 

bearing on some phenomenon” (Byrne, 2010, p. 3).  A significant advantage of SEM is 
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that it evaluated causal hypotheses in an explanatory model with all the theorized factors 

included.  If the underlying equations of a SEM, represented by a graphical model of a 

system, were adequately fit with observed data, then the model suggests potentially 

useful causal relationships (Byrne, 2010).   

As recommended by Hair et al. (2010), the measurement model validity was 

assessed before assessing the structural model validity.  As described previously for 

instrument reliability and validity testing, measurement model validity was tested through 

CFA to confirm factor structure.  Because the original theorized measurement model did 

not demonstrate good fit, Byrne (2010) and Hair et al. (2010) both recommended model 

respecification that was justified by empirical and theoretical support.  For this study, the 

measurement model was respecified during CFA using criteria recommended by Byrne 

(2010) and Hair et al. (2010), to include an examination of the strength of standardized 

loadings and then using modification indicators in AMOS to suggest changes to improve 

model fit.  Significant changes made to model structure are discussed in Chapter IV and 

V with the relevant theoretical support that accompanied the empirical evidence.  After 

CFA of the respecified measurement model revealed a good model fit, then the full 

structural model of AGCAS-TAM was tested.  To evaluate the measurement and 

structural models’ respective fit in AMOS, relevant feasibility of parameter estimates, 

appropriateness of standard errors, statistical significance of parameter estimates, 

goodness-of-fit statistics, and the chi-square (χ2) value were considered, as recommended 

by Byrne (2010).  Relevant fit indices output by AMOS are listed in Chapter IV to 

include values for normed chi-square (χ2/df), comparative fit index (CFI), root mean 
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square error of approximation (RMSEA), normed fit index (NFI), goodness-of-fit index 

(GFI), and adjusted goodness-of-fit index (AGFI).   

The χ2 statistic is reported and is the “only statistically based SEM fit measure” 

(Hair, Black, Babin, & Anderson, 2010, p. 648).  Low values of χ2 demonstrate no 

differences between covariance matrices and “support the model as representative of the 

data” (Hair, Black, Babin, & Anderson, 2010, p. 648).  However, the χ2 statistic has 

limitations with respect to SEM because it is negatively affected by sample size and the 

number of observed variables considered.  Therefore, Hair et al. (2010) and Byrne (2010) 

recommended using χ2/df, which was also labeled CMIN/df, as a normed chi-square 

whereby the degrees of freedom serve to counter the effects of sample size and the 

number of variables.  For this study, which used a relatively small sample size and a low 

degree of model complexity, Hair et al. (2010) recommend χ2/df ratios of three to one or 

less.  The NFI is a useful index for less complex models such as the one used in this 

study.  The NFI is a derivation of a comparison between the hypothesized model and a 

null model (Byrne, 2010).  The null model is one that “assumes all observed variables are 

uncorrelated” (Hair et al., 2010, p. 650).  However, because the NFI may “underestimate 

fit in small samples” (Byrne, 2010, p. 78), the CFI takes the sample size into account.  

The range of values for NFI and CFI are between 0 and 1 where values closer to 1 

indicate better model fit.  CFI values were used in this study since the sample size is 

relatively small.  RMSEA was assessed to test for the tendency of the χ2 statistic to reject 

models with a large number of observed variables (Hair et al., 2010).  RMSEA will better 

represent “how well the model fits the population, not just a sample used for estimation” 

(Hair et al., 2010, p. 649).  Finally, GFI and AGFI were also included in this study as 
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they are common SEM indices found in the literature.  Values for GFI and AGFI may 

range between 0 and 1 where values closer to 1 indicate better model fit.  

Hair et al. (2010) provided guidance for fit indices with various model situations.  

For the AGCAS-TAM, the number of observed variables and observations fell in the 

range where acceptable values included χ2 p-values that may be significant with good fit, 

χ
2/df should be less than 3, CFI should be .95 or greater, and RMSEA should be less than 

.08.  As suggested by Byrne (2010), other common index values in the literature NFI, 

GFI, and AGFI were included in the analysis.  These criteria were used to determine 

goodness-of-fit for the measurement model and the structural hypothesis model analysis.  

After determining model fit, parameter estimates in the model were assessed.  If 

the parameter estimates were feasible and the standard errors output by AMOS were 

appropriate, the statistical significance of the parameter estimates could then be 

determined (Byrne, 2010).  Parameter estimates should “exhibit the correct sign and size, 

and be consistent with underlying theory” (Byrne, 2010, p. 67).  Small, but not too small, 

standard errors for each regression weight parameter estimate suggested accurate 

estimation (Byrne, 2010).  The significance test statistic from AMOS for the parameter 

estimate was the C.R., “which represents the parameter estimate divided by its standard 

error” (Byrne, 2010, p. 68).  For nonsignificant parameter estimates, the parameter was 

either unimportant to the model or indicated too small a sample size (Byrne, 2010).   

“A theoretical model is considered valid to the extent that the parameter estimates 

are statistically significant and in the predicted direction” and “nontrivial” (Hair et al., 

2010, p. 659).  The AMOS SEM path estimates output indicated the relative strength of 

the deterministic influence or relationship among the constructs on each other.   
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Summary of the Methodology 

This chapter described the proposed research approach and included the 

measurement model validity to precede the structural model analysis.  The source of the 

data and the treatment of the data to protect the survey respondents’ identities was 

provided. Pre-analysis treatment of the data was justified.  Finally, the planned 

parameters, with acceptable ranges, to support measurement validity, structural model 

validity, and hypotheses testing were identified.  
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CHAPTER IV 

RESULTS 

This chapter states the results of the methodology described in the previous 

chapter.  The results from the measurement model CFA analysis revealed validity 

problems and cross loading issues.  The original hypothesis measurement model’s CFA 

results suggested model respecification that is also supported by the literature.  The 

modified model CFA and SEM analysis demonstrates adequate model fit and provided 

support for an Auto-GCAS specific version of a core TAM model with one of the 

original latent factors removed.  The results from the subsequent structural model 

analysis revealed statistically significant support for two of the three remaining 

hypotheses.  

 

Respondent Demographics and Ancillary Data 

The Lyons et al. (2015) survey collected some quantifiable, confidential 

demographics of the respondents and some ancillary data.  These demographic responses 

were made available for this study of acceptance as well.  The responses included total 

flight hours, total F-16 flight hours, number of sorties (individual aircraft 

flights/missions) with AGCAS, and date of first AGCAS experience.  These data were 

anonymous and represent the group of 142 respondents from a population of 495 USAF 

F-16 pilots that were flying AGCAS-equipped aircraft at the time of the survey in the 

summer of 2014.  At the time of the survey, AGCAS had been fielded to the various 

flying units for one to three months, depending on location, since the system was not 

loaded onto all F-16 aircraft simultaneously. 
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The mean total flights hours for the pilots surveyed was 1,523 flight hours with a 

standard deviation of 925 flight hours.  All respondents provided an answer to this survey 

question.  The highest reported flight hours value was 4,600 flight hours. The frequency 

histogram for total flight hours is shown in Figure 9. 

 

 

Figure 9.  Survey demographics histogram for total flight hours.  

 

  The mean F-16 flight hours value was 923 flight hours with a standard deviation 

of 661 flight hours.  All but three respondents provided answers to this survey question.  

The highest reported F-16 flight hours value was 2,800 flight hours.  The frequency 

histogram for total flight hours is shown in Figure 10. 



53 
 

 
 

 

Figure 10. Survey demographics histogram for total F-16 flight hours. 

 

 The mean number of sorties with AGCAS was 45 sorties with a standard 

deviation of 25 sorties.  All but three respondents provided answers to this survey 

question.  The highest reported number of AGCAS sorties was 100. 
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Figure 11. Survey demographics histogram for number of sorties with Auto-GCAS. 

 

The demographics data is summarized in Table 3 below.  

 

Table 3 

Summary of Demographics Data 

Survey question Mean Standard 
Deviation 

Maximum 

What are your approximate 
total flight hours? 
 

1523  
flight hours 

925  
flight hours 

4600  
flight hours 

What are your approximate 
total F-16 flight hours? 
 

923  
flight hours 

661  
flight hours 

2800  
flight hours 

Approximately how many 
sorties have you flown with 
AGCAS?  

45  
sorties 

25  
sorties 

100  
sorties 
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The Lyons et al. (2015) study survey also asked each respondent a binary (yes/no) 

question about whether or not the respondent had experienced an AGCAS activation.  

Only 17 respondents answered “Yes”, affirming that the respondent had experienced an 

AGCAS activation.  Out of the 142 respondents 11 left this question unanswered or 

selected “N/A”, and 113 respondents selected “No”.  The distribution of answers is 

shown in Figure 12.   

 

 

Figure 12. Respondent answers to survey question #11: “Have you experienced an 
activation?” 

 

The survey did not specify or categorize the type of activation, so it is assumed 

that the pilots’ lack of AGCAS activations extends to any type of activation.  Types of 

AGCAS activations include normal activations, erroneous activations, and nuisance 

activations (Moore, 2013).  The majority of USAF F-16 pilots flying with AGCAS 

during the initial 1 to 3 month period of operation had not experienced a system 

activation.  This result will be important during the discussion in the following chapter 
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regarding the CFA model respecification to exclude the latent variable ABI in the 

AGCAS-TAM and the resulting adjustment to the hypotheses tested. 

 

CFA and Model Respecification 

This study was originally designed to test four hypotheses based on a proposed 

four factor Auto-GCAS specific TAM, as shown in Figure 8 and Table 2 in Chapter III.  

The results of a measurement model CFA analysis in AMOS of the original structure is 

shown below in Figure 13.   

 

 

Figure 13. Measurement model CFA results of original proposed AGCAS-TAM with 
unacceptable fit and six standardized loading factors below minimum acceptable values. 
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The original measurement model arrangement failed Cronbach’s alpha tests for 

reliability suggesting that the original proposed model structure, based on subject matter 

expert opinion only, was unlikely to fit the data.  The model fit indicators from the CFA 

of the original hypothesized measurement model are shown in Table 4.  

 

Table 4 

CFA Fit Indicators for Original Hypothesized Measurement Model Before 

Respecificaiton 

Indicator Value Result 

CMIN (χ2) 493.158, p<.0001 Too high for model size 
CMIN/df (χ2/df) 3.007 Not a unique model 
CFI .772 Poor fit for model size 
RMSEA .136 Poor fit  
NFI .698 Poor fit 
GFI .707 Poor fit 
AGFI .625 Poor fit 

 

When the CFA with the original measurement model was analyzed in AMOS 

using the original measurement model from Table 2, it revealed poor model fit with 

values outside the recommended values in Hair et al. (2010) for a model with 20 

measurement variables and 109 observations.  Additionally, some standardized factor 

loadings were below the typical recommended minimum value of 0.5.  Six of the twenty 

measurement variables failed to load with sufficient weight onto the latent variables.  The 

potential reasons for these factor loading results are discussed further in Chapter V.  

Using modification indicators (MIs) to rearrange observed variables with 

recommended latent factors, removal of those observed variables which failed to load 

onto any factor above the criteria detailed in Chapter III and following modification 

indicators suggestions to allow additional free parameters, a satisfactory respecified 
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measurement model was found.  As discussed in Chapter III, the methodology for 

analysis rearrangement followed guidance from Byrne (2010) and Hair et al. (2010).  The 

respecified measurement model shown in Figure 14 and Table 5 satisfied 

recommendations for adequate model fit with a  χ2/df ratio (χ2/df = 1.305) below the 

recommended maximum value and standardized loading weights above 0.5.  

 

 

Figure 14. Respecified CFA measurement model with adequate fit and loading factors 
above minimum values.  
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Table 5 

Question Numbers Sorted by Latent Variable in the Respecified AGCAS-TAM Model  

Number/name Actual question  

Perceived Usefulness 
Q10.5 I think Auto-GCAS was designed to help me 
Q10.7 Auto-GCAS is reliable 
Q20.2 After flying in a plane equipped with Auto-GCAS, what was your 

perception of the overall usefulness of Auto-GCAS? 
Q21.2 I benefit from having Auto-GCAS installed on my plane 
Q21.3 Other pilots benefit from having Auto-GCAS installed on their planes 
Q10.1* Auto-GCAS is designed in such a way to minimize nuisance to the 

pilot 
 
Perceived Ease of Use 
Q10.3 I understand how Auto-GCAS senses the environment 
Q10.4 I understand when Auto-GCAS will activate  
Q10.6 I understand how Auto-GCAS works 
 
Usage Behavior 
Q26.2* I feel confident Auto-GCAS will protect me if I experience spatial 

disorientation, G-induced loss of consciousness (G-LOC), or loss of 
consciousness 

Q26.3 I can count on Auto-GCAS to work when needed 
Q26.4 I can count on Auto-GCAS to work in emergency situations 
Q26.5 I can count on Auto-GCAS to work during combat 
Q26.6 I can count on Auto-GCAS to work during low-altitude flying 

Note.  * Indicates measurement variables reassigned to new latent variables during CFA 
respecification.  

 

Table 5 shows the measurement variables that were retained during CFA analysis 

and model respecification.  Additionally, the two questions marked with asterisks were 

reassigned to a different latent variable each.  These two variable reassignments were 

suggested by AMOS during respecification and are visually apparent in a comparison of 

Figure 13 and Figure 14.  The questions from the original hypothesized AGCAS-TAM 

structure that did not load well onto any latent variable regardless of respecification are 

shown in Table 6 below. 
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Table 6 

Question Removed During Measurement Model CFA Respecification   

Number/name Actual question  

Perceived Usefulness 
Q10.9 Auto-GCAS was designed to have my best interests in mind 
Q21.1 Auto-GCAS effectively prevents CFIT 
 
Perceived Ease of Use 
Q10.2 I understand the purpose of Auto-GCAS 
 
Behavioral Intention* 
Q26.1 I feel more confident flying with Auto-GCAS installed on my plane 
Q14 If I experience an Auto-GCAS activation, I am comfortable reporting 

the activation 
Q10.8 Auto-GCAS does not interfere with my ability to fly 

Note.  * Behavioral Intention’s fourth measurement variable, Q26.2, loaded more 
strongly onto Usage Behavior, thereby leaving the latent variable ABI with no 
measurement variable.    

 

The removal of the six measurement variables shown in Table 6 from the original 

proposed AGCAS-TAM resulted in adequate model fit that passed the tests detailed in 

Chapter III for reliability and validity.  The removal of questions Q26.1, Q14, Q10.8, and 

the reassignment of question 26.2 to AGCAS Usage Behavior based on minimum load 

factor weight requirements left the latent variable ABI with no measurement variable and 

therefore could not be retained for analysis in the final SEM model.  
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Table 7 

CFA Fit Indicators for Respecified Measurement Model 

Indicator Value Result 

CMIN (χ2) 84.822, p=.05 Expected for model size 
CMIN/df (χ2/df) 1.305 Unique model 
CFI .983 Good fit for model size 
RMSEA .053 Good fit for model size and CFI>.95 
NFI .932 Good fit 
GFI .901 Adequate fit 
AGFI .840 Adequate fit 

 

When the CFA with the respecified measurement model was analyzed in AMOS 

using the new measurement model from Table 5, it revealed good model fit with values 

within the recommended values in Hair et al. (2010) for a model with 14 measurement 

variables and 109 observations.   

After careful consideration and review of the literature, the construct of ABI was 

removed from the hypothesized structural model.  Support for the model change is 

discussed further in the subsequent chapter.  The resulting modified hypothesized 

structural model is shown in Figure 15 and Table 5.  Because the analysis of the original 

proposed AGCAS-TAM did not achieve adequate fit with the data, it is not presented 

again in this chapter.  The remainder of this chapter is organized around the modified 

hypothesized structural model in Figure 15.  
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Figure 15. Structural model after CFA respecification.  

 

After removal of the ABI factor, the Auto-GCASA TAM included only three 

paths and, therefore, only three hypotheses available for quantitative testing.  The relative 

relationships remained the same except that APEU and APU weighted directly onto 

AUB.  Therefore, the three remaining hypotheses are: 

• H1: Pilots’ perceived usefulness of AGCAS (APU) has an influence on 

pilots’ AGCAS usage behavior (AUB). 

• H2: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ perceived usefulness of AGCAS (APU). 

• H3: Pilots’ perceived ease of use of AGCAS (APEU) has an influence on 

pilots’ AGCAS usage behavior (AUB). 

 

Descriptive Statistics 

Mean and standard deviations for each observed variable were calculated.  These 

measurement variables are shown below, sorted by their respective latent variable from 

the modified measurement model in Figure 14Error! Reference source not found..  In 

general, the pilots tended to consistently answer affirmatively, e.g. “Agree”, with positive 
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statements regarding AGCAS.  These quantitative results are consistent with qualitative 

results from the interview data collection methods in Lyons et al. (2015). 

 

AGCAS perceived usefulness (APU) measurement variables.  Descriptive 

statistics for the observed variables that loaded well onto APU following CFA 

respecification are summarized in Table 8.  Higher values indicate agreement with the 

statement or question on a 7 point scale. 

 

Table 8 

Descriptive Statistics for the APU Measurement Variables 

 Statements  Mean Standard 
Deviation 

Q10.5 I think Auto-GCAS was designed to help me 6.63 .79 
Q10.7 Auto-GCAS is reliable 5.2 1.38 
Q20.2 After flying in a plane equipped with Auto-

GCAS, what was your perception of the 
overall usefulness of Auto-GCAS? 6.19 .908 

Q21.2 I benefit from having Auto-GCAS installed on 
my plane 6.28 .992 

Q21.3 Other pilots benefit from having Auto-GCAS 
installed on their planes 6.32 .891 

Q10.1 Auto-GCAS is designed in such a way to 
minimize nuisance to the pilot 5.95 1.235 

 

The pilots’ answers were consistently in agreement with statements regarding the 

positive perception that AGCAS was useful.  This tendency toward positive viewpoints 

regarding AGCAS usefulness was consistent with qualitative findings in Lyons et al. 

(2015), from which the quantitative data originated.  In other words, the quantitative data 

appears to be consistent with pilots’ qualitative comments that AGCAS was perceived as 

useful.  
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AGCAS perceived ease of use (APEU) measurement variables. Descriptive 

statistics for the observed variables that loaded well onto APEU following CFA 

respecification are summarized in Table 9. Higher values indicate agreement with the 

statement or question on a 7 point scale 

 

Table 9 

Descriptive Statistics for the APEU Measurement Variables 

 Statements  Mean Standard 
Deviation 

Q10.3 I understand how Auto-GCAS senses the 
environment 6.2 .717 

Q10.4 I understand when Auto-GCAS will activate 6.0 .805 
Q10.6 I understand how Auto-GCAS works 6.06 .761 

 

The pilots’ answers were consistently in agreement with statements regarding the 

positive perception that AGCAS was easy to use.  This tendency towards positive 

viewpoints regarding AGCAS ease of use was consistent with qualitative findings in 

Lyons et al. (2015), from which the quantitative data originated. In other words, the 

quantitative data appears to be consistent with pilots’ qualitative comments that AGCAS 

was perceived as easy to use. 

AGCAS usage behavior (AUB) measurement variables.  Descriptive statistics 

for the observed variables that loaded well onto APU following CFA respecification are 

summarized in Table 10.  Higher values indicate agreement with the statement or 

question on a 7 point scale 



65 
 

 
 

Table 10 

Descriptive Statistics for the AUB Measurement Variables 

 Statements  Mean Standard 
Deviation 

Q26.6 I can count on Auto-GCAS to work during low-
altitude flying 5.52 1.143 

Q26.5 I can count on Auto-GCAS to work during combat 5.52 1.288 
Q26.4 I can count on Auto-GCAS to work in emergency 

situations 5.44 1.205 
Q26.3 I can count on Auto-GCAS to work when needed 5.39 1.283 
Q26.2 I feel confident Auto-GCAS will protect me if I 

experience spatial disorientation, G-induced loss of 
consciousness (G-LOC), or loss of consciousness 5.82 1.09 

 

The pilots’ answers were consistently in agreement with statements regarding the 

positive perception of AGCAS usage.  This tendency toward positive viewpoints 

regarding AGCAS use was consistent with qualitative findings in Lyons et al. (2015), 

from which the quantitative data originated.  In other words, the quantitative data appears 

to be consistent with pilots’ qualitative comments that AGCAS was being used. 

 

Missing Data 

The archival data used for this study included 142 surveys completed by F-16 

operational pilots from 10 U.S. Air Force installations around the world.  At the time of 

data collection, the population of USAF F-16 pilots actively flying was 967, with 495 of 

those pilots flying an AGCAS capable version of the F-16.  Of the 142 surveys, 109 were 

completed in their entirety, with all survey questions answered by the respondents.  

All of the questions had some missing responses.  Missing counts varied between 

8 and 14 for all but one question on the survey.  Question 14 of the survey showed 27 

missing responses.  Missing data was analyzed using the missing value analysis add-on in 
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SPSS.  Missing patterns output showed a trend whereby a series of unanswered questions 

tended to be grouped.  This appeared to be consistent with respondent behavior of 

submitting a survey without having answered all the questions before submission.  The 

survey question order was randomized, and it appeared that most of the missing 

responses were primarily the result of users not answering several questions as they 

neared the end of their survey session.  This result may indicate that the survey length 

may have been slightly excessive for about one fifth of the respondents or may simply 

indicate the volatility of the F16 pilots’ time commitments.   

One survey question, Q14, exhibited a noticeably higher missing value count 

compared with other questions.  For Q14, 16 of the 27 counts for missing data were from 

responses where question 14 was the respondent’s only unanswered question.  Question 

14 therefore stood out from the other questions in this regard and warranted unique 

analysis.  Question 14 asked the pilots to agree or disagree with the statement “If I 

experience an Auto-GCAS activation, I am comfortable reporting the activation.”  

 The qualitative results from the Lyons et al. (2015) study suggest that that pilots 

found Auto-GCAS to be reliable and mostly nuisance-free, and therefore some of the 

pilots may not have felt empowered to answer question 14 with confidence.  This 

inference is also supported by the pilots’ survey responses for question 11, shown in 

Figure 12Error! Reference source not found., which indicate that the vast majority of 

pilots had not yet experienced an AGCAS activation at the time of survey.  This lack of 

AGCAS activation experiences was reasonable since the system was designed only to 

work at the last possible moment, when all of the pilot’s normal mitigations for CFIT 

have failed, and because the system was demonstrated in flight test to be extremely 
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nuisance free (Moore, 2013).  Stated otherwise, many of the F-16 pilots probably did not 

have an Auto-GCAS activation experience to draw from, at the time of survey, in order to 

formulate an adequate answer to question 14. 

Missing value analysis was performed in SPSS for all the survey questions with 

emphasis on missing values for question 14.  Results from SPSS revealed useful 

information to help choose an acceptable missing value technique.  Comparisons of 

means and standard deviations of the original set of data, listwise deleted data, and 

pairwise deleted data showed no significant variations during technique comparisons.  

Listwise and pairwise deletions did not have an appreciable impact on the distribution of 

responses.  Differences in means were all less than 3 percent different and standard 

deviations changed no more than 10 percent.  Listwise deletion was the easiest available 

technique and avoided potential pitfalls of pairwise deletion or imputation methods.  

Listwise deletion also left a large enough sample size to be sufficient for SEM analysis.  

Therefore, all that remained was to determine, in order to satisfy the assumptions for 

meaningful SEM analysis using AMOS maximum likelihood estimation methods, was to 

ensure that the missing data was missing completely at random (MCAR).  

In SPSS, Little’s MCAR test revealed a chi-square (χ2) value of 159.589 with 151 

degrees of freedom (df) at a significant level (p) of p=.300, which indicates the 

randomness of the missing values for all the included survey questions (Truong, 2016).  

When question 14 was removed, Little’s MCAR test was run and revealed a chi-square 

(χ2) value of 173.794 with 171 df at a significant level (p) of p=.426, which also indicates 

the randomness of the missing values and a slight improvement.  However, whether 

question 14 was removed or included, the MCAR test indicated that the sample only 
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contained missing data that was missing completely at random.  Therefore, all the 

original proposed observed variable questions from Table 2 were used at the start of 

measurement analysis with a listwise deletion technique applied. 

 

Reliability Testing the Respecified Measurement Model 

As previously stated, the original measurement model failed reliability tests.  The 

results presented in this section are for the respecified model, which passed reliability 

tests.  The Cronbach’s alpha outcomes for the respecified measurement model are shown 

in Table 11.  All the values are well above the recommended lower limit for acceptability 

of 0.7 (Hair et al., 2010; Nunnally 1978). 
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Table 11 

Cronbach’s Alpha Test Outcomes of Modified Measurement Model 

Variables  Statements  Values 

AGCAS 
Perceived 
Usefulness 

(APU) 

Q10.5 I think Auto-GCAS was designed to help me 

.862 

Q10.7 Auto-GCAS is reliable 

Q20.2 After flying in a plane equipped with Auto-GCAS, 
what was your perception of the overall usefulness 
of Auto-GCAS? 

Q21.2 I benefit from having Auto-GCAS installed on my 
plane 

Q21.3 Other pilots benefit from having Auto-GCAS 
installed on their planes 

Q10.1 Auto-GCAS is designed in such a way to minimize 
nuisance to the pilot 

AGCAS 
Perceived 
Ease of 

Use 
(APEU) 

Q10.3 I understand how Auto-GCAS senses the 
environment 

.824 Q10.4 I understand when Auto-GCAS will activate 

Q10.6 I understand how Auto-GCAS works 

AGCAS 
Usage 

Behavior 
(AUB) 

Q26.6 I can count on Auto-GCAS to work during low-
altitude flying 

.933 

Q26.5 I can count on Auto-GCAS to work during combat 

Q26.4 I can count on Auto-GCAS to work in emergency 
situations 

Q26.3 I can count on Auto-GCAS to work when needed 

Q26.2 I feel confident Auto-GCAS will protect me if I 
experience spatial disorientation, G-induced loss of 
consciousness (G-LOC), or loss of consciousness 

 

The standardized factor loadings (AMOS standardized regression weights) for the 

modified CFA measurement model are above the minimum recommended value of 0.5, 

as shown in Table 12. 
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Table 12 

Standardized Factor Loadings of Modified CFA Measurement Model 

Variables  Statements  Values 

AGCAS 
Perceived 
Usefulness 

(APU) 

Q10.5 I think Auto-GCAS was designed to help me .73 

Q10.7 Auto-GCAS is reliable .66 

Q20.2 After flying in a plane equipped with Auto-GCAS, 
what was your perception of the overall usefulness 
of Auto-GCAS? 

.85 

Q21.2 I benefit from having Auto-GCAS installed on my 
plane 

.80 

Q21.3 Other pilots benefit from having Auto-GCAS 
installed on their planes 

.66 

Q10.1 Auto-GCAS is designed in such a way to minimize 
nuisance to the pilot 

.75 

AGCAS 
Perceived 
Ease of 

Use 
(APEU) 

Q10.3 I understand how Auto-GCAS senses the 
environment 

.66 

Q10.4 I understand when Auto-GCAS will activate .80 

Q10.6 I understand how Auto-GCAS works 
.86 

AGCAS 
Usage 

Behavior 
(AUB) 

Q26.6 I can count on Auto-GCAS to work during low-
altitude flying 

.78 

Q26.5 I can count on Auto-GCAS to work during combat .93 

Q26.4 I can count on Auto-GCAS to work in emergency 
situations 

.88 

Q26.3 I can count on Auto-GCAS to work when needed .96 

Q26.2 I feel confident Auto-GCAS will protect me if I 
experience spatial disorientation, G-induced loss of 
consciousness (G-LOC), or loss of consciousness 

.75 

   

Instrument Validity 

The original measurement model failed validity tests.  The results presented in 

this section are for the respecified model, which passed validity tests.  Construct validity 

testing included convergent and discriminant validity calculations using CFA model 

variance values output from AMOS.  Average variance extracted and construct reliability 

values are shown in Table 13.  These values exceed the minimum recommended values 

for both reliability values AVE (0.5) and CR (0.7).  
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Table 13  

Average Variance Extracted (AVE) and Construct Reliability (CR) Values 

Variables  Statements  AVE CR 

AGCAS 
Perceived 
Usefulness 

(APU) 

Q10.5 I think Auto-GCAS was designed to help me 

.555 .881 

Q10.7 Auto-GCAS is reliable 

Q20.2 After flying in a plane equipped with Auto-
GCAS, what was your perception of the overall 
usefulness of Auto-GCAS? 

Q21.2 I benefit from having Auto-GCAS installed on 
my plane 

Q21.3 Other pilots benefit from having Auto-GCAS 
installed on their planes 

Q10.1 Auto-GCAS is designed in such a way to 
minimize nuisance to the pilot 

AGCAS 
Perceived 
Ease of 

Use 
(APEU) 

Q10.3 I understand how Auto-GCAS senses the 
environment 

.605 .820 Q10.4 I understand when Auto-GCAS will activate 

Q10.6 I understand how Auto-GCAS works 

AGCAS 
Usage 

Behavior 
(AUB) 

Q26.6 I can count on Auto-GCAS to work during 
low-altitude flying 

.746 .936 

Q26.5 I can count on Auto-GCAS to work during 
combat 

Q26.4 I can count on Auto-GCAS to work in 
emergency situations 

Q26.3 I can count on Auto-GCAS to work when 
needed 

Q26.2 I feel confident Auto-GCAS will protect me if I 
experience spatial disorientation, G-induced 
loss of consciousness (G-LOC), or loss of 
consciousness 

 

Discriminant validity testing was evaluated by comparing AVE to the square of 

the correlation estimates. The correlation estimates and square of the correlation 

estimates are shown in Table 14. The AVE values exceed the square of the correlation 

estimates which indicates acceptable validity.  
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Table 14 

Discriminant Validity Squared Correlations 

Variables Variable  Correlation Square Correlation 

AGCAS Perceived 
Usefulness (APU) 

AGCAS Perceived 
Ease of Use (APEU) 

.19 .036 

AGCAS Perceived Ease of 
Use (APEU) 

AGCAS Usage 
Behavior (AUB) 

.73 .533 

AGCAS Usage Behavior 
(AUB) 

AGCAS Perceived 
Usefulness (APU) 

.26 .068 

 

Hypothesis Testing 

After an acceptable measurement model was found, a structural model based on 

the respecified CFA measurement model was created by constraining a few required 

relationships.  As previously explained, ABI was removed from the hypothesized 

structural model based on CFA results.  This respecified structural model only contains 

three latent variables and, therefore, only three hypotheses that do not include ABI, as 

shown previously in Figure 14.  In AMOS, this also required the addition of two error 

terms for the endogenous latent variables, APU and AUB.  The structural model for 

hypothesis testing in the AMOS add-on to SPSS is shown in Figure 16. 
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Figure 16. Structural hypothesis model in AMOS based on the respecified (only three 
latent variables) CFA measurement model with standardized loadings.  

 

The structural hypothesis model had adequate model fit with a χ2/df ratio (χ2/df = 

1.305). This value is below the recommended maximum value of 3 (Hair et al., 2010). 

The CFI value of .983 is close to 1 and indicates good model fit. The RMSEA of .053 

indicates “reasonable errors of approximation in the population” (Byrne, 2010, p. 80). 

The NFI value of .930 is close to 1 and indicates good model fit. The GFI and AGFI 

values of .898 and .837, respectively, are close enough to 1 to indicate adequate model 

fit. 
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Table 15 

SEM Fit Indicators for Respecified Measurement Model 

Indicator Value Result 

CMIN (χ2) 84.822, p=.05 Expected for model size 
CMIN/df (χ2/df) 1.305 Unique model 
CFI .983 Good fit for model size 
RMSEA .053 Good fit for model size and CFI>.95 
NFI .930 Good fit 
GFI .898 Adequate fit 
AGFI .837 Adequate fit 

 

Additionally, an examination of the path coefficients and loading estimates 

reveals that they have not changed substantially from the CFA model (Hair, Black, 

Babin, & Anderson, 2010).  This indicates measured indicator variable parameter 

stability and that there is no problem due to interpretational confounding, which supports 

the measurement model’s validity (Hair, Black, Babin, & Anderson, 2010). 

The final step in analysis is to examine the individual parameter estimates 

between the latent variables of interest.  This will provide the necessary quantitative 

support for the proposed hypothesized relationships.  For ease of view, the AGCAS-TAM 

structural model has been summarized in Figure 17 to show the remaining relationships 

between the latent variables and their relevant measurement variables.  Additionally, 

Figure 17 shows the AMOS results for the strength of the standardized parameter 

estimates and each estimate’s statistical significance.  
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Figure 17. Respecified AGCAS-TAM structural equation model hypotheses outcomes 
with standardized loadings and latent variable loading significance values.  

 

A summary of the hypotheses based on the respecified model results is also 

shown in Table 16. Hypothesis 1 is supported at the p<.05 level and hypothesis 2 is 

supported at the p<.1 level. However hypothesis 3 is not supported by the data in this 

model.  These results indicate that the data support two of the three hypotheses within an 

AGCAS-TAM. 
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Table 16 

Summary of Hypothesis Testing Results from the Respecified (ABI removed) AGCAS-

TAM SEM 

Hypothesis Standardized 
Parameter 
Estimate 

Significance 
Value 

Result 

H1*: Pilots’ perceived usefulness of 
AGCAS (APU) has an influence on 
pilots’ AGCAS usage behavior (AUB). 
 

.70 p<.001 Supported 

H2: Pilots’ perceived ease of use of 
AGCAS (APEU) has an influence on 
pilots’ perceived usefulness of AGCAS 
(APU). 
 

.19 p=.099 Supported 

H3*: Pilots’ perceived ease of use of 
AGCAS (APEU) has an influence on 
pilots’ AGCAS usage behavior (AUB). 

.12 p=.126 
Not 

Supported 

Note.  * ABI removed during CFA respecification. APU and APEU load directly to 
AUB. 

 

Additionally, an analysis of the SEM that excluded the relationship for H3, and 

therefore removing the loading of APEU onto APU, did not significantly change the 

model fit or other parameter estimates.  No other changes to the model were supported by 

theoretical justification, because model respecification should be done only with 

empirical and theoretical support (Hair, Black, Babin, & Anderson, 2010).  Lacking 

support for respecification, the model shown in Figure 17 was the final version 

considered in this analysis. 

Hypothesis 1 was supported and exhibited a loading factor of .70.  This provides 

support that AGCAS perceived utility has a large positive effect on AGCAS usage 

behavior.  Hypothesis 2 was supported and exhibited a loading factor of .19.  This 

provides support that AGCAS perceived ease of use has a medium positive effect on 
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AGCAS perceived utility.  An APEU and ABU relationship may still exist, but 

hypothesis 3 was not supported by the data in this study, and valid conclusions cannot be 

made regarding the relationship between AGCAS perceived ease of use and AGCAS 

usage behavior at this time.   

Chapter Summary 

This chapter has discussed the analysis of an AGCAS specific version of a model 

of technology acceptance.  The original hypothesized structural model was built using a 

core version of TAM that was parsimonious and common in the literature on technology 

acceptance.  From the structural model, a measurement model was created using archival 

survey data collected during a study of operational F-16 pilots’ AGCAS trust 

development by pairing measurement variables (survey questions with quantitative 

response values) with constructs in the proposed AGCAS-TAM.  This pairing was 

initially done with the assistance of subject matter expert opinion from researchers 

involved in the qualitative study of F-16 test pilots’ AGCAS behavior.  During analysis 

of the hypothesized measurement model, CFA results showed insufficient support for six 

measurement variables and part of the proposed AGCAS-TAM structure.  With six of the 

twenty measurement variables removed, two measurement variables reassigned to 

different latent variables, and one latent variable removed altogether, a respecified 

version of an AGCAS-TAM, less the construct AGCAS Behavioral Intent, was found to 

fit the data well.  Additional theoretical support for this respecification less one latent 

construct will be discussed in Chapter V.   

The respecified measurement model was used to define a respective structural 

model with only three latent variables remaining in the model.  With only three 
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relationships remaining, only three hypotheses could be tested and not the original four 

hypotheses suggested in Chapter II.  The respecified structural model was analyzed using 

common SEM methods, and analysis results indicated the model fit the data well.  The 

loading factors between the three remaining relationships provided the basis for 

determining whether the data support the three respecified hypotheses.  Two of the three 

loading factor values were found to be statistically significant, and their respective 

hypotheses were supported.  The remaining hypothesis was not supported by the data in 

the AGCAS-TAM.  Each of these hypotheses is discussed in the following final chapter.  
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter discusses the results of the analysis as they impact the research 

question and the hypotheses, offers conclusions regarding the meaning of the respecified 

AGCAS-TAM, and makes recommendations for future research.  The discussion of the 

research question and hypotheses will make comparisons between the original proposed 

model in Chapters I and II and the respecified model that resulted from analysis.  Support 

for and the implications of the model respecification are addressed.  Meaningful 

conclusions that were made based on analysis of the respecified AGCAS-TAM are 

explained.  Practical implications of the analysis findings and conclusions are explored.  

Finally, recommendations are made for potential future research using AGCAS-TAM as 

a foundation for understanding fighter pilots acceptance behavior with respect to high 

level, low time available automatic collision avoidance systems.   

Discussion 

There was one research question in this study.  The research question centered on 

the applicability of an AGCAS-TAM theoretical model.  With respect to F-16 pilots’ 

acceptance of AGCAS, what are the relationships among the factors: AGCAS perceived 

usefulness, AGCAS perceived ease of use, AGCAS behavioral intent, and AGCAS usage 

behavior?  By examining an AGCAS acceptance model based on TAM, the utility of the 

underlying theory discussed in the literature review could be explored for AGCAS.  

Many versions of the TAM have been explored in the literature as it related to a wide 

variety of systems, but not until this study had the TAM been applied to a high level 

automatic collision avoidance system capable of arresting flight control from a pilot in 
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flight.  The literature on TAM demonstrated that TAM based models were robust and 

reliable across a wide spectrum of uses, and so it was expected that TAM would prove 

useful for explaining pilot AGCAS acceptance behavior as well. 

The four core factors of a parsimonious TAM discussed in the literature review 

formed the foundation for the original proposed AGCAS specific TAM.  This AGCAS-

TAM related the four factors to each other consistent with previous uses of the model.  

Therefore, AGCAS-TAM was expected to take the same relative form as TAM used to 

explain many other users’ technology acceptance behavior, in general.  These four 

relationships factored onto one another in a directional and deterministic relationship 

within a complete structural model.  The four relationships, based on theory and literature 

review, defined the four original hypotheses presented in previous chapters.  

The first original hypothesis (H1) described the relationship between APU and 

ABI, whereby APU would have an influence on ABI.  The second original hypothesis 

(H2) described the relationship between APEU and APU, whereby APEU would have an 

influence on APU.  The third original hypothesis (H3) described the relationship between 

APEU and ABI, whereby APEU would have an influence on ABI.  The final original 

hypothesis (H4) described the relationship between ABI and AUB, whereby ABI would 

have an influence on AUB.  Of these hypotheses, H4 was eliminated from consideration, 

and H1 and H3 were respecified based on the measurement model CFA results.  The 

respecified AGCAS-TAM did not include the latent variable ABI, and APU and APEU 

were related directly to AUB.   

In addition to the empirical evidence presented in Chapter IV, two theoretical 

reasons were used to remove ABI from the model as well.  The first reason for removal 
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of ABI was measurement was likely made too late to determine behavioral intent.  The 

second reason was that behavioral intent may not be a useful construct when applied to a 

safety system that is inherently not supposed to be used frequently.   

The determination of late measurement was derived by considering the 

demographic data with respect to the definition of behavioral intent.  As stated 

previously, behavioral intention “is a measure of the strength of one’s intention to 

perform a specified behavior” (Davis, Bagozzi, & Warshaw, 1989, p. 984).  However, the 

demographic data revealed that, on average, the pilots had already flown with AGCAS a 

significant number of times before responding to the survey.  The mean number of sorties 

with AGCAS was 45 sorties with a standard deviation of 25 sorties.  Only four pilots 

responded that they had flown less than five sorties with AGCAS active in their aircraft.  

This result was unexpected.  The timing of the Lyons et al. (2015) study’s data collection 

was meant to survey the pilots just as AGCAS was released to the operational F-16 pilots.  

The intended goal was to capture a sample of pilots with a distribution centered on zero 

flights with AGCAS, such that an approximately equal number of pilots would have and 

would have not flown with the system yet.  The reason for the delayed survey collection 

is unknown, but it follows logically that efforts to measure behavioral intent would 

probably be polluted.  The operational F-16 pilots had likely already formulated their 

attitude toward using the system and established their usage behavior.  Stated otherwise, 

the pilots’s usage behavior was already established at the time of the survey, and 

behavioral intent no longer served as a useful mediator between the factors in the model.  

Another possibility for the lack of data supporting behavioral intent during 

measurement model analysis may be the applicability of the model itself to AGCAS.  
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AGCAS is inherently a safety system that was and is not supposed to be used frequently.  

AGCAS only activates when all other mitigations of CFIT have failed and the system is 

extremely nuisance free.  The TAM, however, was originally formulated to explain users’ 

acceptance behavior relative to information systems that would be in regular use.  Most 

applications of TAM in the literature consistently extend the model’s use to explaining 

user acceptance behavior of systems that were intended for regular use.  Therefore, it is 

plausible that any attempt to measure users’ behavioral intent for an automated safety 

system that the majority of the users would not interface with regularly is likely to fail.  

Stated otherwise, behavioral intent may not be a relevant construct for systems like 

AGCAS.  However, it is not possible with this set of data, to determine with confidence if 

the measurement was taken too late to account for ABI or whether ABI is truly not 

relevant to AGCAS.   

With ABI removed, the remaining constructs’ relationships leave APU and APEU 

directly influencing AUB, and good model fit was achieved.  The direction and 

magnitude of the relationships that remained appeared consistent with typical findings 

from studies relying on TAM in the literature.  Typical results in the literature indicate 

that perceived utility tends to have a stronger influence than perceived ease of use on 

behavioral intent and, ultimately, users’ usage behavior.  Also consistent with trends from 

the literature, perceived ease of use did have a meaningful but relatively smaller influence 

on perceived utility.  When considering only the statistically significant relationships in 

Figure 17 and Table 16, the data supports the respecified AGCAS-TAM relationships for 

H1 (APU influences AUB) and H2 (APEU influences APU).   
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The first hypothesis (H1) was supported, with significant results, by the data and 

was consistent with previous applications of TAM.  Variations in APU were consistent 

with variations in ABU.  Therefore, AGCAS perceived usefulness had a significant and 

strong positive influence on AGCAS usage behavior.  Also, H1 revealed the strongest 

factor loading with the highest statistical power, suggesting it was the strongest empirical 

result of this study.  The H1 empirical results suggest that AGCAS user’s behavior is 

consistent with user behavior studied in previous research that used TAM based models. 

The practical implication of this hypothesis test for designers of aircraft systems similar 

to AGCAS is to suggest that a focus on perceived usefulness should have a strong 

influence on users’ usage behavior.  If future system designers of aircraft automatic 

collision avoidance systems are faced with limited resources, they would increase their 

chances of user acceptance of their systems by focusing on those features which promote 

the users’ perception of system utility first.    

The second hypothesis (H2) was supported, with significant results, by the data 

and was consistent with previous applications of TAM.  Variations in APEU were 

consistent with variations in APU.  Therefore, AGCAS perceived ease of use had a 

significant and medium positive influence on AGCAS perceived usefulness.  The H2 

factor loading was weaker than the H1 result with only a medium affect expected on 

APU.  The H2 empirical results suggest that the relationship between users’ perception of 

AGCAS ease of use and users’ perception of AGCAS usefulness are consistent with user 

behavior studied in previous research that used TAM based models.  The practical 

implication of this hypothesis test for designers of aircraft systems similar to AGCAS is 

to suggest that users’ perception of AGCAS usefulness could be improved somewhat by 
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promoting users’ perception of the system’s ease of use.  After efforts to promote users’ 

perception of system usefulness, future designers of aircraft automatic collision 

avoidance systems could further increase users’ perception of usefulness by focusing on 

features which promote users’ perception of ease of use.    

The third hypothesis (H3) was not supported at an acceptable statistically 

significant level.  With the data available, it was not possible to determine if the 

individual relationship between AGCAS perceived ease of use and AGCAS usage 

behavior was consistent with the literature.  It is possible that a different or larger sample 

would have yielded higher power results.  No new meaningful practical implication was 

made for this relationship in this study beyond the suggestion that a TAM based model 

appears to be useful in explaining users’ behavior with respect to aircraft automated 

collision avoidance systems such as AGCAS, in general.  The individual relationship 

testing in H3 may still be important, but that will need to be determined in future studies 

that attempt to analyze TAM based models of user behavior with respect to high-level 

aircraft automatic collision avoidance systems.  If future studies demonstrate continued 

lack of support for the relationship between APEU and AUB, this relationship should be 

considered for removal from the theoretical models.  This study represents the first such 

attempt to use a TAM based model for this type of emerging technology, and so in and of 

itself does not support changing the parsimonious underlying theory. Stated otherwise, 

users’ perception of AGCAS ease of use may still be an important formative factor for 

AGCAS usage behavior, but this study was unable to find sufficient evidence to support 

the relationship.  
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Conclusion 

This research intended to explore an application of the technology acceptance 

model to integration of the AGCAS in fighter aircraft operations.  This study 

demonstrated the potential utility of a model for technology acceptance tailored to 

explain user acceptance behavior with respect to a high level fighter aircraft automated 

collision avoidance system.  The AGCAS-TAM required respecification to achieve 

acceptable model fit during CFA and SEM analysis, but the data supported a model with 

the TAM structure foundation.  The relationships between the constructs appeared 

consistent with expectations of user acceptance behavior from the literature.  The 

supported hypotheses provide useful inferences that are consistent with Davis’ (1986) 

practical goal to “provide valuable information for systems designers and implementers” 

(p. 12).  Designers will be “better equipped to evaluate design ideas early in the system 

development process and make informed choices among alternative approaches” (Davis, 

1986, p. 12).  This study’s conclusion that TAM is a useful model for explaining AGCAS 

usage behavior should serve as a foundation for future USAF pilot acceptance behavior 

research.   

This study’s findings are generalizable to the population of USAF fighter pilots 

for three reasons. First, the F-16 pilots sampled for this research came from 10 USAF 

installations across the world and were chosen, by design, for their representativeness of 

the population of F-16 pilots, in general.  Second, due to the multi-role nature of the F-16, 

the diverse type of inflight maneuvers performed by F-16 pilots span the spectrum of 

maneuvers performed in other types of fighter aircraft.  Finally, because there is no 

reason to suspect that USAF F-16 pilots differ, demographically-speaking, from other 
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USAF fighter pilots, it is reasonable to infer that the conclusions of this study are valid 

for the population of USAF fighter pilots, in general.  However, inferences beyond the 

population of USAF fighter pilots, such as extensions to foreign fighter pilots or non-

fighter pilots is not recommended.  This limitation to generalizability should not be 

overly worrisome to current affected stakeholders.  At present, the DoD has not published 

analysis that would suggest it is considering integration of high level automated collision 

avoidance systems beyond fighter aircraft platforms Defense Safety Oversight Council 

(2006). 

Another limitation in this study was the size of the AGCAS-TAM structure.  The 

sample of 142 respondents only supported a four factor structure.  Now that AGCAS-

TAM has been demonstrated as a useful foundation for fighter pilot acceptance behavior 

research, the next logical step will be to explore additional relevant factors.  Many 

potential factors have been suggested in the literature, and future data collection efforts 

focused on more complex variations of AGCAS-TAM would be served to collect large 

sample sizes to maximize the likelihood of meaningful analysis results.   

Two practically meaningful results in this study came from the AGCAS-TAM 

individual hypotheses that were statistically significant.  The first practical result was to 

demonstrate that perceived ease of use had a significant, but only medium size effect on 

perceived usefulness.  The other practical result was that perceived usefulness has a 

strong effect on usage behavior.  These results suggest that stakeholders hoping to 

promote positive fighter pilot acceptance behavior would be wise to invest more heavily 

in methods that help the pilots effectively understand the usefulness of an automated 

collision avoidance system.  



87 
 

 
 

Future research efforts using AGCAS-TAM as a starting point for further 

exploration may follow several useful paths.  The first path to consider is a more timely 

collection of data to examine the construct of behavioral intention.  In this study, it was 

not possible to isolate the reason behavioral intent did not work in the model.  A future 

study may be able to better center data collection at the initiation of the technology 

integration without any delay.  If a sample could be collected with the distribution of 

users centered on zero experience with the system, it is suspected that behavioral intent 

may bare more meaning in a TAM variation.  If said study again revealed behavioral 

intention did not fit in the model, it may be reasonably inferred that there is a more 

meaningful reason that behavioral intention does not fit in a TAM based on collision 

avoidance technology.  As described previously, behavioral intention may not be an 

important factor when examining integration of safety systems where users’ will not be 

expected to regularly interact with the system.  

Another path that would likely bare meaningful results would be explorations of 

AGCAS-TAM variations that include more extrinsic factors such as those that have been 

used previously in TAM based model research.  In particular, it is recommended that 

future research focus on determining factors that influence AGCAS perceived usefulness.  

Determining those factors would allow stakeholders interested in promoting integration 

of automated collision avoidance systems with more useful suggestions for improving 

their system designs and pilot integration techniques, such as training materials and 

publications.  

 

  



88 
 

 
 

REFERENCES 

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, & 

J. Beckmann (Eds.), Action control: From cognition to behavior (pp. 11-39). 

Berlin: Springer-Verlag.    

Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the 

theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665-

683.   

Ajzen, I., & Fishbein, M. (1970). The prediction of behavior from attitudinal and 

normative variables. Journal of Experimental Social Psychology, 6, 466-487.    

Ajzen, I., & Fishbein, M. (1974). Factors influencing intentions and in the intention-

behavior relation. Human Relations, 27, 1-15.    

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. 

Englewood Cliffs, NJ: Prentice-Hall.    

Allison, P. D. (2003). Missing data techniques for structural equation modeling. Journal 

of Abnormal Psychology, 112(4), 545-557.    

Awang, Z., Afthanorhan, A., & Mamat, M. (2006). The Likert scale analysis using 

parametric based structural equation modeling (SEM). Computational Methods in 

Social Sciences, 4(1), 13-21. doi: 

Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for 

a paradigm shift. Journal of the Association of Information Systems, 8(4), 244-

254.    

Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: 

Guildford Publications.   



89 
 

 
 

Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, 

applications, and programming (2nd ed.).  New York, NY: Routledge.    

Callahan, G. L. (1998). A meta-analysis of the Fishbein and Ajzen theory of reasoned 

action (Doctoral dissertation). Retrieved from ProQuest Dissertation and Theses 

database. (Order No. 9825540)    

Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user 

information systems: Theory and results (Doctoral dissertation). Retrieved from 

http://dspace.mit.edu/handle/ 1721.1/15192    

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of 

information technology. MIS Quarterly, 13(3), 318-340.    

Davis, F. D. (1993).  User acceptance of information technology: System characteristics, 

user perceptions and behavioral impacts. International Journal of Man-machine 

Studies, 38, 475-487.    

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer 

technology: A comparison of two theoretical models. Management Science, 35(8), 

982-1003.    

Defense Safety Oversight Council. (2006). Fighter/attack automatic collision avoidance 

system business case. Washington, DC: U.S. Government Printing Office.    

Fergueson, W. E., Lyons, J. B., Ho, N. T., Sadler, G. G., Cals, S. D., Richardson, C. E., & 

Wilkins, M. A. (2016, May). Trust of an automated collision avoidance system 

within the Air Force. Paper presented at the Trust in Autonomy Special Interest 

Group, Human Factors and Ergonomics Technical Advisory Group. Langley, VA.    



90 
 

 
 

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Thousand Oaks, CA: Sage 

Publications Inc.    

Fishbein, M. (1967). Attitude and the prediction of behavior. NY: John Wiley.    

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction 

to theory and research. Reading, MA: Addison-Wesley.    

Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior. 

Englewood-Cliffs, NJ: Prentice-Hall.    

Ghazizadeh, M., Lee, J. D., & Boyle, L. N. (2012). Extending the technology acceptance 

model to assess automation. Cognitive Technology Work, 14, 39-49.    

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data 

analysis (7th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.    

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. 

Information Management, 43, 740-755.    

Koltai, K., Ho, N., Masequesmay, G., Niedober, D., Skoog, M., Cacanindin, A., & 

Lyons, J. (2014a, July). Influence of cultural, organizational, and automation 

capability on human automation trust: A case study of auto-GCAS experimental 

test pilots. Paper presented at the HCI-Aero 2014 International Conference on 

Human-Computer Interaction in Aerospace, Santa Clara, CA.  

Koltai, K., Ho, N., Masequesmay, G., Niedober, D., Skoog, M., Johnson, W., & Lyons, J. 

(2014b). An extended case study methodology for investigating influence of 

cultural, organizational, and automation factors on human-automation trust. 

Chi'14 Extended Abstracts on Human Factors in Computing Systems, 885-888.    



91 
 

 
 

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. 

Human Factors, 46(1), 50-80.    

Lockheed Martin. (2014). F-16 Total Operational Losses [PowerPoint slides].    

Lyons, J. B., Fergueson, E., Ho, N. T., Sadler, G. G., Cals, S., Richardson, C., & Wilkins, 

M. A. (2016, May). A trust-based analysis of the Air Force automatic ground 

collision avoidance system. Paper presented at the Aerospace Medical Association 

annual conference. Atlantic City, NJ.    

Lyons, J. B., Ho, N. T., Fergueson, E., Sadler, G., Cals, S., Richardson, C., & Wilkins, 

M. (in press). Trust of an automatic ground collision avoidance technology: A 

fighter pilot perspective. Military Psychology.    

Lyons, J. B., Ho, N. T., Fergueson, E., Sadler, G., Cals, S., Richardson, C., & Wilkins, 

M. (2015). Trust of an automated collision avoidance technology: A fighter pilot 

perspective. Unpublished manuscript.    

Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A comparison of the theory of planned 

behavior and the theory of reasoned action. Personality and Social Psychology 

Bulletin, 18(1), 3-9.    

Marangunic, N., & Granic, A. (2015). Technology acceptance model: A literature review 

from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95.    

Moore, D. P. (2013, October). USAF F-16 BLOCK 40/50 automatic ground collision 

avoidance system (Auto GCAS) and pilot activated recovery system (PARS) test 

data (412TW-TR-13-04DP2). Wright-Patterson AFB, OH: AFLCMC/WWM.    

Niedober, D. J., Ho, N. T., Masequesmay, G., Koltai, K., Skoog, M., Cacanindin, A., & 

Lyons, J.  (2014). Influence of cultural, organizational and automation factors on 



92 
 

 
 

human-automation trust: A case study of auto-GCAS engineers and 

developmental history. Human-Computer Interaction. Applications and Services, 

473-484.    

Norris, G. (2016, August 19). Integrated collision avoidance system undergoing phased 

USAF testing. Aviation Week & Space Technology. Retrieved from 

http://aviationweek.com/defense/integrated-collision-avoidance-system-

undergoing-phased-usaf-testing  

Nunnally, J. C. (Ed.). (1978). Psychometric Theory. New York, NY: McGraw-Hill.  

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, 

abuse. The Journal of the Human Factors and Ergonomics Society, 39(2), 230-

253.    

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels 

of human interaction. IEEE Transactions on Systems, Man and Cybernetics, Part 

A: Systems and Humans, 30(3), 286-297.    

Richardson, C. E., Eger, C. A., & Hamilton, T. R. (2015). Automatic collision avoidance 

testing. In AIAA Modeling and Simulation Technologies Conference.  

Swihart, D. E., Barfield, A. F., Griffin, E.  M., Lehmann, R. C., Whitcomb, S. C., Flynn, 

B., & Prosser, K. E. (2011). Automatic ground collision avoidance system design, 

integration, & flight test. Aerospace and Electronic Systems Magazine, IEEE, 

26(5), 4-11.    

Truong, D. (2016, July 21). SPSS Missing Values [Video podcast]. Retrieved February 

12, 2017, from https://www.youtube.com/watch?v=DNThjjqLz9Q  



93 
 

 
 

U.S. Department of Health & Human Services. (2014, September 24). Human subject 

regulations decision charts. Retrieved from 

http://research.erau.edu/Assets/proresearch/data/IRB-Human-Subject-

Regulations-Decision-Charts-HHS.pdf 20160905125512503946900US 

Department of Health Human Services 2014 Human subject regulations decision 

charts 

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology 

acceptance model: Four longitudinal field studies. Management Science, 46(2), 

186-204.    

Wicker, A. W. (1969). Attitudes versus actions: The relationship of verbal and overt 

behavioral responses to attitude objects. Journal of Social Issues, 25(4), 41-78.    

  



94 
 

 
 

APPENDIX A 
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Figure A1.  Written permission from Dr. Joseph Lyons to use Lyons et al. (2015) data. 
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Figure B1.  Embry-Riddle Aeronautical University IRB approval of exempt research. 
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