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Introduction
In an earlier paperf we have developed an abstract theory of Boolean

algebras and their representations by algebras of classes. We now relate this
theory to the study of general topology.

The first part of our discussion is devoted to showing that the theory of
Boolean rings is mathematically equivalent to the theory of locally-bicom-
pact totally-disconnected topological spaces. In R we have already prepared
the way for a topological treatment of the perfect representation of an arbi-
trary Boolean ring. Continuing in this way, we find that the perfect represen-
tation is converted by the introduction of a suitable topology into a space of
the indicated type. We have no difficulty in inverting this result, proving that
every locally-bicompact totally-disconnected topological space arises by the
same procedure from a suitable Boolean ring.' It is thus convenient to call
the spaces corresponding in this manner to Boolean rings, Boolean spaces.
The algebraic properties of Boolean rings can, of course, be correlated in de-
tail with the topological properties of the corresponding Boolean spaces. A
simple instance of the correlation is the theorem that the Boolean rings with
unit are characterized as those for which the corresponding Boolean spaces
are bicompact. A familiar example of a bicompact Boolean space is the Cantor
discontinuum or ternary set, which we discuss at the close of Chapter I.

Having established this direct connection between Boolean rings and to-
pology, we proceed in the second part of the discussion to considerations of a
yet more general nature. We propose the problem of representing an arbitrary
TVspace by means of maps in bicompact Boolean spaces. Our solution of
this problem embodies an explicit construction of such maps, which we shall
now describe briefly. In a given TVspace dt, the open sets and the nowhere
dense sets generate a Boolean ring, with 9Î as unit, which characterizes the
topological structure of 9Î. Those subrings which contain 9Î and which are so
large that the interiors of their member sets constitute bases for 9î, also char-

* Presented to the Society (in part), February 25, 1933, and September 5, 1936; received by the
editors June 1, 1936.

f Stone, these Transactions, vol. 40 (1936), pp. 37-111. In the sequel this paper will be desig-
nated by the letter R, citations being made in the form "R Theorem 10" or "R Definition 6."
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acterize the structure of 5R. We are thus provided with an extensive family of
Boolean rings which can be employed in the investigation of the given space
9Î; we call them basic rings for 5R. In any basic ring for $R, those sets with
closure not containing a given point r in SR constitute an ideal; and in the
corresponding Boolean space, this ideal is represented by an open set with
closed non-void complement ï(r). The points of 5R are thus represented by
closed subsets of a related bicompact Boolean space. We find further that the
topological structure of $R is characterized by the distribution of these repre-
sentative closed sets. Thus we are able to reduce the study of general T0-
spaces to the examination of their maps in bicompact Boolean spaces. This
reduction is not without advantage in the consideration of explicit topological
problems, as we show in several illustrative applications.

The general mapping theory which we have outlined in the preceding
paragraph is sufficiently complicated to suggest a search for simplifications.
We turn naturally to the various strong separation properties such as regu-
larity and normality. The investigation of the several possibilities which arise
occupies the third chapter of our discussion. The general mapping theory, as
previously developed, indicates the procedure for its own simplification and
leads us at once to the consideration of a class of topological spaces to which
little attention has been paid in the past. These spaces are characterized by
the property that in them the regular open sets—that is, the interiors of closed
sets—constitute bases. Since they are more general than the regular spaces, we
call them semi-regular spaces. After discussing the semi-regular and regular
spaces in detail, we consider the completely regular spaces. Here it is neces-
sary for us to study the class of all bounded continuous real functions in a
topological space. We obtain a reasonably complete algebraic insight into the
structure of this class and its correlation.with the structure of the underlying
topological space. We are thereby enabled to complete the study of the maps
of completely regular spaces. The normal spaces are, from the point of view
adopted here, so special that we do not devote any separate consideration to
them.

Plainly, we are engaged here in building a general abstract theory and
must accordingly be occupied to a considerable extent with the elaboration
of technical devices. Such preoccupation appears the more unavoidable, be-
cause the known instances of our theory are so special and so isolated that
they throw little light upon the domain which we have wished to investigate.
Nevertheless, we have not neglected to test our theory by applying it to
specific problems of general set-theoretical topology, some of which have re-
mained unsolved for several years. We may note in particular the propositions
established in Theorems 52 and 53. While these applications lie in the domain
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of set-theoretical topology, it is clear that the algebraic tendencies of our
method relate it more nearly to recent developments in combinatorial topol-
ogy. Indeed, it appears that by a process of gradual generalization combina-
torial topologists have now arrived at a point of view very similar to that ex-
pounded here. Accordingly, we should expect that applications of the present
theory could be made also to combinatorial problems. It seems clear, for in-
stance, that the study of approximation by abstract complexes could con-
veniently be based upon the theory of Boolean maps, as developed here. We
cannot, however, enter upon the discussion of such further applications at
this time.

The present detailed exposition of our theory brings some corrections to
previous summary announcements, as will be apparent from a reading of
Chapter III, §1 below. The simplification of the mapping theory which was
originally stated to be possible in general is now recognized as characteristic
for the semi-regular spaces.* The general theory is accordingly somewhat
more complicated than we originally supposed; but its applications, so far as
we have examined them, require no essential modification. There are some
applications described in the announcement just cited which we do not con-
sider in the present paper. They are chiefly the ones dealing with dimension-
theory. In Definitions 6 and 7 below we introduce the index of a map. The
connections between the index and dimension-theory are pointed out in the
indicated announcement, where references to the literature can be found. We
hope to return to this subject at a later opportunity.

For general information concerning the elementary concepts of topology
we refer the reader to the first two chapters of the recent book of Alexandroff
and Hopff and to a paper of Kuratowskit which deals with the algebraic
properties of the closure operation. The latter paper will not be referred to
explicitly below, since we shall give all the requisite algebraic reckonings in
some detail. As we have already indicated, we shall confine our attention to
the TYspaces. Our reason for doing so is that, among all the topological
spaces which can be defined in terms of closure or of neighborhood systems,
the r0-spaces appear to be essentially the most general spaces which are of
real interest. The T-spaces, as we have pointed out elsewhere,§ are more gen-
eral than the TYspaces but only from a logical, rather than a topological,
point of view : if one identifies the topologically indistinguishable points in a
T-space, the result is a TVspace.

* Note the oversimplifications in Theorems Vi, V2, and V3 in the Proceedings of the National
Academy of Sciences, vol. 20 (1934), pp. 197-202.

f Alexandroff and Hopf, Topologie I, Leipzig, 1935, cited hereafter by the letters AH.
í Kuratowski, Fundamenta Mathematicae, vol. 3 (1922), pp. 182-199.
§ Stone, Matematicheskii Sbornik, vol. 1 (old series, vol. 43), No. 5 (1936-37).
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The notations of the present paper are largely determined by the usages
already established in R. Thus, for instance, in considering Boolean rings as
abstract entities, we continue to use the symbols -, v , +, <, ' corresponding
to the symbols ■, u , A, c, ', of the theory of classes. In the algebra of the
closure operation, we write A~ in place of A for convenience in putting down
the more complicated expressions such as A~'~'.

The contents of the present paper may be summarized systematically un-
der the following headings: Chapter I, Boolean spaces: §1, Introduction of
topological concepts; §2, Relations between algebra and topology; §3, Uni-
versal Boolean rings and spaces. Chapter II, Maps in Boolean spaces: §1, The
general theory of maps; §2, Construction of Boolean maps; §3, Relation be-
tween algebraic and other maps; §4, Applications to the theory of extensions;
§5, Totally-disconnected and discrete spaces. Chapter III, «Stronger separa-
tion conditions: §1, Semi-regular spaces; §2, Regular spaces; §3, Completely
regular spaces.

Chapter I. Boolean spaces
1. Introduction of topological concepts. We commence with the intro-

duction of a topology in the abstract class in which the perfect representation
of a Boolean ring has been constructed as described in R Chapter IV. It is
natural to impose upon S, the class of all prime ideals in a Boolean ring A,
a neighborhood topology based upon the special subclasses ®(a), where a is an
ideal in A, or upon the still more restricted subclasses (g(a) = @(a(a)), where a
is an arbitrary element in A. The consequences of this procedure are stated
in the following theorem.

Theorem 1. Let A be a Boolean ring, a an arbitrary ideal in A, @ the class
of all prime ideals in A, S (a) the class of all prime ideals which are not divisors
of a, and (5(a) the class @(a(a)) corresponding to the principal ideal a = a(a).
The topologies imposed upon (g through the introduction of the neighborhood sys-
tems (1) and (2), where

(1) each ©(a) is assigned as a neighborhood of every element which it con-
tains;

(2) each ©(a) is assigned as a neighborhood of every element which it con-
tains;

are equivalent. Under them, 6 is a topological space with the properties:
(1) @ is a totally-disconnected* locally-bicompact H-space;

* We use the term "totally-disconnected" to mean that, whenever p and q are distinct points of
a topological space, there exist disjoint closed sets which contain p and q respectively and which
have the entire space as their union. It is clear that a totally-disconnected topological space is neces-
sarily an ff-space.
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(2) the classes ©(a) are characterized as the open sets in ©;
(3) the classes 6(a) are characterized as the bicompact open sets in ©.

The character of © is equal to the cardinal number of A whenever A is infinite.
The space © is bicompact if and only if A has a unit e.

The algebraic properties of the sets ©(a) and ©(a) are sufficient to justify
the introduction of the systems (1) and (2) as neighborhood-systems. In fact,
the sets ©(a) have the following properties: an arbitrary element p in ©, being
a prime ideal in A, has as its neighborhoods the classes ©(a) where pi>a,
and is contained in each of its neighborhoods; if ©(a) and ©(b) are neighbor-
hoods of p, then their intersection ©(ab) =©(a)©(b) is also a neighborhood of
p; and if ©(a) contains p, then ©(a) is a neighborhood of p. Thus the system
(1) has the properties demanded of a neighborhood-system in a topological
space;* under it © becomes a topological space. Under the system (1), the
sets ©(a) are special open sets. Since the classes ©(a) are characterized alge-
braically as unions of classes ©(a) by virtue of the fact, established in R
Theorem 67 (2), that the relations a = Sataa(a) and ©(a) = ^2aJ^ia) are equiva-
lent, we see that the classes ©(a) constitute a basis in the topological space ©.
In consequence, the assignment of these sets as neighborhoods in accordance
with (2) provides a neighborhood-system equivalent to the system (1).
Moreover, it is evident that the classes ©(a) are characterized as the open
subsets of © under these equivalent neighborhood-systems. The system (1)
is identified in this way as the absolute neighborhood-system.f

The nature of the topological space © is now easily determined. To show
that it is totally-disconnected, we start with distinct points p and q in © and
construct ideals a and b so that pe@(a), qe©(b), ©(a)©(b) =0, ©(a) u ©(b) = @.
Since p and q are distinct prime ideals in A, there exists an element a which
belongs to q but not to p. If we now put a = a(a), b = a'(a), we see that p 4> a,
qí>b, ab = o, a vb = e; and we can rewrite these relations in the desired form.
Now the sets ©(a), ©(b) are open in @; since they are mutually complemen-
tary, they are also closed in @. Thus © is seen to be totally-disconnected;
and, in particular, to be an //-space. It remains for us to prove that © is
locally-bicompact. We shall do so by showing that every neighborhood ©(a)
in the system (2) is a bicompact subspace of ©. The open sets in the subspace
©(a) are precisely the sets ©(a) S (a). The Heine-Borel-Lebesgue covering
property, which is to be proved for ©(a), assumes the following form: if SI is
any class of ideals a such that ]Ca«a@(a)©(a) = ©(#), then 21 contains ideals
ai, ■ ■ ■ , a„ such that X)™® (<*••) ©(#) = © (#)• The desired property is equiva-

* AH, p. 43, Satz IX.
t AH, p. 42.
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lent to the following algebraic property: if aeSa,a<i, then aeS^cw for appro-
priate ideals.ai, • • • , o„ in 21. The latter property has been established in R
Theorem 17. Conversely, we can show that an open subset (5(a) of © which,
when considered as a subspace, is bicompact, is necessarily a set (5(a). The
sets ©(a) contained in ©(a) are open in this subspace; and they are precisely
those sets corresponding to the elements a of the ideal o. The relation
®(a) =X)a«a®(ö) yields elements ax, ■ ■ ■ , an in a such that ©(a) =22'I"@(^)
in accordance with the postulated Heine-Borel-Lebesgue covering property.
The latter relation is equivalent to ©(a) = ©(a) where a = axv • • • v an. This
completes the topological characterization of the sets ©(a). It may be re-
marked that every ©(a), being bicompact, is necessarily a closed subset of ©.

The character of the space © can now be determined without difficulty.
In case A is a finite ring, the space © consists of n points where 2n is the
number of elements in A and n = 0 ; every subset of © is an open set and its
points are all isolated. In case A has an infinite cardinal number c, the neigh-
borhood-system (2) also has cardinal number c. Consequently the character
of © (that is, the least cardinal number belonging to a basis in ©) cannot
exceed c. On the other hand, if the open sets ®a, where the index a runs over
a fixed abstract class A, constitute a basis in ©, every set ©(a) is the union
of appropriate sets ®„, aeA. The bicompactness of ©(a) thus yields indices
ai,--,a„ such that ©(a) =X'I"®«»- Since every ©(a) is thus the union of a
finite number of sets from the given basis, the cardinal number of the class
of all sets ©(a) does not exceed that of the basis in question. We thus see
that the character of @ is equal to c.

If A has a unit e, then @ = ©(e) is bicompact in accordance with the pre-
ceding results. On the other hand, if © = ©(e) is bicompact, then e is a prin-
cipal ideal, e = u(a); and its generating element e = a is a unit in A.

We proceed immediately to establish the converse of Theorem 1.

Theorem 2. If 'S is a totally-disconnected locally-bicompact H-space, then
the bicompact open subsets of © constitute a Boolean ring A ; and, if the class ©
of prime ideals in A is topologized as in Theorem 1, then 6 and © are topologi-
cally equivalent.

We shall first show that the subsets of © which have been designated as
members of A constitute a basis in ©. If 8 is any point in © and ® any open
set containing 3, we have to establish the existence of a set § in A such that
$e§ c ®. Since © is locally-bicompact, there exists an open set ft which satis-
fies the relation êeft c @ and which has closure ft~ with the property of bi-
compactness. If ft = ft~, we may put § = ft. Otherwise we take advantage of
the total-disconnectedness of ©: if t is any point in ft'ft'^O, then ê^t;
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and there exists a set ®(t) which contains t but not 8 and which, together with
its complement, is both open and closed in ©. Since g- is bicompact, the rela-
tion g- = g~3 u YJt<g_5, S~®(t), in which g and ®(t) are open sets, implies the
existence of points ti, • • ■ , t» in %-%' such that 5_ = o:_j3 u^T^Ö"®^).
We now put § = g®'(ti) • • • ®'(t») = ^~®'(ti) ■ ■ • @'(t„). It is evident that
§ is both open and closed in ©, that it contains 3, and that it is contained
in both g and ®. Since § is closed in © and coincides with §8"", it is also
closed in g-. Thus § is bicompact when considered as a subspace of g-;
since the topology of § is the same whether § be regarded as a subspace of
5~ or of ©, £> is bicompact also with respect to ©. We thus complete the
proof that © has the desired basis.

We shall next show that the subsets of © which are designated as members
of A constitute a perfect algebra of classes in ©, in accordance with R
Definition 12. It is immediately evident that A contains 2133 and 2ÍA33
together with 21 and 33: for 2133 is open since it is the intersection of open
sets and bicompact since it is closed in the bicompact sets 21 and 33 respec-
tively; the set 21 u 33 is bicompact; and the set 2IA33 = 2133' u 2i'33 c 21 u 33 is
both open and closed in © and is bicompact since it is closed in the bicompact
space 21 u 33. Thus A is a Boolean ring with classes as elements. Since A is a
basis in the //-space ©, it is a reduced algebra of classes in accordance with
R Definition 10: each point of © is contained in some member of A and is
the sole point common to all such members oí A. In order to show that A
is perfect, we prove that ^2%tJi = 2ZsB<f,33 implies a = b whenever a and b are
ideals in A. It is evidently sufficient to prove that XlsuaSt c]Cs8<&23 implies
a c b. If 21 is an arbitrary element of a, we have 21 c ^««t^ by hypothesis.
Hence we can write 21 = 2Zs8eb2i33 and even, by virtue of the bicompactness
of 21, the stronger relation 21 = S*""2133„ where 33i, • ■ • , 33„ are in b. Since the
latter relation implies 21eb, we conclude that a c b. Thus A is perfect in ac-
cordance with R Definition 12.

Now by R Theorem 69, the algebra A is equivalent to its perfect repre-
sentation B(A): in other words, there exists a biunivocal correspondence be-
tween © and @ = @(^4) which carries the classes 2Í belonging to A into their
respective representative classes ©(21) in a biunivocal manner. Since A is a
basis in © and the classes ©(21) constitute a basis in © by Theorem 1, we
conclude that © and © are topologically equivalent.

The correspondence between Boolean rings and topological spaces estab-
lished in Theorems 1 and 2 justifies the introduction of the following defini-
tions and notations.

Definition 1. A totally-disconnected locally-bicompact H-space is called a
Boolean space.
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Definition 2. A Boolean space 33 is called a representative of a Boolean
ring A, symbolically, $8=$5(A), if $ß is topologically equivalent to the particular
Boolean space © = ©(^4) described in Theorem 1.

Before developing further details of the relations connecting Boolean
rings and their representative Boolean spaces, we note a few useful topologi-
cal facts.

Theorem 3. The closed subsets and the open subsets of a Boolean space are
Boolean spaces. A continuous image of a bicompact Boolean space is necessarily
a bicompact topological space; it is therefore a Boolean space if and only if it is
totally-disconnected.

Let ft be a closed subset of a Boolean space 33. If fi and r2 are distinct
points in ft, then there exist closed sets ftx and ft2 such that ixeftx, r2eg2,
5iij2 = 0, ftx u ($2 = 93. The sets §i = 5gi, &2 = ftft2 are closed in ft and have the
properties ri«§i, r2e£>2, §i§2 = 0, !£>xuÍQ2 = ft. Hence the space ft is totally-
disconnected; in particular ft is an Z7-space. If § is any open subset of ft and f
is any point in ¿p, then § = ©$ where ® is open in 33. Since ® contains
r, there exists an open set ®i which has the property re@i c ® and pos-
sesses a bicompact closure @r in 33. The set ÍQx = ®xft is open in ft and
has the property re§i c §. Furthermore its closure in ft is the closed set
(®iS)~S c®ri5c®r; being closed also in ®r, it is bicompact. Thus ft has
all the properties of a Boolean space.

Let ® be an open subset of a Boolean space 33. Then © is a totally-
disconnected ZZ-space by the same reasoning as that applied to ft in the
preceding paragraph. The proof that ® is locally-bicompact proceeds as fol-
lows : the open sets in the subspace @ are precisely the open sets of 33 which
are contained in ®; if r is any point of ® and ®i an open set such that
re®i c ®, then there exists an open set § which has the property r€§ c ®x c ®
and possesses a bicompact closure £>" = ■£); and the closure of !q in the space
® is given by §_® = §® = £>.

It is well known that every continuous image of a bicompact ZZ-space is
a bicompact topological space.* The final statement of the theorem is thus
obvious.

A proof of Theorem 3 can also be obtained in an indirect way from the
correspondence between Boolean rings and Boolean spaces, as will be seen
in the following section; but it is preferable to have the direct proof before
us in stating our results.

2. Relations between algebra and topology. We shall now develop in

* AH, p. 95, Satz 1.
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much greater detail the consequences of the relations between algebra and
topology established in §1. We have the following general theorem.

Theorem 4. The algebraic theory of Boolean rings is mathematically equiva-
lent to the topological theory of Boolean spaces by virtue of the following relations:

(1) every Boolean ring has a representative Boolean space; every Boolean
space is the representative of some Boolean ring; and two Boolean rings
are isomorphic if and only if their representatives are topologically
equivalent ;

(2) the group of automorphisms of a Boolean ring is isomorphic to the
topological group of an arbitrary representative of the ring ;

(3) the representatives of Boolean rings which are isomorphic to the various
ideals in a Boolean ring A are characterized topologically as the open
subsets of an arbitrary representative of A; in particular, 6(a) is a
representative of the ideal a in A;

(4) the representatives of the homomorphs of a Boolean ring A are character-
ized topologically as the closed subsets of an arbitrary representative of A ;
in particular, 6'(a) is a representative of the quotient ring A /a;

(5) the representatives of Boolean rings with unit are characterized topologi-
cally by the property of bicompactness.

This theorem merely collects in a new form results already proved in R
and in Theorems 1 and 2 above. To establish (1) we merely compare R Theo-
rem 69, Theorem 1, and Theorem 2. We then see that (2) follows directly
from (1). We have already established (5) as part of Theorem 1. Using (1)
in conjunction with Theorem 1 (2), we see that (3) and (4) are established
as soon as we can prove the special assertions to the effect that 6(a) and
6'(a) are representatives of a and A/a respectively. To show that 6(a) is a
representative of a, considered as a Boolean ring, we need only show that the
sets 6(a), aea, constitute a perfect algebra of classes in 6(a) isomorphic to
the ring a. Now the ideals in the ring a are precisely the ideals b in A such
that be a; and the relation b c a is equivalent by R Theorem 67 to the rela-
tion 6(b) c 6(a). That theorem shows further that the sets 6(b) contained
in 6(a) constitute an algebra of classes isomorphic to the algebra of all ideals
in a in the precise sense stated there. On specializing to the sets 6(a) corre-
sponding to the principal ideals b = a(a), aea, in the ring a, we see that these
sets constitute an algebra of classes which is reduced and perfect in ac-
cordance with R Definitions 10 and 12. It should be noted that the sets 6(b)
contained in 6(a) are precisely the open sets in the subspace 6(a) of 6:
for every such open set is expressible, in harmony with Theorem 1 and R
Theorem 67, in the form 6(b) =6(c)6(a), where c is an arbitrary ideal in A
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and b = ca is an ideal contained in a. The proof that @'(a) is a representative
of A/a is similar. We know from R Theorem 68 that the sets ©(a)©'(a) con-
stitute a reduced perfect algebra of classes in ©'(a) isomorphic to A /a; and
that the sets ©(b)©'(a) constitute an algebra of classes isomorphic to the
algebra of the ideals in A/a. The latter sets are precisely the open sets in the
space ©'(a). The desired result is thus established. We note that the relations
between the spaces ©(a), ®'(o) and the Boolean rings a, A/a imply that these
spaces are Boolean spaces. Combining this fact with Theorem 1 (2), we ob-
tain an indirect proof of the first part of Theorem 3.

It is a matter of some interest to characterize topologically the various
classes of ideals introduced in R Definition 8. We find the following result,
which is most conveniently stated in terms of the perfect representation ©(^4).

Theorem 5. If a is an ideal in a Boolean ring A, then ©(a') coincides with
the exterior of ©(a). Hence the sets ©(a) corresponding to ideals in the respective
classes 3, 5R, ©, $*, $ of R Definition 8 are characterized topologically as
follows :

(1) the sets ©(a) corresponding to arbitrary ideals are the open sets in ©;
(2) the sets ©(a) corresponding to normal ideals are the regular open sets

in ©;
(3) the sets ©(a) corresponding to simple ideals are the open-and-closed sets

in ©, or, equivalently, the sets in © with void boundaries;
(4) the sets ©(a) corresponding to semiprincipal ideals are the open sets

in © which are bicompact or are complements of bicompact open sets;
(5) the sets ©(a) corresponding to principal ideals are the bicompact open

sets in ©.

We take (1) directly from Theorem 1 (2). It is then obvious from R
Definition 7 and R Theorem 19 that ©(a') is the maximal open set disjoint
from ©(a); in other words, ©(a') coincides with ©~'(a), the exterior of ©(a).
Since a" = a if and only if ©(ct") = ©(u), we see that the normal ideals are
characterized by the relation ©(a) = ©~'~'(a), which identifies their represen-
tative open sets as the regular open sets. The simple ideals a are those for
which ava' = e, or, equivalently, 6(a) u ©(a') = ©. Hence they are character-
ized by the property ©'(a) = S(a') or ©(a) =©~(a). Their representative sets
are thus characterized by the property of being closed as well as open. Now
in any topological space, the relations § = §~, §' = £>'-, which express the
fact that £> is both closed and open, are together equivalent to the relation
§~§'~ = 0 which expresses the fact that the boundary of § is void: for,
when the first relations hold, we have §~£>'~ = §£>' = 0 ; and, when the second
relation holds, we have §c§-, §' c &'-, §-§'- = 0, and hence § = §",
§' = §'~. Thus the simple ideals a are characterized by the fact that the
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corresponding sets 6(a) have void boundaries, as stated in (3). We pass next
to the consideration of (5). Here we have merely repeated the characteriza-
tion already given in Theorem 1. Then by combining (3) and (5) we obtain
(4), since an ideal a is semiprincipal if and only if both ideals a and a' are
simple and at least one of them principal.

By reference to R Theorems 38, 59, and 67, we see immediately that
Theorem 5 leads to the following characterization of the sets corresponding
to prime ideals:

Theorem 6. The set 6(p) corresponding to an arbitrary prime ideal p in a
Boolean ring A is the open set 6 — {p} ; the ideal p is normal, and hence semi-
principal, if and only if p is an isolated point in the Boolean space 6 = 6(^4).

Using Theorem 5 (3), we now obtain an important result.

Theorem 7. The representatives of Boolean rings B with the properties
(1) B is isomorphic to a subring 33 of the ring © of all simple ideals in a

Boolean ring A ;
(2) if 6 is an ideal in 33, the relations Sae6a = e and © = 33 are equivalent;

are characterized topologically as those Boolean spaces which are continuous
images of an arbitrary representative of A. In particular, the representatives of
Boolean rings B with the following properties:

(1) B is isomorphic to a subring b of a Boolean ring A with unit e;
(2) e is an element of b;

are characterized topologically as the totally-disconnected continuous images of
an arbitrary representative of A.

By Theorem 4 we may restrict our attention to the subrings 33 and the
space 6 = 6(^4) in establishing the first part of the present theorem. Let 21
be a Boolean space which is a continuous image of ©04) by virtue of a corre-
spondence ê=/(p). Then there exists a Boolean ring B such that 21 = 21(5);
and, if g is any bicompact open set in 21, its antecedent/_1(g) is both open
and closed in ©. By Theorem 5 (3) there exists a simple ideal in A such that
/_1(5) = ©(o). The algebras with the classes %, /_1(S) as elements are iso-
morphic to each other and to B, while the associated ideals a constitute a
subring of © also isomorphic to B. This subring we designate as 33. We can
now write 21 = 21(33) by virtue of the isomorphism between B and 33. If 6 is-
any ideal in 33, it is represented by an open set 21(6) in 21. It is evident that
/-x(2i(6)) = Z0ee6(a) = 6(SaeEa) and hence that the relations 6 = 33, 21(6) = 21,
and S0eEa = e are equivalent. On the other hand, let 33 be a Boolean ring with
the properties (1) and (2). The elements a of 33 can then be represented in
two ways: as the bicompact open subsets 21(a) of a representative 21 = 21(33),
and as certain open-and-closed sets 6(a), ae33 c ©, in 6 = 6(^4). The corre-
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spondence ©(a)<—»21(a), ae33, then induces a point correspondence between
S and 21. If (ê, p) is a pair of points ê and p in 21 and © respectively such that
the relations 21(a) c2I— {ê} and ©(a) c@— {$} are either both true or both
false whatever the element a in 33, we set 3=/(p). We see that every é
in 21 belongs to at least one such pair: for the relation 21(a) c 21— {%} de-
termines a prime ideal ty in 33; and, by hypothesis, the relation $5^33 implies
22a<sj®(a) =®(S<¡4;a)?í©(e) = ©. Furthermore we see that each p belongs to
exactly one such pair: for those elements a in 33 which satisfy the equivalent
relations acp, ©(a) c @(p) constitute a prime ideal ty in 33 in accordance
with R Theorems 36 and 41; and there is then exactly one point 8 in 21 such
that X)a4¡21(u) c2í— {ê}. The relation 8=/(p) thus sets 21 in univocal corre-
spondence with ©. Since the sets 21(a) constitute a basis in 21 and the sets
©(a) are open in @, it is sufficient in proving that/(p) is continuous, to show
that/_1(2i(a)) = ©(a) for every a in 33. If a is fixed, the points 8 and p specified
by the relations/(p) =3e2i(a) are by definition precisely those for which the
relations 21(a) c 21— {ê}, ©(a) c©— {p¡ are both false; and the desired rela-
tion /-1 (21(a)) =©(a) is thus established.

The second part of the theorem follows by specialization of what has just
been proved. If A has a unit e, then © is isomorphic to A by R Theorems 25,
30, and 31. Hence the rings 33 with the properties (1) and (2) of the first
part of the theorem can be replaced by the subrings b of A which contain e:
for every subring of © is isomorphic to a subring of A ; and property (2),
when expressed in terms of the generating elements of the principal ideals
involved, asserts the equivalence of the relations SatCa = e and c = b for an
arbitrary ideal c in b, and therefore degenerates, in accordance with R
Theorem 17, into the simpler condition eeb. Theorems 1 and 3 now permit us
to assert the second part of the present theorem.

As a final illustration of the connections between algebra and topology
developed in the preceding theorems, we may comment informally on two
distinct algebraic problems. First let us consider the determination of the
ideal product of a non-void class 21 of prime ideals p in a Boolean ring A. It is
clear that the complete solution of this problem can be given in the follow-
ing topological terms: if a = LUsiP, then ©(a) - [IX>«aS(p) ]'"' = [Zp«si Í P} ]"'•
Then let us consider the problem of representative elements in the modular
classes of a Boolean ring A, recently discussed by v. Neumann and the
writer.* In topological terms, this problem can now be rephrased as follows:
if ft is any closed subset of a Boolean space 33, it is required to determine in
each class of sets intersecting g in a fixed bicompact open subset of that

* J. v. Neumann and M. H. Stone, Fundamenta Mathematicae, vol. 25 (1935), pp. 353-378.
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subspace a representative member ® so that (1) @ is a bicompact open sub-
set of 33, (2) the Boolean rings generated by the sets ® and ®g respectively
are isomorphic. This problem is evidently one which involves the position of
5 in 33 ; it has a solution if and only if g has a special location in 33.

3. Universal Boolean spaces and rings. In view of the relations between
Boolean spaces and Boolean rings, it is of some interest to consider the
algebraic significance of the facts concerning the imbedding of locally-
bicompact //-spaces in bicompact TZ-spaces. We shall consider first the spe-
cialization of the theorem to the effect that a locally-bicompact //-space can
be imbedded in a bicompact //-space by the adjunction of a single point.*
We have

Theorem 8. The non-bicompact Boolean spaces are characterized topologi-
cally as the non-closed open subsets of bicompact Boolean spaces; in particular,
every non-bicompact Boolean space can be converted by the adjunction of a single
non-isolated point (in an essentially unique way) into a bicompact Boolean space.
Accordingly, the Boolean rings without unit are characterized algebraically as
the non-principal ideals in Boolean rings with unit; in particular, every Boolean
ring without unit can be imbedded as a non-principal prime ideal in a Boolean
ring with unit (in an essentially unique way).

We have already seen in Theorem 3 that every open subset of a Boolean
space is a Boolean space. In a bicompact space a subset is closed if and only
if it is bicompact. Hence we see that every non-closed open subset of a bi-
compact Boolean space is a non-bicompact Boolean space. The converse
proposition, that every non-bicompact Boolean space is topologically equiva-
lent to such a subset of some bicompact Boolean space, is a consequence of
the assertion concerning the possibility of adjoining a point so as to make the
resulting space bicompact. We shall not give a direct topological proof of
this assertion, although one could easily be given on the basis of the reference
made above to AH. Instead, we deduce it from algebraic considerations.
In R Theorems 1 and 37 we have already established the final algebraic
statement of the present theorem: every Boolean ring without unit can be
imbedded as a non-principal prime ideal in a Boolean ring with unit, which is
uniquely determined if isomorphic systems be regarded as identical. Inter-
preting this fact topologically in accordance with Theorems 4 and 6, we see
that every non-bicompact Boolean space is topologically equivalent to an
open set obtained from an appropriate bicompact Boolean space by the
removal of a single non-isolated point; and we see also that the imbedding
space is uniquely determined if equivalent spaces be regarded as identical.

* AH, p. 93, Satz XIV.
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Thus, having established all statements of the present theorem except the
general algebraic one, we are in a position to prove the latter by a translation
of topological facts into algebraic terms. We omit the details.

We pass now to the consideration of a fundamental theorem of Tycho-
noff,* to the effect that every completely regular space can be imbedded
in a certain universal bicompact ZZ-space of the same character. This result
suggests a corresponding specialization to the case of Boolean spaces, to-
gether with its algebraic interpretation. In formulating such a special theo-
rem, we may disregard the trivial case of finite Boolean spaces : each of them
consists" of a finite number of discrete points. We therefore state our results
in terms of Boolean spaces of infinite character. We have first the following
theorem.

Theorem 9. Let c be an arbitrary infinite cardinal number; let A be an
arbitrary class of cardinal number c,for example, the class of all ordinal numbers
preceding some suitable (even the first suitable) ordinal number co ; let 33c be the
class of all characteristic functions 8 = 8(a) defined over A (for each a in A,
either 8(a) =0 or 8(a) = 1); and let Ae be the class of all sets in 33c generated
from the special sets U„, UJ, where Ua contains all 8 for which 8(a) =0, by the
formation of finite unions and intersections. By the assignment of each non-void
set belonging to A c as a neighborhood of every one of its points, 33c becomes a
bicompact Boolean space of character c. The system Ac is a Boolean ring with
the set 33c as its unit, with c as its cardinal number, and with 33c as one of its
representative Boolean spaces.

In view of Theorem 1, we can establish the present theorem by showing
that Ac is a perfect reduced algebra of classes in 33c. From R Theorem 14, we
see that Ac is a Boolean ring with classes as elements and the particular class
33c as its unit; and, since the cardinal number of the class of all sets U0 is pre-
cisely c, we can easily calculate the cardinal number of Ac as equal to c. This
algebra of classes is reduced in the sense of R Definition 10: for it contains
the class 33c; and an arbitrary point 80 = 8o(a) in 93c is obviously the sole
point common to the sets Ua where a is such that è0(a) =0 and the sets ll„'
where a is such that ^o(a) = 1. To show that Ac is a perfect algebra of classes,
we begin by considering an arbitrary prime ideal p in Ac and defining a corre-
sponding point 8p in 33c by setting 8p(a)=0 or 8p(a) = l according as U„'ep
or U«ep. We can then prove that no set U belonging to p contains the point 8P.
If U is in p, its complement 11' is not a member of p; since 11' can be repre-
sented as a finite union of terms IL, ■ • ■ U„„U/s' • • ■ U/3n', where ax, • ■ ■ , am,
ßi, ■ ■ ■ , ßn are in A and either the a's or the ß's may be absent, at least one

* Tychonoff, Mathematische Annalen, vol. 102 (1930), pp. 544-561.
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of these terms, and indeed every factor of that term, must be a non-member
of p by virtue of R Theorem 34. Thus the relation Ua, • • • UamViß' • • • IW c U'
can be satisfied by appropriate choice of Ua', • • • , Ua„', Uß„ ■ ■ ■ , Uß„ in p.
The equations «„(«i) = • • ■ = 99(am)=0, &9(ßi) = ■ • ■ = «p(jS„) = 1 now show
that «„ is contained in Uttl • • • U«mU/j' ■ ■ • U,s„' and in U' but not in U. From
R Theorems 59 and 66 it follows therefore that Ae is a perfect reduced algebra
of classes, and is indeed a perfect representation of itself. Theorem 1 shows
at once that 33c is a bicompact Boolean space of character c which is a repre-
sentative of At in accordance with Definitions 1 and 2.

Theorem 10. Every Boolean space of character not exceeding c is topologi-
cally equivalent to a subspace of the space 33c of Theorem 9; and every Boolean
ring with unit which has cardinal number not exceeding c is a homomorph of
the ring Ac.

We may obviously restrict attention to a Boolean ring A and its particu-
lar representative Boolean space 6 = 6(^4). We may, if we wish, include the
case of finite rings. For infinite rings, the cardinal number of A is equal to
the character of ©. Hence the assumption that either the cardinal number of
A or the character of 6(^4) does not exceed c permits us to choose in the
class A of Theorem 9 a subset T with the same cardinal number as A, and to
set up a biunivocal correspondence between A and T, designating the ele-
ment of A associated with the element a in T by aa. In case the cardinal
number of A is equal to c we may take r = A or T^ A as we wish; in all other
cases we must take T^A. If now p is any point in ©, that is, if p is any prime
ideal in A, we define a corresponding point 8„ in 33c by putting $„(«) =0 if
aeA — T, 8„(a)=0 if aeT and aa«p, and 8p(a) = 1 if aeY and aa«p. We recall
that pe©(a„) if and only if a„ip. The class of all points % thus obtained will
be denoted by 33c(^4). It is evident that the correspondence between © and
33c(^4) is biunivocal. In order that a subset of $dt(A) be the image of ®(a^),
it is necessary and sufficient that its points 8P have indices p such that
p€©(a3) or, equivalently, such that $9(ß)=0. Thus the images of the sets
©(ff?) in © are precisely the sets Uß$$c(A), where ßeT. It is evident that
aeA — T implies VLao¡Bc(A). Now the intersections of the sets in Ac with
33c04) constitute a basis in 33c(^4); indeed, by the definition of the class Ae,
we may restrict attention to the sets Ua, • • • UaJXß' • • • IW which have
points in common with 33c(^4), it being understood that either the a's or
the ß's may be absent. Under the indicated restriction we may suppose, by
virtue of the previous observations, that the indices ax, ■ ■ ■ , am, ßh ■ ■ ■ , ßn
belong to T. The sets U«, • • • UamU,s' ■ • • U,3„'33c(^4) are then precisely the
images of the sets ©(aai) • • • ©(a0m)©'(a3l) • • ■ ©'(a^J = ©(a7)©'(ad) in ©,
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where ay = aa, • ■ ■ aam and as = aßl v • ■ • vj(i. Since the latter sets obviously
constitute a basis in ©, we see that the correspondence set up between © and
33c(^4) is a topological equivalence. When A has a unit, © and 33c(-4) are
bicompact; and 2dz(A) is therefore closed in 33c. By Theorem 4 it follows that
A is a homomorph of Ac.

The theorem just proved is the desired specialization of the theorem of
Tychonoff. From it we can obtain further useful facts.

Theorem 11. The Boolean spaces 33c — {8} obtained from 33c by the sup-
pression of a single point 8 are topologically equivalent and all non-bicompact;
the prime ideals in the Boolean ring Ac are isomorphic Boolean rings without
unit. If any common isomorph of the prime ideals in Ac be denoted by A*, then
every Boolean ring of cardinal number not exceeding c is a homomorph of A*.

The relations 8' = 8 + 8o (mod 2), 80 = 82 —8i (mod 2) obviously set up a
biunivocal correspondence of 33c with itself, carrying 8i into 8' = 82. It is
evident that the image of the set Ua under this correspondence is the set
specified by 8''(a) =êo(a) and hence that the image is either U„ or Ua' accord-
ing as 80(a) =0 or ê0(a) = 1. It follows readily that the correspondence trans-
forms ^4C into itself and is therefore a topological transformation of 33c into
itself. In consequence, the spaces 33c— {81} and 33c— J82} are topologically
equivalent. It is clear that no point of 33c is isolated: this can be verified
directly; or can be proved by noting that, if one point were isolated, then
every point would be isolated in accordance with the fact that the topological
group of 33c is transitive, but in contradiction with the fact that 33c is bi-
compact. We see therefore that every space 33c— {$} is a non-bicompact
Boolean space. By Theorems 4 and 6, these results imply that the prime
ideals in Ac have the asserted properties. If we recall the relations between
prime ideals and atomic elements described in R Theorem 38, we see in
particular that Ac contains no atomic element and no normal prime ideal.

It is now easily verified that every Boolean ring A of cardinal number not
exceeding c is a homomorph of Af. We first adjoin a unit to A, if necessary,
obtaining a Boolean ring A *. This adjunction can be effected by means of R
Theorem 1. It is easily seen by reference to the construction given there that
the cardinal number of A * likewise does not exceed c. We now proceed, as
in the proof of Theorem 10, to construct a representative 33c(^4*) of A*,
taking T different from A so that 33c(^4*) is a proper subset of 33c. When A
has a unit, we have A =A* and know that 33c(-4*) is a closed subset of 33c.
Thus, if we choose 8 as a point in 33/ (A *), the space 33c — {8} contains 33CG4 *)
as a closed subset. In this case, A =A* is a homomorph of Af in accordance
with Theorem 4. When A has no unit, A is a prime ideal in A * by R The-
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orem 37. It follows that a representative 33c(^4) of A can be found by re-
moving an appropriate point 8 from the space S&C(A*). Since we have
33c04)=33c04*)(33c-{ê}), the set Sßc(A) is closed in the space 33c-fs}.
Hence in this case also, A is a homomorph of A*.

Just as the Boolean space 33c is a universal Boolean space in the sense
that in it can be imbedded every Boolean space of sufficiently small char-
acter, so the Boolean rings Ac and A* are universal Boolean rings in the
sense that their homomorphs exhaust all Boolean rings of cardinal number not
exceeding c, due regard being paid in the case of Ac to the condition that the
homomorphs of a ring with unit all possess units. If we recall that the homo-
morphs of a Boolean ring can be obtained through the replacement of the
fundamental equality by the various congruences in the ring, we are led to
formulate the following algebraic characterization of the universal rings
^4cand A*:

Theorem 12. The Boolean rings Ac and A* are isomorphic respectively to
the free Boolean rings with and without unit generated by c elements.

The free Boolean ring without unit generated by c elements is obtained
by forming all abstract or symbolic polynomials in these elements and then
introducing the weakest possible relation of equality consistent with the
postulates for a Boolean ring without unit. In accordance with this pro-
cedure the symbolic polynomials a + a, where a is a generating element, must
all be equated; and we can denote some one of them by 0. The elements of
the free ring which are equal to 0 then have in common the properties of a
zero-element. If we make use of the postulates for Boolean rings, we can
describe the introduction of the equality between symbolic polynomials in a
more precise way: the desired equality is determined uniquely by the prop-
erty that a symbolic polynomial is equated to 0 if and only if the algebraic
laws expressed or implied in the fundamental postulates for a Boolean ring
without unit reduce it formally to 0. We thus see that the free ring can be
characterized as follows: it is a Boolean ring without unit; it contains a
subset of cardinal number c which generates the entire ring ; and the elements
of this subset satisfy no algebraic relation which is not a Boolean identity.

The free Boolean ring with unit generated by c elements is obtained by
forming the free ring without unit generated by the given elements and then
adjoining a unit by the construction of R Theorem 1. Thus this free ring can
be characterized as follows: it is a Boolean ring with unit; it contains a subset
of cardinal number c which, together with the unit, generates the entire ring;
and the elements of this subset satisfy no algebraic relation which is not a
Boolean identity.
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In order to apply the given characterizations of free rings, we need a
criterion to determine whether or not the elements of a subclass a of a Boolean
ring A are free from non-identical algebraic relations. Such a criterion can be
established as follows : in order that the elements of a shall satisfy no algebraic
relation which is not a Boolean identity, it is necessary and sufficient that no
relation ax ■ ■ ■ am<bxv • • • vj„, m\\\\, w^l shall hold between distinct
elements ax, ■ ■ ■ , am, bx, ■ ■ ■ , bn in a. We first suppose that A has a unit.
Then any non-identical algebraic relation connecting distinct elements of a
can be reduced to the form dx v ■ • • v dv = 0, where each element d is ex-
pressed in terms of distinct elements of a by a relation d = ax ■ ■ ■ ambx' ■ ■ • 2>n'.
The given relation therefore implies dx= ■ ■ ■ =dp = 0 and hence
ax ■ ■ ■ amb{ ■ ■ ■ ¿>n' =0. We may obviously suppose that t»^l, w^l: for,
if ¿i •••&„' =0 or ax ■ ■ ■ am = 0, the missing elements ax, ■ ■ ■ , am or
b{, • ■ • , bn can be inserted arbitrarily. Thus we have shown that any non-
identical algebraic relation connecting distinct elements of a implies a relation
ax ■ ■ • amb{ ■ ■ ■ bn' = 0 or the equivalent relation ax ■ ■ ■ am < bx v • • • v b„,
m^i, »èl, connecting distinct elements of a. In case A has no unit, we
adjoin one by the construction of R Theorem 1 and repeat the argument
just given. It is thus evident in all cases that a is free from non-identical
algebraic relations if and only if no relation ax ■ ■ ■ am < bx v • • • v bn holds
between distinct elements of a.

The Boolean ring ^4C is evidently generated by the class of all sets U«
together with the unit 33c. This class of sets obviously has cardinal number c.
We now observe that the relation It«, • • • Ua„cU/3, u • • • ullj,, w^l,
»àlj means that every characteristic function & = ^(a) with the property
8(ai) = • • • =8(am) =0 has also at least one of the properties e(ßx) =0, • • • ,
8(/3„)=0. Obviously, then, no such relation can hold when the indices
ax, ■ ■ ■ , am, ßx, ■ • • , ß„ are distinct. It follows that Ac is isomorphic to the
free Boolean ring with unit generated by c elements.

The Boolean ring A* may be regarded as that prime ideal in Ac which
contains every set U„. In fact, we can determine a prime ideal in Ac by con-
sidering those sets in Ac which are contained in 33c— {8}, where 8(a) = 1 for
every a. It is evident that this prime ideal contains every set Ua. Since A*
is isomorphic to any prime ideal in ^4C, we may identify it with the one just
determined. It is then evident that the ring A* is generated by the class of all
sets Ua. As in the preceding paragraph, it follows that A* is isomorphic to
the free Boolean ring without unit generated by c elements.

In conclusion, it is of some interest to remark upon the duality between
the free Boolean ring with unit generated by c elements and the Boolean
ring of all subclasses of a fixed class of cardinal number c which emerges
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from the previous discussion. Since the characteristic functions ê(a) consti-
tute under multiplication and addition (mod 2) a Boolean ring isomorphic
to the ring of all subclasses of A, our construction of the free ring Ac in terms
of these characteristic functions may be regarded as exhibiting a dual rela-
tionship between the rings in question. This duality is in fact a special in-
stance of that which holds between discrete abelian groups and the subgroups
of toroidal groups:* for Boolean rings are abelian groups under addition and
can be studied from that point of view. We shall not pursue this aspect of the
subject further.

We shall close the present section with an examination of the special case
c = No. We obtain a result which explains in some measure the frequent
occurrence of the Cantor discontinuum in various branches of mathematics.

Theorem 13. The Boolean space 33c, c = No, is topologically equivalent to
the space 3) known as the Cantor discontinuum.

3) may be described as the set of all real numbers x given by developments
x = 2^ia=i3~as(a), where s(k)=0 or s(k) = l, with the usual metric topology.
An important property of 3) is the following : a sequence {xn} in 3) converges
if and only if {sn(k)} converges for each k; and the limit of {xn} is obtained
as the element x with development given by s(k)=limn-a> sn(k), k = l, 2,
3, ■ ••. To prove this assertion, we consider the inequality

N

2Z3-»(jm(a) -sn(a))
a-l

=   •J ~Y    |   Xm Xn |    .

If {x„} is convergent and N is the first integer such that {i„(Ar)} is not
known to converge, this inequality becomes

2-3-" | sm(N) - sn(N) | ^ 3"* + | xm - xn |

for all sufficiently large indices m and n. If we restrict m and n to be so great
that |xm—xn\ <3~N, the inequality reduces to | sm(N) — sn(N)\ < 1. Hence we
must have sm(N) =sn(N) for all sufficiently large indices m and n. Since this
result establishes the convergence of {in(A0}, we can apply the principle of
mathematical induction to conclude that [sn(k)\ converges for every k. If
we know that s(k) =lim„.„ sn(k) exists for every k, we see readily that the
number x = 2^la_l3~"s(a) has the property

00 ¡V

I x - xn | S 2£ 3~" | s(a) - sn(a) | ^ 2£ 3~« | s(a) - sn(a) | + 3~N < e
a—1 «=1

* Alexander and Zippin, Annals of Mathematics, (2), vol. 36 (1935), pp. 71-85.

á 2 £ 3-" | sm(a) — sn(a) \ +\ x„ Xn\
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for N> —log «/log 3, n>M = M(N). Combining these results in the obvious
way, we obtain the proposition stated above. There are several useful con-
sequences of this proposition. First,it shows that if x and x' have developments
given by s(k) a.nds'(k) respectively, then a; = a;' implies s(k) =s'(k) for every k:
indeed, the sequence x, x', x, x', ■ ■ ■ is then convergent so that the sequence
s(k), s'(k), s(k), s'(k), ■ ■ ■ must converge likewise, for every k. Secondly,
it shows that the set of points x obtained by fixing the values of s(k) for
k = \, ■ ■ ■ , N and leaving the values of s(k) for k ïï2V-I-1 arbitrary is an open
subset of 3) : for the complement of this set in 3) has the property that any
convergent subsequence has a limit for which one of the development-
coefficients s(k), k = 1, • • • , N, has a value different from the one prescribed;
in other words, the complement of the given set is closed in 3). Thirdly, it
shows that 3) is bicompact: for any convergent sequence in 3) has a limit in 3);
and 3) is thus a closed subset of the bicompact space consisting of the real
numbers x, where O^x^i, with the usual topology. The correspondence
given by x—>8 = s(k) is a biunivocal correspondence between 3) and 33c, c = K0,
by virtue of our first remark. The sets 11«, • ■ • UamU/s' • ■ • lh¿n' where
m-\-n = N and (ai, • ■ • , am, ßx, ■ ■ ■ , ßn) is a permutation of (1, • • -, N) ob-
viously constitute a basis in 33c. Their antecedents in 3) are precisely the sets
obtained by fixing the first N coefficients in the development of x in each of
the 2N possible ways; and, since these antecedents are open in 35 by virtue
of our second remark, the correspondence from 3) to 33c, c = tio is continuous.
Finally, since 3) and 33c, c = K0, are both bicompact ZZ-spaces, the corre-
spondence is necessarily bicontinuous; and 3) and 33c, c = K0, are topologically
equivalent.*

Chapter II. Maps in Boolean spaces
1. The general theory of maps. The general theory of maps deals with the

problem of representing the points and properties of a given topological
space by subsets and their properties in a second topological space. While we
shall be concerned primarily with the study of such representations in
Boolean spaces, we shall begin with an elementary discussion of quite general
maps, introducing the terminology appropriate to the later theory.

The point of departure for the entire theory is the following result :

Theorem 14. If X is any non-void family of distinct, but not necessarily
disjoint, non-void closed sets ï in a Tx-space ©, then a topology^ may be im-
posed on X by the introduction of the following system of neighborhoods : each

* AH, p. 95, Satz III.
t Compare with AH, p. 66, where the sets H are assumed to be disjoint and the topology is termed

"weak" to distinguish it from a different topology introduced earlier on pp. 61-62.
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non-void subfamily ofX which is characterized as the class of all ï contained in a
fixed open subset ® of © is assigned as a neighborhood of every one of its ele-
ments X. Under this topology, X is a T0-space. In order that X be a Ti-space,
it is necessary and sufficient that no member of X contain another as a proper
subset.

It is evident that the system of neighborhoods described in the theorem
has the following properties : every "point" ï belongs to each of its neighbor-
hoods; the intersection of any two neighborhoods of an arbitrary point is
also a neighborhood of that point; if an arbitrary neighborhood contains a
given point, it is a neighborhood of that point; and every point has at least
one neighborhood. Furthermore, we can show that, if 3£i and ï2 are distinct
points, then at least one of them has a neighborhood which does not contain
the other. Since ïi and X2 are distinct as subsets of ©, we may suppose our
notation so chosen that ï2 contains a point 82 of © which does not belong
to 3Ei. Since © is a TVspace, every êi in & is contained in an open set ®(«i)
which does not contain ë2; and the union of all the open sets ®(ëi), éi«ïi,
is an open set ® which contains Xi but does not contain either g2 or the set ï2.
It is then evident that the family specified by ï c ® is a neighborhood of ïi
which does not contain ï2. From this argument we see that, if neither of the
distinct sets ïi and ï2 contains the other, then each has, as a point in X,
a neighborhood which does not contain the other; and also that, if one con-
tains the other, as a proper subset, then every one of its neighborhoods con-
tains the second. These facts concerning the system of neighborhoods
identify X as a TVspace, and show thatX is a TVspace if and only if no set ï
contains another as a proper subset.*

It is convenient, in view of further developments, to introduce a certain
amount of descriptive terminology relating to the family X. We therefore
give the following definitions:

Definition 3. If the union ©(X) of the sets belonging loX contains a subset
21 of @, then X is said to cover 21.

Definition 4. If every non-void open set ® in © contains some member ofX
as a subset, then X is said to be densely distributed in ©.

Definition 5. //, whenever @ is an open set in © and X0 is a member ofX,
the relation ® s ï0 implies the existence of an open set ®0 such that ®0 s ïo and
ï c ® whenever ^©o^O, then X is called a continuous family.

Definition 6. // c is the least cardinal number such that c + 1 is exceeded
by the cardinal number of no set ï inX, then c is called the index of the family X.

* AH, pp. 58-59.
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If some set Ï in X has cardinal number c + 1, the index is said to be attained.

We proceed now to give the principal definitions dealing with the general
concept of a map.

Definition 7. If 9î is a topological space equivalent to the T0-spaceX of
Theorem 14, then the relation between 9?, ©, andXis said to be a map m(^t, ©,X)
of 9Î in © defined by the family X. A map defined by a subfamily ofX is called a
submap of m(5R, ©, X). A map mCtft, ©, X) is said to be a covering map or a
map of 5R on © ifX covers ©. A map m(9î, ©, X) is said to be continuous ifX
is a continuous family. The index of the family X is called the index of the map
w($R, ©, X). A map is said to be a Boolean map if the space © is a bicompact
Boolean space.

It is convenient to state explicitly the following elementary theorems.

Theorem 15. If 5Ri, ©i are topologically equivalent to 5R2, ©2 respectively,
then the existence of a map m(dix, ©i, Xi) implies and is implied by the existence
of a map m(1R2, ©2, X2) whenever the equivalence between <BX and ©2 carries the
families Xx andX2 into one another.

Theorem 16. If © is a closed subset of a Tx-space 3! andX is a family of
subsets of ©, then the members ofX are closed relative to © if and only if they are
closed relative to X; and the existence of a map m(1R, ©, X) defined by the family
X in © implies and is implied by the existence of a map w(9?, X, X) defined by
the family X in X. If © is any subset of a Tx-space X and X is a family of sub-
sets of © closed relative to X, then the members ofX are closed relative to ©; and
the existence of a map m(?H, ©, X) implies and is implied by the existence of a
map m(dî, X, X). In particular, the existence of a map m(di, ©, X) implies and
is implied by the existence of a map m(9î, ©(X), X) or a map m(dt, ©_(X), X),
where X is a family of distinct non-void closed subsets of ©.

In accordance with Theorem 15, we introduce the following definition.

Definition 8. If two maps m(dix, <BX, Xx) and m(9?2, ©2, X2) are related in
the manner described in Theorem 15, they are said to be equivalent.

It is evident that equivalent maps are topologically indistinguishable.
In particular, if one of two equivalent maps is continuous or covering, then
the other is also ; and two equivalent maps have the same index. For purposes
of exposition, it is often convenient to recall that, by definition, a map
íw(5R, ©, X) is equivalent to the "identical" map m(X, ©, X) in which the
points of the space X of Theorem 14 are represented by themselves as closed
subsets of ©.

We can now raise three general questions concerning maps: first, we in-
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quire what consequences flow from the imposition of various simple condi-
tions upon dt, ©, or X in the map m(dt, ©, X); second, we inquire what
reductions can be applied to a map m(dt, ©,X) in order to obtain a simplified
map m(dt, ©*, X*); and, third, we inquire what connections link the theory
of maps with the theory of topological images. We shall consider these three
problems in succession.

In Theorem 14, we have already seen that in a map m(dt, ©, X) or its
equivalent m(X, ©, X) the space 9Î is a TVspace if and only if the family X
has a certain simple property. Beside this result we may now place the
following theorem.

Theorem 17. In a map m(dt, ©, X), the condition that the members of X
be disjoint sets is neither necessary nor sufficient for dt to be an H-space; but this
condition becomes sufficient in the presence of either of the auxiliary conditions :

(1) © is a normal space;
(2) © is an H-space and the sets in X are bicompact.

Let us first consider the sufficiency of the indicated condition when (1) or
(2) is valid. If © is normal and 3Ei and ï2 are disjoint members of X, the
definition of normality establishes the existence of disjoint open sets ®i and
®2 in © such that the closed sets &, ï2 satisfy the relations & c ®1; ï2 c ®2.
Hence any two such points in X have disjoint neighborhoods in the neighbor-
hood system of Theorem 14. It follows that our condition is sufficient for X
and dt to be //-spaces. Under condition (2), we construct analogous open
sets ®i and ®2 by the method used to show that every bicompact //-space is
normal. If ïx and 3E2 are disjoint and bicompact in the //-space ©, there exist
disjoint open sets ®i(«i, 82), ®2(3i, ë2) containing respectively an arbitrary
point 8i in & and an arbitrary point $2 in ï2; for fixed 82 the sets @i(8i, 32)
cover ïi so that there exist points ëi(1), • • • , éi(m), dependent upon ë2, for
which ®i(ë2) = ®i(ëi(1), ê2) u u ®i(«i(m), «2)3ïi; since the open sets
®2(«2) = ©2(êi(1), g2) ■ • ■ ©s(«!<»), «ü) cover ï2, there exist points «2">, ■ • • , 82(n)
such that ®2 = ®2(ë2(1)) u • u ®2(g2<n>) =&; since the open set ®i(&<*>)
is disjoint from @2(82(i;)) and contains Xi for k = l, ■ ■ ■ , n, the open sets
®i = ®i(ë2cl)) • • • ®i(ë2(n)) and ®2 are disjoint and contain Hi and 3E2 respec-
tively. Again it follows that our condition is sufficient for ï and 9Î to be
//-spaces.

On the other hand, if © is not normal, it is possible for two disjoint closed
sets Hi and H2 to have the property that, whatever the open sets ®i and ®2
containing & and H2 respectively, their intersection ®i®2 is non-void. In such
a situation we cannot conclude in general that the points & and ï2 in X
have disjoint neighborhoods. Yet, if Hi and %2 have common points, they
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may still have disjoint neighborhoods, as can be seen from the following
example: let X consist of two closed sets & and 362 which have a common
point but neither of which contains the other; then X is an ZZ-space.

The further examination of the effect of restrictions upon © and X is,
in a sense, the chief aim of the following sections. Indeed, we shall see that
the assumption that © is a bicompact Boolean space has no effect upon the
topological nature of the spaces 9Î which can be mapped in ©. The relation
of the properties of X to those of 9î is found to be rather complex. For the
present, then, we leave the first problem with the remark that every bicom-
pact Boolean space is normal and its closed subsets bicompact, thus rendering
Theorem 17 applicable to such spaces.

We pass to our second problem. In Theorem 16 we have already noted
that a map m(di, ©, X) can be modified, without the loss of essential infor-
mation, through the suppression of ©'(X) or of ©_'(X). It will be observed
that the second of these sets is an open set disjoint from all members of X
and that it is the maximal set with such properties. Now it is possible for an
open set § in © to have points in common with some members of X and yet
contain no member of X. It is natural to examine the conditions under which
such a set £> can be suppressed from a given map without disturbing the
topological relations involved. We obtain the following result.

Theorem 18. Let § be an arbitrary open subset of a Tx-space ©; letX be a
family of distinct closed sets ï in ©, none of which is contained in ig; let X be
the set £>' considered as a relative space; and let T be the family of the closed sets
2J = ■£>':£ in X. Under the topology introduced in Theorem 14, the spaces X and T
have the property that T is a continuous image ofX by virtue of the correspond-
ence £—>§) = .£)'£. In order that X and T be topologically equivalent under this
correspondence, it is necessary and sufficient that § have the following property :
if ® is any open set in © and ïo any member of X contained in ®, then there
exists an open set ®0 such that ®0 u § contains ï0 and contains no member
H ofX which is not contained in ®. I<n other words, this property of § is charac-
teristic for the possibility of suppressing § from the map m(dt, ©, X) so as to
obtain a map mC¡R, X, T).

We consider the correspondence •£—>2J = §'36. Since there is no ï for which
§'£ is void, this correspondence carries X into T in a univocal manner. In
order that the correspondence be biunivocal, it is necessary and sufficient
that §'ïi = Sè"£2 imply ïi = 3E2 whenever Hx and H2 are members of X. In order
to show that this correspondence is continuous, we consider an arbitrary
neighborhood in T and its antecedent in X. Every open set in X is obtained
as a set ®§' where ® is an open set in ©. Hence the neighborhoods in T are
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specified by the relations £>'ï=g) c §'®, where ® runs over the class of all
open sets in ©. Since each such relation is equivalent to the corresponding
relation ï c ® u £>, where ® u § is open in ©, we see that each neighborhood
in T has as its antecedent a neighborhood in X. This property of the corre-
spondence identifies it as a continuous correspondence. In order that the
correspondence be a topological equivalence it must be biunivocal and bicon-
tinuous. When the condition of being biunivocal is met in accordance with
the criterion noted above, we see therefore that the correspondence is an
equivalence if and only if the inverse correspondence §'ï = 2)—»Ï is con-
tinuous. By the Cauchy criterion for continuity,* the latter condition is satis-
fied if and only if ® s ï0, where ® is open in ©, implies the existence of an
open set ®0£>' in t, ®0 being open in ©, such that §)0 = §'ïo is contained in
®o£>' while 2J = ^>'H c @0£>' implies ï c ®. This characteristic property is
obviously equivalent to the one stated in the theorem. We complete the
proof of the theorem by showing that the property stated in the theorem
implies the property which was recognized above as sufficient to make the
correspondence X—>§) biunivocal. Suppose that Ïit^Ïï, the notation being
chosen so that some point of ï2 does not belong to &. Then there exists an
open set ® in © which contains 3Ei but not ï2. By virtue of the property
which is now being assumed for the set §, there exists an open set ®i such
that ®i u ^ contains & but contains no set ï which is not contained in ®.
In particular, then, ©i u § does not contain ï2. It is therefore true that
$'ïi pí Î>'ï2 : for otherwise we should have £>'ï2 = £>'ïi c ®§' and ï2 c ®i u£>,
contrary to fact.

Because of the possibility of suppressing from a given map an open set
such as that described in Theorem 18, it is convenient to introduce the
following definition.

Definition 9. A map m(^ft, ©, X) is said to be redundant if there exists a
non-void open set § which can be suppressed from © in accordance with The-
orem 18; the set § is called a set of redundancy. A map in which no such set
exists is said to be irredundant.

In general, a map will be redundant and will not even be convertible into
an irredundant map by single or successive removals of sets of redundancy.
We may, however, note two simple positive results in this connection. First,
we have

Theorem 19. If the map m(^t, ©i,Xi) is converted into a map m(dt, ©2, X2)
by the suppression of a set of redundancy §i, and if the map m(dt, ©2, X2) is
converted in its turn into a map m(dt, ©3, X3) by the suppression of a set of

* AH, pp. 53-54, Satz IV.
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redundancy £>2, then the set § = !qx u§j is a set of redundancy in the map
w(SR, ©i, Xi) and its suppression yields the map m(9î, ©3, X3).

Since @2- is a closed proper subset of ©i and ©3 is a closed proper subset
of ©2, the set ©3 is a closed proper subset of ©1 and its complement
©3' = ©2' u ©2@3' = §1 u §2 = § is a non-void open subset of ©1. The suppres-
sion of § obviously converts m(9î, ©1, Xi) into m(dt, ©3, X3). Hence § is a
set of redundancy in the first map.

Theorem 20. If X is densely distributed in @, the map m(5R, ©, X) is
irredundant.

The proof is obvious.
A further possibility of simplification in the theory of maps is that of

replacing the neighborhood-system described in Theorem 14 by a suitable
equivalent subsystem. In this connection we have the following result.

Theorem 21. If the sets ï in X are bicompact, then the subfamilies of X
specified by the relations ï c © constitute a basis in the T0-space X even when the
set ® is restricted to be a finite union of open sets belonging to an arbitrary fixed
basis in ©. The character of the T0-space X then does not exceed the character
of @, if the latter is infinite.

We have to show that, if ® is any open set in © and ï any set in X which
is contained in ®, then there exists a set ®i of the indicated type for which
ï c ®! c ®. If 8 is any point in ï, then there exists an open set ®(8) which
belongs to the chosen basis in © and which has the property 8«®(8) c ®. Since
the sets ®(8), 8eï, cover the bicompact set ï, there exist points 81, • • • , 8n
in Ï such that ï c ®(8i) u • • • u ®(8„) c @. We may therefore put
®i = ®(8i) u • • • u ®(8„). Since the cardinal number of the class of open sets
described in the theorem is equal to that of the chosen basis in ©, when the
latter is infinite, we see that the character of X has the property asserted
above.

We come finally to our third problem. Here we can give a complete solu-
tion, due originally to Kolmogoroff.* It is embodied in the following theorem.

Theorem 22. In order that the correspondence from ©(X) to X given by
8—>ï where 8eX be univocal and continuous, it is necessary and sufficient that
the family X be continuous. Hence the map jw(9Î, ©, X) characterizes 5R as a
continuous image of ©(X) if and only if the family X is continuous.

A necessary and sufficient condition that the given correspondence be
univocal is clearly that the sets belonging to X be disjoint. When this condi-
tion is fulfilled, the continuity of the family X is known to be both necessary

* AH, p. 61, footnote.
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and sufficient for the continuity of the correspondence from the space ©(X)
to the TVspace X, by virtue of results due to Kolmogoroff.* Hence we com-
plete the proof of the present theorem by showing that in a continuous family
the distinct members are disjoint. If Hi^H2 we suppose that the notation is so
chosen that H2 contains a point 8 which does not belong to Hi. Then there
exists an open set @ in © which contains & but neither 8 nor H2. By the con-
tinuity of the family X, there exists also an open set ©i which is contained
in © and contains Hi while every set H such that H®i^0 is contained in ®.
Hence in particular we have H2®i = 0, H2 c ©/. Since Hi c ®x, the sets Hi and Hi
are disjoint.

With this, we have completed a general survey of the theory of maps. In
concluding the present section, we shall summarize the preceding results as
they apply to Boolean maps. We obtain the following theorem.

Theorem 23. IfX is an arbitrary family of distinct closed subsets H of a
bicompact Boolean space 33, the topology introduced in X by assigning each non-
void subfamily of X specified by a relation 'H c ©, where © is open in 33, as a
neighborhood of every one of its elements is equivalent to that obtained by restrict-
ing the sets © to be bicompact as well as open. Since the closed set ©~(X) is a
bicompact Boolean space, it may be assumed without loss of generality that
©~(X) = 33. Then the topological spaceX has the properties:

(1) it is a To-space, of character not exceeding that of 33 if 33 is infinite;
(2) it is a Ti-space if and only if no member of the family X contains another

as a proper subset;
(3) it is an H-space if the distinct members ofX are disjoint.

A Boolean map w(9î, 33, X) exists only if dt has the properties necessitated by
(1), (2), and (3). The suppression of a set of redundancy from a Boolean map
yields a Boolean map.

Since the bicompact open subsets constitute a basis in 33 in accordance
with Theorems 1 and 2, the first statement of the present theorem is justified
by reference to Theorem 21. The second statement follows from Theorems
3 and 16. The properties (1), (2), and (3) are established by reference to
Theorems 14, 17, and 21. If § is a set of redundancy in the map m(dt, 33, X),
then £>' is a bicompact Boolean subspace of 33 in accordance with Theorem 3;
it follows that the suppression of § yields a Boolean map.

2. Construction of Boolean maps. In this section, we propose to show
that the bicompact Boolean spaces are universal mapping spaces; in other
words, that every TVspace can be mapped in an appropriate bicompact
Boolean space. The constructive method which we employ is naturally

* Compare AH, p. 67, Satz VI.
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algebraic in character. Once the problem of finding some special type of
universal mapping space has been proposed, the bicompact Boolean spaces
appear to be peculiarly fitted to provide a solution. Thus the property of
total-disconnectedness seems to be desirable if we are to avoid the conse-
quences of the theorem which states that every continuous image of a con-
nected space is connected;* and the property of bicompactness seems equally
desirable if we are to recover from the theory of maps some of the known
theorems concerning the representation of bicompact ZZ-spaces.f Moreover,
if we restrict attention for the moment to separable spaces, that is, to spaces
of character not exceeding t$0, we have positive evidence in favor of our
selection of Boolean spaces as universal mapping spaces. For it is known
that every compact metric space or, equivalently, every bicompact separable
ZZ-space is a continuous image of the Cantor discontinuum 35 and hence of
the equivalent Boolean space 93c, c = N0, of Theorems 9 and 13.J

In order to give a reasonably complete analysis of the theory of Boolean
maps, we shall have to proceed in a somewhat more complicated way than
would be necessary if we were concerned merely with solving the problem of
universality raised in the preceding paragraph. We begin therefore with some
propositions about topological algebra.

Theorem 24. Let dt be an arbitrary T0-space, B^ the Boolean ring of all
subsets of 9í, aj¡ the class of all nowhere dense subsets of 9î. Then a% is an ideal
in B¡n; and, if A is any subring of B^, the class a of all elements common to a^
and A is an ideal in A. The subclass A^ of B% specified by any of the following
equivalent conditions :

(1) a-a'eax; (2) aa'~eam; (3) a-a'~ta^;
(4) a is congruent (mod aa¡) to an open subset of SR ;
(5) a is congruent (mod aj¡) to a regular open subset of 5R;
(6) a is congruent (mod a^) to a closed subset of $R ;
(7) a is congruent (mod a^) to its interior a'~';
(8) a is congruent (mod aj¡) to its closure a~;
(9) a is congruent (mod Ojr) to the regular open set ar'~' ;

is a subring of Bg¡ containing the set 9î as its unit and the class a^ as an ideal.
It is the subring of B^ generated by a<R and the class of all open (regular open,
closed) subsets of SR.

By definition the members of a^ are characterized by the identity
a~'~ = $R. To prove that a^ is an ideal, we combine this characteristic property

* AH, p. 53, Corollary to Satz I.
t AH, pp. 96-98.
Î AH, pp. 85-88, 119-122.
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with R Theorem 16. Thus if a and b are nowhere dense, we have 9î = a~'-
= (a-'SR)- = (a~'(b- v b~'))- = (a~'b- v <rV)- = (a-,*-)_ v (•"'O" < a_'_è_
v (a-'b-')- = b~ v (a-'è-')-, (a-'¿-')- > 6"', (a-'¿>-')- > b~'~ = 9t, and (a v J)-/-
= (a_ v £>-)'-= (a~'è~')_ = 9î, so that avè is also nowhere dense. Similarly,
if a is nowhere dense and c < a, then ar > c~, c' > or', and c~'~ > ar'~ = 9î, so
that c is nowhere dense. The void set obviously belongs to a<R. It is thus.clear
that as« is an ideal in B<& ; and also that in any subring A of B<& the class a of
elements common to a%. and A is an ideal.

We shall next consider the class A^ specified by the condition (3) above.
First we observe that A% contains a^: for, if a is nowhere dense, then ar and
a~a'-<a- are nowhere dense. Then it is obvious from the symmetry of the
condition (3) in a and a' that A^ contains a if and only if it contains a'.
Furthermore, A^ contains avb together with a and b: for the relations
(avb)- = a-vb~, (a\fb)'~ = (a'b')-<a'-b'- imply (av})-(av|i)'-<a-a'-
v b~b'~east when a and b are in A^. Hence we see that A^ is a subring of B$t,
since it contains ab = (a' v b')' and a+b = ab' v a'b = (a' vi)'v(avj')' when-
ever it contains a and b. The previous results show that a^ is an ideal in Ax.

Now if a is any open set in 9Î, we have (a~a'~)~'~ = (a~a')~'~ = (a~a')'~
= (a~' va)~ = a~'~ \ta~>a~' va_ = 9î, so that a~a'~ea9¡, aeA^; and, if
a = ¿> (mod Oír) where ¿» is an open set in 9Î, we have a — (a+b)+b where
a+bea<m cA^, beA^ and hence aeA^. Thus (4) implies (3). Since the relation
a = b (mod agj) is equivalent to a'=b' (mod aj»), we see immediately that (6)
also implies (3). It is trivial, from the preceding results, that (5) implies (3).
Next we see by virtue of the relations oral' <ara'~, aa'~<a~a'~ that (3) im-
plies both (1) and (2). Now (1) obviously implies a = a~ (mod a^) since
a~+a = a~a'v a~'a = a~a'ea%; and (2) similarly implies a=a'~' (mod a^).
Thus (1) implies (8), (2) implies (7). It is evident that (8) implies (6) and
that (7) implies (4). From the scheme of implications

jr(l)-*(fl)-»<6K
(3) , (3)\(2) _» (7) -» (4) /V

we see that the conditions (l)-(4), (6)-(8) are equivalent. Since (3) implies
a = a~ (mod a«), since a = a~ (mod a«) implies a~eA^, and since (3) then
implies a~ = a~'-' (mod a¡n), we conclude that (3) implies (9) a = a~'-' (mod a«).
It is obvious that (9) implies (5). Thus by fitting the scheme of implications

(3) -* (9) - (5) - (4)

into the scheme given above, we see that the conditions (l)-(9) are equiva-
lent. It is then obvious that A^ is the subring of B^ generated in the manner
described above.
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We may remark that some of the conditions (l)-(9) may be cast into
more geometrical form. Thus (1), (2), (3) assert respectively that the border,
the frontier, or the boundary of a is nowhere dense; (7) asserts that a differs
from its interior by a nowhere dense set; and (8) asserts that a differs from
its closure by a nowhere dense set.

While the regular open sets have little interest for us in the present chap-
ter, they win later plày an important rôle. Hence we shall enumerate some of
their useful properties at this point.

Theorem 25. Between the residual classes (mod a^) in the Boolean ring A^
and the regular open sets in 9f, there exists a biunivocal correspondence such
that each residual class contains the corresponding regular open set. The inter-
section of a finite number of regular open sets is a regular open set; but the union,
in general, is not. If a = b (mod a®) where b is a regular open set, then the in-
terior of a is contained in b ; and, if a is an arbitrary subset of a regular open set
b, then or'-' is a regular open set contained in b. The regular open sets in $R are
characterized by the property that their borders coincide with the borders of their
exteriors.

From the preceding theorem, we know that each residual class (mod a^)
contains at least one regular open set. Thus we have to prove that, if a and b
are both regular open sets, then a = b (mod a^) implies a = b. Instead of estab-
lishing this result directly, we first show that, if a and b are both regular
open sets, then their intersection is also such a set. We have (ab)~<a~b~,
(ab)-'>a-'\rb-', (ab)-'->a~'-\fb-'-, (ab)~'-' <a-'-'b-'-' = ab. On the other
hand, if c is an arbitrary set we have c<c~, c'>c~', cf~>c~'~, and c'~' <c~'-'.
In particular, since ab is open, we have ab = (ab)'~'<(ab)~'~'. We therefore
conclude that ab = (ab)~'~', as we wished to do. It is easy to see by examples
that the union of regular open sets need not be a regular open set. We can
now return to the previous question. To begin with, let us assume that the
regular open sets a and b satisfy the relation a > b in addition to the relation
a = b (mod a&). Then we see that ab'=a + bea%, (ae')~'~ = 5R. Hence we have
(ab')->ab', (ab')~'<q'srb, l¡R = (ab')-'-<a'- vb~ = a' vb~, b~>a, b~'<a',
b~'~ < a'~ = a', b = b~'~' > a, and a = b. Passing now to the general case, we see
that ab is a regular open set satisfying the relations a = aa = ab = bb = b
(mod Oír) and the relations a>ab,b>ab. Thus the result just obtained implies
a = ab = b, as we wished to show. Now if a = b (mod a^) where b is a regular
open set, we know from Theorem 24 that a^a'~' = a~'~' = b (mod a%); and
from the results proved above we know that a'~' < a~'~' and that the regular
open set ar'~' coincides with b. Hence we see that the interior of a is con-
tained in b. We may state this result in the form: the modification of a regular
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open set by the addition (mod 2) of a nowhere dense set may suppress interior
points but cannot adjoin interior points. Next we consider the relations
a<b,b = b~'~': we then have a~<b~, a~'>b~', or'->b-'~, a~'-' <b~'~' = b, as
stated above. Finally, we establish the characterization of the regular open
sets given in the theorem. We have to prove that the relations a = a~'~' and
a~a' = a~'~a~ are equivalent. If a = a~'~', we have a' = a~'~ and hence
a~a' = a~'~a~ as asserted. If a~a' =a~'~a~, we have a~' v a = a~'~' v a-',
a = a~(a~' v a) = a~(a~'~' v a~') = a~a~t~', where a~ > ar'~' by virtue of the re-
lation a~'<ar'~; and we therefore conclude that a — a~'~'.

We now proceed to the algebraic construction of Boolean maps.

Theorem 26. Let 5R be any non-void T0-space, A¡r the Boolean ring of
Theorem 24, and A any subring of A^ with the properties

(1) A contains the set 9Î as its unit;
(2) the interiors of sets in A constitute a basis for 5R.

Then let 33 = ©(-4) be the representative bicompact Boolean space for the ring A ;
let a(r) be the class of all those sets a in A such that ar does not contain the point
x indi; and let b(r) be the class of all those sets b in A such that r is interior to b.
The class a(x) is an ideal in A ; and the closed set ï(r) = ©'(a(r)) in Q£(A) has the
property

ï(r) = ( Eew) = new-
IfX is the family of all sets ï(r) corresponding to points r¡»$, the correspond-
ence r—>ï(r) defines a Boolean map w($R, 33, X). In order that a Boolean ring A
of subsets of dt have the properties demanded here, it is sufficient that it be the
ring with unit 5R generated by an arbitrary basis in 5R.

We first prove that a(r) is an ideal. Since 0~ = 0, the void set 0 is in a(r).
If a and ¿> are in a(r), the relation (avb)~ = a~vb~ shows that avè is also
in a(r); and if c<a, where a is in a(r), the relation c~<a~- shows that c is also
in a(r). Thus a(r) is an ideal in accordance with R Theorem 16. Next we
consider the relation between the ideal a(r) and the class b(r). We see at once
that a is in a(r) if and only if b = a' is in b(r): for aea(v) implies xta~' = b'~'
and ôeb(r) implies veb'~' = a~'. It is therefore evident that

*(r) = <g'(a(r)) = ( E <S(a)) = IT <S'(<0 =  IT <S(a') = IT 6(6)
\aea(r) /       aca(t) o«a(r) be/>(r)

by virtue of R Theorem 67. It is therefore easy to determine the significance
of the relation ï(r) c ©(o) when b is an element of A. It is equivalent succes-
sively to the relations ©'(a(r)) c©(J), @(a(r)) = (g(i') = @'(ô), è'ea(r), and
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beb(t). Thus the relation I(r) c ©(¿>) holds if and only if r is interior to the
set b. From this fact we can deduce that the sets H(x) and £(8) corresponding
to distinct points r and 8 in 9Î are necessarily distinct sets. Since the interiors
of sets in A constitute a basis in 3Î, there exists a set b in A to which just one
of the two points r and 8 is interior. If we suppose that the notation is chosen
so that r is interior to b while 8 is not, we conclude that ©(6) contains H(x)
but not I(«). Hence we have H(v)?¿X(8) whenever r^a.

We shall now interpret the foregoing algebraic facts topologically. In the
bicompact Boolean space 33 = ©(^4), defined as in Theorem 1, the sets ©(a),
aeA, are bicompact open sets constituting a basis; and the sets H(x) are closed
subsets of 33 in accordance with Theorems 1 and 4. Since the closed sets
H(v), xeSt are distinct and obviously non-void, they constitute a family X to
which Theorems 14 and 23 can be applied. The subfamilies of X specified by
the relations H(v) c ©(e), beA, then constitute a basis in the TVspace X, as
asserted in Theorem 23. The correspondence r—>3£(r) carries 9Î into X in a
biunivocal way. Since the sets b'~', where b is in A, constitute a basis in 9Î
and since the relations xeb'~' and H(x) c ©(¿>) are equivalent, we now see that
the correspondence sets up a topological equivalence between the spaces
X and 'Oft. By Definition 7, this relation between dt, 33, and X is a Boolean
map m(dt, 33, X). The closing remark of the theorem is an obvious conse-
quence of Theorem 24; it shows that the existence of a ring A of the required
type offers no difficulty.

For convenience of reference to this fundamental result we introduce the
following terminology.

Definition 10. If dt is a T0-space and A® the Boolean ring described in
Theorem 24, then any subring A of A^ with the properties (1) and (2) of Theo-
rem 26 is called a basic ring of dt; the ring A^ is called the complete basic ring
of ft.

Definition 11. // 9? is a To-space and A is a basic ring of 9î, then the
Boolean map m(ft, 33, X) defined by A in the manner described in Theorem 26
is called an algebraic (Boolean) map of dt; and the map defined by the ring A^
is called the complete algebraic (Boolean) map of $R.

Before proceeding to a more detailed analysis of the algebraic maps, we
pause to consider the general significance of Theorems 23 and 26. It is clear
that we can summarize the situation in the following terms.

Theorem 27. The algebraic theory of Boolean rings (with unit) is mathe-
matically equivalent to the topological theory of T0-spaces.

In the first place, Theorem 23 shows that any family X of distinct non-
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void closed sets H in a bicompact Boolean space 33 may be regarded, under a
suitable topology, as a TVspace; but, since the open sets H' in 33 correspond
by Theorems 1 and 4 to ideals in a Boolean ring with unit which has 33 as its
representative, we actually have a representation of certain ideals and their
algebraic relations by means of the indicated TVspace and its topological
properties. On the other hand Theorem 26 shows that such representative
TVspaces are entirely arbitrary and unrestricted. Thus the algebraic struc-
ture of families of ideals in a Boolean ring with unit is exactly reflected in the
topological structure of TVspaces. It follows that the complete analysis of
the ideal structure of Boolean rings is as complicated as the analysis of the
structure of all TVspaces. In the second place, Theorems 23 and 26 may be
viewed, from another angle, as placing the study of all TVspaces on a purely
combinatorial basis : for any such space is completely described as a configura-
tion of ideals in a Boolean ring; and, as we have remarked elsewhere, the
postulates for Boolean rings are postulates for an abstract algebra of combi-
nations. These theorems, furthermore, reduce the construction of TVspaces
to a kind of tactical game with the closed subsets of bicompact Boolean
spaces.* We may remark that the requirement that the Boolean rings in the
foregoing discussion should have units, does not affect the range of our com-
ments in a serious way: for the adjunction of a unit to a Boolean ring is an
essentially trivial operation, as we have already seen in R Theorem 1 and
Theorem 8.

We now return to the further discussion of algebraic Boolean maps.

Theorem 28. // a is the ideal of all nowhere dense sets in a basic ring A of a
To-space 5R, then the algebraic map m(dt, 33, X) defined by A has the following
properties :

(1) in order that ©(a), aeA, contain no set H(x) in X, it is necessary and
sufficient that aea;

(2) the set § = ©(a) is the maximal open subset of 33 which contains no set
H(x)inX;

(3) the points of 3Î specified by the relations H(x) c ©(a), ï(r)©(a)?^0, where
a is in A, constitute the open set a'~' and the closed set ar respectively.

If 9î is an H-space, then r^8 implies ï(r)3E(8)@'(a) =0; and, if in addition the
basic ring A actually contains a basis for 9î, then r^8 implies H(x)H(%) =0. The
sufficient condition of Theorem 23 thus becomes necessary in the latter case.

* The tactical method has been extensively used, for example, by Alexandroff and Urysohn,
Mémoire sur les espaces topologiques compacts, Verhandelingen der Koninklijke Akademie van Weten-
schappen te Amsterdam, Eerste Sectie, Deel XIV, No. 1 (1929). Their constructions are usually
carried out in the Euclidean plane, however.
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In particular, in order that dt be an H-space, it is necessary and sufficient that
in its complete map w($R, 33, X) the sets inX be disjoint.

In the proof of Theorem 26 we have already established the first part of
(3): the relations rea'-' and H(x) c©(a) are equivalent. The second part can
be proved from the first as follows: the relation X(r)©(a)?¿G holds if and only
if ï(r) is not contained in ©(a') = @'(a) and is therefore equivalent to the re-
lation re((a')'-')' = a~. It is now clear that (3) implies (1): for, in order that
the set ©(a) contain no set X(r) it is necessary and sufficient that a'-' = 0; but
Theorem 24 permits us to use the relations a=a'~' (mod %), a'~'<ar'~'
to show that a'~'=0 implies a = 0 (mod a^) or ata and that ata implies
a'-'<(a-'-)' = 5R' = 0. We now show that (1) implies (2). If X(r) is contained
in ©(a), the open sets ©(a), ata, cover 7c(x); since ï(r) is bicompact, there
exist elements ax, ■ ■ • , a„ such that ©(a)=©(ax) u • • • u ©(a„)sï(r),
where ax, ■ ■ ■ , a„ and a = axv ■ ■ • va, belong to the ideal a; and conse-
quently we have a contradiction. Thus ©(a) contains no set 3£(r). Since every
open set in 33 = ©(^4) is a union of sets ©(a), atA, an open set which contains
no set ï(r) must be a union of sets ©(a), aea, and must therefore be contained
in ©(a). Hence ©(a) is the maximal open set which contains no set H(x) inX.

We shall now prove that, if 5R is an ZZ-space, the relation r;¿8 implies
ï(r)ï(8)©'(a) =0. By hypothesis, the basic ring A contains elements a and ¿>
such that rea'"', 8e&'~', and a'-'6'-' = 0. By Theorem 24, ab = a'-'b'-' =0
(mod Ü9}) so that abta. Hence we have ï(r)ï(8) c ©(a)©(è) =©(aô) c ©(a) by
(3) ; and we conclude that ï(r)ï(8)©'(a) =0. In case A contains a basis for SR,
we can select elements a and b which are open sets in 9Î and which have the
properties rea = a'-', »tb = b'-', ab = 0. We find that X(r)X(8) =0. The proof of
the theorem is thereby completed.

It is of considerable interest to compare the different algebraic maps of a
given TVspace 3? and to examine the effect of suppressing the set § = ©(d)
from a given algebraic map of 9Î. We obtain the following result.

Theorem 29. Let w($R, ®(^4¡r), X) be the complete algebraic map of a
To-space $R; let m(9í, ®(;¡4),X^) be an arbitrary algebraic map of $R defined by a
basic ring A ; let a^ and a be the ideals of nowhere dense sets in A^ and in A
respectively; and let p=/(q) be the function defining the bicontinuous univocal
correspondence of (£(A) with ©(^4(r) ¿n accordance with the fact that A is a sub-

'ring of Am with the same unit 3î. Then the indicated correspondence has the
properties :

(1) /^(©(a)) c @(a„),/-*(&(*)) = <§'(%),/(©'(%)) = ©'(a);
(2) ifSA(r) =t1(*A(v)), thenSA(v) d ï(r),/(X(r)) =/C3*(r)) =**(r) ;
(3) if g)(r)=ï(r)<8'(a»)   and  gH(r)=*»(r)g'(a),   then f-^tfWM

=^W©'(%) =ï(r)(S'(a«) =g)(r),/(g)(r)) =r (r).
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The sets $)A (x) constitute a family TA of non-void closed subsets densely dis-
tributed in the bicompact Boolean space ©'(a). Under the topology of Theorem
14, the To-spaces TA corresponding to different basic rings A are all topologically
equivalent; in particular the space T corresponding to the ring A =A^ and the
space TA corresponding to an arbitrary basic ring A are topologically equivalent
by virtue of the correspondence 2J(r)<—>2H(t)- If ft* is any T0-space topologi-
cally equivalent to the spaces TA, then ft* is a continuous image of ft. When ft
has infinite character, the character of ft* does not exceed that of ft. When ft is
an H-space, ft* is also an H-space; and ft* is a biunivocal continuous image
of ft. The suppression of the open set Gz(a)from the algebraic map m(ft, Ql(A),XA)
yields an irredundant Boolean map m(ft*, ©'(a), YA).

Since i is a subring of A^ by hypothesis, Theorem 7 establishes the
existence of a continuous univocal correspondence from ©04j¡) to ©(.4).
Since S(^3î) is bicompact, the correspondence is necessarily bicontinuous.f
The correspondence was so defined that, if the element a in A be considered
as an element aK = a of A^, then /-1(©(a)) = ©(a<j¡). Since aea if and only if
a = astean and a = a%eA, we have

/-K©(a)) = /-i( £ ©(a)) = £/-K©(«)) =  Z ©(%) cgia«),
\ aea / ata a3îeo9î

and hence also /^(g'(a)) d©'(am). The sets/-1 (6(a)), /-»(©'(a)) are respec-
tively open and closed because of the continuity of/. If we now make use
of the bicontinuity of /, we see that /(©'(a^)) is a closed set contained in
©'(a). If it does not coincide with 6'(a), there exists an element a which be-
longs to A but not to a and which has the property that ©(<*)/(©'(a^)) =0.
By Theorem 28, the relation 6(a)6'(a)?¿0 implies the existence of a point r
in ft such that jE^(r) c6(a) or, equivalently, rea'-'. Interpreting the latter
relation in terms of the map m(ft, 6(4<r), X) we see that the element a = a^
in Ax has the property ©(a^) d ï(r). Hence the set/_1(6(a)) = 6(0^) has a
point in common with 6'(a9¡) in accordance with Theorem 28. Since
/(6(aSR)6'(a!R))c/(6(a8î))/(6'(aSR)) = 6(a)/(©'(aSR)), we reach the contradic-
tion that &(a)f((£'(am))^0. Hence we must have /(©'(a^)) =©'(a). This
completes the proof of (1) above. Since the relations xeb'~', HA(x) c&(b),
H(x) c©(Z>3,) for bft — beA are equivalent, we have

sAix) =/-wr)) =/->( Ylm) = nrP)) = IT er.*«)**«
\ 6<b(r) /       i><b(r) %ib(r)

f AH, p. 95, Satz II.
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by virtue of Theorem 26. If we make use of the bicontinuity of the corre-
spondence/, we see that/(ï(r)) is a closed subset of ï'1(r). If it does not
coincide with 3E4(r), then there exists a set b in A such that ©(e) contains
f(X(x)) but not £*(r). If we put b^b^tA, we see that ®(bm) =/-!(©(&)) 3ï(r)
and conclude that xtbyr' = b'~'. On the other hand, the fact that ©(6) does not
contain HA(x) leads to the contradiction that r does not belong to b'~'. We
therefore conclude that/(ï(r)) =ï^(r). By definition we have/(3x(r)) =3£A(r).
This completes the proof of (2) above. From the previous results, we know
that

/-1®A(r))©'(aiR) = f-W(xW(a)W(ax) = /-1(P(r))/-I(©'(a))©'(aSR)
= 3A(r)©'(aSR)3Ï(r)©'(a3î) =9(r),

/@(r)) = f(I(xW(am)) c/(ï(r))/(©'(a9i)) = X'(r)<S'(a) - »*(*).,
/(/"Wr))®'^)) -9*(t).

If we can show that 3AW®'(%) =iW®'(%), we can then conclude that
g)(r) =/-1(g)x(r))@'(aiR),/(2)(r)) =?Hr), thus completing the proof of (3). Since
£(r)©'(aj){) is a closed subset of 3A(r)@'(%), the assumption that it is a proper
subset permits us to find an element a^ in A^ such that ©(a^) contains
3£(r)©'(aj¡) but not &A(x)©'(a^). The closed set ï(r)©'(a3{) is then contained
in 6(ag,). Hence there exists an element e$j¡ in a¡R such that ©(69;) contains
3£(r)(S'(age). The element a^vè^ then has the property that ©(a^vè^)
= @(a3¡) v (S(¿>sr) contains ï(r) and ï(r)@'(a<>i) but not ,3XM®'(%)- Since r is
interior to a^ v Ôjr by virtue of Theorem 28, the basic ring A contains an
element c = c^ with the property that xtc'~' =c<Sl'-' <(a^ vèj;)'-'. We there-
fore have **(r)c(g(c), 3x(r) -/-*(X*(r)) c/-!(©(c)) = ©(%). Now the rela-
tions (as, v 6^)'-' = a3c v ^(mod 09;),%' "'•»% (mod a»),and c4 "' < (a» v 6œ)'~'
imply the equivalent relations (a^ vój;)^^^ (mod ag¡), (a<R v63,)'cSR=0
(mod ag¡), ©'(a^vô^©^^©^), and @(cjr)®'(«9î) c ©(ag, vyg'(ûs).
Thus we obtain the contradiction

SA(r) <S'(a«) c @(CSÄ)©'(a«) c ©(a« v èSR)S'(a9î) c ©(a* v ¿R).

We conclude therefore that ^(r)©'^) = ïx(r)©'(aj)t), as we wished to do.
Since no set %A(x) is contained in ©(a), as shown in Theorem 28, the closed

sets -EA(r)@'(a) =2JA(r) are non-void and constitute a family TA in ©'(a) to
which Theorem 14 is applicable. By Theorems 3 and 4 we know that ©'(a)
is a bicompact Boolean subspace of ©04), the sets ©(a)©'(a) constituting a
basis for it. If p is any point of this subspace and if a is an element of A such
that pe©(a)©'(a), it is clear from Theorem 28 that there exists a set %A(x)
contained in ©(a). We therefore have 2J^(r) =ïA(r)@'(a) c ©(a)©'(a). Hence
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the family g)A is densely distributed in ©'(a) in accordance with Definition 4.
If we consider TA as a TVspace in accordance with Theorem 14, we wish to
show that it is topologically independent of A. We therefore compare TA for
arbitrary A with the particular space T for A =A^. From (3) above we see
that the correspondence g)(r)<—>$)Aix) carries T into TA in a biunivocal
manner, even though we may have §)(r)=2)(8) or ^(r) =£)4(8) when r?*8.
We observe next that the subfamilies of T specified by the relations
g)(r) c ©(a«) ©'(a«), a¡){=a€.<4, constitute a basis in T. If © is any relatively
open subset of ©'(a«) and if g)(r) is contained in ®, we wish to establish the
existence of such an element a<R with the property that g)(r) c ©(asf)©'^) c ®.
Since ïA(r) is, by Theorem 26, the intersection of all the sets ©(a) containing
it, the set £A(v) =f~l(HA(x)) is the intersection of all the corresponding sets
/_1(©(a)) = ©(a3î); and g)(r) =3A(x)®'(a<¡R) is the intersection of all the corre-
sponding sets @(a3!)6'(a3i). Let us denote by g the closed set which is the
complement of ® in ©'(a«), and by b the class of all elements a<& = aeA such
that 3^(r) c ©(a). If we had g(ajR(I) ) ■ • • ©(a^"' )©'(a«)g5*0 for every choice
of a<R(1), • • ■ , a¡R(n) in b, the bicompactness of ©'(a^) would permit us to write

mm - ^«©'(a^g = n ©(%)©'(%)&= * o,
«Rib

contrary to hypothesis. Hence we have ©(a9¡)@'(aSR)g = ©(aSK<1)) • • ■
6(aSRCn))©'(aSR)g=0 for a9i = aiRa) ■ • ■ a^"' and appropriate elements
a<Ra), • ■ ■ , a3¡(n) in b. Since we have ©(a) = @(a(1)) • • • g(a(n)) = F(i) where
a = a<1> • • • a(n) and a(1), • • • , a(n) are the elements a^1', • • ■ , a^n), consid-
ered as elements of A, we see that a^ = a is a member of b. The desired rela-
tion §)(r) cg(a¡R)S'(a¡R) c® is thereby established. Since the relations
g)(r) c6(a9f)6'(a9i) and g)x(r) c©(a)©'(a) are equivalent by (3) above when
agj = aeA, we see that the basis just found for T is carried by the biunivocal
correspondence D(r)<—>2H(r) into a class of subfamilies in YA which is
known from Theorem 23 to be a basis for TA. Hence the spaces T and TA
are topologically equivalent ; and TA is topologically independent of A.

By reference to Theorem 18, we now see that the correspondence
Hix)—>§)(r) from X to T is a univocal continuous correspondence. Thus the
spaces ft, ft* equivalent toX and T respectively have the property that ft*
is a continuous image of ft. By reference to Theorem 28, we see that, when ft
is an //-space and r and 8 are distinct, §)(r) and g)(8) are disjoint. Hence
T and ft* are //-spaces in accordance with Theorem 23; and the corre-
spondences between X and T, ft and ft* are biunivocal. To determine the
relation of the character of ft* to that of ft, we proceed as follows. If ft has
infinite character c, then there exists a basis for ft with cardinal number c.
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The Boolean ring A with unit ft generated by this basis is a basic ring for ft
with cardinal number c. The Boolean space 6(4) then has character c by
virtue of Theorem 1. The character of the subspace @'(a) therefore does not
exceed that of ©(4) or that of ft. The space TA has character not exceeding
that of @'(a), as shown in Theorem 23. Since ft* is equivalent to TA, we con-
clude that its character does not exceed the character c of ft. Finally the
suppression of the open set ©(a) from the map m(ft, Q£(A), Xa) yields the
map m(ft*, ©'(a), TA) in accordance with Definition 7; and the latter map is
irredundant in accordance with Definition 9 and Theorem 20.

The preceding theorem raises several questions which we shall state and
consider later, in Chapter III.

3. Relations between algebraic and other maps. In various applications
of the theory of maps, it is essential to have information about the relations
of general Boolean maps to the algebraic Boolean maps of the preceding
section. The analysis of such relations appears to be quite difficult. In any
case we have not succeeded in outlining a comprehensive survey of the
possible connections. We shall therefore confine ourselves in the present sec-
tion to the consideration of a few special results which find immediate appli-
cation in the sequel. These results are concerned with a new concept in the
theory of maps, introduced now by the following definition.

Definition 12. IfXis any non-void family of distinct non-void closed sets
H in a Ti-space ©, then a set % in @ is said to be an X-set when

(1) g is closed and non-void; (2) every open set ® in © which contains g
also contains some member of the family X.

An X-set is said to be minimal (with respect to the property P) if it is an X-set
(with property P) and contains no proper X-subset (with property P).

It is obvious that every member of the family X is an X-set; but the
chief interest of the definition lies in the possibility that there exist X-sets
not belonging to X. We may begin by considering the determination of
X-sets when © is a bicompact Boolean space.

Theorem 30. // the space © of Definition 12 is a bicompact Boolean space
©(4) representing a Boolean ring A with unit, the open sets ® of that definition
may be restricted to be bicompact without modifying the content of the definition.
If c is the class of all elements a in A such that ©(a) contains a given X-set $,
then c has the properties

(1) if ai, ■ • • , a„ are in c, then ai ■ ■ ■ an is in c;
(2) if ai, ■ • - , a„ are in c, then ©(a), where a = ai • ■ ■ an, contains some

member ofX;
and the relation %'=YLat&(a) is valid. Conversely, if c is any non-void subclass
of A with the properties (1) and (2), then the set 5=HaeC©(a) is an X-set.
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If the open set © contains the closed set ft in © = ©(.4), then there exists
an element a in A such that ft c ©(a) c ®. In fact, if 8 is any point of ft,
there exists an element a(&) in A such that 8eg(a(8)) c ®; and the bicompact-
ness of ft permits us to take a = a(8i) v ■ • va(^n), ©(a) =©(a(8i)) u • • •
u (E(a(&n)) for a suitable choice of points §x, ■ ■ ■ , 8„ in ft. Hence the restric-
tion imposed by requiring that ® = ©(a) in Definition 12 does not modify
the content of the definition. If c is the class of all elements a such that
©(a) s ft, then the properties (1) and (2) are easily established as follows:
if a = ai • • • a„ where ax, ■ ■ ■ , a„ are in c, then ©(a) = ©(ai) • • • ©(a„) d ft;
thus a is in c and ©(a) contains a member of X since it contains theX-set ft.
If 8 is any point which does not belong to ft, the open set © = ©04)— ¡8}
contains ft; and there exists an element a, necessarily in c, such that
ft c ©(a) c ©04) — {8}. Hence we see that ft = Haec©(ûO- We pass now to the
converse. The properties (1) and (2) assumed for the class c show immedi-
ately that when ax, ■ ■ ■ , an are in c the set (ä(ax) ■ ■ ■ ®(a„) = ©(ai • ■ • a„) is
non-void. Since ©04) is bicompact and the sets ©(a) are closed, the inter-
section ITaec©(a) is a non-void closed set ft. If ©(ô) a ft, where b is an arbitrary
element in A, we must have ©(ax) • • • ©(a„)S'(e)=0 for some elements
ax, ■ ■ ■ , a„ in c: for otherwise we would have

0 = ft®'(b) = IT <&(aW(b) ^ 0.
ate

Hence there exists an element a = ax ■ ■ ■ an in c such that ft eg (a) c ©(&)•
Property (2) shows that ®(a), and hence also ©(6), contains some member
of X. Since b was subject only to the restriction ©(Z>) s ft, it follows that ft
is anX-set in accordance with Definition 12 and the first part of the present
theorem.

We next consider the existence of minimal X-sets.

Theorem 31. Let P be a property such that the members of any descending
transfinite sequence of sets with the property P contain a common subset with the
property P. Then every set with the property P contains a minimal set with the
property P.

Let Q be the first ordinal number such that the class of ordinals a < Í2
has cardinal number exceeding that of the class of all sets with the property
P. We then define a "minimizing" sequence fta, a<Q, of sets with the prop-
erty P such that: (1) a>ß implies fta c ftp; (2) if Hp-coSs contains a set which
has the property P but which is not minimal, then fta is a proper subset of
one such set. We choose ftx as an arbitrary set with the property P. Then if
ftß has been defined for ß<a<&, we form the intersection Hi3<aU> By hy-
pothesis there exists a set ft which has the property P and is contained in this
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intersection. Now if every such g is minimal, we put 3» = 5; and otherwise
we choose ga as a proper subset of some g so that it has the property P. By
the principle of transfinite induction g„ is thereby defined for a <S2. Now the
class of ordinals a such that %a = %y for some ordinal y in the range a <y <0
is a non-void class by virtue of our choice of £2. This class therefore has a
first member ß. The relations ß <ß +1 ú y, fo = %■,, imply % s g3+1 dJÇt3 g?,
S/j = &9+i- Since

n sv = n s« = &,
the relation %s = %0+i implies in accordance with (2) that fo+i is minimal.
Since it is evident that fo+i c gi, the theorem is established.

Theorem 32. // the space © of Definition 12 is a bicompact H-space, then
each of the following properties :

(1) the property of being an X-set;
(2) the property of being an X-set containing a given point 8;
(3) the property of being an X-set contained in a given set;

is a property P of the kind described in the preceding theorem. Hence minimal
sets with respect to each of them exist in accordance with'that theorem.

Let P be any one of the three properties. Then it is sufficient for us to
show that if 5", a<03, is a transfinite sequence such that (1) ga has the
property P, and (2) %a c giwhena>/3, thenITa<„ga also has the property P.
Since %a is an X-set, it is closed and non-void. Hence, by the assumption
concerning ©, the intersection Ha^S« is also closed and non-void. In order
to show that this set has the required property, it is enough to prove that it
is an X-set. If ® is any open set containing it, we have

US«®' = ®'II&« = 0

where the sets g„®' are closed and satisfy the relation g«®' c §3®' when
a>ß. Our assumption concerning © now implies that there exists a first
ordinal number a preceding w for which ^„©' = 0 or, equivalently, %a c @.
The fact that 5„ is an X-set shows that ® contains some member of X.
Since the open set ® was subject only to the restriction that it contain
ITaoSV the latter set is an X-set in accordance with Definition 12. This
completes the proof.

We may give without proof the following useful result.

Theorem 33. If the families X and T in the space © satisfy the relation
X: T, then every T-set is an X-set; and, if © is a bicompact H-space, every
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minimal T-set contains a minimal X-set, every T-set minimal with respect to
the property of containing a given point 8 contains an X-set minimal with re-
spect to the same property.

Naturally, it is of considerable interest to determine the X-sets and
minimal X-sets in the case of the family X in an algebraic map. We find the
following situation.

Theorem 34. If m(dt, 33, X) is an algebraic Boolean map, then the X-sets
are characterized as the closed subsets of 33 = @04) which have at least one point
in common with the set ©'(a), where a is the ideal of nowhere dense sets in the
basic ring A. The minimal X-sets are characterized as the one-element subsets
of ©'(a). The X-sets minimal with respect to the property of containing a given
point p in ©(a) c 33 = ©(A) are characterized as the sets containing two points,
the point p and a point of ©'(a).

First, let us show that every X-set ft has at least one point in common
with ©'(a). By Theorem 30, we have ft =Y\_aet:<S.(a) where c is the class of all
a in A for which ft c @(a). By virtue of the bicompactness of 33 = ®04), we
see that

gg'(a) = IT ®(«)®'(a) = 0
aec

if and only if ®(a)@'(a) =0 for some a in c. By Theorem 28, we know that
©(a) contains a member of X if and only if ©(a)@'(a)^0. Since ft is an X-set,
the relation ft c ©(a) implies that ©(a) contains some member of X. Hence
we conclude that ft(E'(a)^0, as we wished to prove. If p is any point of
©'(a), then pe©(a) implies that ©(a) contains some member of X; and the
one-element set {p} is therefore an X-set. From these facts, the remaining
statements of the theorem can be deduced in an obvious way.

As a consequence of this theorem, we have the following comment on
Theorem 29.

Theorem 35. In the notation of Theorem 29, every ZA-set in ©04sr) is an
X-set.

If ft is a Z^-set and ©(a) d ft where atA%, then ©(a) contains some set
3A(*)- Since SAM 3ï(r), it follows that ft is an X-set.

We now proceed to study a natural method for relating a general Boolean
map to an algebraic map.

Theorem 36. Let m(SR, 33, X) be an arbitrary Boolean map where the bicom-
pact Boolean space 33 »5 the representative of a Boolean ring A. Let a* = ©(a) be
the open subset of 9Î determined from the given map through the relation
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H(x) c 6(a), where a is an arbitrary element of A. Let A* be the basic ring gener-
ated by the basis of all sets a* = ®(a) in ft; and letm(ft, 33*, X*) be the algebraic
map defined by A* in 33* = 6(4*). Let S be the class of all X-sets in 33, S* the
class of all X*-sets in 33*. // g is an arbitrary X-set and c is the class of all a in
A such that 6(a) 3 g, then the setf(%) =ITa«c6(a*) is an X*-set. The correspond-
ence g—>/(g) has the properties:

(1) / carries S univocally into a subclass S** of S*;
(2) gr d g2 implies /(gO 3/(30 ;
(3) ¿Ae intersection of X-sets with the property f ($) = %*, where g* is a

fixed member of 5**, is an X-set with this property; and the intersection
of all sets with the properly is the unique X-set minimal with respect to
this property;

(4) H(x) is the minimal X-set with the property /(g) = ï*(r);
(5) f carries the minimal sets in S biunivocally into the minimal sets in'S**.

If the class S** contains the minimal sets in S* or, more generally, if each point
of the set 6'(a*), where a* is the ideal of nowhere dense sets in A*, belongs to
exactly one minimal set in S**, the map m(ft, 33, X) has the following properties:

(1) the union of all minimal X-sets is an X-set g(X);
(2) every X-set has at least one point in common with the set g(X);
(3) if 6(a) c g'(X), then 6(a) contains no member ofX.

Since the set g(X) is closed, it is bicompact.

The preliminary justification of the constructions leading to the algebraic
map described here can be obtained by reference to Theorems 14, 23, and 25
and to Definitions 7, 10, and 11. We begin our proof by a consideration of
the definition of the correspondence/. By Theorem 30, we have g =IToec6(a),
the notations being those introduced above. The elements a* = &(a) where
aec constitute a class c* in 4* which has properties (1) and (2) of Theo-
rem 30. For a* = a* ■ ■ ■ a* = &(ai) ■ ■ ■ ®(an)=®(ai • • • a„)=@(a) where
a = ai ■ • • a„ is in c; and a* = &(a), aec, implies the existence of a point r in ft
satisfying the equivalent relations Ï(r)c6(a), re@(a), rí(a*)'~' = a*,
I*(r) c 6(a*). Hence Theorem 30 shows that /(g) =IL«c6(a*) is an X*-set.
Properties (1) and (2) of the correspondence/ are obvious from the definition.
Next we consider property (3). If A is an abstract class of elements a to each
of which corresponds a member g« of S such that/(g„) = g*eï**, we wish
first to prove that g=T[«eAga is an X-set with the property/(g) = g*. We
again appeal to Theorem 30. We begin by writing g«=IJa«:(a)6(a), where
c(a) is the class of all a in 4 such that 6(a) 3 ga. We then define c as the class
of all elements a = ai ■ ■ ■ an where akec(ak) for k = l, ■ • • , n and w = l, 2,
3, • • • . It is then evident that c has property (1) of Theorem 30. In addition
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we can prove that c has property (2). We first take the arbitrary element a
in c and express it in the form a = ax ■ ■ ■ a„, where aktc(ak), noted above.
We then have a* = ®(a) = ®(ax) ■ ■ • ®(an)=a1* • • • a*, and ©(a*) = ©(a?)
• • • ©(a *). By hypothesis ©(a**) of(ftak) = g* for * = 1, • • • , ». Hence ©(a*)

also contains ft*. Since ft* is anX*-set, there exists a point r in 9Î satisfying
the equivalent relations ï*(r) c 6(a*), re(a*)'-' =a* = ®(a), ï(r) c ©(a). Since
c thus has properties (1) and (2) of Theorem 30, we conclude that

s = ns« = n n<£(«) = n<s(«)
at\ «cA     aec(a) aec

is an X-set. As we saw above, aec implies ©(a*) s ft*; and it follows that
f(ft) => ft*- On the other hand the relation ft c g^aeA^mplies/fà) cf(fta) = ft*.
Hence we have f(ft) = ft*, as we wished to prove. It is now evident that the
intersection of all sets ft such that f(ft) = ft* is the unique X-set minimal with
respect to this property. Part of the property (5) follows immediately from
(2) and (3). If ft* is minimal in the family ff**, then the set ft in ï which is
minimal with respect to the property f(ft) — ft* exists by (3); and it must be
minimal in the entire family ff, since an X-set ftx contained in ft has the
properties f(ftx) cf(ft) = ft*,f(ftx) = ft*, ftx o ft, and therefore coincides with ft.
The rest of property (4) is established by reasoning similar to that applied to
prove (3). If ft is minimal in ¡?, and ft* is a member of ff** contained in
ft* =f(ft), then there exists a set ftx in 5 such that/(gi) = ft*. We let c be the
class of all elements a in A such that a = bbx where @(¿>) D 5> &(bx)^fti-
Then ftftx=Y[aeM(a). If a = bbx is any element in c, we have a* = b*b*,
©(a*) = ©(6*)©(^*). By hypothesis ©(a*) = ft*. Since ft* is an X*-set, there
exists a point r in 3f satisfying the equivalent relations ï*(r) c @(a*),
re(a*)'-' = a* = @(a), ï(r)c©(a). Since c thus has properties (1) and (2) of
Theorem 30, we conclude that ftfti is an X-set. By virtue of the fact that ft
is a minimal X-set, we must have ftfti = ft, fti a ft, f(ftx) ?f(ft), ft* => ft*, and
ft* = g*. Thus ft*=f(ft) is minimal in fj**, as we wished to prove. If ftx and
ft2 are minimal X-sets such that f(fti) =f(ft2), then by (3) ftxft2 is an X-set.
Consequently giS^Si, u:i8:2 = u:2 and 3:i = o:2- Thus/ defines a biunivocal
correspondence between the minimal sets in 5 and those in ff**. This com-
pletes the proof of property (5). To prove property (4) we use Theorem 30
once again. We have X(r) =IT<iic©(<i), where c is the class of all a in A such
that *(r)c©(a). Since 3E(r)cg(c), re®(a) =a* = (a*)'-', and S*(r)c©(a*)
are equivalent relations, we see that

/(ï(r)) = IIS(«*) =**(r),
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with appropriate reference to Theorem 26. On the other hand, if g is any
X-set with the property/(g) =H*(x), we express g as an intersection of sets
6(a) containing g. We then have a* = ©(a), 6(a*) 3 H*(x) for such elements a,
in accordance with the definition of the correspondence/. The second of these
relations implies «(a*)'-'= a* = ©(a), H(x) cg(a). Hence g contains H(x) ; and
H(x) is the unique X-set minimal with respect to the property /(g) =H*(x).

Finally, we come to the special property described in the last part of the
theorem. We begin by considering the class c of all elements a in 4 such that
g(a*), where a* = ©(a), contains a given point p in g'(a*). If ctt, • • • , a„ are in
c, then the element a = ax ■ ■ ■ an has the properties a* = ©(a) = ®(a0 • • ■ ®(a„)
= a* ■ • ■ a*, 6(a*)=6(a*) • • • g(a„*), pe6(a*), and therefore belongs to c.
If a is any element in c, then the relation pe6(a*) implies the existence of a
point r in ft such that H*(x) c g(a*), by virtue of the fact that {p} is
an X*-set in accordance with Theorem 34. Since H*(x) c g(a*) implies
re(a*)'-' = a* = @(a) and X(r)cg(a), we conclude that c has properties (1)
and (2) of Theorem 30. Hence the set g = ITo«cg(a) is an X-set, and its corre-
spondent g*=/(g)=IIo€cg(a*) contains the point p. If $i is any X-set such
that pe/(gO = gi*, we have

gi = n e(o),    g* = n e(a*) => n <§(«*) = g*,
Hid acci dec

where Ci is the class of all a in 4 such that gi c 6(a). Hence we see that the
set g* is the unique set in S** minimal with respect to the property of con-
taining the given point p. Thus if a minimal set in S** contains the point p,
it must coincide with g*. We now assume that each point p in 6'(a*) belongs
to exactly one minimal set in S**. Let us consider the union g(X) of all
minimal sets in S. If 8 is any point in g'(X), a familiar argument shows that
every minimal X-set g determines an element a in 4 such that g c 6(a),
8e6'(a). The corresponding element a* = ®ia) then has the property
6(a*) 3/(g) = g*. By property (5) above, g* is a minimal set in S**. By our
assumption concerning the minimal sets in S**, and by further reference to
property (5), we see that the sets 6(a*) thus obtained cover 6'(a*). Because
6'(a*) is bicompact, there exist elements au ■ ■ ■ , an such that the corre-
sponding sets 6(a*), • • ■ , g(a„*) cover g'(a*). If g* is any minimal set in
S**, it contains a point p in g'(a*) ; and this point belongs to no other minimal
set in S**. If peg(a*), a relation which must be satisfied for some index k,
k = 1, ■■■,«, we see that g* c g (a*) in accordance with the results proved
above. Furthermore, there exists a unique minimal X-set g such that
/(g) = g*. As we saw above, it is necessary that gc6(a,fc): for the set
[Iaic6(a), where pe6(a*) characterizes the class c, has g* as its correspondent
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and is contained in ©(a*). Now this result shows that every minimal X-set
is contained in some of the sets ©(a*,), k = l, ■ ■ ■ , n. Hence, if we put
a(8) =ai v • • • v an, we have ft(X) c g(a(8)), ètd'(a(î)). The set ^(X) there-
fore coincides with the intersection of the closed sets ®(a(8)) where 8eg'(X);
accordingly it must be closed and bicompact. Since ^(X) contains X-sets,
namely, the minimal X-sets, it is obviously itself an X-set. Since every X-set
contains a minimal X-set, the remaining properties stated in the theorem
are obvious.

In order to apply the preceding theorem, we shall appeal to the following
result.

Theorem 37. Let © be any non-void subspace of a T\-space di;let m(îR, 33,X)
be the complete algebraic map of tR in 33 = ® (-¿sk) ; and let 33(©) be the closure of
the union of all sets ï(8) where 8e©. Then the Boolean map defined by the family
X(©) of all ï(8), where 8e© is a map m(<5, 33(©),X(©)) with the special prop-
erty described in Theorem 36.

If ® is an arbitrary open subset of ©, there exists an open set a in A$t
such that a© = ®. It is then clear that, for 8 in ©, we have ï(8) c ®(a) if and
only if 8e®. The set ®(a)33(©) is a bicompact open subset of 33(©) and there-
fore represents an element b of the Boolean ring A which has 33(©) as its
representative. The correspondent b* of b in the basic ring A *, constructed
for © as described in Theorem 36, is seen to coincide with the given set ®.
Hence the basic ring A* contains every open set in © as an element. If a* is
the ideal of nowhere dense sets in A* and if p and q are distinct points in
®'(a*), there exists an element a* in A* such that @(a*) contains p but not q.
If b* is the interior of a* relative to ©, then b* is also in A*. Furthermore, the
relation a*=b* (mod a*) implies the relation ©(a*)©'(a*) = ©(è*)@'(a*).
Hence ©(£>*) contains p but not q. By the previous remarks, the open set o*
in © corresponds to an element b in A through the relation b* = &(b) of
Theorem 36. We can now conclude that the intersection of all sets @(ô*)
which contain pe©'(a*) and which correspond to sets b in A has no point in
common with @'(a*) other than the given point. As we saw in the last part
of the proof of Theorem 36, this intersection is a set ft* belonging to ff**.
To complete the proof of the present theorem we need only show that ft*
is a minimal set in ï**. We know that ft* contains a minimal set ft* in J**:
for, if ft is anX(©)-set in the map »»(©, 33(©),X(©)), it contains a minimal
set ftx; and its correspondent ft* =f(ftx) is a minimal set belonging to î** and
contained in ft*. Since the set ft* is an X*-set it must contain a point of
6'(a*) by Theorem 34. Since ft* has only the point p in common with ©'(a*),
we see that ft* also contains p. Now ft* is by construction the set in ff** mini-
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mal with respect to the property of containing p. Hence g* coincides with
gi*, and is minimal in S**.

4. Applications to the theory of extensions. One of the interesting and
difficult problems of general set-theoretic topology is the study of the exten-
sions of a given space. The term "extension" is used here in the sense indi-
cated by the following definition.

Definition 13. If a T0-space S& contains a subspace ft& equivalent to a
given To-space ft, then Q is said to be an extension of ft; and ft is said to be
imbedded in O as the subspace ft^. If ft o is a proper subset of Q, then Q is
said to be a proper extension of ft; and if ft& = Q, the space G is said to be an
immediate extention of ft.

The problem of extensions falls naturally into two distinct parts. If ft is
imbedded in O as the subspace 9îq, then the subspace 9?q is evidently an
immediate extension of ft and a closed subset of Q. Thus the determination
of possible extensions of a given TVspace ft involves, first, the determination
of an immediate extension of ft, and, secondly, the determination of a space
in which this immediate extension can be imbedded as a closed subset. The
second step is one which is obviously more arbitrary than the first, since the
local structure of O at points "remote" from 9îg can in general be modified
in a quite essential way without regard to the properties of ft or of ft¡^.
Thus the second step becomes most interesting when some additional re-
quirement, say, of connectivity or dimensionality, is laid upon the space Q.
The first step, on the other hand, appeals to the intuition as one which is
intimately linked with the structure of the given space ft. Here we shall con-
fine our attention to the first step. As we proceed, we shall see in greater
detail how the structure of ft determines that of its immediate extensions
and how the theory of Boolean maps gives us a real insight into the problem
under consideration.

In the course of our investigations we shall find it desirable to classify
the immediate extensions of a given space. For convenience, we collect the
appropriate definitions here.

Definition 14. An immediate extension Q of a To-space ft is said to be a
strict extension of ft, if, when ft is imbedded in ¡Q as the subspace fts^, the
following property is verified: if ® is any open set in ¡Q and q is any point in ®,
there exists an open set § in Q such that qe§ c ® and such that, whenever §*
differs from Q by a nowhere dense set contained in 9í¿, the interior of ÍQ* is
contained in ®.

Definition 15. An extension Q of a To-space ft is said to be a Ti-extension
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of 9Î if, when 9{ is imbedded in Q as the subspace 9îq, the relations qeQ, re$R¿,
and q?¿r imply r«{q}_, q«{r}~; in other words, that each of the points q, r is
contained in an open subset of Q which does not contain the other.

Definition 16. An extension O of a T0-space SR is said to be an H-extension
of $R if, when 5R is imbedded in Q as the subspace $Rq, the relations qeQ, reSRÓ,
and (¡¿¿x imply the existence of two disjoint open subsets of G which contain
q and x respectively.

While the significance of Definitions 15 and 16 is evident, we may com-
ment briefly on Definition 14. The property on which the latter definition is
based means roughly that the points of ?H'Q are no more "densely" distributed
in Q than are those of 9?q. A strict extension of SR is therefore one in which
the "new" points are not adjoined in too lavish a manner. The technical
reasons for introducing the particular form of definition which has just been
set forth, will be developed below.

An obvious method for constructing immediate extensions of a given
TV-space dt is based on the use of Boolean maps together with the concept
of X-sets introduced in Definition 12. We obtain the following theorem.

Theorem 38. Let m(dî, 33, X) be an arbitrary Boolean map of a T0-space
$R in a bicompact Boolean space 33; and let Z be any family of X-sets in 33 con-
taining the family X. Then under the topology of Theorems 14 and 23, Z is a
To-space which is an immediate extension ofSt.In order that Zbe a Tx-extension
of $R, it is necessary and sufficient that no set in Z—X contain or be contained
in any distinct set belonging to Z. In order that Z be an H-extension of 9Î, it is
sufficient that no set in Z—X have a point in common with any distinct set le-
longing to Z.

If we consider Z and X as topological spaces, it is evident that X is a
subspace everywhere dense in Z: for, if S o is any element of Z and ® is any
open subset of 33 containing $0, the neighborhood of $0 specified by the rela-
tion S c © contains some element ï of the subspace X, by virtue of the fact
that ¿0 is an X-set. Since 3Î is equivalent to X, by the definition of a map,
the space Z is an immediate extension of 5R. The conditions for Z to be a
Tx- or an ZZ-extension of 9? are obtained automatically when one adjusts
the argument used in Theorem 23 to the requirements of Definitions 15
and 16.

In order to show that in Theorem 38 we may restrict attention to the
algebraic Boolean maps without any loss of generality, we must establish
some algebraic preliminaries.

Theorem 39. If 9î is a subspace of the To-space Q such that 9î~ = £5. and
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if A is any subring of the complete basic ring 4q, then the correspondence
a—yaft carries A homomorphically into a subring B of the complete basic ring
Aft. If b is the ideal in A defined by the relation aft=0, then b consists of all
nowhere dense sets which belong to A and are contained in ft'; and B is an
isomorph of A/b. The sets aft in B which are nowhere dense relative to ft are
precisely those for which a is nowhere dense relative to Q.

It is evident that the correspondence a-+aft carries 4 homomorphically
into a ring B of subsets of ft; and that B is an isomorph of A/b in accordance
with R Theorem 43. If a does not belong to the ideal a of nowhere dense sets
in 4, its interior a'-' is a non-void open subset of a. Since ft~ = Q, implies
a'~'ft9¿0, the set aft contains a non-void subset, a'~'ft, which is open relative
to 9Î. Thus aft has interior points relative to ft and cannot be a nowhere
dense subset of ft. On the other hand, if a is nowhere dense relative to O,
we can show that aft is nowhere dense relative to ft. The closure of aft rela-
tive to ft is (aft)~ft, the complement of this set relative to ft is iaft)~'ft,
and the closure of the latter set relative to ft is [(aft)~'ft]~ft. We therefore
have to prove that [(aft)-'ft ]~ft = ft. In view of the relations (aft)~ft c a~ft,
(aft)-'ft 3 a-'ft, it is evidently sufficient to prove that (a~'ft)- = Q. Now our
assumption that a is nowhere dense means that a~'~ = Q. If we denote by ®
the open set ar' in Q, we can complete our demonstration by deducing
(®9Î)- = Q from the known relations ®- = 9î" = Q, ®'- = ®'. Since
®3?c(@3î)-, we have (®ft)(&ft)-'= 0, ft c [@(©9î)-']' = ®' u (®ft)~,
Q = ft- c [©' u (®ft)~ ]- = ©' u (©91)-, © c (®8t)- O = ®" c (®9t)— = (&ft)~,
and hence (@9Î)- = Q, as we desired to show. Thus we see that, when aeA,
the set aft is nowhere dense relative to ft if and only if aea. It follows that the
relation a = a'~' (mod a) in 4 implies the relation aft = a'~'ft (mod a^), where
aft is the ideal of all nowhere dense sets in Aft. Since a'~'ft is open relative
to ft, it is clear that, by definition, aft belongs to Aft. The various further
properties of B and b are now evident.

Theorem 40. Let ft, Q, 4, B, and b have the same meanings as in the
preceding theorem; let B have the property that it is a basic ring for ft; let
m(Q, 6(4), Z) and m(ft, 6(5), T) be the algebraic maps determined by A and B
respectively; and let m(ft, 6(4), X) be the map obtained by suppressing from the
family Z in w(0, 6(4), Z) those members which correspond to points of ft'.
Then a set in 6(4) is a Z-set if and only if it is an X-set. If A contains a basis

for Q, then B contains a basis for ft and is a basic ring for ft; and the map
m(ft, 6(5), T) is equivalent to the map obtained from m(ft, 6(4), X) by the
suppression of the open set 6(b). Under the same condition on A, the set 6(b)
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is a set of redundancy in the map m(0, ©04), Z) if and only if 9î, G, and b
are related in the following manner:

(P) if © is any open set in G and q is any point in ®, there exists an open
set § in G such that qe§ c ® and such that, whenever £>* = ^j (mod b),
/Ae interior of ¡Q* is contained in ®.

The property (P) Ao/ds whenever G is a s¿nc¿ extension of 3Î; awd G is a strict
extension of 5R whenever the property (P) holds for the case where A is the com-
plete basic ring for G. When ©(b) is a set. of redundancy in accordance with the
foregoing conditions, its suppression from the map w(Q, ©04), Z) yields a map
equivalent to m(G, ©(Z3), W), where W is a family of T-sets containing T as
a subfamily in the map m(di, S(Z3), T).

If ft is any Z-set in ©04) and g(a) d ft, then there exists a set S m % such
that g(a) ?£. If q is the correspondent of this set in O, then qea'~' in accord-
ance with Theorem 28. Since a'-' is open in G, the fact that SR~ = G implies
the existence of a point r in 9Î which belongs to a'~'. If H is the set in X c Z
corresponding to the point r, then g(a) d ï. Hence the set ft is an X-set in
accordance with Definition 12. Since XcZ, Theorem 30 shows that every
X-set is a Z-set. Thus the X-sets are identical with the Z-sets.

If A contains a basis in G, then B contains a basis in 9î: for the sets in
any basis in G intersect 9? in a basis for 9î. Thus, in this case, B is a basic
ring for 9Î. In view of the isomorphism between B and the quotient-ring
A/b, the closed set ®'(b) in ©04) is a Boolean space representing B in accord-
ance with Theorem 4; and g'(b) and ©(B) are topologically equivalent in
such a manner that the relation b = adt implies the correspondence of the sets
g'(b)g(a) and <&(b) under the equivalence. In order that g)(r) cg(6), where
reSR and btB, it is necessary and sufficient that r be an interior point of /; re-
lative to $R. In order that S'(b)ï(r) c ©'(b)@(a), where reSR and atA, it is
necessary and sufficient that I(x) c g(b) u g(a) or, equivalently, that
ï(r)cg(c), where c is an element of A such that c = a (mod b). A proof
of this assertion runs as follows: the relations ï(r)cg(b) u g(a) and
ï(r)g'(a) c g(b) are equivalent; since ï(r)g'(a) is a closed set in the bicom-
pact space g(.<4), a familiar argument shows that the second of these relations
can hold if and only if there exists an element d in b such that ï(r)g'(a) c ©(d);
if we take c = avd = a (mod b), we have ï(r) c©(a) u ©(d) =©(c); and, on the
other hand, if c = a (mod b) and ï(r)c©(c), we have d = a'ctb, ï(r)©'(a)
c g(c)©'(a) =©(a'c) =©(d). With the help of the indicated characterizations

of the relations g)(r)c©(è), ©'(b)ï(r) c'©'(b)©(a), we shall now show that
the equivalence between @'(b) and ©(Z3) carries ©'(b)ï(r) into §)(r). First,
if we have @'(b)ï(r) c ©'(b)@(a), we find an element c of the kind described
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above, noting that c = a (mod b) implies b = aft = cft by the definition of the
ideal b, and that H(x) c 6(c) implies xec'~'. Since r is in the set c'-'ft which is
contained in the interior of b=cft relative to ft, we see that §)(r)c6(è).
Now 6'(b)3f(r) is the intersection of all the sets 6'(b)g(a) containing it; its
image is therefore the intersection of all the corresponding sets g (b) in g (B),
where b = aft; and hence its image contains §)(r). Secondly, if we have
£)(r)cg(¿>) or, equivalently, if r is in the interior of b relative to ft, our
assumption that 4 contains a basis for G leads to the result that there exists
a set d = cft, where c is an open set belonging to 4 and d is therefore open
relative to ft, with the properties xed<b. Hence the relations xec = c'~',
g(¿)cg(6) imply the relations ï(r) c 6(c), 6'(b)6(c) c 6'(b)6(a), where
d = cft and b = aft. We conclude that 6'(b)ï(r) c g'(b)g(a). Now since g)(r) is
the intersection of all the sets ©(&) containing it, where beB, its image in
6'(b) is the intersection of all the corresponding sets 6'(b)6(a), where b = aft;
and its image therefore contains the set ©'(b)ï(r). Combining these results,
we see that the sets ©'(b)ï(r) and g)(r) are images of one another, as we wished
to prove. Accordingly, the suppression of the open set ©(b) from the map
m(ft, &(A), X) yields a map equivalent to m(ft, 6(5), T). It follows that
©(b) is a set of redundancy in harmony with Definitions 8 and 9.

It is now possible to analyze the removal of the set ©(b) from the map
m(£l, ©(.4), Z). Applying the criterion given in Theorem 18, we see that ©(b)
is a set of redundancy if and only if, whenever 6(a) 3,3o, there exists a set a0
in 4 such that 6(b) u 6(a0) 3,go while 6(b) u 6(a0) 33 implies 6(a) 3,3. Let us
consider the sets in 4 which are congruent (mod b) to such a set a0. If c is any
such set, we have 6(b) u 6(a0) = 6(b) u 6(c) since ©(a0)A©(c) = 6(a0+c) c ©(b).
As we proved in the preceding paragraph, the relation ®(b)u 6(a0) 3,3 is
equivalent to the relation 6(c) 33 for some such set c. Hence it is possible to
choose a0 so that 6(a0) 33o while 6(b)u 6(a0) 33 implies 6(a) 33: for if a0
does not have the first property we can replace it by a congruent set which
does, and this substitution does not affect the significance of the inclusion
6(b) u 6(a0) 33. The point q corresponding to 3o is then interior to a0 as well
as to a. In order that the inclusion 6(b) u 6(a0) 33 imply 6(a) 33, it is neces-
sary and sufficient that c = a0 (mod b) imply c'~'<a'~'. We begin with the
necessity of this condition. The sets c'~', a'~' are the subsets of Q specified by
the relations 6(c) 33, 6(a) 33. Hence, from the assumptions c = a0 (mod b),
6(c) 33, we can deduce the relations 6(b) u 6(a0) = 6(b) u 6(c) 33, ©(a) 33,
and c'-'<a'-'. We pass then to the sufficiency. If 6(b) u 6(a0) 33, there
exists a set c in 4 congruent to a0 (mod b) such that 6(c) 33 ; and the assump-
tion that c = a0 (mod b) implies c'~' <a'~' then leads to the relation 6(a) 33.
In view of the preceding discussion, we see that 6(b) is a set of redundancy

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1937] BOOLEAN RINGS 425

if and only if, whenever a is a set in A and q an interior point of a, there
exists a set a0 in A which contains q as an interior point and which has the
property that, for c in A, the relation c = a0 (mod b) implies c'~'<a'~'. It is
evident that if A contains a basis this condition can be replaced by the re-
quirement that G, 9î, and b have the property (P) stated in the theorem.
First, let us deduce (P) from the condition just given. If ® is any open set in
G and q any point of ®, we choose a in A so that qea'-' c ®; we may, of
course, take a as an open set if we wish. We then determine a0 and choose |)
as an open set in A so that qe£> c a'0~'. Then,.if §*=.§ (mod b), we see that
£>* belongs to A and is contained in the set c = a0 u §'§* = a0 (mod b), where
c also is in A. Hence we have (§*)'"' c c'-' c a'-' c ®. Thus (P) is verified.
On the other hand, if (P) holds, we apply it, taking © = a'~' with a in A and
qea'-', so as to determine an open set § containing q and possessing the
other indicated properties. We then choose a0 as an open set in A so that
qea0c§. If c = aa (mod b), we see that c belongs to A and is contained in
§* = §ua0'i = § (mod b). Hence we have c'~'< (§*)'"' c ® = a'~', as we
wished to prove.

On comparison with Definition 14, it is evident that the property (P)
holds whenever G is a strict extension of dt. On the other hand, if A is the
complete basic ring of G, the ideal b consists of all the nowhere dense subsets
of 5R'; and, if the property (P) holds in this case, G must therefore be a
strict extension of 9Î. The remaining statements of the theorem are obvious
consequences of the results already obtained.

On combining Theorems 39 and 40, we see that the construction of ex-
tensions of a.given space 9? can be carried out in the following way:

Theorem 41. If dl is an arbitrary To-space and Aw is the complete basic
ring of 9Î, then every immediate extension of 9Î can be found by the following
construction: the algebraic map w(5R, ©04<k), T) is constructed, the space ©04sr)
is then imbedded in any suitable bicompact Boolean space 33, and each set g) is
enlarged by the adjunction of points in 33 — ©(^4jr) to form a set H in such a way
that the resulting family X in 33 provides a map m(3?, 33, X); and then the con-
struction of Theorem 39 is applied to the latter map. In this procedure the
following specializations are possible:

(1) every  strict  extension  of 5R  can  be  obtained  under  the  conditions
33 = @043t),X=r;

(2) there is no loss of generality in supposing that the enlarged sets ï corre-
sponding to sets g) are disjoint whenever the latter are disjoint;

(3) every immediate H-extension can be obtained under the restriction de-
scribed in (2) and the further restriction that no set S in the family
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Z—X have a point in common with any distinct set in the family Z, the
notations being those of Theorem 39;

(4) every strict H-extension can be obtained under the conditions described
in (1) and (3), that in (2) being trivial.

The foregoing construction can be applied to any algebraic map m(dt, ©04), T),
but does not necessarily provide all extensions of 5R when A^A<&.

If G is any immediate extension of 5R, we can apply Theorem 40 using
the complete basic ring ^40 of G. The corresponding basic ring B then
coincides with the complete basic ring Am for $R, as we see by reference to
Theorem 39. Indeed, it is evident that B contains every subset of 3? which is
open relative to ÍR, since A& contains every open subset of G. Furthermore,
if ft is a subset of SR nowhere dense relative to dt, we see that ft is in ^4q
and hence also in A^: for the assumed relation (ft~'dl)~di = dl implies
G = SR- c (g-'SR)- c ft-'-m- = ft-'~, so that ft is nowhere dense relative to G.
According to Theorem 24, it follows that B contains ^4^; but, as a subring of
Am, B coincides with Am- Hence the map m(0, @04q), Z) is related to the
map w(SR, ©04¡r), T) in the manner indicated in Theorem 40 and described
from another point of view in the constructive program stated above. Thus
our construction is capable of providing all possible immediate extensions
of 9f. If G is a strict extension of $R, we know from Theorem 40 that the set
©(b) = ©04;o) — @04ír) can be suppressed from the map m(G, ©04¡q), Z) so
as to yield a map w(G, ©04jr), W) with WoT. Thus we obtain all strict
extensions of $R under the special conditions stated in (1). If we now refer to
the proof of Theorem 28, we see that two distinct points in $R (or in G) have
the ZZ-separation property, namely, the property of belonging respectively
to two disjoint open sets, if and only if their representative sets g) (or £) are
disjoint. We observe that two distinct points in 5R have the ZZ-separation
property relative to $R if and only if they have that property also relative
to G : for the open sets in dt are precisely the sets ®9i where ® is open in G ;
and the relations (®i®2)3t = (®i$R)(®25R) =0 and ®!®2 = 0 are equivalent by
virtue of the fact that $R~ = G. Hence the sets 3E in m(G, ©04o), Z) or
m(dt, ©04o), X) corresponding to two points in 9î are disjoint if and only if
these points have the ZZ-separation property relative to 9?; that is, if and
only if the corresponding sets g) in w(9?, ©04^), T) are disjoint. Thus we
conclude that (2) and (3) are valid, the latter in accordance with Defini-
tion 16. Reviewing the preceding discussion, we see also that (4) is valid.

There are two general comments to be made on the construction de-
scribed above. First, the imbedding of a Boolean space in another offers no
difficulty: for, by reference to Chapter I, §3, we see that this can be accom-
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plished, in all possible ways, by imbedding the given Boolean space as a
set g in one of the universal Boolean spaces 33c of sufficiently great character
c, and then retaining some Boolean subspace of 33c which contains g. The
whole process can, of course, be expressed in purely algebraic terms. Secondly,
the construction of the family X from the family T has not been analyzed
in a precise way. We see in fact that there is a significant distinction between
the concepts of immediate and of strict extensions. The strict extensions of a
To-space ft are obviously quite closely bound by the topological structure
of ft, while the immediate extensions are related to ft in a somewhat vague
manner.

The final statement of the theorem does not require elaboration.
As an immediate corollary of Theorem 41, we have the following result:

Theorem 42. Every immediate Ti-extension of a Tx-space is a T¡-space;
and every immediate H-extension of an H-space is an H-space.

We discuss only the second statement of the theorem, leaving the quite
similar proof of the first part to the reader. If the TVspace Q is an TZ-exten-
sion of the //-space ft, then we see, as in the proof of Theorem 41, that no
set in the family Z—X has a point in common with any distinct set in Z;
and that the sets in X, like those in T, are mutually disjoint. Hence the sets
belonging to Z are all disjoint; and Q is therefore an //-space.

We shall now proceed to consider, with the help of the preceding general
theory, several more specific problems concerning extensions. These problems
all cluster about the following general definition :

Definition 17. A To-space ft is said to be absolutely closed with respect to a
particular type of extension if it has no proper extension of that type.

The first results which we report are well known and almost trivial.

Theorem 43. The only To-space which is absolutely closed with respect to
immediate extension is the void space.

Using the construction of Theorem 41, we map a non-void To-space ft
in the space 6(4g¡), imbed ©(4«) as a proper subset in a bicompact Boolean
space 33, take X= T, and obtain Z by adjoining to X a single X-set which
has at least one point in common with 33 — 6(4ft). The determination of
such an X-set is easily carried out with the help of Theorem 34. Under the
usual topology, Z is an immediate TVextension of ft. In any To-space the
void set is closed, 0~ = 0. Hence the void TVspace can be imbedded in any
TVspace and is closed therein. We see therefore that it has no proper im-
mediate TVextension.

We can, however, obtain a stronger result than this.
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Theorem 44. The only To-space which is absolutely closed with respect to
strict To-extension is the void space. Indeed, every non-void To-space ft becomes,
by suitable adjunction of a single point, a bicompact T0-space which is a strict
To-extension of ft.

Let Q be the class obtained by adjoining a single point £ to the space ft.
In Q, let S be the class comprising the following subsets of Q: (1) the void
set; (2) the sets g u{£}, where g is closed in ft. Then the class S has the
following properties: (1) the finite union and the arbitrary intersection of
sets in S are in S; (2) the void set and the set O are both in S. Hence we can
introduce in Q a closure operation such that the closed sets are precisely the
sets belonging to S* Since this closure operation has the properties that
0~=0 and {p}~= {q}~ implies p = q, the space O is a TVspace. In fact,
0~ = 0 is trivial, and the second property is established as follows: if p^q
and pe9?, qe9î, then {p}~ and {q ¡~ are obtained by adjoining £ to the corre-
sponding closures, relative to ft, of {p} and {q}, so that {p}-^ {q}~; and,
if peft, then {p}_ contains {£}"={£} as a proper subset, the set
{£J =0 u{£} being closed by definition. Moreover, the space Q is bicom-

pact. Indeed, if an open set © in O contains £, then ©' is closed and does not
contain £, so that ©'=0 and ® = 0. Hence any family of open sets which
covers O must contain a subfamily consisting of O alone, which already
covers Q.

It remains for us to prove that Q is a strict extension of ft. The closed
sets in ft are precisely the sets g3î where g is closed in O, so that Q contains
ft as a relative subspace. The closure of ft in G is the intersection of all closed
subsets of G which contain ft; but, since the only such set is G itself, we
have Üt~ = G. Hence G is an immediate extension of ft. The only subsets of
9î'are0and {£}. Since 0-'- = 0'~ = G- = G, {£}-'"= {£}'- = 9t- = 0, both
sets are nowhere dense in G. Thus the only way of modifying an open subset
® of G by operating with the nowhere dense subsets of ft' is to suppress or
adjoin £. Hence we have to consider two cases under Definition 16: first, the
case where ® contains £ and this point is suppressed; and, second, the case
where ® does not contain £ and this point is adjoined. If ® contains £,
then ® = 0 and the open set ®— {£} is contained in ®. If ® does not con-
tain £, the interior of @ u{£} coincides with ®: for (® u {£})'-'= (®'9î)-'
= (®'ft u {£})' = (® u ft')ft = ® since ®'9î is closed in ft and obviously has
®'9Î u {£}, a closed set in O, as its closure relative to O. Thus we see that Q
is a strict extension of ft in harmony with Definition 16.

We have also the following fact.

* AH, p. 41, Satz VI.
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Theorem 45. The only T0-spaces which are absolutely closed with respect
to immediate Tx-extension are the finite T0-spaces.

While it would no doubt be instructive to discuss this assertion by means
of the general mapping theory, the argument is quite involved. It is therefore
simpler to appeal to results given by Alexandroff and Hopf.f Their construc-
tion shows how to adjoin a single point to an infinite TYspace so as to obtain
an extension. It is easily verified that this extension is actually an immediate
7\-extension. On the other hand, if G is a TYextension of a finite To-space 9Î,
we can show that 9t~ = 9î in G and can then conclude that 9? has no proper
immediate TVextension. In fact if pe9î and qe9f', we see that there exists an
open set ® such that pe®', qe®. Hence {p}~c®'- = ®' in G; and we must
have {p}~c9i, since q is arbitrary in 9Î'. If the points of 9Î are pi, • • • , p„,
we therefore have 9?~= {pi}~ u • • • u {p„}~c9t, 9Î~ = 9?, as we wished to
prove.

In contrast with the foregoing results we shall now establish the existence
of less trivial TYspaces which are absolutely closed with respect to strict
Ti-extension.

Theorem 46. In an arbitrary infinite class 9Î, let a closure operation be
defined as follows: (1) if ft is a finite subset of^R, then ft~ = ft; (2) if ft is an
infinite subset of 9?, then ft~ = ?lt. Then 9Î is a bicompact Tx-space which is
absolutely closed with respect to strict Tx-extension.

It is easily verified that the indicated closure operation has the properties
ft~=>ft, ft— = ft-, (&uS*)--8ru8r, D- = 0, {r}"={r}, so that 9Î is a
Ti-space. Moreover, 9Î is not an ZZ-space. Indeed the only closed sets in
9Î are 9Î and its finite subsets, the only open sets in 9Î are the void set and the
subsets differing from 9Î by finite sets, and any two non-void open sets must
therefore have points in common. The nowhere dense sets in 9f are precisely
the finite subsets of 9f: for ft~'- = $l if and only if ft-' is infinite, ft- finite,
and ft finite and equal to ft~. The complete basic ring Am for 9î is thus seen
to consist of the finite subsets of 9Î and their complements. In order to de-
termine the Boolean space ©04<r), we first introduce a new topology in the
class 9Î, obtaining a space 9Î*. The closure operation is defined for this pur-
pose by setting ft- = ft for every subset ft of 9Î. In 9i* every set is both closed
and open; in particular, the one-element sets constitute a basis in 9J*. It is
therefore evident that 9Î* is a non-bicompact Boolean space in which the
bicompact subspaces are precisely the finite subsets. Thus 9Î* is a representa
tive of the Boolean ring without unit consisting of the finite subsets of 9Î*
or of 9Î. Since the ring Am is obtained from the one just described by the

t AH, p. 26, Beispiel 3, and p. 90, footnote.
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adjunction of ft as unit, we conclude that 6(^4 <r) is obtained from the space
ft* by the suitable adjunction of a single point p in accordance with Theo-
rem 8. Since the ideal am of all nowhere dense sets in Aft coincides with the
class of all finite subsets of ft, we see further that the set ©'(a») consists of
the point p alone. It is now evident that in the map m(ft, @(4¡r), T) the sets
g) are precisely the two-element sets containing the point p : if r is any point
of ft the sets in Aft which contain it as an interior point are precisely the
infinite sets in Aft which contain it; and the representatives of these sets in
©(4sr) have as their intersection the set g)(r) consisting of the point
x* = x in ft* c <i(Aft) and the adjoined point p. If we now apply the construc-
tion of Theorem 41 to find the strict TVextensions of ft, we find that we
must take Z=X=T: for the only T-sets in S(4sr) are those which contain
the point p, by virtue of Theorem 34; and every T-set therefore either con-
tains a set §) or is contained in a set g). Thus ft is absolutely closed with re-
spect to strict TVextension, as we wished to prove. To show that ft is bi-
compact, we recall that any non-void open set in ft differs from ft by a
finite set ; and it is evident that any family of open sets which covers ft con-
tains a finite covering subfamily, one member of this subfamily being chosen
arbitrarily and the others then being chosen so as to cover the complementary
finite set.

If we consider the map described in the preceding proof, we see that it is
possible to state the following result.

Theorem 47. The space ft of Theorem 46 has a bicompact strict extension
which is a To-space absolutely closed with respect to strict Ti-extension.

Following the construction of Theorem 41, we take 53 = 6(4sk) andX= T,
and determine Z as the family consisting of the sets in X together with the
set {p}. We thus obtain a To-space G which is an immediate extension of ft
arising from ft by the adjunction of a single point £ corresponding to the
set {p}. From the fact that every set in X = T contains p, we see that
{£}~ = G. In consequence the only nowhere dense subset of ft' is the void
set. Therefore the complete basic rings 4q and Aft are isomorphic under the
correspondence a-^aft, as we see by reference to Theorem 39 and the proof
of Theorem 41. The map w(G, 6(4$), Z) which was constructed above is
therefore equivalent to the complete algebraic map of G. As in the preceding
theorem, we infer that G is absolutely closed with respect to strict TVexten-
sion. Moreover, we see that Q is not merely an immediate extension of ft
but also a strict extension. Finally we show that G is bicompact. Any family
of open sets which covers G intersects ft in a family of open sets which covers
ft; and therefore contains a finite subfamily which covers ft, by virtue of the
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bicompactness of 9Î. To this subfamily, we can adjoin a member of the given
family which contains the point £, thereby obtaining a finite subfamily which
covers the entire space O.

Theorem 48. In order that a To-space 9f be absolutely closed with respect to
strict Tx-extension, it is necessary that 9Î be bicompact. Any non-bicompact
To-space 9Î becomes, by the suitable adjunction of a single point, a bicompact
To-space G; and G is a strict Tx-extension of 9Î.

If 9Î is a non-bicompact TYspace, we define a topology in the class
G = 9î u {£} by specifying that the closed subsets of G be (1) the bicompact
subspaces of 9î and (2) the sets ft u {£} where ft is closed in 9?. The indicated
subsets clearly have the properties which characterize them as the closed sets
under a suitable closure operation.* Since {£}" = {f} on account of the fact
that {%} = {£} u 0 is closed in G, and since 9Î~ = G on account of the fact
that G is the only closed subset of G which contains 9Î, we see that G is an
immediate 7Yextension of 9Î containing 9? as an open subset. It is easily
verified that G is a T0-space, of course. That G is bicompact, we see as
follows: if a family of open sets covers G, we choose an arbitrary member ®
such that £e®, observing that ®' must be bicompact since it is closed in G
and does not contain £; and we can then determine a finite covering sub-
family by selecting from the given family a finite number of further sets
which cover the bicompact set ®'. Finally we show that G is a strict exten-
sion of 9Î. Obviously the nowhere dense subsets of 9î' are 0 and {£}. Thus if
® is any open set containing £, the modified set ® — {£} = ®9i is open and
is contained in ®. If ® is an open set containing a point r in 9î c G, there
exists an open set § with the properties xtlQ c ®, £e£>' and the special prop-
erty that §'9î is closed but not bicompact relative to 9î. We find § as follows.
First, in the space 9Î, there must exist an open set ®0 which contains r and
which has a non-bicompact complement relative to 9Î : for otherwise 9t would
be bicompact, contrary to hypothesis; indeed, any covering family of open
sets would contain a set covering r and a finite number of further sets covering
the bicompact complement of the first. Now ®0, being open relative to the
open subset 9? of G, is open in G and does not contain £. If we put ¿p = ®0®,
we see at once that qe§ c ®, £e§', §'9Î = ®'9? u ®0' 9Î. Since ®0' 9t is not bi-
compact, §'9î cannot be bicompact. Thus the construction of § is completed.
We now see that the interior of the modified set § u {£} coincides with § and
is therefore contained in ® : we have (§ u {£} )'_ = (|>'9Î)~ = §'9Î u {£} since
§'9î is closed in 9Î but not bicompact; and thus (§ u {£})'"' = (£>'9î u{£})'

* See AH, p. 41, Satz VI, and pp. 93-94.
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= (€> u {£} )9Î = í>- Consequently, G is a strict extension of 9Î in accordance
with Definition 14.

From the preceding construction, it is apparent that a T0-space absolutely
closed with respect to strict Ti-extension is necessarily bicompact. The con-
verse proposition seems not to be true. Examples might be developed on the
basis of Theorem 41 to show that such is the case; but we shall not continue
the discussion here.

The study of //-extensions is somewhat easier because of the special con-
ditions noted in Theorem 41. We first have a general characterization.

Theorem 49. In order that a To-space ft be closed with respect to immediate
or with respect to strict H-extension, it is necessary that in every algebraic map
m(ft, 33,X) the family X cover the closed set 6'(a), where a is the ideal of nowhere
dense sets in the basic ring A defining the map ; and it is sufficient that in a single
algebraic map the family X have this property.

First, let G be an immediate //-extension of ft; and consider the maps
w(G, 6(4Q), Z), m(ft, 6(4 ft), T) as described in Theorem 41. Since G is an
//-extension of ft, the sets in Z —X, where X is the family arising from the
map m(ft, 6(4o), X), are disjoint from the sets of Z. Since any set 3 is an
X-set, it must have points in common with the set 6'(asR) c 6(4<r) c 6(4a),
if we regard 6(4sr) for convenience as a subset of 6(4 Q) in accordance with
the analysis of Theorem 41. Indeed, we know from Theorem 34 that every
set g) in 6(4sr) has a point in common with 6'(a<R) ; and from Theorem 41 that
every set H is obtained from a corresponding set g) by the adjunction of points
in 6(4¡o) — 6(4sr). Thus, if g is any X-set in 6(4G) and ® any open set
containing g, then ® contains some set H, hence contains a set g) which is a
subset of H, and hence contains some point of 6'(a<R). It follows that
g6'(a3¡)?í0, as we wished to show. Thus, if G is a proper extension of 9î,
the family Z —X contains a set 3 which is disjoint from every set H and thus
contains a point in 6'(osr) which belongs to no set §); in other words, T does
not cover 6'(a¡R).

Next, let the map m(ft, 6(4$), T) be such that T does not cover 6'(a<a);
in particular, let p be a point of 6'(o9e) which belongs to no set §). We then
carry out the construction of Theorem 41, taking 33 = 6(4<r), X= T and de-
termining Z by adjoining {p J to the family X. By Theorem 34, {p} is an
X-set. We therefore obtain an immediate //-extension G of ft which arises
from ft by the adjunction of a single point £ corresponding to the set {p}
in Z. It is evident that {£} is closed but not open in G, and that 9î is open
but not closed in G. Now we can prove that G is a strict extension of ft.
Clearly the nowhere dense subsets of 9Î' are 0 and {£}. If ® is any open set
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containing £, then the modified set ® — {£} = ®9Î is open and contained in ®.
If © is any open set containing a point r in 9Î, then the fact that r and £
have the ZZ-separation property implies the existence of an open set § such
that re§ c ®, £e£>~' c §'. The modified set § u {£} cannot contain £ as an
interior point since, if it did, the set (§ u {£} )§-' = {£} would have interior
points. Hence the interior of § u {£} coincides with § and is contained in ®.
It follows that G is a strict extension of 9Î in accordance with Definition 14.

If we change our notation slightly to conform with that of Theorem 29,
we can therefore assert that the TYspace 9Î is absolutely closed with respect
to immediate or strict ZZ-extension if and only if in the complete algebraic
map w(9î, ©04j»), X) the family X covers the set ©'(osr). The relation be-
tween the complete map and an arbitrary algebraic map w(9î, ©04), T) de-
scribed in Theorem 29 now shows thatX covers ©'(a«,,) if and only if T covers
©'(a) in ©04): for the univocal correspondence set up there between ©'(ase)
and ©'(a) carries ï(r)@'(a9,) into g)(r)@'(a) and, conversely, carries §)(r)©'(a)
back into ï(r)©'(a«). The present theorem is thus completely proved.

The criterion for absolute closure with respect to H -extension which has
just been established can now be replaced by a more familiar criterion, which
we give in a somewhat generalized form.

Theorem 50. A To-space 9Î is absolutely closed with respect to immediate or
with respect to strict H-extension if and only if every covering family of open
sets in 9Î contains a finite subfamily of open sets with closures which cover 9Î.
In this criterion, the sufficiency is maintained even if the covering families con-
sidered be restricted to be subfamilies of an arbitrary basis for 9Î.

We establish this theorem by consideration of the map m(dt, ©04»), X),
recalling that every open set in 9Î is a member of Am- The open sets in any
family Ç which covers 9? are represented in ©04») by sets ©(a), atAm, with
the property that every set X(r) is contained in at least one of them. If X
covers ©'(as»), the family of sets ©(a) also covers ©'(a»). Thus the bicom-
pactness of ©'(a») establishes the existence of open sets ax, ■ ■ ■ , a„ in (7 such
that S'(osr) c ©(ai) u • • ■ u ©(a„). The relation 3£(r)©'(a¡R)?¿0 implies the rela-
tion Ji(x)d(ak)9^0 for at least one index k corresponding to the point r in 9Î.
According to Theorem 28, the relations 3E(r)©(at) f¿0 and rear are equivalent.
Hence we obtain the desired relation arv • • • v añ = 9Î, aief^, • • • , aneÇ.
On the other hand, if X does not cover ©'(a»), let p be a point of ©'(agi) which
belongs to no set X. Then if r is any point of 9Î, there exists an element b(x)
in Am such that ï(r) c©(6(r)), pe©'(Z>(r)). If a(x) = b(x)'-' is the interior of
b(x), the relation a(x)=b(x) (mod am) shows that @(a(r))®'(a») = @(ô(r))@'(a»)
and hence that pe®'(a(r)); and the relation re¿>(r)'~' = a(r) shows in accord-
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anee with Theorem 28 that H(x) c 6(a(r)). Thus the sets a(r), xeft, constitute
a family Çoi open sets covering ft. If ah ■ ■ ■ , a„ is any finite subfamily of Ç,
wehavep«6'(a0 ■ • " 6'(a„) = 6(a), where a = a/ • ■ • ai. Since {p} is an X-set
in accordance with Theorem 34, there exists a point r such that H(x) c 6(a).
By virtue of Theorem 28, we conclude that xea'~' = (ax v • ■ • v a„)~'
= (arv ■ ■ ■ va-)'. Hence no finite subfamily of Ç has the property that
the closures of its members cover ft. On comparing these results with those
established in Theorem 49, we see that the first part of the present theorem
is proved.

We still wish to show that, if the indicated property holds merely for
covering families chosen from an arbitrary fixed basis in ft, then ft is abso-
lutely closed with respect to immediate or strict //-extension. We obtain this
result by showing that we can pass from such restricted covering families to
quite general families. Thus let Ç be an arbitrary covering family of open
sets. If r is any point of 9î, there exists at least one set ®(r) in Ç which
contains r; and hence there exists in the given fixed basis a set §(r) such that
r«§(r) c ®(r). The family 3C of all sets &(x) is then a subfamily of the given
basis which covers ft. By hypothesis, therefore, there exist sets §j, •■-,§„
in 3C such that §r ü • • • u &r = ft. The corresponding sets ®i, ■ • • , ®„ in
Ç then have the property ©r u • • • u ®„_ 3 §r u •■ • u§„~ = ft. This com-
pletes the proof.

Having examined the extension problem in a general way, we shall now
proceed to consider specific imbedding and extension theorems, some of
which, long formulated, have hitherto remained unproved. Our first result
does not concern immediate extensions, but is conveniently stated at this
point.

Theorem 51. Let Gc be the To-space obtained by topologizing the family Z
of all closed sets in the Boolean space 33c in the usual way, c being any infinite
cardinal number. Then Gc is a universal T0-space of character c; in other words,
every To-space ft of character not exceeding c is topologically equivalent to a
subspace of Gc.

From Theorem 23, we know that Gc is a T0-space of character not ex-
ceeding that of 33c. On the other hand, Gc contains 33c as a subspace, since
the one-element subsets of 33c are members of Z; and its character is there-
fore not less than that of 33c. Hence the character of G„ like that of 33c, is
equal to c.

Now if ft is an arbitrary T0-space of character not exceeding c, it has
a basis of cardinal number not exceeding c; and the basic ring 4 gener-
ated by such a basis has cardinal number not exceeding c. We consider the
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map m(yt, ©04), X). Since the character of ©04) does not exceed c, we may
regard it as a closed subset of the Boolean space 33c in accordance with the
results of Chapter I, §3. Thereby we obtain a map w(9î, 33c, T) where T is
the subfamily of Z consisting of the sets of X, now regarded as closed subsets
of 33c. It follows immediately that Z is an extension of T, Gc of 9?, in accord-
ance with Definition 13.

The discussion of universal finite ZYspaces is omitted here. Some re-
marks on this subject will be found in the following section.

Theorem 52. Every To-space 9Î has a strict H-extension G which has the
same character as 9i and which is absolutely closed with respect to immediate or
with respect to strict H-extension. The space 9Î' of points adjoined to 9Î in this
extension may be taken as a totally-disconnected H-space*

As in the preceding theorem, we consider a map w(9î, ©04), X) deter-
mined by a basic ring A generated by a basis for 9Î with minimal cardinal
number c. The character of ©04) is then equal to c, if we exclude the trivial
case of finite spaces 9Î. We obtain the desired space Q by adjoining to the
familyX all the one-element sets {p} where p is a point of ©'(a) which belongs
to no set ï. It is then evident that G is an immediate ZZ-extension of 9Î in
accordance with Theorems 38 and 41. The character of G is not less than
that of its subspace c; and is not greater than c because of Theorem 23.
Hence the character of Q, like that of 9Î, is equal to c. Moreover, the topology
of the set of points adjoined to 9Î in the construction of G is equivalent to
that of a subset of ©'(a); it is therefore a totally-disconnected ZZ-space.

We prove next that G is actually a strict extension of 9Î. Let us consider
an open set specified in G by the relations ¿$(q) c ©(a), at A, a «a, where 3(°)
is either a set in X or one of the adjoined sets {p}. To this set we adjoin an
arbitrary subset of 9Î', thus obtaining a set ft in G and a corresponding family
of sets S(<\), Qeft- We determine ft'~', the interior of ft. The sets 3(q) corre-
sponding to ft' are all the sets,3(q) such that,3(q)S'(a) ?¿0, with the exception
of the one-element sets which were involved in the adjunction described
above. The sets 3(q) corresponding to ft'- are precisely the sets ¿(q) such
that 3(q)©'(1)5^0, as we see by examining the situation in detail. First, if
3(q)c®(a), the point q cannot belong to ft'- since the assumed relation
means that the open set specified in G by S c ®(a) contains q but does not
contain any point of ft'. Secondly, if 3(1)= {>>} is in ©'(a), then the fact

* The problem of the existence of an immediate //-extension of an //-space 3Î under the require-
ments that the extension shall have the same character as 9Î and shall be absolutely closed with re-
spect to immediate //-extension, was proposed by Alexandroff and Urysohn, Mémoire sur les
espaces topologiques compacts, Verhandelingen der Koninklijke Akademie van Wetenschappen te
Amsterdam, Deel XIV, No. 1 (1929), p. 52.
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that {p} is an X-set shows that, whenever 6(6) contains p, then ©(a'fr)
= 6'(a)6(6) contains {p} and also a set H(x), xeft; since the point r thus
belongs to g' in accordance with the fact that H(x)c(£'(a), we conclude
that q belongs to g'~. In view of this characterization of the set g'~, we see
that g'-' consists of those points q for which £(q) c 6(a). Now let ® be any
non-void open set in G and let q be any point of ®. Since the sets ® (a) specified
in G by the relations 3(q) c 6(a), ae4, constitute a basis in G, we can find
an element a in 4 and such a corresponding set ®(a) in G that qe@(a) c ®.
Obviously, the relation 3(q) c 6(a) shows that ata. Then, if ^> is any subset of
ft', we have ®(a)A§cg, (®(a)A§)'-'c g'-', where g = ®(a)u£. As we
showed above, g'~' = ®(a). Hence we see that (®(a)A§)'~' c ©. By reference
to Definition 14, we conclude that G is a strict extension of ft.

Finally, we prove that G is closed with respect to immediate or strict
//-extension, appealing for this purpose to the criterion stated in Theorem 50.
If a family of the basis sets ©(a), specified by 3(q) c 6(a), covers G, then the
corresponding sets ©(a) contain every set $(q) and therefore cover ©'(a).
Hence there exist elements ai, • • ■ , a„ associated with the given covering
family and having the property @'(a)c@(a0 u • • • u ©(a„). Now we can
show that 3(q)©'(a)©(a);¿0 implies qe@~(a). In order to do so it is sufficient
to prove that 3(q)©'(a)©(a)^0 and qe®(o) imply ®(a)®(o)^0. From the
assumed relations 3(q)©'(a)©(a)?i0, 3(q)c©(¿>), we obtain the relations
©(a&)©'(a) = ©(&)©'(a)©(a)3 3(q)©'(a)©(a)?¿0 and thus conclude that abta.
Hence the interior of ab relative to ft contains at least one point r, and
ï(r)c ©(ao), ï(r)c©(a), H(x)c(E(b), re®(a)®(ô). If now q is any point in
G, we have 3(q)©'(<0®(ai) " " 3(<?)©'(a)©(O =3(q)©'(a) [<S(«i) " •
u ©(an)]=3(q)©'(a)?i0, so that3(q)©'(a)®(ak)¿¿0, qe®-(a*) for some index
k. Thus we find that ®~(a0 u • • • u ®~(a„) = G. By the criterion of Theorem
50, it results that G is absolutely closed with respect to immediate or strict
//-extension.

Finally we shall establish an important characterization of the bicompact
//-spaces.

Theorem 53. In order that an H-space ft be bicompact, it is necessary and
sufficient that every closed subset of ft be absolutely closed with respect to immedi-
ate or with respect to strict H-extension*

The necessity of the condition is trivial: every closed subset of a bicom-
pact space is bicompact and thus satisfies the criterion given in Theorem 50.

* This theorem was proposed by Alexandroff and Urysohn, Mémoire sur les espaces topologiques
compacts, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, Deel XIV,
No. 1 (1929), p. 50; but was proved only in case 9Î is separable.
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The sufficiency of the condition is more difficult to establish. In our
demonstration we appeal to the following criterion for bicompactness : in
order that an ZZ-space be bicompact, it is necessary and sufficient that every
transfinite descending sequence of non-void closed subsets have a non-void
intersection.* In the given space 9?, let {fta} be such a sequence, defined
for all ordinals a preceding a given ordinal co: we have fta^0, fta=fta, and
i5„3 ftß for a<ß. We consider the complete algebraic map w(9î, ©04»), X)
and the subfamilies X« of X specified by the relation xtfta. If ©«04») is the
closure of the union of the sets 36(r) in X„, the map m(fta, ©„04»), X„) then
has the properties described in Theorems 36 and 37. In particular the union
ft(Xa) of the minimal X„-sets is closed and bicompact in ©04»). Iiax, ■ ■ ■ , an
are ordinals preceding w such that ak<ak+x for k = \, ■ • • , n—l, then the
relation ftak s ftak+1 implies X„, dX„u1. Hence each minimal X«4+1-set is an
X«t-set and contains a minimal X„4-set, for k = l, ■ • ■ , n. Hence we see that
g(Xai) • • • ft(XaJ^0. Since no finite intersection of the closed sets ft(Xa),
a<u, is void, we conclude that there exists at least one point p common to
them all. By combining results of Theorems 28, 34, 36, 37 and 49, we can
now show that this point p determines a point r in 9Î such that xtfta for a<«.
Theorems 36 and 37 permit us to correlate the map m(fta, ©„04»), X„) with
an algebraic map m(fta, 33«, Y„) in such a way that the Y„-sets are put in
correspondence with theX„-sets, inclusion relations being preserved, the sets
in Y„ corresponding biunivocally with the sets in Xa, and the minimal Y „-sets
corresponding biunivocally with the minimal X„-sets. By Theorem 28, our
hypothesis that 9Î is an ZZ-space implies that the distinct sets in X„ and also
those in Y„ are disjoint. By Theorems 34 and 49, our hypothesis that fta is
absolutely closed with respect to immediate or strict extension implies that
each minimal T„-set is contained in at least one set belonging to T„. Con-
sequently, we see that each minimal X„-set is contained in exactly one set
belonging toX„. Thus the relation ptft(Xa) implies the existence of a minimal
X„-set,3a such that pe,3„. This minimalX„-set is contained in a set 3E(r) where
3E(r)eX„ or, equivalently, xtfta. Since the sets 36 are disjoint, the relation
peï(r) implies that r is independent of a for all a<co. We conclude that r is
common to the sets fta, a<u. It follows, in accordance with the criterion
cited above, that 9Î is a bicompact space. The proof of the theorem is thus
complete.

5. Totally-disconnected and discrete spaces. In concluding the present

* See Alexandroff and Urysohn, Mathematische Annalen, vol. 92 (1924), pp. 258-266; especially
pp. 259-261; or Alexandroff and Urysohn, Mémoire sur les espaces topologiques compacts, Verhande-
lingen der Koninklijke Akademie van Wetenschappen te Amsterdam, Deel XIV, No. 1 (1929), pp.
8-12.
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chapter, we shall discuss briefly two special kinds of space: totally-discon-
nected spaces, as defined in Chapter I, §1, and discrete spaces, as defined
below. We first have the following theorem.

Theorem 54. 4 To-space ft is totally-disconnected if and only if it has a
biunivocal continuous image © which is a subspace of a Boolean space.

We begin by proving the sufficiency of the stated condition. Let / be a
biunivocal continuous correspondence from ft to © where © is a subspace of
a Boolean space 33. Let ri and r2 be distinct points in ft, let 8i=/(r0 and
82=/(r2) be their correspondents in ©. By hypothesis 8i^82, so that there
exist closed-and-open sets gi and g2 in 33 with the properties 8iegi, 82eg2,
gigî = 0, gi u g2 = 33. The sets gi© and g2© are closed-and-open relative to ©,
so that their antecedents §i=/_1(gi©), €>2=/-1(g2©) in ft are closed-and-
open. Since rit^i, x2e!Q2, §i§2 = 0, and §iu£>2 = 9î, we conclude that ft is
totally-disconnected.

We pass now to the necessity of the indicated condition. If ft is totally-
disconnected, the subsets of ft which are both open and closed constitute a
Boolean ring 4 : for, if a and b are both open and closed, so also are ab, avb,
a', b', and a+b = ab' v a'b. The ring 4 must further be a reduced algebra of
classes in ft in accordance with R Definition 10, since, whenever ri and r2
are distinct points in ft, there exists an element a in 4 such that Xiea, x2ea'.
Hence the subclass of 4 specified by r<a is a prime ideal p(r) in accordance
with R Theorem 58. The non-void sets in 4 can now be used to define a new
neighborhood topology over the class ft: to each point of ft we assign as
neighborhoods the members of 4 which contain it. The resulting topological
space, we designate as ©. It is evident that the identical correspondence r—>r
carries ft into © biunivocally and continuously. Thus, to complete our proof,
we have to show that © is topologically equivalent to a subspace of a Boolean
space. The Boolean ring 4 is evidently a basic ring for ©. If we construct the
algebraic map w(©, ©(4), X), we find that the set H(x) corresponding to a
point r of © consists of a single point in ©(4), namely, the point p(r) defined
above as a prime ideal. For, whenever a is 4, we have a = a~ = a'-' so that
H(x) c ©(a) is equivalent to rea in accordance with Theorem 28. Thus © is
topologically equivalent to the subspace of ©(4) consisting of the points
p(r), re©.

We may complete the preceding theorem by the following result.

Theorem 55. 4 Ti-space ft is topologically equivalent to a subspace of a
Boolean space if and only if, whenever g is a closed set in ft and x is a point in
g', there exist closed sets gi and g2 in ft such that g c g1; reg2, gig2 = 0 and
grug2 = 9i.
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If 9? is a subspace of a Boolean space 33 = ©04), then xtft', where ft is
closed in 9Î, implies the existence of a set ©(a)9î, where a is in the Boolean
ring A, which is open relative to 9Î and which has the property that
g©(a)9f = 0. Hence we can take ftx = <E'(a)% g2 = ©(a)9î.

If 9Î has the property indicated in the theorem, the closed-and-open sub-
sets of 9Î constitute a basis in 9Î : for if r is any point of 9? and ® any open set
containing r, the application of this property to r and the closed set ft = ®'
yields a closed-and-open set ft2 such that re^ c ® = ft'. The assumption that
9Î is a Ti-space implies that any one-element subset of 9Î is closed and hence
that 9Î is totally-disconnected. Accordingly, the associated space @ con-
structed from 9Î in the manner described in the proof of Theorem 54 is
topologically equivalent to 9Î and the ring A is a basic ring for 9Î. We con-
clude that 9Î is equivalent to a subspace of ©04).

We pass now to the consideration of discrete spaces, defined as follows:

Definition 18. A To-space 9Î is said to be discrete if thé closure operation
has the property

(£&)" = £ a-
\ %t<A   /        a<o/<

for any family zA of subsets 21 o/ 3Î.
The topology of discrete spaces is described in the following statement,

which we give without proof.

Theorem 56. The following properties of a To-space are equivalent:
(1) 9Î is a discrete space;
(2) every union of closed sets is closed;
(3) every intersection of open sets is open.

If the intersection of all open sets containing a fixed point x in a discrete T0-space
be denoted by @(r), then

(4) the sets ®(r), re9?, constitute a minimal basis for 9Î—that is, a basis con-
tained in every basis for 9?;

(5) ®(ri) = ®(r2) implies xx = x2;
(6) if ®(r0®(r2)^0, then r3e®(ri)®(r2) implies ®(r3) c@(r!)®(r2).

The relation xx<x2 defined by ri^r^, ®(ri) c ®(r2) has the properties of a partial
order in 9?. In terms of this relation, the closure of an arbitrary subset 21 of 9Î
is the set 21~ consisting of all points x such that x^Xo for some r0 in 21. Every
finite To-space is discrete*

We may give a converse of part of this theorem, also without detailed
proof.

* See Alexandroff, Comptes Rendus (Paris), vol. 200 (1935), pp. 1649-1651.
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Theorem 57. // ft is any partially-ordered class, the introduction of the
closure operation defined by

a- - E Z lr}
converts ft into a discrete To-space; in this space the ordering relation provided
by Theorem 56 coincides with the one given originally in ft*

With the aid of the mapping theory, we can now represent a discrete
space in terms of Boolean spaces or, equivalently, a partially ordered set in
terms of Boolean rings.

Theorem 58. Let A be the topological ring for a discrete To-space generated
by the basis of all sets ®(r), described in Theorem 56. In the map m(ft, ©(4),X),
the relation ï(r) = @(®(r)) is valid. Hence the points x of ft and the ordering
relation between them are represented by elements of the ring A and the relation
of proper inclusion between them. Conversely, any subclass of a Boolean ring A
can be regarded as a discrete To-space by virtue of the fact that it is partially
ordered in terms of the relation of proper inclusion defined in A.

The theorem is obvious, once we prove that H(x) = ©(®(r)). Since r is
interior to ®(r), we have H(x) c@(®(r)) by virtue of Theorem 28. On the
other hand, if ©(a) 3 H(x) for ae4, we have rea'-' in accordance with Theorem
28; and we conclude that ®(r) ca'~' ca, H(x) c @(®(r)) c ©(a). Hence we
must have ï(r) = ©(@(r)) in accordance with Theorem 26, as we wished
to prove. We may note that, by virtue of Theorem 56 (6) the relation
H(xi)H(x2) ¿¿0 implies the existence of a point r3 such that H(x3) cH(xi)H(x2):
for ©(®(ri)®(r2)) = ©(®(r1))©(®(r2))=ï(r1)ï(r2)^0 implies ®(n)®(r0^0.
The interpretation of this theorem which states that any partially ordered
set can be imbedded in a Boolean ring with unit has been established ab-
stractly by MacNeille.f

From Theorem 58, we obtain the following special result.

Theorem 59. Let Gn be the finite To-space obtained by the application of
Theorem SI to the partially-ordered class of all non-zero elements in a finite
Boolean ring of 2n+l elements, w = 0, 1,2, • • • . Then Gn is an abstract n-sim-
plex, under a suitable topology. The spaces G„ are universal spaces for all finite
To-spaces ; in other words, a finite To-space ft is topologically equivalent to a
subspace of G„/or sufficiently great n.

* See Alexandroff, Comptes Rendus (Paris), vol. 200 (1935), pp. 1649-1651.
t H. M. MacNeille, The theory of partially ordered sets, Harvard doctoral dissertation (1935),

not yet published. A summary is given in Proceedings of the National Academy of Sciences, vol. 22
(1936), pp. 45-50.
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We can exclude the trivial case where 9Î is void. If 9Î is a finite non-void
To-space, it is discrete and can be studied by means of Theorem 58. The
ring A evidently is finite, the number of its elements being 2n+1, w^O; and
the Boolean space ©04) consists of «+1 isolated points. The family Z of all
sets ©(a), where atA and a^O, evidently consists of all non-void subsets of
©04). If Z is topologized in the usual way, the resulting T0-space is equivalent
to the space Gn: for it is evidently equivalent to the space obtained by re-
garding the non-zero elements of the ring i asa partially ordered set and
introducing the topology described in Theorem 57. In the map m(dt, ©04),X),
the family X is contained in Z. Hence 9Î is topologically equivalent to a
subspace of G„, as we wished to prove.

As we have just seen, the space G„ is equivalent_to the T0-space con-
structed by consideration of all the non-void subsets of a Boolean space con-
sisting of «+1 isolated points. If we term these subsets "cells," referring to a
subset with k + l elements, k^O, in particular as a "¿-cell," we can easily
make the desired connection with an «-simplex. If one cell is contained in a
second, we call it an "edge" of the latter. It is now clear that, as our termi-
nology suggests, the "cells" and the relation of being an "edge" can be exactly
represented by the ¿-dimensional "edges" of an »-dimensional Euclidean cell,
for k = 0, 1, • • • , n, and the relation of inclusion between them. The topology
of the abstract "cell" space, as we have already seen, can be described by the
statement that the closure of any given set of "cells" is the class of all "cells"
having at least one of the given "cells" as an "edge." Thus we may regard the
To-space G„ as an abstract «-simplex, the topology of the latter being de-
scribed in the manner just indicated.

By dualization, it is possible to pass to the more familiar abstract «-sim-
plex in which the closure of any given set of "cells" is the class of all "cells"
which are "edges" of at least one of the given "cells." We shall not consider
this question further.*

Theorem 59 shows that the finite T0-spaces are the subspaces of abstract
«-simplexes, that is, are abstract complexes. In addition, it completes the
results obtained in Theorem 51 for infinite T0-spaces. From the present point
of view, therefore, the spaces Gc may be regarded as abstract simplexes of
infinite dimensionality.

Chapter III. Stronger separation conditions

1. Semi-regular spaces. In the general theory of Boolean maps as de-
veloped in Chapter II, we have considered T0-, Tx-, and ZZ-spaces on an equal

* For further analysis, see AH, pp. 132-133.
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footing. Our results show that the imposition of the TV or the TZ-separation
property yields no essential simplification of the theory; in other words, the
Boolean maps of Ti-spaces and TZ-spaces are quite as complicated as those
of To-spaces. The search for types of space which may admit simplification
of the general mapping theory directs our attention to the various stronger
separation properties, such as regularity and normality. Upon examination,
we discover that the general theory is already in such a form as to suggest
the procedure for its own simplification : it is obvious that one should examine
first of all the conditions under which the ideal a of nowhere dense sets in a
basic ring 4 for a space ft determines a set of redundancy ©(a) in the algebraic
map m(ft, ©(4),X). The investigation of this aspect of the mapping theory
leads to the introduction of a new type of topological space which proves to
occupy a place intermediate between those already considered and the regular
spaces. It is these new spaces which we propose to investigate systematically
in the present section. We pass later to the study of more special types of
space, including the regular spaces.

The formal definition of the spaces to be considered reads as follows:

Definition 19. 4 To-space ft is said to be a semi-regular or to be an
SR-space if the regular open sets constitute a basis for ft.

The essential reason that the Sic-spaces lead to simplification of the
mapping theory is that the nowhere dense sets play a less important rôle
than they do in other spaces. This fact is already emphasized in Theorems
24 and 25, and is brought out yet more clearly in the following algebraic
theorem.

Theorem 60. If A is a basic ring in an SR-space ft, if a is the ideal of all
nowhere dense sets in A, and if aft is the class of all nowhere dense sets, then
there exists a basic ring A * which is an isomorph of A/a and a homomorph of A,
the homomorphism A—*A* being defined by a correspondence a-^a* such that
a~'-' <a*<a'-'~, a = a* (mod a«).

This theorem reposes essentially upon results given elsewhere by v. Neu-
mann and the writer.f If B is the basic ring generated by 4 and aft, it is
easily seen that the quotient-rings A/a and B/üft are isomorphic: for each
residual class (mod a^) in B intersects 4 in a corresponding residual class
(mod a). The construction of the desired ring 4 * is therefore equivalent to the
selection, from each residual class (mod a^) in B, of a representative element
a* in such a manner that the representative elements constitute a subring

f v. Neumann and Stone, Fundamenta Mathematicae, vol. 25 (1935), pp. 353-378, especially
Theorem 18.
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of B. If a is any element of A the correspondence a—+a*, where a* is the repre-
sentative of that residual class (mod a^) in B which contains a, obviously
defines a homomorphism A^-A*; and it is evident that A* and A/a are
isomorphic. Thus we have to solve the (B, am) representation problem, which
was studied in general terms in the paper cited. A solution can be obtained
by application of Theorem 18 of that paper. First, let us consider the func-
tions F(b) =b'~'-, G(b) = b~'-' defined for all elements b in B. They are con-
nected by the relation F(b) =G'(b'). From Theorems 24 and 25 we find that
G(b) has the following properties: G(b)tB, G(b) = b (mod am), G(b)=G(c) if
and only if b = c (mod am), G(bc) =G(b)G(c). Accordingly, F(b) has the prop-
erties: F(b)tB, F(b)=b (mod am), F(b)=F(c) if and only if b = c (mod am),
F(bvc) =F(b) vF(c). Secondly, let us consider arbitrary non-void subclasses
2 and X in am with the property that c<d or, equivalently, c'd = 0 for all c
in S and all d in X). If we denote by a0 the union of all sets c in ?, it is evident
that c<a0<d or, equivalently, c'a0 = ao'd = 0 for all c in 8 and all d in 35.
Since a0<d for every d in the non-void class 35 and since X) contains only
nowhere dense sets, a0 is also nowhere dense, belonging therefore to am and
to B. Thus the hypotheses of the theorem on which we wish to rely are seen
to be satisfied, and the (B, am) representation problem has a solution. Fur-
thermore, the actual construction of this solution shows that the representa-
tive a* assigned to the residual class (mod a^) containing a given element a in
A satisfies the relations F'(a') <a*<F(a) or, equivalently, a-'-' <a* <a'~'~.
The relation a* = a (mod am) is evident. We may note that the elements 0 and
e = 9f in A have the correspondents 0*=0, e* = e respectively, by virtue of
these relations.

It remains for us to prove that A * is a basic ring for 9Î, in other words,
that the interiors of the sets in A* constitute a basis for 9Î. If © is any open
set in the SR-spa.ce 9Î and r any point of ®, then there exists a regular open
set £> such that re§ c ®. Since A is a basic ring for 9Î, it contains an element
a such that rea'-' c §. We shall show that the corresponding element a* satis-
fies the relations re(a*)'~' c ©. Using the relations a<a~, or'-'<a*, we see
that a'-'<(a-)'-'<a*, a'~'= (a'-')'-'<(a*)'~', and re(a*)'-'. Using similarly
the relation a*<a'-'~, we see that (a*)'-' < (a'-'-)'-' = (a'-')-'-' c $-'-'
= |> c ®. Hence re(a*)'~' c ®, and A* is a basic ring for 9Î.

We are now prepared to study the Boolean maps of 5Z?-spaces, beginning
with the following fundamental result.

Theorem 61. If di is an SR-space, if A is a basic ring for 9?, if m(ÎR, 33, X)
where 33 = @(4) is the algebraic map defined by A, and if a is the ideal of all
nowhere dense sets in A, then ©(a) is a set of redundancy for the given map.
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If A* is the basic ring constructed in Theorem 60, the suppression of ©(a) from
m(ft, 33, X) yields a map equivalent to m(ft, ©(4 *), X*) ; the latter map has the
property that'the family X* is densely distributed in ©(4*).

The proof that ©(a) is a set of redundancy rests upon Theorem 18 above
and is similar to the proof of a like result in Theorem 40. In fact, if we put
£l = ft and replace the ideal b by the ideal a in Theorem 40, we see that
©(a) is a set of redundancy if ft has the following property: (P) if ® is any
open set in ft and r any point in ®, then there exists an open set ^ such that
xeÍQ c © and such that any set differing from § by a nowhere dense set has
interior contained in @. Evidently, an SR-space has the property (P) : we first
choose $ as a regular open set such that re§ c © ; and, if g is any nowhere
dense set, we use the relations §Ag c § u g c (§ u g)~ and $ u g = § (mod a^)
to show that (£Ag)'-' c (£ u %)'-' c (£ u g)-'-' = §-'-' = £ c © in accord-
ance with Theorem 25. It follows that ©(a) is a set of redundancy for the
given map.

The proof that the suppression of ©(a) yields a map equivalent to
m(ft, S(4*), X*) is also similar to part of the proof of Theorem 40. Since
4—>4/a<—>4*, Theorem 4 shows that the Boolean spaces ©'(a) and ©(4*)
are topologically equivalent in such a way that a^a* implies the corre-
spondence of the sets S(a)6'(a) and 6(a*) under this equivalence. If r is any
point in ft and if a—>a*, we shall show that the relations H(x)<ä'(a) c 6(a)©'(a)
and H*(x) c ©(a*) are equivalent; and we can then infer that the topological
equivalence between ©'(a) and ©(4*) places £(r)6'(a) and H*(x) in corre-
spondence. First, let H(x)Gï'(a) c 6(a)6'(a). Then 4 contains an element b
such that b = a (mod a), reo'-'. By Theorems 24 and 25, we must have
b~'^' = a~'~'. The elements a and b have a common correspondent a* under
the homomorphism 4—>4*. In view of the relation a~'~'<a*, we have
xeb'-'<b-'-' = a-'-'<a*, re(a*)'-', and ï*(r) c 6(a*). On the other hand, let
a—>a*, H*(x) c 6(a*). If we use the relation a'~' = a (mod a^) in conjunction
with Theorems 24 and 25, we find that (a'~'-)'-' = (a'-')-'-' = a-'-'. Since
a*<a'-'-, we see that re(a*)'-'<(a'-'-)'-' = a-'-' or, equivalently,
r*((a')'-')-. The basic ring 4 therefore contains an element b such that
reo'-' and (a')'-'o'-' = 0. Using Theorem 24, we infer from the relations
a' = (a')'-' (mod a^), b = b'~' (mod aft) that a'b=0 (mod a^). Since a'b is an
element of 4, the last relation assumes the form a'b=0 (mod a). Hence we
have 6(a'o) c 6(a) or, equivalently, 6(è) c 6(a) u 6(a). Since reo'-' implies
9£(r) c 6(6) c 6(a) u ©(a), we conclude that ï(r)6'(a) c ©(a)©'(a). In this way
we complete the proof that the suppression of ©(a) yields a map equivalent
tom(ft, ©(4*),X*).
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Finally we show that, in the terminology of Definition 4, the family X*
is densely distributed in ©04*). Since the ideal a* of nowhere dense sets in
A* consists of the void set alone, we have ©'(a*) = ©04*). If p* is any point
in ©04*), Theorem 34 therefore shows that {p*} is anX*-set. Consequently,
if ©* is any non-void open subset of ©04*), it contains not only a set {p*}
but also a set 36* belonging to the familyX*. This is what we wished to prove.

We now establish a converse of Theorem 61.

Theorem 62. If 9Î is a To-space and ifm(dt, 33, T) is any Boolean map with
the property that Y is densely distributed in 33, then 9Î is an SR-space; and the
given map is equivalent to an algebraic map w(9î, ©04*), X*) of the kind de-
scribed in Theorem 61.

We may regard 33 as the representative of an abstract Boolean ring B,
and may even take 33 = @(Z3) without loss of generality. The relations
g)(r) c©(Z>), btB, define an open subset ®(ô) in 9L We shall show that ®(b)
is even a regular open set. To this end, we prove first that ®~'(b) = ®(b').
If re@~'(è), there exists an element c in B such that re®(c) and ®(b)®(c) =0:
for the sets ®(b) constitute a basis in 9Î. We know that ®(bc) = ®(b)®(c) =0.
If be;¿0, the fact that T is densely distributed in @(Z?) would imply that
the open set 6(¿>c), being non-void, contains some set 2); and we could
then infer that @(bc)¿¿0. Thus ®(¿>e)=0 implies bc=0. Hence we see that
f)(r)c@(c)c©(6'), re®(ô'). On the other hand, if re@(è'), the relations
®(b)®(b') = ®(bb') = ®(0)=0 imply xt®~'(b). Thus the equation ®~'(b)
= ®(b') is valid. It follows immediately that ®(b) is a regular open set in ac-
cordance with the equations ®-'~'(b) = ®~'(b') = ®(b") = ®(b). Since the sets
®(6), btB, constitute a basis for 9Î, this space must be an SR-spa.ce by
Definition 19.

The Boolean ring A generated by the sets ®(b), btB, is obviously a basic
ring for 9Î. If a is the ideal of nowhere dense sets in A, we can show that
A ¡a is isomorphic to the abstract ring B. The proof is based upon the relations
®(bc) = ®(b)®(c) (mod a), ®(b') = ®'(b) (mod a), ®(bvc) = ®(b)u®(c)
(mod a), and ®(b+c) = ®(b)A®(c) (mod a). Since ®(bc) = ©(&)©(c), the first
of these congruences is trivial. The second is established as follows: Theo-
rem 24 shows that @'(è) = (©'(ô))'-' (mod a^) and the result noted above
shows that ®~'(b) = ®(b') (mod am) ; combining these congruences we see that
®'(b) = ®(b') (mod am); and, observing that ®'(b) and ®(b') are both in A,
we can rewrite the last congruence in the form ®(b')= ®'(b) (mod a). The re-
maining congruences then follow algebraically from the first two. Any ele-
ment a in A is expressible as a polynomial in terms of the sets ®(b), btB, and
the operations  •  and A, since the unit e in B has the property that ©(e) = 9Î.
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Consequently the congruences established above enable us to write
a = ®(b) (mod ax) for a suitable element o in B. Moreover, this congruence
becomes a=&(b) (mod a) by virtue of the fact that a and ®(o) both be-
long to A. In this congruence the element ô is uniquely determined: for
®(o) = @(c) (mod a) implies ®(o+c)=-0 (mod a); the fact that ®(o+c) is a
regular open set then implies ®(6+c)=0; and it follows, as we observed
above, that o+c = 0 or, equivalently, b = c. The correspondence from 4 to
B defined by putting a—>b whenever a = ®(6) (mod a) is now seen to be a
homomorphism : it is univocal; and the correspondences a\—>bi, a2—>o2 evi-
dently imply aia2 = ®(bib2) (mod a), ai+a2 = ®(ôi+ô2) (mod a), or aia2—»o^,
ai+ot-^bi+bt. Since the relations a—>0 and o=@(0)=0 (mod a) are equiva-
lent, the ideal defined in 4 by the homomorphism 4—>B coincides with a;
and the rings 4/a and B are therefore isomorphic.

By applying Theorem 36 we shall next prove that the map m(ft, 33, T)
is equivalent to that obtained from m(ft, 6(4), X) by the suppression of the
set 6(a); and Theorem 61 then justifies the assertion that m(ft, 33, T) is
equivalent to an algebraic map m(ft, 6(4*), X*). First we recall that the
isomorphism A/a<—*B defines a topological equivalence between ©'(a) and
33 = ©(5) which places the sets ©(a)©'(a) and ©(6) in correspondence when-
ever the homomorphism 4—>B carries a into o. Thus the topological equiva-
lence may be described in the following explicit terms: if p is any point in
©'(a), its image in ©(5) is the unique point q which is common to all sets
@(ô) where pe©(a) and a—>o; and, conversely, if q is any point in ©(5), its
image in ©'(a) is the unique point p common to all sets ©(a) where a—»6 and
qeg(o). We now compare this correspondence between 33 = ©(5) and ©'(a)
with the correspondence from T-sets to X-sets constructed in Theorem 36.
By Theorem 34, the minimal X-sets in @(4) are precisely the one-element
subsets of ©'(a) ; and, by virtue of the fact that T is densely distributed in 33,
the minimal T-sets in 33 = ©(5) are precisely the one-element subsets of g (B).
From the preceding description of the topological equivalence between g'(a)
and g (B), and from the information obtained in Theorem 36, we therefore
see that the two correspondences under discussion have the same effect upon
the minimal sets : the topological equivalence places the minimal X-sets in
biunivocal correspondence with the minimal T-sets in a way which coincides
with that described in Theorem 36. Since the correspondence of Theorem 36
carries §)(r) into H(x) and preserves inclusion-relations, we infer that the
topological equivalence places g)(r) in correspondence with ï(r)g'(a): for the
minimal T-sets contained in §)(r) are in correspondence with the minimal
X-sets contained in ï(r); and these two families of minimal sets have g)(r)
and 3E(r)g'(a) as their respective unions. We have thereby proved that
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m(9t, 33, Y) is equivalent to the map obtained from m(9?, ©04), X) by the
suppression of the set ©(a).

It is useful to summarize the results of Theorems 61 and 62 in the follow-
ing terms:

Theorem 63. The following properties of a To-space 9Î are equivalent:
(1) 9Î is an SR-space;
(2) 9Î has a Boolean map m($t, 33, Y), where Y is densely distributed in 33;
(3) 9Î has an algebraic map «î(9Î, ©04), X) in which ©(a) is a set of re-

dundancy.
If a space 9i has any of these equivalent properties, then those of its Boolean maps
mC¡R, 33, Y) which have the property of being densely distributed in 33 are char-
acterized as the irredundant algebraic maps of 9t; each such map can be con-
structed from a suitable algebraic map m(9î, ©04), X) by suppression of the
corresponding set ©(a) ; and this construction, applied to an arbitrary algebraic
map, yields a map of the indicated type.

With Theorem 63, the theory of maps for semi-regular spaces is brought
to a satisfactory conclusion. That this development of the theory corre-
sponds to a real rather than an apparent specialization is shown by the
following result.

Theorem 64. There exist To-, Tx- and H-spaces which are not SR-spaces.

The To-space discussed in Theorem 47 is neither a Ti-space nor an
SZ?-space: we have already seen that it is not a Ti-space; and by reference
to Theorem 61 we now see that it cannot be an SZc-space. Similarly, the
Ti-space discussed in Theorem 46 is neither an ZZ-space nor an SZ?-space.
A space described in AH provides an example of an ZZ-space which is not an
SR-space* The points of this space 9Î are the real numbers r, O^r^l.
A neighborhood system is introduced in 9? as follows: if 0 <r0 < 1, the neigh-
borhoods of r0 are the sets a<r<b where 0<a<r0<2><l; if r = l, the
neighborhoods of r are the sets a < r ^ 1 where 0 < a ; and if r0 = 0, the neighbor-
hoods of r0 axe the sets ®(a) consisting of all points r such that 0^r<a,
r^l/n where a<l and « = 2, 3, 4, • • ■ . It is easily verified that 9f is an
ZZ-space. If ® is a regular open set containing the point 0, then © contains
some neighborhood ©(a) of 0. Since ®~(a) obviously consists of all points r
such that O^r^a, we see that ®_'~'(a) consists of all points r such that
0Sr<a. The relations ®(a) c ®, ©~(a) c ®- show that ® = ©-'-' d ®-'~'(a).
Hence ® is contained in no neighborhood of the point 0. Thus 9Î is not an
5Z?-space. We can show in addition that 9Î is absolutely closed with respect

* AH, p. 31, Beispiel 1.
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to immediate or strict //-extension. Indeed, if an infinite family of distinct
open sets covers ft, at least one of them contains a neighborhood ®(a) of 0;
and the remaining sets cover the set a ^ r ^ 1. Since the topology of the sub-
space a^r^i is the usual topology, we see that the given family contains
sets ®i, • • • , ®„, where ®i3®(a) and ®2, • • • , ®„ cover the set a^r^l.
Thus the sets ®r, • ■ • , ®r cover ft ; and ft is absolutely closed with respect
to immediate or strict //-extension in accordance with Theorem 50.

The simplification of the mapping theory in the case of STc-spaces leads
to a corresponding simplification of the theory of extensions. The chief result
assumes the following form.

Theorem 65. If a To-space ft has an immediate extension G which is an
SR-space, then ft is itself an SR-space and G is a strict extension of ft. All
SR-spaces G which are strict extensions of an SR-space ft can be obtained by
the following construction: in a Boolean map m(ft, 33, T) where T is densely
distributed in 33, the family T is augmented by the adjunction of Y-sets to provide
a family Z; and the familiar topology is then imposed upon Z. Conversely, this
construction always yields an SR-space G which is a strict extension of ft. The
space G is a Ti-extension of ft if and only if no set in Z—Y contains or is con-
tained in any distinct set in Z; and G is an H-extension of ft if and only if no
set in Z—Y has points in common with any distinct set in Z.

If ft has an immediate extension G which is an Si?-space, we consider the
maps described in Theorem 40. If a is the ideal of all nowhere dense sets in 4,
then the suppression of the set g(a) from w(G, g(4), Z) yields a map
m(£l, g'(a), Z*) in accordance with Theorem 61. If we consider only those
members of the families Z and Z* which represent points of the subspace ft,
we obtain maps m(ft, g(4), X) and m(ft, g'(a), X*). It is evident that the
second of these maps cari be constructed from the first by the suppression of
the set g(a). We now show that X* is densely distributed in g'(a). If p is
any point in g'(a), then {p} is a Z-set in accordance with Theorem 34; but
Theorem 40 shows that {p} is also an X-set. Hence peg(a) implies the ex-
istence of a set H(x) in X such that H(x) cg(a). Consequently peg'(a)g(a)
implies the existence of a corresponding set H*(x) =ï(r)g'(a) inX* such that
H*(x) c g'(ct)g(a), as we wished to prove. Since X* is densely distributed in
g'(a), the existence of the map m(ft, g'(a),X*) implies that ft is an SR-spa.ce
in accordance with Theorem 62. Furthermore the given extension G can
evidently be obtained from the map m(ft, g'(a),X*) by the construction de-
scribed in the statement of the theorem. We can easily verify that G is a
strict extension of ft in accordance with Definition 14: if q is any point of
the iSZ?-space G and ® any open set containing q, there exists a regular open
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set § such that qe§ c ® ; and if ft is any nowhere dense set, not merely one
which is contained in 9Î', we have ($Ag)'-' c (§Aft)-'-' = #-'-' = § c ®.

The construction described in the statement of the theorem yields an im-
mediate extension G of 9Î in accordance with Theorem 38. Since the family
Y is assumed to be densely distributed in 33, the family Z is also densely
distributed in 33; and the space G must therefore be an 5Z?-space in ac-
cordance with Theorem 62. It follows that G is a strict extension of 9Î. The
condition that G be a Ti-extension of 9i has already been established in
Theorem 38. So also has the sufficiency of the condition that G be an ZZ-exten-
sion of 9Î. We shall now prove that this condition is necessary : if 3 (q)eZ—X and
3(r)eZ have the property 300300^0, then any two open sets ®(q) and ®(r)
in 33 with the properties 300 c ®(o), 300 c ®W necessarily have the prop-
erty ®(q)@(r);¿0; and since Z is densely distributed in S3, there exists a set
3 in Z such that 3 c ®(q)®(r). Accordingly the open sets §(q), §(r) specified
in G by the respective relations 3C®00> 3c®W have the properties
qe|>(q), re§(r), §(q)§(r)^0, where qe9i' and reO. Since the sets § specified
by 3 c ® constitute a basis for G, the points q and r obviously do not have
the ZZ-separation property; and G is not an ZZ-extension of 9Î. This completes
the proof.

It is also easy to specialize Theorem 52 for the case of 5Z?-spaces. We
obtain the following result.

Theorem 66. Every SR-space 9Î of infinite character c Aas a strict H-exten-
sion G which has character c, which is absolutely closed with respect to immediate
or strict H-extension, and which is an SR-space. The points adjoined to 9Î in
this extension may be assumed to constitute a totally-disconnected H-space.

We first construct a Boolean map w(9î, 33, Y) where 33 has character
c and Y is densely distributed in 33. We start this construction by selecting a
basis of cardinal number c for 9Î. The basic ring A generated by this basis
evidently has cardinal number c; and the representative Boolean space ©04)
has character c. The suppression of the set ©(a) from ©04) therefore leaves a
Boolean space S'(a) of character not exceeding c. Theorem 61 then shows
that we can obtain the desired map m(dt, 33, Y) by taking 33 = ©'(a). Accord-
ing to Theorem 23, the character of 9Î cannot exceed that of ©'(a). Hence
the character of ©'(a) must be equal to c. Now we apply the construction of
Theorem 65 to obtain the desired extension G by means of the map
m(G, 33, Z). The family Z is formed by adjoining to Y all one-element subsets
{p} in 33, where p belongs to none of the sets in Y. Theorems 62 and 63 show
that w(Q, 33, Z) is an algebraic map; by construction, the family Z covers 33;
and hence Theorem 49 shows that G is absolutely closed with respect to
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immediate or strict //-extension. By the reasoning given in the proof of
Theorem 52, the points adjoined to ft in this extension constitute a totally-
disconnected //-space.

In conclusion, we remark upon the connections between the results of the
present section and those given in Theorem 29. By comparing Theorems 29,
61, 62, and 63, we are able to state the following result.

Theorem 67. // ft is a To-space and ft* the associated continuous image
constructed in Theorem 29, then ft* is an SR-space. If ft is itself an SR-space,
then ft and ft* are topologically equivalent.

2. Regular spaces. We pass now to the consideration of a stronger sepa-
ration property which has long played an important rôle in general topology.
We introduce it through one of the standard definitions.

Definition 20. 4 To-space is said to be regular or to be an ft-space if,
whenever ® is an open set in ft and x is a point in ®, there exists an open set §
such that xefQ, §- c ®.

The relative strength of this separation property is disclosed by the
following theorem.

Theorem 68. 4 n R-space is both an SR-space and an H-space.

That an Tc-space is an SR-space is evident: for, if § is the open set of
Definition 20, the regular open set §-'-' has the properties re§ = §'-' c §-'-',
§-'-' c ®'-' = ©.'In order to prove that an T?-space is an //-space, we proceed
as follows: if p and q are distinct points in ft, the assumption that ft is a To-
space implies that, the notation being properly chosen, p is contained in an
open set to which q does not belong or, equivalently, that pe{q}-'; hence there
exists an open set § such that pe§, ¡Q~ c {q}-'; and the points p and q there-
fore have the //-separation property in accordance with the relations pe§,

In view of Theorem 68, the simplified form of the mapping theory de-
veloped for 5i?-spaces applies in particular to ic-spaces. It is possible, how-
ever, to carry the study of T2-spaces somewhat further than this.

Theorem 69. // a To-space ft has a continuous Boolean map m(ft, 33, T),
then ft is an R-space. Conversely, if ft is an R-space, its irredundant algebraic
maps m(ft, g(4), X), and likewise its general algebraic maps m(ft, g(4), X)
where A contains a basis for ft, are all continuous maps.

Let m(ft, 33, T) be a continuous Boolean map of a T0-space ft. If ® is an
open set in ft and r is any point in ®, then there exists a set ®i which has the
properties re@i c © and which is specified by a bicompact open set gi in 33
through the relations §) c gt, g)(r) c g^ for the sets so specified constitute a
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basis for ft in accordance with Theorem 23. Since the given map is con-
tinuous, there exists an open set go, which we may assume also to be bicom-
pact, such that §)(r) c g0 and such that gJgo^O implies g) c gx. We denote by
£ the open set in ft specified by the relation §) c g0. It is obvious that
re£> c ©! c ®. The set g0' is also a bicompact open set in 33. The open set
specified in ft by the relation g) c g0' has as its complement a closed set g
which is described by the relation glgo^O. Hence we have § c g c ®x c ®.
Since &- c g- = g, the open set § satisfies the relations re§, §- c @. The
space ft is therefore an T?-space.

If m(ft, g(4), X) is an algebraic map of an T?-space ft, let H(x) be an
arbitrary member of the family X and let ® be an open subset of g (4) which
contains H(x). Then there exists an element a in 4 such that H(x) c g(a) c ®,
rea'-'. By hypothesis ft contains an open set § such that re§, ÍQ~ c a'-'.
The basic ring 4 then contains an element o such that reô'-' c fj. If we could
use the equation o'~'- = o-, we could conclude that b~ = o'-'- c |>- c a'~' ; and,
by virtue of Theorem 28, that 3£g(o) ?¿0 implies H c ©(a). Since reô'-' implies
ï(r)c@(o) we could then show that the element c = a6 has the following
properties: H(x) is contained in ©(c) =©(a)©(o) c ®; and 9£©(c)^0 implies
ï©(o) 9¿0 and hence H c ©(a) c ®. The family X would thus be continuous in
accordance with Definition 5, the map m(ft, ©(4), X) continuous in ac-
cordance with Definition 7. We therefore consider the conditions under which
we can assert that 6'-'- = b~. If 4 contains a basis for ft, we may take 6 as
an open set; and we then have 6'-' = 6, b'~'~ = b~. Again, if the map
m(ft, @G4), X) is irredundant, Theorems 63 and 68 show thatX is densely
distributed; and the proof of Theorem 62 then shows that the equation
6'-' = ®(o), which is valid because both members are specified by the relation
ïc©(6), implies o'-'- = ®-(6) = (®-'(6))' = ®'(6') = ((6')'-')' = 6-. Thus the
map m(ft, ©(4),X) is continuous under either of the conditions stated in the
theorem.

By combining Theorem 69 with Theorem 22, we obtain the following
result.

Theorem 70. In order that the algebraic map m(ft, ©(4), X) define a con-
tinuous univocal correspondence H(ft)—>x from the subspace ©(X) =]Cre9¡3:(r)
of ©(4) to the To-space ft, it is necessary and sufficient that ft be an R-space
and m(ft, ©(4), X) a continuous map. All R-spaces are thus found among the
continuous images of subspaces of bicompact Boolean spaces.

It is now possible to recover from the mapping theory a well-known
elementary criterion for bicompactness.*

* AH, pp. 91-92.
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Theorem 71. In order that an H-space be bicompact, it is necessary and
sufficient that it be an R-space absolutely closed with respect to immediate or
strict H-extension.

We have already noted in Theorem 53 that a bicompact ZZ-space is
absolutely closed with respect to immediate or strict ZZ-extension. We can
now show that a bicompact ZZ-space 9Î is an Z?-space. If © is any open set in
9Î and r is any point in @, there exist open sets ®(p), §(p) corresponding to an
arbitrary point p in ®' such that pe®(p), re|)(p), ®(p)£>(p)=0. Since ®' is
closed,, it is bicompact; and there exist points pi, • • • , p„ in ®' such that
®(pi) u • u ®(p„) d ®', re$(pi) ■ ■ ■ §(pn) c ®'(p0 • • • ®'(pn) c ®. If we de-
fine £ as the open set § = |>(pi) • • • f>(pn), we nn(ltnat xe&, §~ c (®'(Pi) ■ ' "
®'(pn))~ c ®. On the other hand, if 9Î is an Z?-space absolutely closed with
respect to immediate or strict ZZ-extension, we construct an irredundant
algebraic map m(9?, ©04), X) in accordance with Theorem 61. Since 9Î is
absolutely closed in the indicated sense, the family X covers ©04) in ac-
cordance with Theorem 49. Since 9Î is an Z?-space, Theorems 69 and 70 show
that 9Î is a continuous image of the space ©04) = ©(X). It follows from the
bicompactness of ©04) that 9Î is bicompact. In fact, any family of open sets
which covers 9t has a family of antecedents which are open and cover ©04);
and, since a finite number of these antecedents suffices to cover ©04), a finite
number of sets in the given family likewise suffices to cover 9Î.

The proof just given for Theorem 71 can evidently be rearranged in such
a way as to establish the following result, which we give without further
formal discussion.

Theorem 72. Among all H-spaces, the bicompact spaces are characterized
topologically as the continuous images of bicompact Boolean spaces*

As a consequence of Theorem 71 we can now show that the 5Z?-separation
property is essentially weaker than the Z?-separation property.

Theorem 73. There exists an SR-space which is an H-space but not an
R-space. Such a space may be constructed so as to be absolutely closed with
respect to immediate or strict H-extension.

Let us suppose, on the contrary, that every space which is both an
5Z?-space and an ZZ-space is necessarily an Z?-space. If 9Î is an arbitrary
Z?-space, we apply Theorem 66 to construct an immediate ZZ-extension G of
9Î which is an SR-space absolutely closed with respect to immediate or strict
ZZ-extension. Theorem 42 shows that the extension G so constructed is an

* See the material related to this result in AH, pp. 95-98.
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//-space. By hypothesis, G is therefore an it-space. Theorem 71 therefore
implies that G is bicompact. Thus our initial assumption leads to the
following proposition: every i?-space can be imbedded as a subspace in a
bicompact //-space. Now an example due to Tychonoff* shows that this
proposition is false. Whenever ft is restricted to have character N0, how-
ever, the proposition is known to be true. Hence, if we start our construction
with the Tc-space ft given by Tychonoff, we obtain a space G of the type
described in the theorem. The character of the space G, being equal to that
of ft, must exceed N0.

We can rid ourselves of this restriction on the character of G by following
a different process of construction. The Cantor discontinuum 3) is a bicom-
pact Boolean space of character K0- In 3) we introduce a family X of disjoint
closed sets as follows : first we form the two-element sets Hn consisting of the
points x=3-n = 2¿2l=n+i3-", x = l -3-" = 2XLi3~" for w = 1> 2, 3, ' ' ' , re-
spectively; and then we form all the one-element sets {x} where x belongs to
no set Hn- We see at once that the family X is densely distributed in 35 but is
not continuous. On topologizing the family X in the usual way, we obtain a
space G and a Boolean map m(G, 3), X). The character of G is N0- Theorem
63 shows that G is an SR-space and that the map w(G, 3), X) is an irredun-
dant algebraic map. Since X covers 3), Theorem 49 shows that G is absolutely
closed with respect to immediate or strict //-extension. Since the sets in X
are disjoint, the space G is an //-space. Theorem 69 shows finally that G is
not an /¿-space. A similar construction could evidently be carried out in an
arbitrary bicompact Boolean space of infinite character.

In conclusion we may pose the problem of discovering what restrictions
upon SR-spaces imply regularity. We have seen above that certain obvious
restrictions are not sufficient. In this connection, it is natural to consider the
following question: what SR-spaces have the property that every subspace
is also an SR-space; and, in particular, what //-spaces have this property?
From Theorem 65, we know that all everywhere dense subspaces of an
SR-space are SR-spaces. The problem therefore reduces to the restricted
problem concerning closed subspaces alone.

3. Completely regular spaces. As we recalled at the close of the preceding
section, there exist regular spaces which cannot be imbedded in bicompact
//-spaces. Consequently any separation property which characterizes the
subspaces of bicompact //-spaces must be stronger than the property of
regularity. Such a stronger property was discovered by Tychonoff, who
termed it "complete regularity."* We propose to investigate the influence of

* Tychonoff, Mathematische Annalen, vol. 102 (1930), pp. 544-561.
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this property upon the mapping theory. First, let us state the fundamental
definition and some of its elementary consequences.

Definition 21. A To-space 9Î is said to be completely regular or to be a
CR-space if it has any one of the three equivalent properties:

(1) if ft is any closed set in 9? and r0 is any point in ft', then there exists a
continuous real function f defined in 9Î such thatf(x0) =0, f(x) = 1 when
r*ft,0^f(x)^l;

(2) the open sets 9î(a </</3), where a and ß are arbitrary real numbers and
f is an arbitrary bounded continuous real function in 9Î, constitute a
basis for 9Î;*

(3) if © is any open set in 9? and r0 is any point in ®, then there exists a
family of open sets ®T defined for all rational numbers t, 0 <t < 1, such
that r0e®T, ®r c ®, er <r implies ®r c ®T.

The equivalence of these three conditions is proved by well-known argu-
ments, which we sketch briefly. First, (1) implies (2): if r0e®, we take the
function/ corresponding to the closed set ft = ®' and the point r0 as described
in (1) and observe that ®0 = 9î(-l/2 </<l/2) has the properties r0e®0 c ®.
Similarly, (1) implies (3): if r0e®, we again take/ as the function corre-
sponding to ft = ®' and r0, and put ®t = 9?(/<t), 0<t<1. Next (2) implies
(1): if x0tft', there exists an open set 9î(a<g</3) as described in (2) such
that r0e9î(a<g<(3) eft'; and, if we put y=min(g(x0)—a, ß—g(xo))^0,
f(x) =min (1, \g(x) — g(xo)\/y), we find that /has the properties demanded in
(1). Finally (3) implies (1). Taking ® = ft', we form the family ®T, 0<r<l,
corresponding to ® and r0 in accordance with (3) ; and we define ®T = 0 for
rational numbers r, r<0, and ®r = 9î for rational numbers r, r>l. We then
define/(r) as the greatest lower bound of the numbers r such that re®T. It is
evident that /(r0) =0, 0 g/(r) S1, f(x) = 1 in ®' = ft. To prove that / is con-
tinuous, we must show that 9i(a <f<ß) is an open set. If r is any point in this
set, there exist rational numbers p, a, r such that a<<r<p<f(x) <r<ß. We
then have re®/ ®r c ®r'®T. On the other hand, if re®,"'®, where a <<r<r<ß,
we see that r«®,, re®r, hence that a ^/(r) íSt, and hence that a <f(x) <ß. Thus
9î(a</</?) is the union of the open sets ®r'®r where a<a<T<ß; and
9î(a <f<ß) is also open, as we wished to prove.

We remark that the condition (3) can be expressed, without reference to
the rational numbers, in terms of order alone. For this purpose, we introduce
the concept of strong inclusion : the set ftx is said to be strongly included in
the set ft2, if ftr c ft2. Then we may replace (3) by the equivalent (3') : if r0e®,

* By 9î(P) we mean the set of all points in 5R which have the property P, here the property
a<f<ß.
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there exists a countable family of open sets which contain r0, which are con-
tained in ®, and which are simply ordered by the relation of strong inclusion
in such a way that there is no first, no last, and no pair without an inter-
mediate third. The property (3') may therefore be taken as characterizing
the completely regular spaces in a purely topological manner. In practice,
the properties (1) and (2) are the ones which are technically useful.

The relation of C/?-spaces to other types of space is indicated in the
following theorem.

Theorem 74. 4 CR-space is an R-space, and hence both an SR- and an
H-space; every normal space is a CR-space. Every subspace of a CR-space is a
CR-space. There exist R-spaces which are not CR-spaces, and CR-spaces which
are not normal spaces.

From Definition 21 (3), it is evident that every CR-space is an /¿-space
in accordance with Definition 20. Theorem 68 then shows that a CR-space
is both an SR-space and an //-space. The proof that every normal space is a
CR-space is given by establishing property (3) of Definition 21; the explicit
construction of the family ®T is a familiar one.* By use of Definition 21
(1), it is easily seen that every subspace of a CR-space is also a CR-space.
Examples given by Tychonoff justify the final statement of the theorem.f

Since the definition of CR-spaces involves, directly or indirectly, the
topological relations between general topological spaces and the real number
system, it is clear that we cannot investigate them without injecting new
methods into the discussion. In order to continue the algebraic tendencies of
the present paper and also in order to obtain the maximum of new informa-
tion, we propose to study the topological ring of all bounded continuous real
functions in an arbitrary T0-space ft. We shall find that the mapping theory
for CR-spaces is closely connected with the theory of the corresponding
function-rings. Moreover, we shall find that this connection enables us to
give a full account of the problem of imbedding CR-spaces as everywhere
dense subspaces in bicompact //-spaces. In the subsequent discussion we
shall denote the real number field by the letter R ; and we shall not distinguish
between this field and its isomorphs.

Theorem 75. // 5DÎ is the class of all bounded continuous real functions
defined in a To-space ft, if the sum and product of such functions are defined
in the usual way, and if the norm ||/|| of a function f is defined as the least upper
bound of the numbers \f(x)\, xeft, then 9JÎ is a topological ring in the following
sense :

* See AH, p. 74.
f Tychonoff, Mathematische Annalen, vol. 102 (1930), pp. 544-561.
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(1) under the operations of addition and multiplication, 9JÎ is a commutative
ring containing R as a subring;

(2) if ||/—¿|| is introduced as the distance between f and g, then 2R is a
complete metric space;

(3) in the metric topology of (2), the ring operations are continuous, the
polynomials f+g, fg being continuous functions of their arguments
f and g..

If multiplication by f be restricted to the case where ftR, then 5DÎ is a Banach
space. The operation of forming the absolute value \f\ of a function f in 9JÎ is
continuous in the metric topology of 9R. ^4«y subring of 3R which contains af
together with f whenever aeR and which is a closed subset of W has the property
that it contains \f\ together with f.

The verification of the statements made in this theorem may be left to
the reader, as the detailed proofs are all familiar from elementary analysis.
We may point out that metric convergence of a sequence in 3R is equivalent
to uniform pointwise convergence of the function-sequence in 9Î. The final
statement of the theorem involves an application of the Weierstrass approxi-
mation theorem: if a = ||/||, there exists a polynomial pn(x) such that
I |*| — PÁX)\ èl/n for —a^x^a and pn(0)=0; and it follows that
|| l/l —pn(f)\\^l/n, pn(f) = 'J^Sia,(n)f'. For general discussions of the sub-
ject matter of the present theorem, the reader is referred to the literature.!

We shall find it convenient to introduce a few special descriptive terms
for later use.

Definition 22. TAe ring 3R of Theorem 75 is called the function-ring of the
space 9Î. A closed subring of 9R which contains the subfield R is called an analyti-
cal subring of ffll. If SSI and 91* are homomorphic subrings of function-rings
5TR and W* respectively with the property that /—»/* implies \f\—*\f*\ and
11/11 = ll/*ll> then the homomorphism 91—>9Î* is necessarily an isomorphism and
is called an analytical isomorphism; and 9? and 91* are said to be analytically
isomorphic.

There are several elementary theorems which we may mention informally
at this point. Thus, we see that the analytical subring generated by a non-
void subclass SRo of M is the closure of the subring generated by R and 9R0.
It is obvious from Theorem 75 that an analytical subring contains |/|
together with/. If 9Î* is analytically isomorphic to a closed subring 9Î, then
9Î* is closed. If 9Î* is analytically isomorphic to an analytical subring 9Ï,
then there exist an analytical subring 9?** containing 9Ï* and a function

f See, for instance, Banach, Théorie des Opérations Linéaires, Warsaw, 1932, especially pp. 11,
53; Chittenden, these Transactions, vol. 31 (1929), pp. 290-321.
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0* in ft* which assumes only the values 0 and 1 and does not vanish identi-
cally, such that ft* is the class of all functions/* = (?*/** where f**eft**.
To prove this assertion, we first consider the image R* in ft* of the real field
R in ft. If aeR and a^O, then a—>/* implies /*^0: for a=|a| implies
/*= |/*|. If 0* is the correspondent of 1, then d* = (6*)2 so that 0* assumes
only the values 0 and 1. If/is any element in ft, then/—»/* implies 1 ■/—-»0*/*
and.hence/*=0*/*. Since ft and ft* axe isomorphic it is therefore evident
that 0* does not vanish identically. If a is the rational number m/n and a—»/*,
the relation na = m\ or a+ • • ■ +a = i+ • • • +1 implies nf* = md*, and
hence f* = m/nd*=ad*. If a is arbitrary and «i and a2 are rational
approximants to a satisfying the inequalities ai^a^a2, then a—»/* implies
«i0*5?/*^a20*; and we can therefore conclude that/* = a0*. We now form
the class ft** of all functions/** =/*+a(l -0*) where f*eft* and aeR. Since
ft* is closed and since /* = 0*/* is in ft*, it is evident that ft** is a closed sub-
ring of SO?*. Moreover, ft** contains R: for, if a is any real number, «0* is in
ft* and «=0*+a(l -0*) is in ft**. Thus ft** is an analytical subring of 2)c*;
and ft* is obtained from ft** in the manner described above. In the space
ft* in which SDÎ* is defined, the equation 0* = 1 defines a closed subspace ft**.
Obviously, ft* is an analytical subring of the function-ring for ft**. In order
that 0* be identically equal to 1 or, equivalently, that ft* be an analytical
subring of 9Jc*, it is necessary and sufficient that ft* contain 1 ; and sufficient
that ft* be connected.

We now establish a fundamental theorem concerning ideals in function-
rings.

Theorem 76. 4 necessary and sufficient condition that an ideal 21 in the
function-ring SOc be divisorless is that the quotient-ring 9JÎ/21 be isomorphic to R.
Such an ideal is necessarily closed and prime in 97?; and the homomorphism
99Î—»/? determined by it has the property that f—>a implies |/| —»|a| and
g.l.b./^a^l.u.b./.

If 9JÎ/2I is isomorphic to R, the fact that R is a field shows that R has no
ideals other than R and {0} ; and it follows that 31 has no ideal divisors other
than 5Dc and 21, in other words, that 21 is divisorless. Since the quotient-ring
is a field, 21 is also prime. It is evident that 21 does not contain the unit 1 in 9JÍ.

If 21 is a divisorless ideal in SO?, the inequality 21^93? shows that 1 does
not belong to 21. Since the closure 2t- is also an ideal, the relation 21 c 2I-
implies that 2Í = 2Í- or SO? = 2Í-. The equation SO? = 2I- holds if and only if 1
is in 21-. Now if 1 were an element of 2Í-, there would exist in 21 a uniformly
convergent sequence of functions with 1 as limit. Hence 21 would contain a
function/ such that g.l.b./>0. Since we would then have l//eS0? and/e2l, we
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could conclude that 1 =/• (l//)e2i, contrary to fact. The equation 2l = 2l_ is
therefore valid; and 21 is closed in 5DÎ. We can next show that 2R/21 is a field.
If/is any element in 9J?, then the ideal generated by/and 21 coincides with 3D?.
Hence there exist functions g and A in 9R and in 21 respectively such that
fg+h = l. Thus the relation/^0 (mod 21) implies the existence of a function
g in 9R such that/g^l (mod 21), as we wished to prove. It is clear that 21
contains no member of R other than 0 ; and it follows that two members of R
are congruent (mod 21) if and only if they are identical. Hence the field 9Jc/2l
contains R as a subfield.

In order to prove that 9R/21 coincides with its subfield R, we shall apply
the theory of ordered fields.* The first step is to classify the elements of
üR/2( as positive, negative, or zero in such a way that/+g and/g are positive,
—/ negative, when / and g axe positive. In this classification we wish to
maintain the natural classification of the subfield R. For convenience we shall
define a similar classification of ÜR in such a way that functions con-
gruent (mod 21) are assigned to the same class. We say that / is positive if
/ = l/l (mod 21), /^0 (mod 21), and that / is negative if —/ is positive; and
denote the class of positive elements in SDÎ by $, the class of negative ele-
ments by 9Î. In order to justify this classification, we prove the following
propositions: (1) if/e9Jc, then one and only one of the three relations /e$,
/e9c,/e2i is valid; (2) if/e2R, geSR, O^f^g, and gt% then/e«; (3) if/e^JJ, gtWl
and f=g (mod 21), then ge$; (4) if/eSß and gt$, then f+gtty and fgtSß.

To prove (1) we proceed as follows. Since "(—/+|/| )(/+|/| ) = —f2
+ l/l 2 = 0, the fact that 2R/21 is a field implies that at least one of the rela-
tions -/+|/| =0 (mod 21) and +/+|/| =0 (mod 21) is valid. If both hold,
then 2/=.(/+1/| )-(-/+1/| )=0 (mod 21) and therefore/=0 (mod 21). We
see therefore that, one and only one of the three sets of relations/= |/| ^0
(mod 21), —/= | —/| ^0 (mod 21),/=0 (mod 21) is valid, as we wished to show.

We establish (2) by contradiction. Let us suppose that /^0 (mod 21).
Then there exists an element h in 3R such that/A = 1 (mod 21). By (1) at least
one of the relations — A=|A| (mod 21) and As|a| (mod 21) is valid. If the
first should hold, we would have 1+/|AJ =1—/A=0 (mod 21), and also
1+/|A| ^1 on account of the inequality /^O. Here we have a contra-
diction: it is obvious that 1/(14-/|A|) is in 9R; and it follows that
1 = (1+/|A|)[1/(1+/|A|)]=.0 (mod 2Í), le2i. If the second should hold, we
would have 1-/|A| =1-/A=0 (mod 21), g\h\ +(1 -f\h\ )=0 (mod 21), and
also g\h\ +(1 — /| A | )Sïl on account of the inequality fug- Again we have a
contradiction. Thus our initial assumption is false, as we wished to prove.

* See van der Waerden, Moderne Algebra, I, Leipzig, 1930, Chapter X.
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We now consider (3). Since/=g (mod 21) and/p^O (mod 21), it is obvious
that g^0 (mod 21). If the relation — g= | g\ (mod 21) held, we could combine it
with/= l/l (mod 21) to obtain the relations |/| +1 g\ =/-g=0 (mod 21). We
could then conclude by virtue of (2) that \g\ s0 (mod 21) and hence that
g=g+|g|==0 (mod 21). This contradiction shows that we must have
g= \g\ ^0 (mod 21), or gety, in accordance with (1).

The proof of (4) is similar to that of (3). The relations/= |/| ^0 (mod 21)
and g= \g\ p^O (mod 21) imply fg= \fg\ ^0 (mod 21); in other words,/e^J and
gety implyfgety. These relations also imply that/-fgp^ — \f+g\ (mod 21): for
otherwise we would have |/| +\g\ +\f+g\ —f+g — (f+g)—0 (mod 21) and
hence, by virtue of (2), |/| =\g\ =0 (mod 21), contrary to hypothesis. Fur-
thermore, these relations show thatf+g^0 (mod 21) : for otherwise we would
have l/l +U| =/+g=0 (mod 21) and hence, by virtue of (2), |/| =\g\ =0
(mod 21), contrary to hypothesis. It now follows that/+g= \f+g\ ^0 (mod21)
or, equivalently, that f+gety, as we wished to prove.

If we remark that the relations a = \a\ ^0 (mod 21) and a= \a\ ^0 are
equivalent whenever aeR, we see that the partition of SO? into the disjoint
classes $, ft, and 21 has all the properties required above. It defines a corre-
sponding partition of the field SO?/21; and this partition of SO?/21 in turn de-
fines a simple ordering of the field, in a familiar way.* We can now prove
that the order so introduced is an archimedean order; in other words, that
/e^ implies that nf— le^ß for some integer n. If the element/— 1/w should be-
long to 'iß for no integer n, we would have — (f— \/n) = \f— i/n | (mod 21) or,
equivalently, (f—l/n) + \f—l/n\ e2I for every n. On passing to the limit, we
would then obtain /+1/| e21-= 21 or, equivalently, /*$. This contradic-
tion shows that /— l/we^ for some integer n. By (4), we conclude that
nf— 1 =n(f—\/n)es$ for that integer, as we wished. Since the field S0?/2I has
an archimedean ordering which is an extension of the natural ordering of its
subfield R, it must coincide with R.

Finally we consider the special properties of the homomorphism SO?—»/?
stated in the theorem. In order that this homomorphism take/ into a it is
obviously necessary and sufficient that f=a (mod 21). If f=a (mod 21),
the relation \f—a\ Sïe>0 is impossible: for f=a (mod 21) implies /—a = 0
(mod 21), \f-a\ =0 (mod 21); and |/-a| ^e>0 implies |/-a| ¿0 (mod 21)
in accordance with (2) above. It follows that g.l.b. /^a^l.u.b. /; or, more
precisely, that a is a limit point of the range of/. The proof that/=a (mod 21)
implies l/l m \a\ (mod 21) is simple and will be omitted.

We pass now to the investigation of the connections between C/t-spaces
and To-spaces. The fundamental theorem reads as follows.

* See van der Waerden, Moderne Algebra, I, Leipzig, 1930, p. 209.
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Theorem 77. In a To-space 9Î, let Ç be the family of all open sets
® = 9î(a <f<ß) where ftWl and atR, ßtR; let 36(r) be the intersection of all those
sets in Ç which contain the point x in 9î; let X be the family of all sets 36 (r);
and let R* be the space obtained by assigning each subset of X specified by the
relations 36(r) c ®, ®tÇ as a neighborhood of every 36(r) which it contains. Then
9Î* is a CR-space which is a continuous image of 9Î under the correspondence
x—>36(r) ; and the function-rings 9R and 9JÎ* for 9t and 9t* respectively are analyti-
cally isomorphic under the correspondence f—*f* defined by setting /*(36(r)) =/(r)
for each point x in 9Î. Zw case 9Î is itself a CR-space, 9Î* is topologically equiva-
lent to 9i.

If r is an arbitrary point and / an arbitrary function in 3R, the set
9î(a</</3) contains r if a and ß are so chosen that a</(r) <ß. Hence every
point r determines a set 36 (r). It is easily seen that every function in 9JÍ is
constant on each set 36(r). In fact, if /(e)?¿/(r), a and ß could be chosen
so that di(a<f<ß) contains r and 36(r) but not 3. It is therefore clear that
360036(3)^0 implies 36(r) = 36(e): for every function in 2R must be con-
stant on 36 (r) u 36(e); and every set 9t (a </</?), /e9JÎ, must contain both or
neither of the sets 36(r) and 36(e). From these results it is obvious that every
set in (^is the union of all the sets 36(r) which it contains. Hence the assign-
ment of neighborhoods described in the statement of the theorem can be
justified through the properties which follow: (1) every 36(r) has at least one
neighborhood; (2) the intersection of two neighborhoods of 36(r) is a neighbor-
hood of 36(r) ; (3) any neighborhood which contains 36(r) is a neighborhood of
36(r); (4) if 36(r)?¿ 36(e), there is a neighborhood of 36(r) which does not contain
36(a). The properties (1), (3), (4) are obvious from preceding remarks, while
(2) follows at once from the observation! that 9t(a</</3)9t(7<g<5)
= 9i(0<A<\) where A = min [(f-a)(ß-f), (g-y)(S-g)], X>||A||. Accord-
ingly the introduction of the indicated neighborhood-system yields a Ti-space
9t*. Since the sets 36(r) are disjoint, the correspondence r—>36(r) from 9Î to 9t*
is univocal. The open sets specified in 9Î* by the relations 36(r) c @, ®tÇ
constitute a basis for 9Î* and have as antecedents in 9Î the corresponding
sets © in Q. The correspondence r—>36(r) is therefore continuous. Further-
more, if 9Î is a CZ2-space, the family Ç is a basis for 9Î, so that 36 (r) = {r} and
the correspondence r—>36(r) is biunivocal and bicontinuous. Thus 9Î* is a con-
tinuous image of 9t, and is topologically equivalent to 9î when 9Î is a CZ2-space.
If/e9Jî, the function/* defined in 9t* by putting/*(36(r)) =/(r) is bounded,
single-valued, and real. We see also that /* is continuous since the set

f We use the relations 2 max (/, g)= \f— g\ +/+g, 2 min (/, g) = — \f— g\ +f+g here and
elsewhere in this section, when properties of max (/, g) or min (/, g) are needed.
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ft*(a </* <j8) is the open set of all I(r) such that H(x) c ft(a <f<ß). Thus/*
is in SO?*. On the other hand if /* is any function in SO?*, the function
/(r) =/*(ïM) is a bounded real function; and/(r) is also continuous since it
defines a correspondence r—»/(r) from ft to R which is obtained by eliminating
H(x) from the continuous correspondences r—*H(x), H(x)-+f*(H(x)) carrying
9? into ft* and ft* into R respectively. Thus the correspondence/—»/* takes
93? univocally into SO?*. It is easily verified that this correspondence is an
analytical isomorphism in accordance with Definition 22. Finally, it is evi-
dent that ft* is a CR-space, since the sets ft*(a </* <ß) constitute a basis for
ft* by virtue of the characterization given for them above. We may note in
passing that H(x) can obviously be obtained as the intersection of the closed
sets 9?(/=/(r)),/eS0?, and is therefore closed.

The immediate significance of Theorem 77 is seen to be that in studying
function-rings we may restrict attention to the case of CR-spaces without any
loss of generality.

We shall now obtain some information concerning the connections be-
tween function-rings and algebraic maps for CR-spaces.

Theorem 78. In a CR-space ft, let Ç be the basis of all sets ft(a<f<ß)
where fis in the function-ring 90?; let A be the basic ring generated by Ç; let 2Í be a
divisorless ideal in SO?; and let a(21) be the ideal in A determined as the class of
all sets a in A such that, for at least one choice of f, a, and ß, the relations
a<ft(a<f<ß),f=y (mod 21), and either y<a or y>ß are valid. Then in the
bicompact Boolean space @(4), the closed sets 3(21) = S'(a(21)) are disjoint and
constitute a continuous covering family Z. Under the usual topology, Z defines a
bicompact H-space G.

We must first show that a (21) is an ideal in 4. It is evident that 0ea(21) and
that aea(2I) and a>c imply cea(21). Hence we have only to prove that aea(2I)
and 6ea(21) imply av6ea(21). By hypothesis, we have a<ft(a<f<ß) and
b<ft(y<g<8) where/=<r (mod 21), g = r (mod 21), and a and r lie respectively
outside the closed intervals [a, ß] and [7, 8]. If we put h= \f— <r\ + \g — t\ ,
e>0, 77>||ä||, and choose e sufficiently small, it is seen that a vb<ft(h>e)
= ft(e<h<rj), h=0 (mod 21) and hence that öv6ea(2I), as we wished to
prove.

Next we show that 21i^2I2 implies a (2b.) va(212) =e and hence S (210.3 (210
= ©'(a(2íO)©'(a(2lO) = ®'(a(2l0 va(2l0) = ©'(c) =0. If 21i^2I2, the ideal gener-
ated in SO? by 21i and 212 coincides with 93?; in other words, there exist functions
/ and g such that f+g-1, /e2Ii, ge2t2. The relations |/| =0 (mod 2Ii),
|g| =0 (mod 210 show that the sets a = 9î(|/| >l/3) ando = 0î(|g| >l/3) be-
long to a(2Ii) and to a(2l2) respectively. Since 1 =f+g^ \f\ +\g\, we must
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have a'b' = 9t(|/| ^ 1/3) • 9í(U| á 1/3) =0 or, equivalently, a v b = e. It follows
that a(2li) va(2l2) =e, as we wished to prove.

We must also show that, if p is any prime ideal in A, there exists a divisor-
less ideal 21 in 9JÍ for which the equivalent relations pe3(2l), pf©(a(2I)),
a(2l) c p are valid. By Theorem 76, the construction of a divisorless ideal is
equivalent to the construction of a homomorphism 9JÎ—>R. Now, if /is a fixed
function in 3R, we may classify the open intervals (a, ß), — <» <a <ß < -f oo,
according to the relation of the set 9î(a <f<ß) to the given prime ideal p in A ;
in particular, we consider the intervals (a, ß) for which 9t(a</<ß)ep. We
prove that there is exactly one real number which belongs to none of the
latter intervals. First let us show that there is at least one. If there were not,
the open intervals (a, ß) under consideration would cover the closed interval
[a', ß'] where a' and ß' are bounds for/. By the Heine-Borel-Lebesgue cover-
ing property, a finite number of the intervals (a, ß) would suffice to cover
[a', ß'] ; and in consequence a finite number of the sets 9t(a <f<ß) in p would
suffice to cover 9Î. Here we have a contradiction, since no finite union of sets
belonging to p can coincide with the unit 9Î in A. Thus there exists at least
one real number y of the desired kind; and it is evident that any such num-
ber y must satisfy the inequality g.l.b./á=7^1.u.b./or, more precisely, must
belong to the closure of the range of/. Now let us prove that, if 71 and 72 are
such numbers, then 7i=72. By hypothesis, the sets 9î(7i —e</<7i + «) and
9t(72 —e</<72 + e) belong to p for no positive e. It follows that these sets
must have non-void intersection for every positive e and hence that the open
intervals (71 —e, 71+ e) and (72 —e, 72 + e) must have points in common for
every positive e. Thus we conclude that 7x = 7¡¡. In view of the preceding con-
struction, we see that the prime ideal p assigns to each / in 2R a unique corre-
sponding real number 7. We wish now to prove that the correspondence/—>7
defines a homomorphism 9R—>Z?. By construction, it is evident that/—>y im-
plies/— 7—>0. It is also evident that, if/is constant, then/—»7 if and only if
f=y. If we can establish the propositions (1) /—>0, g—>0 imply /+g—>0,
and (2) /—>0 implies /g—>0, we can then show that f—*y, g—»5 imply
(f-y) + (g-a)->0 or, equivalently, f+g-*y+o and (f-y)g+y(g-a)-*0
or, equivalently, fg-^yh. If /—>0 and g—>0, the sets 9i(|/| <e/2) and
9i(|g| <e/2) belong to p for no positive e; and their intersection likewise be-
longs to p for no positive e. Since 9î(|/+g| <e) = 9î(|/| <e/2)9í(|g| <e/2),the
set 9i(|/+g| <e) belongs to p for no positive e. It follows that/+g—>0. Simi-
larly if /—>0, the set 9t(|/g| <e) contains the set 9t(|/| <e/||g||) which does
not belong to p for any positive e; and we conclude that /g—>0. Thus the
correspondence/—*7 is a homomorphism.

If 21 is the ideal determined by this homomorphism, we must show that
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a(2l) c p. If aea(2l), there exists a function/and real numbers a and ß such that
a <ft(a <f<ß) and/—»7, where y is outside the closed interval [a, ß]. For suf-
ficiently small positive e we have ft(y — e<f<y + e)ft(a<f<ß)=0. Since,
by our construction of y, the set ft(y — e<f<y + e) does not belong to p, we
must therefore have ft(a<f<ß)ep. It follows that aep and that a(21) c p.

The family Z is now seen to cover ©(4) ; but we wish to show further that
Z is continuous. If a is any element in 4 such that ©(a) 3,3(21), we have to find
an element o in 4 such that 3(21) c©(o) and such that 3 (33)©' (a) ¿¿0 implies
3(33)@(ö)=0. The relations ©(a) 33(21), ©(a') c©(a(2I)), and a'ea(21) are
equivalent. Hence we can find/, a, and ß so that a' <ft(a<f<ß) where/—yy
and 7 is outside the closed interval [a, ß] ; and we then see that a> ft( \ g| ^ e)
where g=f—y and e is a sufficiently small positive number. We now choose o
as the set ft(\g\ áe/3). Since ô' = 9î(|g| >e/3) where \g\ =0 (mod 21), we see
that 6'ea(21) and hence that ®(ô) 33(21). If 33 is a divisorless ideal in SD? such
that 3(33)©(a') =3(33)©'(a)^0 and if the homomorphism 93?-»9J?/33 carries
g into 8, we introduce the set c = ft(\g — S| áe/3) in 4. Since c' = ft(\g — ô\
>e/3) where \g-ô\ =0 (mod 33), wehavec'ea(33), ®(c)33(33). The relations
©(a'c)=©'(a)©(c)3©'(a)3(33)^0 show that a'c^O. From the relations
ft(\g\ >e)ft(\g-5\ ^e/3)3<i'c^0, we infer that | S| >2e/3. We then con-
clude that bc = ft(\g\ ^e/3)ft(\g-b\ ^e/3)=0 and hence that ©(o)3(93)
c ©(o)©(c) = ©(oc) = ©(0) =0, ©(o)3(33) =0, as we wished to prove.

If we now impose the usual topology upon the family Z, we obtain an
//-space G and a map f»(G, ©(4), Z) in accordance with Theorem 23. Since
Z is a continuous covering family, Theorem 22 shows that G is a continuous
image of ©(4). It follows that G is a bicompact //-space.

Theorem 79. The space G of Theorem 78 is an immediate, and hence strict,
H-extension of the given CR-space ft. Every function in 93? caw be extended from
ft to O so as to be continuous, and hence bounded, in G. ///e93? and f* is its
extension to G, then the correspondence /—»/* is an analytical isomorphism be-
tween the function-rings for ft and G. In case ft is a bicompact H-space, O
coincides with ft.

Considering the algebraic map m(ft, ©(4), X), where A is the basic ring
described in Theorem 78, we show that each set H(x) coincides with a suitable
member of the family Z of that theorem. If r is an arbitrary point in ft, the
correspondence /—>/(r) defines a homomorphism 93?—»/?. The associated
divisorless ideal 21 = 21(r) then has the property that H(x) =3(21(r)). We prove
this statement as follows. If ae4 and ©(a) 3 H(x), then the basis Ç contains a
set o = 9?(|/| <e),/(r) =0, which contains r and is contained in a: for Theorem
28 shows that r is interior to a. The relations b' = ft(\f\ ^ e) c ft(\f\ >e/2) and
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f=0 (mod 2l(r)) show that è'ea(2ï(r)) or, equivalently, that ©(e) =>3(2l(r)).
Since ©(a) d ©(Ô), we conclude that ©(a) also contains 3(2l(t)). On the other
hand, if atA and ©(a) =>3(2l(r)), we know that a'ea(2l(r)). Hence there
exist a function / and a positive number e such that a'<9î(|/| >e) where
/=0 (mod 2I(r)) or, equivalently, /(r)=0. Consequently the open set
¿> = 9t(|/| <e) belongs to A, contains r, and is contained in a. Since r is thus
interior to a, we conclude that ©(a) d 36(r). The equivalence of the relations
©(a) d 36(r), ©(a) =3(2100) implies that 36(r) =3(2l(r)), as we wished to show.
Theorem 41 now shows that G is an immediate ZZ-extension of 9Î; and
Theorems 64 and 75 show that G must be a strict extension of 9Î.

In discussing the extension of functions from 9Î to G we may regard 9Î
as a subspace of G and we may even identify 9? and G with the topologized
familiesX and Z respectively. If/e3R, we define the extended function/* by
putting /*(3(2I))=7 where f—yy under the homomorphism 2R—>9R/2I.
That /* is actually an extension of / appears at once from the relations
/*(36(r)) =/*(3(2l(r))) =/(r). We see also that /* = g* if and only if f=g, and
that (f+g)* =/*+£*, (fg)*=f*g*, l/l *= 1/1 • It is evident that ||/|| ¿\\f*\\;
and we know that/—vy implies |-v| ^||/||- Hence we see that ||/|| =||/*||. To
show that/* is continuous, we have to prove that G(a </* <ß) is an open set.
If 3(2Io) represents a point q0 in this set, then /*(3(2lo)) =7o where /—»7o
under the homomorphism 2R—>SR/2lo and 70 satisfies the inequality a <y0 <ß.
Putting 0 <e<min(7o— a, ß— y0) we consider the set a = 9î(yo — «</<7o + e)
= 9î(|/—7o| <e) in A. We shall show that the open set specified in G by the
relation 3 (2Í) c ©(a) contains q0 and is contained in G (a </* <ß) ; and we can
then infer that G(a</*</3) is open. First we prove that 3(2to) c©(a). The set
è = 9i(|/—7o| >e/2) is in A and obviously contains a' = 9î(|/—7o| ^e). Since
/—7o=0 (mod 2lo), we see that ¿>ea(2I0) and hence that a'ea(2t0). It follows that
@00 D3(2lo), as we wished to show. Secondly, we prove that 3(a) c ©(a)
implies/*(3(21)) =7 where a<y<ß; and we can then infer that the point
q represented by 3(21) is in G(a</*</3). Now 3(21) c<S(a) implies that
9ï(|/-7o| àe) =a'ea(2t). Hence, if f-^y under the homomorphism 9R^SDî/2t,
we must have |y—7o| ^e: for the relations ava' = e, a'ea(2l), and a^^e
show that a is not in a (21) and hence that 7—70 is not outside the closed
interval [ —e, ej. Since/—^y implies/*(3(2l)) =7 and since a<70 — e^7
SÜ7o + e<j3, our proof is brought to the desired conclusion.

If an arbitrary bounded continuous real function /* in Q is restricted to
the subspace 9Î, the restricted or partial function / obviously belongs to 9JÎ.
Since 9Î is everywhere dense in G, the extension of/ to G must be the original
function /*. We conclude therefore that the correspondence /—>/* defines an
analytical isomorphism of the function-rings 90? and ÜR* for 9Î and G re-
spectively.
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If the space ft is a bicompact //-space, it is normal and hence completely
regular. The corresponding space G must then coincide with 9Î, since a
bicompact //-space is absolutely closed with respect to immediate or strict
//-extension.

Obviously Theorem 79 provides a further reduction of the theory of
function-rings : it enables us to restrict attention to the case where the under-
lying To-space ft is a bicompact //-space. We shall continue the analysis of
function-rings under this assumption. First we state a result which is a direct
corollary of Theorem 79.

Theorem 80. // 21 is a divisorless ideal in the function-ring for a bicompact
H-space ft, then there exists a point x in ft such tkatfen if and only if f(x) =0;
the homomorphism 93?—»93Î/2I carries f into f(x).

The proof of Theorem 79 shows that the families X and Z coincide when
ft is a bicompact //-space; and the result stated here then follows from the
relation H(x) =3(21(t)) previously noted. A direct proof can also be given.
Since ft is bicompact, the range of any function / in 93? is a bounded closed
set of real numbers. Hence /e2I implies that /—»0 under the homomorphism
9#-»93?/2I and that the set ft(f=0) is non-void. If/i, •••,/» are in 21 we there-
fore have 8t(/i = 0) • • • ft(fn = 0) = ft(\fi\ =0) ■ ■ • 9l(|/„| =0) = («|/,| + - • ■
+ |/„| =0);¿0, since |/i| + • • • +|/n| e21. We see therefore that, because of
the bicompactness of ft, the intersection of all the closed sets ft(f=0), where
/e21, is non-void. It is now evident that the divisorless ideal 21 (r) denned by
the homomorphic correspondence f—>f(x), where r is a point of this inter-
section, contains 21. Hence 2I = 2l(r), as we wished to show.

We pass now to a study of subrings of 93?.

Theorem 81. // 93? is the function-ring for a bicompact H-space ft; if ft is an
arbitrary non-void subclass of 93?; if Çw is the family of open sets ft(a<f<ß),
feft; if Hft(x) is the intersection of all sets &yt in Çw which contain the point x in
ft; if X<m is the family of all sets Hft(x), xeft; and if ft^ is the space ob-
tained by assigning each subset ofX^ specified by a relation Hyt(x) c <Qm, where
^9i = ®3i(1) • • • ®9i(n> and ®ft(k)eÇft for k = l, ■■ ■ , n, as a neighborhood of
every &n(r) which it contains;—then ftn is a bicompact H-space which is a con-
tinuous image of ft. If ftx 3 ft2, then ftw, is a continuous image of ftft,; and ft^
is topologically equivalent to ft. If ft* is the analytical subring of 93? generated
by ft, then ftft* is topologically equivalent to ft^.

The argument developed in the proof of Theorem 77 can be applied here
without essential modifications. Thus we find that the sets Hyi(x) are disjoint
and cover ft; that every function in ft is constant on each set &n(r); that
every set in Çw is the union of the sets Hft(x) which it contains; and that
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36»(r), as the intersection of all the closed sets 9î(/=/(r)) where/e9î, is itself
a closed set. Moreover, we see that, if ®»(t) = 9? («* </*<&), /*e9î, for
k = l, ■ ■ • , «, then the intersection §» = ®»(1) • ■ • ®»(n) is the union of all
the sets 36»(r) which it contains: for re§» implies ak <fk(x) <ßk for k = l, • ■ • ,«
and hence 36»(r) c ®»(*> for k = l, ■ ■ ■ , n. Thus the neighborhood-system de-
scribed in the theorem can be imposed upon the family X»; and the resulting
space 9Î» is a Ti-space. As in the proof of Theorem 77, we see next that the
correspondence r—>36»(r) from 9Î to 9î» is univocal and continuous; and that
it carries each function / in 9Î into a bounded continuous function f* in 9Î»
given by/*(36»(r)) =f(x). It is now easily seen that 9Î» is a CZ?-space: for the
open set in 9Î» specified by the relation 36» (r) c §g,, where §g¡ = 9?(«i <fx <ßx)
■ ■ ■ 9î(an</„</3n) and/4e9c for k = l, ■ ■ ■ , n, coincides with the set

3î»(«i < /* < /3i) • • ■ 9î»(a„ < /„* < ßn) = 9Î»(0 < g» < 7)

where g» is the bounded continuous real function in 9Î» defined by the
formula

g» - min  [(fk* - ak)(ßk - /**)]
*==1, -••, n

and 7>||g»||. As an ZT-space which is a continuous image of the bicompact
ZZ-space 9Î, the space 9î» must also be bicompact. In case 9î = 9ft, the con-
struction of 9Î5» is identical with that described in Theorem 77, so that 9t(»
coincides with 9Î* and is topologically equivalent to 9Î. If 9?i = 9i2, the rela-
tions Çyi,^ Çm„ ï»,W cï»,00 are obviously valid. It follows immediately
that the correspondence 36»,(r)—>36»2(r) from 9Î», to 9Î», is univocal and con-
tinuous; and that 9î»5 is a continuous image of 9Î»,. By inspection of the
construction of the analytical subring 91* generated by 9Î, it is evident
that every function in 9Í* is constant on each set 36» (r) and hence that
369;. (r) 3 36í¡(r). The relation 9Í* = 9Î implies that 9Î» is a continuous image of
9t». under the correspondence 36^.00—>36»(r) where 36».(r) c36»(r). We see
therefore that 36».(r) =36»(r) and that the indicated correspondence is bi-
univocal. An elementary proposition now shows that the bicompact ZZ-spaces
9Î» and 9Î». are topologically equivalent.!

In order to obtain a deeper insight into the subject matter of Theorem 81,
we shall next prove a generalization of the Weierstrass approximation
theorem.

Theorem 82. T« order that 9î» be topologically equivalent to dim and to 9Î
by virtue of the correspondences r—>36sDi(r)—*36»(r), it is necessary and suf-
ficient that 9Î* = 9R.

t AH, p. 95, Satz III.
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The usual statement of the Weierstrass approximation theorem can be
broken down into two propositions: (1) every function continuous in a closed
interval of R can be uniformly approximated by a "polynomial" constructed
from the function/(a) =a and the real numbers by the algebraic operations
and the formation of absolute values ; (2) the function f(a) = \a\ can be
uniformly approximated by a polynomial p(a) where p(0) =0. It is obvious
that 9?* can be constructed from ft by taking the uniform limits of "poly-
nomials" constructed from ft and R by the application of the algebraic
operations and the formation of absolute values. Hence, if we restrict our-
selves to this characterization of ft*, the equation 9?* = SO? may be regarded
as a generalization of part (1) of the Weierstrass approximation theorem.
The proof which we shall give below will be a proof of this partial generaliza-
tion; it will be in particular a proof of (1). In order to have a proof of a com-
plete generalization of the Weierstrass approximation theorem, we must
eliminate the use of absolute values from the construction of 9Î*. We can do
this, as we have already seen in the discussion of Theorem 75, if and only if
we use part (2) of the Weierstrass approximation theorem. Since our proof
of the generalization of part (1) will be an algebraico-topological proof, we
may regard (2) as the "analytical kernel" of the Weierstrass approximation
theorem for general topological spaces.

From Theorem 81 we already know that ft<n and ft^. axe topologically
equivalent. Hence there is no loss of generality in assuming that ft = ft*,
in other words, that ft is an analytical subring. From Theorem 81 it is then
known that the relation ft = 93? implies the topological equivalence of ft^, ft^,
and ft. Hence we have only to prove that the topological equivalence of
ftyi and 9?sk implies ft — 93? when 9? is an analytical subring of 93?.

If / is an arbitrary function in 93? and e is an arbitrary positive number,
we shall construct a function g in ft with the properties f^g<f+e. Since ft
is closed in 93?, the resulting inequality ||/—g\\ <e leads to the conclusion that
91 = 2».

As a first step in this construction we show that, if a and ß axe real num-
bers satisfying the inequality a <ß, then there exists a function gaß in ft which
satisfies the inequality/^ga3 in 3? and the inequality gaß ̂ ß + e/2 in the closed
set % = ft(a^f^ß). If ß+e/2^ \\f\\ or if g is void, we may obviously take gaß
as the constant ||/||; and if ® = ft(a — e/2<f<ß+e/2) coincides with ft, we.
may take gaß as the constant ß + e/2. Hence we may confine our attention to
the case where /3+e/2<||/||, g^O, and ®¿¿ft. Since ftyt is topologically
equivalent to ftw and to ft by hypothesis, and since ® contains g, each point
r in g determines an open set ®g¡(r) = 9î(7 <g<S), geft, such that re®9j(r) c ®.
Now the function h= \g — g(x)\/i), where 0<?7<min (g(x)—y, h — g(x)), be-
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longs to 9î; and the sets £>»(r) = 9i(A<l), 5»(r) = 9î(A^l) are respectively
open and closed in 9t and satisfy the relations re§»(r) cg^OO c®g¡(r) c®.
As a closed set in the bicompact ZZ-space 9Î, the subspace ft is bicompact.
Hence there exist points ri, ■ ■ • , rn in ft such that

gc§^(n)u • • • u§m(i:n)cftm(u)u • ■ : ug»(r„)c®.

If the corresponding functions are hx, ■ ■ ■ , hn respectively, the function
A = min (Ai, • • ■ , h„) belongs to 9Î and has the properties

§» = 5R(A < 1) = $»(ti)u • • • u§»(r„),
ftm = 9i(A ^ 1) = ftm(xx) u • • ■ u g»(r„),

ftc$yicftnc®.
Since ®' is a non-void closed subset of the bicompact space 9?, the function A
has on this set a greatest lower bound £ attained at some point r in ®'; and
the relations ®'cg^ = 9t(A>l) show that £ =/(r) > 1. We can now define the
desired function gaß by the formula

gaß= {11/11 - (0 + e/2)} {min fcmax (A, 1)] - l}/{{- l} +(ß + t/2).
It is evident that gaß is in 9t. The formula, together with the relations
j8 + e/2<||/|| and £>1, makes it plain that gaß satisfies the inequality
ß+e/2'egaß^ 11/11 • Since ®'c9î(Aè£) in accordance with our determination
of £, we see that gaß = ||/||^/in ®';on the other hand, wehaveg^^/3+e/2>/
in ®. Hence the inequality fikgaß holds at every point in 9Î. Since gcgjj
= 9f(A^l) we see that gaß=ß+t/2 in ft. Thus the function gaß has all the
properties required.

With the aid of the functions gaß, we can now construct the desired func-
tion g. We choose a finite number of open intervals (a, ß) of positive length
ß—a not greater than e/2 which cover the range of the given function/ in 9JÎ.
Let the functions gaß corresponding to these intervals be denoted by
gi, • • • , g„ respectively. The function g=min (gx, ■ ■ ■ , g„) then belongs to 9Î.
It obviously has the property g^/ since gk^f for k = l, ■••,«. If r is any
point in 9?, then f(x) belongs to at least One interval (a, ß) among those
chosen above; and the relations a<f(x)<ß, 0<ß—a^e/2 show that
ß</00+«/2. Hence we have g(r)^g«3(r)^/3-|-e/2</(r) + e; and the in-
equality g</+e holds throughout 9î. With this the proof is completed.

We may point out in detail that this proof establishes part (1) of the
Weierstrass approximation theorem. If 9Î is a closed subinterval of R, then
the function / given by f(p)=p has the property that the sets 9î(a</</3)
constitute a basis for 9?. Hence if we take 9Î as the subclass of 9JÎ consisting

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1937] BOOLEAN RINGS 469

of the function/alone, ftft is topologically equivalent to ft and ft* = 93?, as we
wished to prove.

Before applying the generalized approximation theorem, we shall general-
ize a theorem established by Banach in the case of separable bicompact
//-spaces (compact metric spaces). Our proof is necessarily somewhat differ-
ent from the proof of Banach.f

Theorem 83. // ft and ft* are bicompact H-spaces and if 93? and 93?* are
the corresponding function-rings, then the existence of an isometric correspond-
ence f—*UJ=/* between 93? and SO?* is equivalent to the existence of a topological
equivalence r—»p(r) =r* between ft and ft*, the two correspondences being con-
nected by the relations

fit) = <*>*(r*) U*(x*) - e*(x*) ],      Uf = f*,     P(r) = r*,
uo = e*,      u\ = </>*,

where \<b*\ =1. If the relations U0 = 0, Ul = l or, equivalently, the relations
0* = O, <j>* = \ are satisfied, then the correspondence f—>Uf=/* is an analytical
isomorphism between 93? and 93?*.

By an isometric correspondence U is meant one with the property
\\Uf— Ug\\ =||/—g\\- It is evident that such a correspondence is biunivocal
and has an isometric inverse U~l.

If p, 0*, and 0* are given arbitrarily, we define U by the equation
f* = Uf=f(p(x))/<b*(p(x))+6*(p(x)). It is easily verified that U carries 93?
isometrically into 93?*. With the special choice <j>* = 1, 0* = 0, it is evident that
U determines an analytical isomorphism between 93? and 93?*. We may remark
that if U defines such an isomorphism the necessary relations Z70 =0, Ul=l
imply 0*=O,0* = 1.

When U is given, we define 0* = UO and determine a new correspondence
V by the relations /-*F/= Uf-6*=f*-9*. It is evident that V carries 93?
isometrically into SO?* and that V has the additional property F0=0. A
theorem of Mazur and Ulam now shows that F is a linear correspondence,
satisfying the relation V(af+ßg) =aVf+ßVg.%

We now construct the topological equivalence p(r) in terms of the corre-
spondence V. If r is any point in 9Î we denote by S0?(r) the class of all func-
tions / in 93? which satisfy the equation |/(r)| =||/||. It is evident that
93?(r) 3/2. Also, if fx, ■ ■ ■ , /„ are in S0?(r), the function g=£l~îf> sên /»M
belongs to 93?(r) and satisfies the relation ||g|| =2""î1|/»||, as we infer from
the inequalities

t See Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 170, Théorème 3.
î A proof is given by Banach, Théorie des Opérations Linéaires, Warsaw, 1932, pp. 166-168.
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y = Eiwi = ziA<r)i-í(r)sy.«—i      >-i
We can now show that the closed sets g* = 9î*(|/*(r*)| =||/*||), where
f* = Vf and/e9R(r), have a non-void intersection in 9Î*. Since 9Î* is bicom-
pact, it suffices to prove that the intersection of a finite number of sets ft*
is non-void. If ft*, ■ : ■ , ft * are such sets corresponding to the respective
functions/i, •••,/„ in 2R(r), we consider the associated function g defined
above and its correspondent

g* = Vg = £ V(f, sgnf,(x)) = £ (Vf,) sgn/,(r) =  £/* sgn/,(r).
y= 1 1—1 tm1

Since g* assumes its greatest lower and least upper bounds on the bicompact
space 9i*, there exists a point p* in 9Î* such that |g*(p*)| =||g*||. We now
observe the relations

11**11 = I s*(p*) | s El a*(p*) I ̂  Ell/fll = EIWI = 11*11 - IMI
r-l »-1 r—1

and the relations

EI /?<*•) I = E ll/.*ll, I A*(P*) I = ll/**ll, k = 1, • • • , n.
y-X >*=1

The latter show that we must have |/*(p*)| =||/*|| for k = l, ■ ■ ■ , n. Hence
the point p* is common to ft*, • ■ • , ft* as we wished to prove. We now let
r* be a point common to all the sets ft*. It is evident that/e2R(r) and/* = Vf
imply /*e9J?*(r*); in other words, that V carries 9R(r) into a subclass of
3R*(r*). By symmetry, the inverse correspondence F"_1 carries 9JÎ*(r*) into a
subclass of some class 3R(p). The inclusion relation 9Jc(p) 3 9Jî(r) is now ob-
vious; and it implies that p = r. In fact, if p^r, there exists a function/in 95?
such that/(p) =0,/(r) = 1, 0^/^l; and the equation ||/|| =1 then shows that
/e9Jc(r),/f9R(p). We can now infer-that V carries 2R(r) into 9R*(r*); and,
further, that V carries the family of all classes 9JZ(r) biunivocally into the
family of all classes 9Jc*(r*). This correspondence between the classes 9R(r)
and 9Jf*(r*) determines a biunivocal correspondence r<—*x* = p(x) between
9Î and 9Í*. We have to prove that the latter correspondence is a topological
equivalence. From the construction of p(x), it is seen that the sets 9i(|/| = ||/||)
and 9î*(|/*| =||/*||) correspond under the correspondence r<—>r* = p(r)
when / and /* are connected by the relation /* = Vf: for these two sets are
specified by the relations/e9R(r) and/*e9Jî*(r*) respectively. Accordingly the
complementary sets 9î(|/| <||/||) and 9î*(|/*| <||/*||) correspond likewise.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1937] BOOLEAN RINGS 471

Thus it is sufficient for us to prove that the latter sets constitute bases for the
respective spaces ft and ft*. Since the same discussion applies to both ft and
ft*, we may consider the space 9? alone. Since Ü? is a bicompact //-space, it is
a CR-space; and the sets ft(a<g<ß), geSO?, constitute a basis for ft. If 9Î has
more than one point, we may discard the sets ft(a <g<ß) which coincide with
ft or are void, and still have a basis for ft. If ft(a<g<ß) is one of the sets
retained, we introduce the function

/ = 1 - max [0, (g - a)(ß - g)]/\\(g - a)(ß - g)\\

and show that ft(a<g<ß) = ft(\f\ <||/||). It is evident that 0$/al. If r is
in the complement of ft(a<g<ß), we have (g(x)—a)(ß — g(x))^0 and/=l.
We infer that ||/||=1. On the other hand, if xeft(a<g<ß), we have
(g(-c)-a)(ß-g(x))>0 and/<l. Thus we have ft(a<g<ß) =ft(\f\ <||/||),
as we wished to prove. It is evident that/is in SO?. Thus we have proved that,
unless ft and ft* axe one-element spaces, the correspondence r<—>r* = p(r)
is a topological equivalence; and the exceptional case is trivial.

We now define <j>* as the function V\ in 93?*. Since ||</>*|| =||/|| = 1 and
9KI/I =11/11) =81 for/=1, we conclude that ft*(\<b*\ =||0*||) = 9Î* and hence
that \<j>*\ =1. The correspondence W defined by Wf=<b*Vf therefore has the
properties | Wf\ = | Vf\, \\Wf\\ =\\Vf\\ =||/||, W0 = 0, W\=<b*<p* = \, and
W(af+ßg)=aWf+ßWg. Since the first two of these properties imply
ft*(\Vf\ =\\Vf\\) = ft*(\Wf\ =\\Wf\\), we see that the construction of the
preceding paragraph leads to the same topological equivalence p if we start
with W rather than with V.

In terms of W the relation between U, $*, 0*, and p which we wish to
establish assumes the equivalent but simpler form/(r) =/*(r*) where/* = Wf
and r* = p(r). As a first step in proving this relation, we show that /^O
implies Wf^O. If a and ß axe the minimum and maximum, respectively, of
the function/, the relations O^a^ß imply that the function g—ß—f^O has
the number ß—a^O as its maximum. Hence ||g|| =ß—a. If we now write
f* = Wf=Wß+Wf-Wß=ß-Wg^ß-\\Wg\\=ß-\\g\\=a^O) we obtain the
desired result. As a second step, we prove that W\f\ = | Wf\. Since |/| —/^0,
we have W\f\ -Wf=W(\f\ -/)=0 and hence W\f\^Wf. Similarly
l/l +/è0 implies -W\f\ ^Wf. We therefore conclude that W\f\ ^ | Wf\.
By symmetry, W^\ Wf\ Ê; \ W~Wf\ = |/|. Since W~l\ Wf\ - \f\ ^0, we have
|W7l ~W\f\ = W(W~* | Wf\ -|/|)=0 and hence \Wf\ ̂ W\f\. Combining
this inequality with the one obtained above, we conclude that | Wf\ = W\f\.
We are now in a position to complete our proof. Let a be the value of / at a
fixed point r in ft and let ß be the maximum of the function |/—a\. Then the
function g=ß— \f—a\ ^0 belongs to 93? and has a maximum ß at the point r.
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Hence ||g|| =ß. Since re9î(|g| =||g||), we see that r*=p(r) belongs to the set
M(\g*\ =11**11) where g* = Wg. Now g* = Wg = W(ß- \f-a\)=ß-W\f-a\
=ß-\Wf-Wa\=ß-\f*-a\i \g*\ = \Wg\=W\g\=Wg=g*, and- ||g*||
= ||g||=/3. Hence we see that ß- |/*(r*)-a| =g*(r*) = |g*(r*)| = ||g*||=/3,
f*(x*)=a=f(x). This completes the demonstration.

We can now return to the analysis of the results of Theorem 81, obtaining
the following additional information.

Theorem 84. TAe correspondence r—>36»(r) from 9Î to 9Î» described in
Theorem 81 induces an analytical isomorphism between 9Î* and the function-
ring 9Ji»/or 9t». No function which belongs to 9JÎ but not to SSI* is carried by this
correspondence into a single-valued function in 9?».

The correspondence r—>36»(r) defines a function/» in 9Î» through the re-
lation/» (36» (r)) =/(r). If/ belongs to 9Î or 91*, as we have already noted,
then/» is single-valued, bounded and real. If/is in 9Î, then/» is also cont nu-
ous. Thus the induced correspondence /—>/» carries 9i into a subclass ^j3i» of
the function ring 9JÎ» for 9Î» in such a way that |/|—>|/»| and ||/|| =||/»||.
It is obvious that the space (9?»)$^ is topologically equivalent to 9Î». Theo-
rem 82 therefore shows that the analytical subring ($»)* generated in 9JÎ»
by $» coincides with 9R». Obviously the correspondence /—>/» can be ex-
tended analytically from the classes 9Î, $» to the corresponding classes
9Î*) OPsw)* = 2ft»- The extended correspondence is then seen to be an analytical
isomorphism between 9Î* and 9JÍ»; it coincides with the correspondence/-^/»
defined above for /e9î* before we had shown that /»e9R». If / is not in 9Î*,
we wish to show that the corresponding function/» defined by/»(36»(r)) =/(r)
is not single-valued. To this end we consider the class ty of all functions in 9R
which are constant on each set 36»(r), re9i. Since Sß d 9Î* 3 9Î, the space 9î» is a
continuous image of 9î$ by virtue of the correspondence 36$(r)—>36»(r) as we
proved in Theorem 81. The definition of $ shows that 36$(r) =36»(r), so that
this correspondence is biunivocal. Since 9i$ and 9Î» are bicompact ZZ-spaces,
it follows that they must be topologically equivalent.! If fety> tne function
/$ in 9t$ defined by/jj(36ç(r)) =/(r) is a bounded continuous real function in
accordance with Theorem 81. The correspondence 36<j¡(r)—>36»(r) therefore
carries/^ into the bounded continuous real function/» defined by/»(36»(r))
=/ï(ï»M)=/(r)- Since/» is in 9R», there exists a function g in 9Î* such
that g» =/», by virtue of the results established above. Hence we have
/00 =/?¡(%n(r)) =*»(ï»W) =g(r) throughout 9Î; and we conclude that/e9î*.
We have thus shown that 9î* => $. It follows that ty = 91*. We therefore see

t AH, p. 95, Satz III.
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that, if /is not in 9?*, then/ is not constant on every set Hft(x) and that the
corresponding function fa is not single-valued.

With Theorems 80-84 we have obtained enough information to character-
ize completely the algebraico-topological structure of the function-rings for
bicompact //-spaces. We state first the results for the theory of closed ideals.

Theorem 85. Between the closed ideals in the function-ring 93? for a bicom-
pact H-space ft and the closed subsets of ft, there exists a biunivocal correspond-
ence such that a closed ideal ft consists of all functions in 93? which vanish on the
corresponding closed set g. The quotient-ring 93?/9?, where ft is a closed ideal
distinct from 93?, is isomorphic to the function-ring of the corresponding set g.
Every product of divisorless ideals is a closed ideal; and every closed ideal distinct
from 93? is the product of all the divisorless ideals which contain it.

We denote by ® the set of all points where some function / in a given
closed ideal ft does not vanish; and by g the set of all points where every
function/in 9? vanishes. It is evident that ® and g are complements of one
another. We see also that ® is open: for if re® and/(r) =a^0,feft, the open
set ft (a — e<f<a+e) contains r and is contained in ® whenever 0<e< |a|.
Accordingly, g must be a closed set. At this point, it is convenient to
show that g = 0 implies 9? = 93?. Since g = 0 implies ® = 9?, the open sets
ft(a<f<ß), where/e9? and 0 is outside the closed interval [a, ß], cover ft.
Since 9Î is bicompact, we can select a finite number of these sets which also
cover ft. If the corresponding functions in 9? are/i, •■•,/„, we see that the
function/= \fi\ + ■ ■ ■ + |/n| has a positive lower bound in 9Î. If /were in 9?,
we could then conclude, since 9? is an ideal, that 1 =/• (l//)e9? and hence that
9? = 93?. To prove that / actually belongs to 9?, it is evidently sufficient to
show that 9? contains |/| together with/. Since |/| can be uniformly approxi-
mated by polynomials of the form

v=n /v=n—\. \

E «./* = /( E«W),
y-l \   y—0 /

each of which obviously belongs to the ideal 9? whenever/ does, and since 9?
is closed, it is evident that 9? has the desired property. Thus g = 0 implies
9? = 93?. In the general case, we apply the results of Theorems 81 and 84 by
considering the construction and properties of the space ftft. The sets Hw(x)
can be characterized as follows: if r is in ®, then Hm(x) consists of the point r
alone; and, if r is in g, then Hyi(x) =g. First, if re®, there exists a function/
in 9? with the property/(r) 5^0; and, remembering that/ must vanish in g
and be constant in H<m(x), we conclude that Hn(x) is disjoint from g. Further-
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more if 3 is a point of ® distinct from r, there exists a function g in 9JÍ with the
properties g(r) = l, g(e)=0. The function A=/g belongs to the ideal 9Î to-
gether with'/ and has the properties A(r)?^0, A(e)=0. Remembering again
that A must be constant in 36» (r), we conclude that 36» (r) does not contain 8.
We see therefore that 36» (r) = {r}. Since the sets 36» (r) are disjoint, it follows
that xtft implies 36»(r) c ft. On the other hand, the fact that every function
in 91 vanishes in ft implies that 36»(r) a ft when xtft. Consequently, we have
ï»00 =ft when xtft, as we wished to prove. Theorem 84 now shows that the
analytical subring 91* generated by 91 consists of those functions in 9JÎ which
are constant on ft: for such functions are precisely the ones which are constant
on each set 36»(r) and hence remain single-valued on passing from/ to/» in
the manner described in that theorem. On the other hand, we can construct
9Î* directly. Let $ be the class of all functions of the form f+a where /e9î
and aeR. It is evident that 9Î c $ c 9t*; and also, by virtue of the fact that
0e9l, that R c $. If we can now show that $ is a closed subring of 9JÎ, these
relations enable us to conclude that it coincides with 9Î*: for the second
identifies $ as an analytical subring; and the first then shows that $ = 91*.
To show that $ is closed, we recall that we are assuming ft to be non-void.
If {/„+«„) is a convergent sequence in ty, the fact that/„ vanishes in ft shows
that the sequences {a„} and {/„} converge separately. Since 9Î is a closed
subset in the complete metric space 9J?, {/*} has a limit in 9Î. Thus ty is
closed. Finally we show that $ is a subring: if f+a and g-\-ß are in $,
then the difference (f+a) — (g+ß) = (f—g) + (a—ß) and the product
(f+a)(g+ß) = (fg+fß+ga) + (aß) are in $ because the relations /e9î, ge9c,
atR, ßtR, and Z?c9Jc imply f-gtW, fg+fß+gatW, a-ßtR and aßtR. Since
$ = 9Î*, we now infer that every function in 9JÎ which is constant in ft has
the form/+a where/ is in 9Î and a is its value in ft. In particular, we see that
every function 9JÎ which vanishes in ft belongs to 9Î. Thus the relation be-
tween the ideal 9Î and the corresponding closed set ft is that described in the
theorem. The case where ft=0, 9Î = 9JÎ may obviously be included under this
statement. On the other hand, we can easily verify that, if ft is an arbitrary
closed set in 9Î, the class of all functions in 9JÎ which vanish in ft is a closed
ideal 9Î. Thus the correspondence between closed ideals 91 and closed sets ft
is biunivocal.

In order to determine the nature of the quotient-ring 9JÍ/91, where 9Í is a
closed ideal, we consider the associated closed set ft. We may discard the
trivial case where ft = 0, 9l = 9Jî. When 5^0, we define the correspondence
/—>/$$, where /g is obtained from a given function / in 9JÎ by restricting it to
the closed set ft. It is evident that this correspondence determines a homo-
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morphism between 93? and a subring of the function-ring for g. Since /§
vanishes in g if and only if / is in 9?, we see that this subring is an isomorph
of S0Î/9Î. Now if g is any continuous function in g, a fundamental theorem
concerning normal spaces in general and bicompact //-spaces in particular
shows that there exists a function/ in 93? such that/g=g in g* Hence the
indicated subring is identical with the function-ring for g; and this function-
ring is an isomorph of 93Î/9?. We may remark that g, being closed in 9?, is a
bicompact //-space.

The intersection or product of divisorless ideals is certainly an ideal ; but,
since the divisorless ideals in 93? are closed in accordance with Theorem 75,
it is also closed. On the other hand, if 9? is a closed ideal distinct from 93? and
g is the associated non-void closed set, we see that the divisorless ideals
21 containing 9? are precisely those determined by the points of g in accord-
ance with Theorem 80. Obviously, / belongs to the product of such divisor-
less ideals if and only if it vanishes in g ; or, in other words, if and only if it
belongs to 9?. Hence 9? is the product of the divisorless ideals which contain it.

We pass now to the consideration of isomorphism and subrings. Here we
merely summarize the results of Theorems 80-84 in somewhat different
language.

Theorem 86. Two bicompact H-spaces are topologically equivalent if and
only if their function-rings are analytically isomorphic. One bicompact H-space
is a continuous image of another if and only if its function-ring is analytically
isomorphic to an analytical subring of the function-ring of the other.

Finally we shall state without proof an equivalent of Tychonoff's im-
bedding theorem for bicompact //-spaces, f

Theorem 87. Let c be an arbitrary infinite cardinal number; let A be an
arbitrary class of cardinal number c,for example, the class of all ordinal numbers
preceding some suitable (even the first suitable) ordinal number w ; let ftc be the
class of all real functions x = x(a) defined over A, where 0 ^ x(a) ^ 1 ; and let Bc
be the class of all sets in ftc generated from the special sets SB a, specified by the
inequalities p<x(a)<a where p and a are rational numbers, by the formation of
finite intersections. By the assignment of each non-void set belonging to Bc as a
neighborhood of every one of its points, ftc becomes a bicompact H-space of charac-
ter c. Every bicompact H-space of character not exceeding c is topologically equiva-
lent to a closed subset of ftc; and its function-ring is a homomorph of the function-
ring of ftc, in the sense indicated in Theorem 85.

* AH, pp. 73-76.
f Tychonoff, Mathematische Annalen, vol. 102 (1930), pp. 544-561.
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We point out the rather striking parallel between the results obtained in
Theorems 85-87 for bicompact //-spaces and those obtained in Theorems
4, 7, 9, 10 for Boolean spaces. From this observation, we may surmise that
both groups of theorems have the same, essentially algebraic, origin. To dis-
cover this common origin, if there be any, it would apparently be necessary
to give an abstract characterization of function-rings.

We turn now to the application of the theory of function-rings to prob-
lems in the theory of extensions. Some of our results bring out the quite
remarkable properties of the bicompact //-extension of a CR-space which we
have already constructed in Theorems 78 and 79: for we can generalize the
latter theorem in a quite complete way. We shall now state this generalization.

Theorem 88. Let ft be a CR-space; let G be the bicompact strict H-extension
of ft constructed in Theorems 78 and 79 ; let Xbe a CR-space which is a continu-
ous-image of ft by virtue of a correspondence t = r (r) ; and let © be any bicompact
immediate or strict H-extension of X. Then there exists a continuous univocal
correspondence % = <r(q) from G to © which coincides in ft with t(x). In particu-
lar, every bicompact immediate or strict H-extension of ft is a continuous
image of G.

If /© is any function in the function-ring for. ©, the replacement of its
argument by r(x) yields a function /©(r(r)) in the function-ring for ft. By
Theorem 79, the latter function can be extended in a unique way over the
space G so as to yield a function/q in the function-ring for G. By virtue of
the fact that 9? and X axe everywhere dense in G and in © respectively, the
correspondence /©—>/o is seen to be an analytical isomorphism between the
function-ring for © and a certain analytical subring of the function-ring for
G. By Theorem 86 the space © is a continuous image of G. We examine the
relation between © and G in greater detail. If 9? is the analytical subring
consisting of the functions /0, we construct the space Gsi described In
Theorem 81. The correspondence /q—»/si defined by/s¡(Xgi(q)) =/o(q), qeG,
is an analytical isomorphism between 9? and the function-ring for Gs¡ in
accordance with Theorems 81 and 84. The function-rings for © and Gsi,
being analytically isomorphic to 9?, are analytically isomorphic to each other.
The correspondence /s¡—»/© therefore defines a topological equivalence
^»¡(q)*—»3 between Q31 and © as described in detail in Theorem 83. Thus the
continuous correspondence from Q to © is obtained by eliminating 3Es¡(q)
from the correspondences q <—»3Esi(q), ïsi(q)<—»8. For a point r in 9?, we have
/st(ïsiW) =/qW =/©0"W). Hence we see that the correspondence from G to
© carries r into t(x), as we wished to prove.

If we take X = ft, we see that © is a continuous image of G, as before.
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Hence every bicompact immediate or strict ZZ-extension © of 9Î is a con-
tinuous image of G.

By a quite similar argument we can now complete the information ob-
tained in Theorem 77.

Theorem 89. If a CR-space X is a continuous image of a T0-space 9Î, then X
is also a continuous image of the associated CR-space 9Î* constructed in The-
orem 77.

If / is any function in the function-ring for X and if r is the continuous
correspondence from 9Î to X, then f(r(x)) is in the function-ring for 9t; and
the correspondence r—>36(r) from 9Î to 9Î* carries it into a function/* in the
function-ring for 9Î*. If we place 36 (r) and t in correspondence whenever
r—>36(r) and r—»t = r(r), we see therefore that the antecedent of the set
X(a<f<ß) is the set SR*(a<f*<ß), in accordance with the relation
/*(36(r)) =/(r(r)). If ti and t2 are distinct points in X, there exists a function/
which belongs to the function-ring for X and has the properties/(ti) =0,
/(t2) = 1. Since the sets X(-1/2 </< 1/2), £(1/2 </<3/2) are disjoint, their
antecedents 9?*(-l/2</*<l/2), 9î*(l/2 </*<3/2) are likewise disjoint. It
follows that the correspondence 36(r)—>t defined above is univocal. Since the
sets X(a<f<ß) constitute a basis for X, and since their antecedents
9î*(a</*</3) are open, the correspondence is also continuous. Hence this
correspondence represents ïasa continuous image of 9Î* as well as of 9Î.

We shall now consider in some detail the nature of the bicompact im-
mediate ZZ-extensions of a CZ?-space and their connections with the mapping
theory. First, let us consider a modification of Theorems 78 and 79.

Theorem 90. If Skis a CR-space of infinite character c, then SR has a bicom-
pact immediate, and hence strict, H-extension G of the same character c.

In the given space 9î, there exists a basis of cardinal number c consisting
of sets SR(a<f<ß) where/ belongs to the function-ring 9R for 9Î. The associ-
ated functions / constitute a subclass 9Î of 9JÎ with cardinal number not ex-
ceeding c. If G is the bicompact immediate ZZ-extension of 9Î constructed in
Theorems 78 and 79, every function in 9R can be extended from 9î to G in
accordance with Theorem 79. By this extension, TI and 9Î are replaced by
9Ro, the function-ring for G, and a subclass $ = 9í¡o respectively. The con-
struction of Theorem 81 yields a bicompact ZZ-space G$ which is a continu-
ous image of G by virtue of a correspondence q—>36<ß(q). This correspondence
carries' $ into a subclass 9Î$ of the function-ring 9J?<g for G^. The analytical
subrings generated by Sß and 9î<ç respectively are analytically isomorphic
under this correspondence; and Theorem 84 shows that the analytical subring
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generated by 9?$ coincides with 9J?$. If we refer to Theorem 82, we see that
the sets £lv(a<fe<ß), /$e9î$, where a and ß are unrestricted real numbers,
constitute a basis for G$. Obviously, we may restrict a and ß to be rational
without disturbing the stated property. Since the cardinal number of 9i$
does not exceed c, we infer that the character of G$ does not exceed c. It is
evident that the correspondence from G to G$ carries 9Î, which is an every-
where dense subset of G, into a set 9?$ everywhere dense in G$. Since the
correspondence q—*36$(q) carries/(q) into/$(36$(q)), we see that q = re9i implies
/(r) =/ç(36ç(r)), 36^0069?$. Hence the sets dt(a<f<ß) are carried into the
sets 9?$(a </$ <ß) whenever/e9î and/j¡e9íc. We infer that the correspondence
r—>36$(r) carries 91 into 9f$ biunivocally and bicontinuously. Hence 9Î and 9?$
are topologically equivalent. Since the character of 9?$ is c, the character of
Gç is not less than c. Thus G$ is the desired extension.

We now return to the direct study of Boolean maps with particular refer-
ence to CZ?-spaces.

Theorem 91. If SR is a To-space with a Boolean map m(SR, 33, X) in which
Xis a subfamily of a continuous covering family Z, then it is a CR-space.

By Theorem 22, the space G defined by topologizing the family Z is a
continuous image of i8; and G is therefore a bicompact ZZ-space in accord-
ance with Theorem 72. Since G contains 9Î as a subspace, it follows that 9î
is a CZ2-space.

Theorem 92. In a CR-space 9Î, let Qbea basis consisting of sets 9î(a <f<ß)
where, for each f, the corresponding real numbers a and ß are allowed to range
over sets everywhere dense in R; and let A be the basic ring for 9Î generated by Ç.
If m(SR, 33,X) is the algebraic map defined by A, then there exists a continuous
covering family Z in S3 which contains X as a subfamily. The topological space
G defined by Z is a bicompact immediate H-extension of 9Î. Similarly, if
m(SR, 33, X) is the irredundant (algebraic) map generated by A through the
processes described in Theorems 61-63, the family X can again be imbedded
as a subfamily in a continuous covering family Z.

We start the proof with a construction like that employed in Theo-
rem 90, using the class 9Í of all functions / occurring in the given basis-sets
SR(a<f<ß). Thus we imbed 9Î as an everywhere dense set in a bicompact
ZZ-space G$, in such a way that every function / in 9i can be extended con-
tinuously from 9Î to G$ asa function fv. The sets G$(a</$</?) where/e9t
then constitute a basis for G$; and this statement remains true even if the
numbers a and ß corresponding to each function /$ are restricted to every-
where dense sets in R. Thus each set SR(a<f<ß) determines a corresponding
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set G$(a</jj</3), the latter sets constituting a basis Çv in G$. Since
ft£iy(a<fo<ß)=ft(a<f<ß), we see that the basic ring 4$ for G$ gener-
ated by the basis Ç$ is related to 4 in the manner described in Theorem 39
for the rings 4 and B respectively. Hence we can apply Theorem 40 to the
study of the maps generated by 4$ and 4. Since ft is a CR- and hence an
SR-space, G$ is a strict //-extension of ft in accordance with Theorem 65.
Thus we see that the map generated by 4$ can be simplified by the removal
of the set ©(b) corresponding to the ideal b of those members of 4$ which
are nowhere dense subsets of ft'. The resulting map is equivalent to one
obtained from m(ft, 33, X) by augmenting the family X. We thus have a
map w(G$, 33, Z). In order to prove the present theorem, it is thus sufficient
to show that Z is a continuous covering family. We know that the sets in
the family Z are disjoint by virtue of the fact that G$ is an //-space. Using the
bicompactness of G$, we can prove that Z covers 33. Evidently, we can re-
turn to the original map m(Gss, ©(4$), T) and prove instead that Y covers
©(4$). If there exists a point p in ©(4$) which belongs to no set in T, we can
construct for each set g) in Y a set ©(a), aeAy, such that §) c©(a), pe@'(a).
Since the elements a thus obtained constitute a family of subsets of G$ with
the property that their interiors cover G^, we see that it is possible to select
among them certain ones ah ■ ■ ■ , an, such that ai v • • • va„>a/-'v • • •
vö„'-/>G$. Since the relation ai v • • • va„ = G^ implies pe©(4$) =
S(ai v • • • va„) = ©(aO«J ■ ■ • u@(a„), we reach a contradiction. Thus Y
covers ©(4^), and Z covers 33. Using the fact that G$ is necessarily an
Z?-space in accordance with Theorem 71, .we can now prove that the family Z
is continuous. Since 4$ contains the basis Ç<$ for the R-space G$, Theorem
69 shows that in the map m(G$, ©(4^), T) the family T is continuous.
Accordingly, G$ is a continuous image of the bicompact Boolean space
g(4$) as we see by reference to Theorem 22. It follows that the removal of
the set g(6) from ©(4^) leaves G$ a continuous image of the set @'(b). Hence
the map m(G$, 33, Z) represents G$ as a continuous image of 33. The family
Z is therefore continuous in accordance with Theorem 22.

Since G$ and 9? are both CR -spaces, we can also remove from 33 = ©(4)
the set ©(a) corresponding to the ideal a of all nowhere dense sets in 4, as
described in Theorem 65. We thus obtain maps w(G$,©'(a),Z) and
m(ft, ©'(a),X) where Z is an extension of the family X. It is evident that Z
covers ©'(a) ; and the argument used above can be applied again to show that
Z is continuous.

Theorems 91 and 92 show that the CR-spaces axe precisely those which
have certain Boolean maps with the property that the family X can be ex-
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tended to yield a continuous covering family Z. In order to complete the
theory, we consider the problem of constructing such an extension in an
arbitrary Boolean map.

Theorem 93. // m(ft, 33, X) is an arbitrary Boolean map of a To-space ft
and if 93? is the function-ring for 33, then the class ft of all functions in 93? which
are constant in each set of the family X is an analytical subring of SO?. The
space 33si constructed by the processes described in Theorem 81 is a continuous
image of 33 defined by the Boolean map wí(33s¡, S3, Xs¡). Each set H in X is con-
tained in a unique set H<r in Xs¡; and the correspondences x—»ï(r)—»&j¡, where
H(x) c Hft, determine a continuous image of ft in 33s¡. In order that there exist a
continuous covering family Z in 33 which contains the family X as a subfamily,
it is necessary and sufficient that HcHft imply H = &r; when this condition is
satisfied, the family Z may be taken as Z=Xsj.

The class 9? can be constructed in the following way. If H is any set in X,
it is closed. As in the proof of Theorem 85, we see that the class ft(H) of all
functions in 93? which are constant in H is an analytical subring. It is obvious
that 9? is the intersection of all the analytical subrings ft(H). Hence 9? is
also an analytical subring; that is, it is a closed subring which contains every
constant function. We can now construct ïs> = ïsi(p), X<n, and 33s¡ as de-
scribed in Theorem 81. It is evident from the construction of 9? that peï
implies H c£n(p). In Theorem 81, we saw that the correspondence p—»ïsi(p)
from 33 to 33« is univocal and continuous; and Theorem 22 shows that this
correspondence defines a Boolean map w(33si, 23, X«). If we place Hn in corre-
spondence with H whenever H c Hyi, we obtain a univocal correspondence
carrying ft into a subspace of 33sj ; we identify 9Î with the family X, topol-
ogized in the usual way, of course. This correspondence can also be obtained
by restricting the continuous correspondence a, from 33 to 33s>, to the union
©(X) of all the sets in X. This description of the correspondence shows im-
mediately that it is continuous.

From the results already obtained, it is clear that the family Xs¡ is a
continuous covering family. Hence, if H cHyi implies H = H<r, we can obtain a
continuous covering family Z which contains X merely by taking Z = Hft.
On the other hand, if X has such an extension Z, we impose upon Z the usual
topology, obtaining a bicompact //-space G : for Theorem 22 shows that G
is a continuous image of 33 ; and Theorem 72 then shows that G is a bicom-
pact H-space. If p is the correspondence from 33 to G and if / is any function
in the function-ring for G, then/(p(p)) is a bounded continuous function in
33 which is constant in each set 3- Since, in particular,/(p(p)) is constant in
each set H, it belongs to the class 9? discussed above. Since G is a bicompact
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ZZ-space, it is a CZ?-space. Hence / can be chosen so as to assume distinct
values in any two distinct points which we may prescribe. Consequently, the
corresponding function/(p(p)) may be chosen so as to assume distinct values
in any two distinct sets in Z which we may prescribe. It follows that each set
3 contains a set 36». In particular, we infer that 36 c 36» implies 36 = 36», as we
wished to show.

Harvard University,
Cambridge, Mass.
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