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22 Abstract

23 The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest 

24 resources in the US for over eighty years; presented here is a synthesis of research applications for FIA 

25 data. A review of over 180 publications, which directly utilize FIA data, is broken down into broad 

26 categories of application and further organized by methodologies and niche research areas. The FIA 

27 program provides the most comprehensive forest database currently available, with permanent plots 

28 distributed across all forested lands and ownerships in the US, and plot histories dating back to the early 

29 1930s. While the data can be incredibly powerful, users need to understand the spatial resolution of 

30 ground-based plots and the nature of the FIA plot coordinate system must be applied correctly. As the 

31 need for accurate assessments of national forest resources continues to be a global priority, particularly 

32 related to carbon dynamics and climate impacts, such national forest inventories will continue to be an 

33 important source of information on the status of and trends in these ecosystems. The advantages and 

34 limitations of FIA’s national forest inventory data are highlighted, and suggestions for further expansion 

35 of the FIA program are provided. 

36 Keywords: monitoring, carbon, planning, sampling, remote sensing
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37 Introduction

38 National forest inventories (NFIs) are critical for generating national estimates of carbon stocks and 

39 fluxes as well as for supporting long term forest planning and product utilization. Carbon stocks in forest 

40 ecosystems comprise a large percentage of global carbon, and carbon sequestration in forests and forest 

41 products is important for the mitigation of net greenhouse gas emissions (Fahey et al. 2010). Regional 

42 scale data is therefore needed to address large scale questions about forest resources and carbon stocks, 

43 and fluxes in these pools over time. Since the 1928 Forestry Research Act, the United States Forest 

44 Service (USFS) has been charged to “make and keep current a comprehensive inventory and analysis of 

45 the present and prospective conditions and requirements for the renewable resources of the forest and 

46 rangelands of the United States and cooperate with the appropriate officials of each State, territory, or 

47 possession of the United States.” This charge makes the USFS responsible for not only inventorying 

48 forests in the continental United States, but also Hawaii, Alaska, and all forested territories including 

49 Puerto Rico, the US Virgin Islands, Guam, Palau, the Republic of the Marshall Islands, American Samoa, 

50 The Commonwealth of the Northern Marianas, and the Federated States of Micronesia. Early NFI efforts 

51 were conducted under the title “Forest Survey,” ultimately being renamed “Forest Inventory and 

52 Analysis” (FIA) to highlight use of the data and not just data collection. The FIA program has gone 

53 through numerous changes in protocol and design following internal agency and national policies (Figure 

54 1). Program management was originally organized under five separate regions, each with unique 

55 inventory protocols and frequencies, making data comparisons between regions difficult and unreliable. 

56 The United States 1998 Farm Bill included language mandating a unified NFI protocol that integrates the 

57 Forest Health Monitoring (FHM) program on a subset of FIA ground plots (Bechtold and Patterson 2005; 

58 McRoberts et al. 2005). This led to the current FIA sampling frame and plot design. The FIA program 

59 currently provides data to monitor carbon stocks and changes across all forest carbon pools and supports 

60 national and international reporting in the forest land category. In terms of spatial and temporal extent, the 

61 FIA program is one of the largest natural resource datasets globally (Gelfand et al. 2013). While there are 

62 other NFI programs that share many elements of design with FIA, and even a few utilizing higher 
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63 sampling intensities such as in Finland, Italy, Germany, and France, none of the other large-scale NFIs 

64 match the range of ecological diversity that FIA must represent (Tomppo et al. 2009). The scope of the 

65 program has expanded since the 1930s when it solely focused on assessing timber resources, to the 

66 present structure that includes additional variables to facilitate assessments of carbon, wildlife, forest 

67 health, insects and disease, and invasive species (Shaw 2008). Many of the studies evaluated in this 

68 synthesis couple FIA with other data such as laser altimetry data (Pflugmacher et al. 2008), or use 

69 statistical approaches to model multi-variable forest composition and structure from remotely sensed data 

70 (Hudak et al. 2008; Brosofske et al. 2014). One distinct advantage of FIA over similar databases is that it 

71 has no geo-spatial bias as the plots are distributed evenly across the entire United States on all forest lands 

72 (Smith 2002). FIA data are publicly available for all United States forest lands, though the actual 

73 locations of these plots are protected (Shaw 2008). This synthesis extends a previous review by Rudis 

74 (2003) by evaluating research that has directly utilized FIA program data and makes recommendations for 

75 future uses. 

76

77 This synthesis is organized thematically, where each subsection seeks to address the following three 

78 questions: 1) what subject areas can the data be effectively used for? 2) what analytical approaches are 

79 being used with the data? and 3) what are the related challenges and opportunities of FIA data? 

80

81 Review Process

82 The objective is not an exhaustive review of all literature relating to FIA, but rather to provide a synthesis 

83 highlighting the diversity of research and applications for FIA. This synthesis was achieved by searching 

84 for all publications containing the words forest, inventory, and analysis within Thomson ISI Web of 

85 Science (n=336). These publications were then filtered for publications longer than four pages, this 

86 eliminated many proceedings, data summaries, and agency publications that were informational instead of 

87 research oriented (leaving n=287). 

88
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89 This selected literature shows how the FIA program has grown in its research significance over the last 

90 three decades with the number of publications per year increasing by ~0.90 research manuscripts per year 

91 since 1991 (Figure 2). This increasing trend is attributed to the standardization of the FIA data collection 

92 process, the move to annual inventories, and advances in remote sensing and statistical analysis 

93 techniques. The remaining publications were evaluated for their ability to support the background of the 

94 FIA program, explicitly using FIA data within their analyses, and the novelty of the FIA data application 

95 to avoid redundancy (n=195). Of this literature, a consistent proportion of the candidate literature was 

96 cited in this synthesis from each of the last three decades (Figure 2). From this three-decade period, more 

97 than 50% of the publications using FIA data in their analysis have been related to Forest Health and 

98 Carbon Cycle Applications (Table 1). Notably, some of these articles may have also been related to 

99 Remote Sensing Applications, but these articles were attributed to the first section of the synthesis they 

100 appeared in.

101

102 FIA Sampling Procedures

103 Detailed descriptions of the FIA sampling protocol have been widely described in the forestry literature 

104 (e.g., Bechtold & Patterson 2005; Shaw 2008; McRoberts et al. 2005; and Hoffman et al. 2014), thus only 

105 a brief description follows. The FIA program conducts inventories in multiple phases and uses stratified 

106 estimation to estimate population parameters for most variables (McRoberts and Miles 2016). In Phase 1, 

107 remotely sensed products are used in a pre-field process to stratify the population area to reduce the 

108 variance of estimates by determining land use (e.g., forest land or cropland) at all plot locations. In Phase 

109 2, which is a subsample of the initial phase, permanent ground plots are randomly distributed without 

110 regard to land cover, land use, ownership, or other factors, approximately every 2,428 ha across the 48 

111 conterminous states of the United States. The intensity of sampling is reduced within Alaska and 

112 increased within some United States Territories. If any portion of a plot is determined to contain a forest 

113 land use, it is measured by a field crew. Forest land plots provide the basis for all summaries and products 

114 available from FIA and are freely accessible from the FIA program (FIA Data Mart 2016). While the 
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115 original intent of the FIA sampling design was to provide broad scale estimates of forest statistics, it is 

116 increasingly common for users to directly utilize the field plot observations. 

117

118 In order to preserve the ecological integrity of plot locations, protect proprietary information (e.g., plots 

119 on privately owned land), and provide unbiased forest resource information, the FIA program has 

120 established a policy of not disclosing exact plot locations (McRoberts et al. 2005). Publicly available 

121 coordinates are truncated (sometimes referred to as “fuzzed”) to be within roughly one kilometer of the 

122 actual plot location and up to 20% of the plots on private land in each county have their coordinates 

123 swapped to further obscure their true location (Gibson et al. 2014). Thus, the highest spatial resolution 

124 that public FIA data can be resolved is the county, where in some cases, particularly in the eastern United 

125 States, small counties are aggregated to obtain desired precision standards. Therefore, while FIA plots 

126 have a spatial distribution of one plot every 2,428 ha in the continuous 48 states, the resolution of 

127 summarized data is not spatially explicit, as each county has a different area. An exception occurs when 

128 single plots are tracked over successive inventories, as the location does not change once a plot is 

129 established. By United States federal law, the confidentiality of true plot locations must always be 

130 maintained in use of FIA data, and therefore may not be published.

131

132 Each permanent ground plot comprises four subplots arranged in a cluster, with one plot in the center and 

133 three plots arranged radially 36.6 m from the center plot at azimuths of 0, 120, and 240 degrees (Figure 

134 3). All permanent ground plots with at least one forest land condition [i.e., domains mapped on each plot 

135 using land use, forest type, stand size, ownership, tree density, stand origin, and/or disturbance history – 

136 there may be multiple conditions on a single inventory plot (Bechtold and Patterson 2005)] are re-

137 measured every 10 years in the west and every 5-7 years in the east, resulting in a 10-20% sample 

138 annually. Each subplot has a 7.3 m radius and all live and standing dead trees over 12.7 cm diameter-at-

139 breast-height (DBH) are inventoried. Within each subplot there is a microplot 90 degrees from plot center 

140 with a 2.1 m radius. Live saplings and seedlings are recorded within each microplot. Each subplot is 
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141 nested within a 17.95 m radius macroplot on which addition attributes are measured on intensive plots. 

142 The macroplot is also used in some regions to capture rare occurrences such as large trees and mortality, 

143 which would otherwise be missed due to the rare event phenomenon (Bechtold & Patterson 2005). 

144 Additionally, on 5-15% of ground plots additional site- (e.g., litter and soil) and tree-level (e.g., crown 

145 condition) variables are measured in what are referred to as FHM plots or Phase 3 of the design (Bechtold 

146 & Patterson 2005; Shaw 2008, Domke et al. 2017).

147

148 Carbon Cycle Applications

149 Assessment of carbon pools, sequestration rates, and trading each rely on estimates of forest biomass as a 

150 proxy for forest carbon. Within the ground-based plots of Phase 2, commonly used forest inventory 

151 variables (i.e. DBH, total height, and crown base height) for biomass assessment through allometric 

152 relationships are collected. These variables and the FIA sampling strategy lend themselves to both plot 

153 and county-level summarization through the FIA database (FIA Data Mart 2016) and its associated tools 

154 (e.g., EVALIDator) for generating biomass summaries. The standardization and temporal continuity of 

155 the FIA database makes it uniquely suited for assessing trends in biomass levels, which can be directly 

156 and empirically linked to storage and fluctuations in elements like carbon and nitrogen in trees through 

157 previously established allometry. When augmented by Phase 3’s additional measurements of parameters 

158 like downed woody material (DWM), soil chemistry, and understory plant composition, these 

159 observations can be used to look at things like ecosystem level carbon pools and fluxes. Although studies 

160 using FIA data for carbon cycle applications have broadly varied in their scale, nearly all have focused on 

161 one of four applications: 1) direct observation or assessment of change, 2) calibration or training of a 

162 model, 3) validation of model outputs, or 4) a combination of calibration and validation. 

163

164 Many studies have used FIA data to look at either static snapshots of carbon and nitrogen pools or their 

165 fluctuations through repeated measurement cycles. For example, Goodale et al. (2002) used net annual 

166 growth and age-class structure data from the FIA database to estimate the amount of nitrogen sequestered 

Page 7 of 73

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



D
raft

8

167 annually by forests in sixteen large watersheds across the northeastern United States. Using a similar 

168 approach, Hu & Wang (2008) tracked carbon sequestration over a seventy-year period in the Piedmont 

169 forest in South Carolina. In terms of aboveground biomass and carbon, Brown et al. (1997) used FIA data 

170 to estimate the difference in biomass between old growth (>70 cm DBH) and sawtimber forest types, 

171 while Gray et al. (2014) took this a step further and used successive FIA inventories to track changes in 

172 carbon flux from aboveground biomass change and linked the changes in biomass to different causes. In 

173 more targeted efforts, several studies have used FIA data to estimate standing dead and DWM, along with 

174 the carbon stocks and dynamics associated with DWM in forest ecosystems (Chojnacky and Heath 2002; 

175 Chojnacky and Schuler 2004; Woodall et al. 2008; Woodall et al. 2012a; Woodall et al. 2012b; Domke et 

176 al. 2013a; Woodall et al. 2015). Specifically, Chojnacky and Schuler (2004) used FIA to estimate biomass 

177 in DWM per acre for mixed-oak forests in four states in the eastern United States, noting that while FIA 

178 provided an adequate per acre summary, the resolution is coarse due to the nature of the database. More 

179 recently, Hoover and Smith (2012) utilized FIA site productivity condition class indicators to provide 

180 broad guidance about the use of different forest types in carbon offset projects. The study found that all 

181 but the lowest quality and lowest productivity have potential for as forestry-based greenhouse gas 

182 mitigation projects.

183

184 Taking the use of the data a step further, many studies have combined FIA data with other datasets to 

185 develop and calibrate models of forest biomass and carbon stocks. Building on some of their earlier work, 

186 Brown and Schroeder (1999) used FIA data to map annual aboveground biomass flux at a county level 

187 across the eastern United States. In a similar effort by Jenkins et al. (2001) focused on mapping biomass 

188 stocks, plot level FIA data were rescaled from the county level resolution of publicly available FIA 

189 summaries to a half-degree resolution for the entire mid-Atlantic region. He et al. (2012) developed 

190 complete carbon budgets for different forest types based on age by utilizing aboveground NPP from FIA 

191 data and estimates of belowground NPP from remotely sensed maps of leaf area index. Taking model 

192 development to a finer spatial scale, Williams et al. (2012) used FIA data to examine relationships 
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193 between aboveground biomass fluctuations and stand age, as it related to disturbance and recovery cycles. 

194 In a more specific study, Chojnacky & Heath (2002) used Phase 3 plots to explore the relationship of 

195 DWM to other plot variables measured by FIA to identify which had the most predictive power in Maine 

196 forests. Dead standing trees and stumps proved to have the most predictive power for estimating DWM, 

197 each of which are standard measurements in Phase 2 of the FIA system, while live tree variables showed 

198 almost no relation to DWM. In an effort to model carbon fluctuations, Nunery & Keeton (2010) used FIA 

199 as a source dataset for FVS estimations of aboveground biomass under different management regimes 

200 over a 160-year period. In a more direct use of FIA to model carbon fluctuations, Gan & Smith (2006) 

201 estimated biomass residues from harvesting and their potential use in bioenergy production, but excluded 

202 losses due to silvicultural treatments. Taking this a step further, Perez-Verdin et al. (2009) used FIA data 

203 to estimate biomass volumes in Mississippi for use in bioethanol conversion. The most complete look at 

204 the influence of management and disturbance on carbon stocks came from Bradford et al. (2013), who 

205 used FIA data to model the influence of natural disturbance rates and harvesting on carbon dynamics on 

206 the Superior National Forest; they found that regional harvest projections continued to increase total 

207 terrestrial carbon stores, but that the projected increases in disturbance frequency due to climate change 

208 would have a long-term negative impact.

209

210 The next class of studies used FIA data to either validate local FIA summaries or to validate outputs from 

211 another model. In terms of validation of the FIA system, Karlik & Chojnacky (2014) destructively 

212 sampled blue oak (Quercus douglasii) in California to develop models of total biomass and biomass 

213 carbon, finding that the results compared well to biomass summaries for blue oak from FIA. In a similar 

214 study, Sabatia et al. (2013) used FIA to validate local allometric biomass estimates of eight FIA plots in 

215 southern Appalachian hardwood forests, demonstrating that local estimates were generally significantly 

216 higher than biomass estimates taken directly from FIA data, but could not discern the reason for these 

217 differences. There are also a number of efforts that have used FIA data to validate other modeling 

218 platforms. Cartus et al. (2012) utilized FIA aboveground biomass summaries at multiple scales to validate 
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219 remotely sensed biomass estimates from the Advanced Land Observing Satellite (ALOS) 30 m pixels to 

220 county scales. This study demonstrated that the ALOS estimates were more strongly correlated with FIA 

221 biomass summaries when pixels were aggregated to >500 m pixels. Hudiburg et al. (2013) improved the 

222 model form of the Community Land Model through FIA statistical training of the model’s net primary 

223 production (NPP) equations. The study improved estimated precisions for stem biomass and NPP by 50 

224 and 30% respectively, by incorporating more variables based on physiological tree characteristics. 

225 Lichstein et al. (2014) improved large scale aboveground biomass models by accounting for wider 

226 margins of error in parameter data. FIA data were used to explore how assumptions on data errors in 

227 climate and soil variables affect modeled estimates of biomass. FIA plot data were used to validate 

228 biomass estimates modeled under assumptions of very small error and very large errors. FIA data have 

229 long served as the foundation for estimates of carbon stocks and stock changes on forest land for the 

230 National Inventory Report of greenhouse gas emissions and removals in the United States submitted each 

231 year to the United Nations Framework Convention on Climate Change (US EPA 2016). An early effort 

232 by Wilson et al. (2013) attempted to look at how nearest neighbor imputation routines could be trained by 

233 the FIA dataset for carbon project planning and reporting but determined that refinement in the modeling 

234 process was necessary to be useful at the project level. Domke et al. (2016) developed a modeling 

235 framework to estimate litter carbon stocks and stock changes on forest land from Phase 3 FIA plot 

236 attributes and auxiliary climate variables. When compared against a coarser national model of litter 

237 carbon stocks, their field-based approach showed a 44% reduction, suggesting a gross overestimation of 

238 the national model.

239

240 The final set of studies use FIA data in a more intricate way to either develop and validate the same model 

241 or to develop and then validate another model. Building on their earlier work, Domke et al. (2017) 

242 develop a model of litter carbon stocks and their changes from FIA Phase 3 inventory and biophysical 

243 attributes that they applied to all Phase 2 locations in a non-parametric modeling framework. This 

244 approach of using site specific information yielded a 75% increase over State Soil Geographic database 
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245 estimates, demonstrating a substantial increase in the importance of soil carbon in total forest carbon 

246 budgets. When looking more broadly at aboveground biomass, Mickler et al. (2002a) linked biomass 

247 fluxes to different forest types and regionally modeled net primary productivity (Mickler et al. 2002b), 

248 with a focus on fire risk. Westfall et al. (2013) did a detailed assessment of aboveground biomass fluxes 

249 in the Great Lakes region using FIA data, and found no net change in the carbon pool. Losses in biomass 

250 from reduction of DWM were balanced by gains in biomass from the growth of live woody plants, 

251 making the net carbon flux indistinguishable from zero by standard FIA summaries. Chojnacky et al. 

252 (2014) developed updated biomass models using individual tree data from FIA and compared the results 

253 of individual tree modeling back to generalized FIA biomass summaries. They found that, on average, 

254 FIA biomass summaries were twenty percent lower than biomass estimates produced from individual tree 

255 modeling. Nay & Bormann (2014) developed site-specific biomass models for Douglas-fir (Pseudotsuga 

256 menziesii) in a single stand in the Siskiyou Mountains of southern Oregon. Biomass models were 

257 developed from thirty-two trees in the selected stand, and the results compared to general regional and 

258 FIA models, respectively. The FIA based models outperformed the regional biomass models that each led 

259 to a higher bias. MacLean et al. (2014) compared FIA estimations of aboveground biomass carbon to 

260 estimations from three different Forest Vegetation Simulator runs under different parameters; two 

261 calibrated tests and one uncalibrated test. Results showed little similarity between any of the biomass 

262 estimations, the point of the study being that we as scientists must be very careful about correctly 

263 calibrating models and using consistent inventory methods. 

264

265 Similar studies have used FIA data in efforts to validate remote sensing products, such as Li et al. (2009) 

266 coupling FIA data and Landsat TM data to improve the accuracy of remotely sensed forest types. Zheng 

267 et al. (2007) attempted to resolve the resolution issues between FIA estimates and MODIS derived 

268 biomass estimates using empirical models developed from Landsat data. MODIS provides higher spatial 

269 resolution (500 m) than FIA data and synoptic coverage, hence the combined product provides more 

270 spatially detailed biomass estimations for each forest type in the Lake States. Kellndorfer et al. (2006) 
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271 used FIA biomass data to train and validate model projections derived using data from the Shuttle Radar 

272 Topography Mission of dry biomass and forest canopy height in Utah as part of a larger scale project to 

273 develop a nation-wide model for mapping biomass, carbon, and canopy heights across the entire United 

274 States. Several studies have evaluated biomass fluctuations from disturbance events using FIA and remote 

275 sensing products. Chen et al. (2011) used FIA, Landsat, and LANDFIRE data to map aboveground 

276 biomass carbon and biomass loss due to fire. FIA data were used to train a regression model and then 

277 additional data were used to validate the output of that model. By combining FIA with the higher 

278 resolution data from Landsat and LANDFIRE, Chen et al. (2011) produced maps at a 30-meter resolution. 

279 Williams et al. (2014) used Landsat imagery to estimate areas of disturbance and then stratified those 

280 disturbed areas with FIA data; stand age was used to constrain a carbon model to quantify the effect of 

281 stand age on biomass carbon fluxes. Sheridan et al. (2015) integrated LiDAR with FIA data to explore the 

282 ability of such systems to improve FIA biomass estimates at varying scales. The results demonstrated that 

283 LiDAR could reliably estimate biomass per FIA protocols and that potential existed to integrate LiDAR 

284 into standard FIA data collection procedures. 

285

286 Schroeder et al. (1997) developed expansion factors for temperate broadleaf forests in the United States to 

287 convert timber volume to aboveground biomass carbon, highlighting a limitation in FIA summaries since 

288 they were based on merchantable timber volumes and did not include branches, foliage, etc. When 

289 compared to FIA derived biomass, the predictions from Schroeder et al. (1997) produced predictably 

290 higher carbon estimates. For more accurate total biomass estimation, it is important to include all parts of 

291 the tree, not just the merchantable volume. This critique was addressed in the FIA program by adopting a 

292 component ratio method of biomass estimation, which provides separate estimates for each part of the tree 

293 (Woodall et al. 2011). Domke et al. (2012a) showed that the recently adopted component ratio method 

294 produced lower estimates of biomass than those previously produced, but speculation is that that these 

295 new estimates are more accurate because they incorporate tree height data by species and more locally 
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296 derived components. The resulting changes in biomass estimations nationwide impact not only the FIA 

297 database but also related programs, such as the National Greenhouse Gas Inventory.

298

299 It is understood that long-lived old growth trees can contribute a large percentage to total carbon 

300 sequestration, but it has been shown by Roesch & Van Deusen (2010) that the low plot density implicit 

301 within the sampling design of FIA misses a large percentage of large diameter trees in three quarters of 

302 the sampling regions. To overcome this issue, the Pacific Northwest Region of the FIA program 

303 implemented an additional protocol to capture rare large trees with high accuracy, highlighting that a 

304 similar protocol could be applied nationally to capture other rare conditions of interest. 

305

306 Forest Products and Forest Growth Applications

307 One of the primary objectives behind NFIs is to track forest products and forest growth rates in support of 

308 sustainable forest management planning. Consistent, repeat measurements at the same sampling locations 

309 and inclusion of measurements beyond minimal inventory standards, such as age and diameter growth 

310 increments from tree increment cores, make FIA data useful for tracking forest products and growth. 

311 Although the number of studies using FIA data to assess forest products and growth are numerous, most 

312 of them can be placed in a few categories: 1) direct observations of products and growth, 2) development 

313 of models from FIA data, or 3) validation of an external model outputs. Of these, most assessments use 

314 traditional metrics of forest growth, but there are also a few more novel applications to be considered.

315

316 Studies that used FIA data to directly quantify forest products and growth were focused on either 

317 explaining the mechanisms controlling the distribution and growth of products or using the information in 

318 a supply chain modeling exercise. Bechtold et al. (1991) used FIA data from two successive inventory 

319 periods: 1961-72 and 1972-82 to track changes in basal area growth rates in Georgia pine plantations to 

320 evaluate causes of reduced growth over the two inventory periods. Following this work, Reams (1996) 

321 used FIA to identify twenty plot locations of loblolly pine (Pinus taeda), which were sampled to provide 
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322 radial growth data from tree increment cores. The previous study suggested loblolly pine stands had 

323 shown decreased growth rates through the 70s and early 80s. However, this study updated growth data 

324 through 1989 and showed that while there was a trend of decreased growth in the 70s, radial growth rates 

325 had recovered in the 80s; which is in line with growth and yield estimates from FIA data for that period. 

326 Reams (1996) also noted that radial growth in loblolly pine follows a cyclical trend, with periods of 

327 reduced growth rates followed by periods of increased growth. Using a similar approach, Elias et al. 

328 (2009) used periodic mean annual volume increment growth data from repeat measurements of 30 

329 accurately located FIA plots and local soil and acid deposition data to determine the effect of acid 

330 deposition on forest growth. Results showed that growth data from forest inventories could be used as 

331 potential predictors of acid deposition. Berguson et al. (1994) used FIA data from the Lake States region 

332 to develop stocking indices based on relations between tree height and canopy density. Long & Shaw 

333 (2005) developed density management diagrams from FIA plot data for even-aged stands of ponderosa 

334 pine for western United States land managers, and in a follow-up study Long & Shaw (2012) developed 

335 density management diagrams for managers of even-aged stands of mixed coniferous forests in the Sierra 

336 Nevada range. 

337

338 Other efforts have tried to link forest products and growth information with management decision 

339 making. Moser et al. (2009) linked landowner objectives to forest volume and diversity on small private 

340 woodlands owned by Midwest farmers. This study provided a more localized assessment of forest 

341 products that has applicability for small private landowners and could demonstrate the value of FIA data 

342 to groups such as family forest owners, state forest owner’s associations, and the American Tree Farm 

343 System. Butler et al. (2014) used FIA data to provide variables used to model and map forest ownership 

344 categories; variables used included stand level attributes and road density. Siry & Bailey (2003) used FIA 

345 data to track increased growth rates in pine plantations across thirteen southern states, linking this to 

346 increased merchantable volume, harvest removals, and implications for lumber supply. Prestemon & 

347 Wear (2000) took a similar approach and used FIA data to track growth in southern pine stands in North 
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348 Carolina. Harvest decisions and lumber supply were then modeled based on current timber values, 

349 operating costs, and the opportunity cost of non-timber forest products. Smidt et al. (2012) used FIA data 

350 and FVS-modeled growth to estimate the volumes of logging residue and non-merchantable biomass 

351 resulting from hypothetical harvests of forests in the southeastern United States. These volumes were 

352 used to explore the feasibility of using harvest residues for bioenergy production and the loadings of 

353 residues required to break even on production costs. Canham et al. (2006) and Papaik & Canham (2006) 

354 each conducted studies of forest competition in northern and southern New England forests, respectively. 

355 Each used data from FIA plots located across New England to parameterize models to explore the effects 

356 of competition on growth and yield. Following this, Canham et al. (2013) focused on forest disturbances 

357 in the northeastern United States and developed a model to predict stand harvesting based on total tree 

358 biomass and the proportion of basal area that could theoretically be removed from the stand. This 

359 approach is well suited to northeastern United States silvicultural practices; different parameters would be 

360 needed for the western United States where clearcuts, shelterwoods, and thinning treatments are more 

361 frequently applied. 

362

363 Other approaches to using FIA for forest products and growth assessments have directly used FIA data to 

364 develop models of both individual tree and stand level attributes. Prestemon (1998) developed a model to 

365 predict merchantable tree and stand attributes from FIA data. Model outputs were validated with FIA 

366 data; models for softwoods and large diameter hardwoods were found to be the most accurate for 

367 predicting log grade. Cao et al. (2002) presented a methodology for modeling individual tree growth 

368 using FIA-based models specified for loblolly pine/shortleaf pine forests in Louisiana. Individual models 

369 for tree height, diameter, crown percent, and survival were developed based on FIA data from two 

370 subsequent inventory periods and integrated to produce a combined individual tree model. Zobel et al. 

371 (2011) used FIA data from 1977, 1990, and 2003 to fit a series of empirical models for basal area growth 

372 in aspen forest types of Minnesota and determined that each period produced estimates nearly identical to 

373 those from simple empirical models, but that with increasing model complexity the variance in the 
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374 estimates from each dataset increased. Although the lack of older aspen stands prevented the fit of the 

375 best overall model, the authors believed their model development approach could prove useful in other 

376 forest systems.

377

378 The final major use of FIA data for assessing forest products and growth has been the validation of 

379 outputs from modeling platforms external to the FIA program. Siry et al. (2001) compared FIA growth 

380 projections to productivity models for high intensity management pine plantations in the southern United 

381 States. For these intensively managed areas, FIA data were found to underestimate growth by up to 94%. 

382 Siry et al. (2001) theorized that higher than expected growth and yield in southern pine plantations could 

383 be beneficial economically, as the southern pine market had been predicted to experience supply 

384 shortages. Pan et al. (2004) modeled foliar nitrogen concentrations and net primary productivity in mid-

385 Atlantic forests, and used FIA biomass data to validate wood production rate projections. Results showed 

386 that observation of foliar nitrogen concentration significantly increased predictions of wood production 

387 rates. Russell et al. (2013) used FIA data to spatially calibrate outputs from the Forest Vegetation 

388 Simulator-Northeast variant for twenty common species. After calibration, the sub-model was found to 

389 underestimate five year basal area growth for all forest types across the northeast, suggesting it may be 

390 necessary to refit or reengineer the variant to more accurately represent the region’s growth dynamics. 

391 Waring et al. (2006) developed a model to estimate site index and forest growth potential across the 

392 northwestern Untied States from MODIS remote sensing observations and climatic variables, validating 

393 model outputs using FIA data from 5,263 plots distributed longitudinally along a steep climate gradient in 

394 Oregon. 

395

396 In an application assessing a non-traditional forest product, Farrell (2013) used FIA data on the 

397 abundance, stand composition and proximity to roads of both sugar maple (Acer saccharum) and red 

398 maple (Acer rubrum) trees in twenty northeastern states. The goal of this study was to estimate the 

399 production potential of maple syrup in each of these regions, where several states with historically high 
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400 syrup production were evaluated for how each state either fully utilizing or underutilizing its potential for 

401 syrup production. This study helps to demonstrate the value of FIA data for non-timber forest products 

402 and reminds the reader of the breadth of resources forests can provide. 

403

404 While the FII program provides robust data for assessing forest products and their growth, data usage has 

405 faced challenges as the range of applications continues to grow. To increase the utility of FIA reports for 

406 timber applications, Teeter & Zhou (1999) developed a method for breaking FIA summaries into more 

407 detailed product groups such as sawtimber and pulpwood. With a targeted return interval of 5-10 years for 

408 each plot in the FIA system, but a program desire to provide annual summaries, Lessard et al. (2001) 

409 developed a nonlinear, individual-tree, distance-independent annual diameter growth model to improve 

410 annual summaries by accounting for tree growth of plots that are not re-measured in a given year. 

411 Advances in wood utilization within the forest products market have changed the assessment of 

412 merchantable biomass (Domke et al. 2012b). Merchantable volume estimates have traditionally been 

413 measured to a minimum small end diameter and any portion of the bole below this diameter has been left 

414 on site and not utilized in any way. Domke et al. (2013b) describe a method to estimate the volume within 

415 this previously missing portion of the dataset from already available FIA data.

416

417 With an increasing focus on ecosystem management and the spatial patterns that drive ecosystem 

418 functions, Woodall and Graham (2004) proposed a method for conducting point pattern analysis using 

419 clustered FIA subplots. While each individual subplot (0.01 ha) is too small for this analysis to be 

420 effective, the combined area of all four subplots (0.04 ha) on any given FIA plot can be re-arranged. 

421 Woodall and Graham (2004) observed that the arrangement of subplots does not have a significant impact 

422 on the results. Application of point patterns derived from FIA data could significantly improve our 

423 understanding of local competition and its effect on forest growth. 

424

425 Climate Applications 
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426 FIA data can be highly effective for monitoring and analyzing climate related forest issues because of the 

427 tremendous spatial and temporal breadth of the program. The FIA program encompasses a vast spatial 

428 area larger than any other similar database (Gelfand et al. 2013). The database is free from any 

429 geographic bias, providing a proportionally representative sample in all forested areas (DeRose et al. 

430 2013). The long-term nature of the data’s collection with a near century-long field campaign provides the 

431 continuity necessary to detect long-term changes. Finally, the standardized methods used to summarize 

432 data at the county level presents a tractable resolution for large-scale climate applications. Generally, 

433 these studies attempt to either detect changing climate conditions or to predict future climate conditions, 

434 based on currently available FIA data, but in all of these studies, the use of FIA data can be broken into a 

435 few categories: 1) direct observations of change, 2) development/training of a model, and 3) validation of 

436 model outputs.

437

438 Several recent studies have used FIA data to link shifts in species distributions to changing climate. One 

439 of the first studies to identify shifts in species distributions was Woodall et al. (2009), who related species 

440 regeneration density with species biomass density and found that regeneration was preferentially 

441 occurring at more northern latitudes. Woodall et al. (2009) estimated that some species were migrating 

442 north at a rate of 100 km/century. Brady et al. (2010) took a predictive approach, where FIA data was 

443 used to develop a model for detecting changes in climate at large spatial scales. Desprez et al. (2014) and 

444 Hanberry & Hanson (2015) took a different approach, tracking geographic shifts in species distributions 

445 using FIA data. Desprez et al. (2014) tracked the distribution of blackgum (Nyssa sylvatica) in the eastern 

446 United States from two separate inventories in the 1980s and 2000 and showed how its abundance 

447 changed in different sections of its biological range. Hanberry & Hanson (2015) took a much larger and 

448 comprehensive approach, tracking changes in species distribution of 74 different species found across the 

449 United States over roughly the same 28-year period as Desprez et al. (2014). This study detected 

450 distribution shifts in 26 of the 74 species, but found that this shift was not uniform. Roughly half of the 

451 species in Hanberry & Hanson (2015) showed shifts toward the north, while the other half showed 
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452 distribution shifts toward the south; additionally, limber pine (Pinus flexilus) showed an expanding 

453 distribution in both directions. A key limitation in the use of FIA data is that it does not extend past the 

454 United States (Hanberry & Hanson 2015), which means that some critical points of the spatial distribution 

455 may be missed. To get at some of the species-specific stand dynamics that climate might drive, Zhu et al. 

456 (2014) modeled the climate space of juvenile and adult trees using FIA data and found that for 77% and 

457 83% of species, regeneration was occurring in warmer and moister areas than occupied by the adults. 

458

459 Other studies have utilized FIA data for climate change modeling applications (Coops et al. 2009; 

460 Gelfand et al. 2013; Iverson & Prasad 1998; Iverson et al. 1999; Jiang et al. 2015; Pan et al. 2009). 

461 Gelfand et al. (2013) utilized FIA data to increase the projection scale of an integral projection model 

462 (IPM) for use in climate change. IPM modeling is typically a small-scale projection, often done at a plot 

463 level, which makes it unsuitable for large scale climate applications. Linking plot level projections from 

464 IPMs to FIA data allows the model to be scaled up to encompass large areas; in this study, the entire 

465 eastern United States is projected from IPMs. FIA is invaluable for this type of model scaling as it is a 

466 ground-based dataset that encompasses large enough areas to be suitable for climate analysis. Jiang et al. 

467 (2015) used FIA data for model development by linking current FIA derived site index to soil and climate 

468 data. Modeled site indices were mapped under assumed conditions to produce forest productivity maps 

469 under varying scenarios. Pan et al. (2009) modeled changes in carbon sequestration due to changes in 

470 atmosphere, climate and land use, while using FIA data to validate the output of their model. Iverson & 

471 Prasad (1998) and Iverson et al. (1999) used regression tree analysis of FIA data along with soil, climate, 

472 elevation, and land use data to predict changes in species distributions under a given future climate 

473 condition associated with a two-fold increase in atmospheric CO2 level. 

474

475 The last set of studies used FIA data to validate outputs of models for current conditions. Coops et al. 

476 (2009) modeled species presence/absence for 3,737 FIA plots across the west coast of the United States 

477 based on mean monthly climate conditions. The output was then compared back to the observed species 
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478 on each FIA plot for model validation, resulting in 87% accuracy, but Coops et al. (2009) hypothesized 

479 that a broader set of climate factors would produce more accurate results. DeRose et al. (2013) exploited 

480 the incredibly high temporal resolution of FIA tree ring data by using dendrochronology for climate 

481 reconstruction to spatially track the El-Niño Southern Oscillation (ENSO) dipole, showing large shifts in 

482 the latitudinal range of the ENSO during recent centuries. This study also compared FIA tree ring data to 

483 equivalent data available from the International Tree-Ring Data Bank (ITRDB), and found that tree ring 

484 data from FIA had less variation than data from ITRDB. A possible explanation offered in this paper is 

485 that the ITRDB chronologies tended to be from highly drought sensitive trees, while the FIA chronologies 

486 are taken from a systematic sample of the entire population of trees. In one of the largest forest inventory 

487 synthesis efforts, Hember et al. (2017) combined FIA data with other large scale North American 

488 inventories to model the effect of drought on tree mortality for 65 species. Results showed that average 

489 mortality rates have increased over the last 50 years, but that mortality has also become increasingly 

490 episodic due to higher severity droughts.

491

492 While most of these studies have contributed new ways of understanding climate effects on tree species, a 

493 couple have brought out interesting discussions of FIA programmatic changes and limitations. Lintz et al. 

494 (2013) demonstrated that the change in sampling protocol in 2000, from a regional to a unified national 

495 approach, did not appreciably impact sampling errors when modeling the effect of climate on species 

496 distributions. Gibson et al. (2014) compared publicly available coordinates to true (untruncated) FIA 

497 coordinates for species distribution modeling in response to climate change for several juniper and piñon 

498 pine species and showed similar results. However, this is one example of an application on a set of 

499 species that occupy a widespread dry and warm climate space. Although these results are promising, it is 

500 quite possible that the effect of plot location “fuzzing” could be quite dramatic on species that require 

501 more localized mesic growing environments. As modeling efforts proceed to increasingly finer 

502 resolutions, the demand for unperturbed plot coordinates will likely continue to increase as this will 

503 become one of the greatest bottle-necks to these efforts.
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504

505 Forest Health Applications

506 Land managers are faced with the prospect of a changing climate and must deal with the implications this 

507 has on forest health and disturbance patterns. The periodicity of FIA inventories, their large spatial scale, 

508 and the accessibility of the data make it a powerful resource for monitoring forest health. Similarly, their 

509 spatiotemporial balance and standardized collection protocols facilitate assessment of forest disturbance 

510 and recovery. Using FIA to predict forest health vulnerability and merchantable species availability 

511 following future composition shifts due to climate is a valuable application of FIA data (Smith et al. 

512 2014). The use of FIA data in analyzing forest health and disturbances is among the most diverse covered 

513 in this synthesis, as it includes areas of general forest health, fire hazard, insects and pathogens, invasive 

514 species, and habitat suitability.

515

516 General Forest Health

517 In terms of monitoring general forest health, studies can be divided by the scale at which they analyze 

518 their FIA response metrics. Many studies operated at broad spatial or temporal scales, looking at trends in 

519 successional stages and forest structures, while others operated at finer plot and tree-level scales to try and 

520 explain the mechanisms behind changes in forest health. Miles (2002) looked at the potential to use FIA 

521 data to monitor biological indicators of trends in forest health. From a group of 67 internationally 

522 recognized indicators, 11 were determined to be directly obtainable from FIA data alone including 

523 assessing trends in forest type, area, and successional stages, and diversity of forest species. Liu et al. 

524 (2003) and Zhang et al. (2004) both used FIA data to classify FIA plots into six ecological habitat types. 

525 These closely related studies applied different techniques, with Liu et al. (2003) using a k-Nearest 

526 Neighbor method to classify plots, while Zhang et al. (2004) used a Gaussian mixture model, but both 

527 showed accuracies in the 90th percentile. He et al. (2011) used Landsat TM/ETM+ imagery at a 500-meter 

528 resolution to detect areas of disturbance in forests and used FIA data to identify the time of disturbance 

529 and subsequent regeneration. Schaberg & Abt (2004) assessed the impacts of hydrological data on the 
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530 likelihood and impacts of harvesting by linking FIA data with specific watersheds from the USGS 6-digit 

531 hydrologic unit code (HUC6) database. Estimates of forest growth, mortality, and harvesting were 

532 projected forward to 2025, and the overall hydrological impacts on each watershed were estimated from 

533 these projections. In a more temporally focused effort, Sohl & Sayler (2008) used FIA data to provide 

534 stand age data for modeling changes in forest cover in the southeastern United States, linking historical 

535 changes in forests to local effects of climate. Dyer (2001) used witness trees from survey data from the 

536 1787 “Ohio Company Purchase” to approximate pre-settlement forest conditions. These assumed 

537 conditions were then compared to current forest conditions taken from FIA data for the study area and the 

538 differences used to infer forest changes. A similar approach was applied by Wang et al. (2009) to evaluate 

539 forest changes in New York State. Frelich (1995) used FIA data and old land survey data to track changes 

540 in old growth forest around the Lake States from pre-settlement conditions. Hanberry et al. (2012) used a 

541 combination of historical survey data and current FIA plots to track trends of species homogenization and 

542 forest habitat mesophication in Minnesota. This study showed a general trend towards a later successional 

543 stage forest type, likely due to reductions of frequent disturbance in the subject forests. 

544

545 At finer scales, studies have attempted to use FIA data to explain stand dynamics related to forest health 

546 such as regeneration, competition, and mortality. In a cross-scale analysis, Puhlick et al. (2012) used FIA 

547 plots and field soil samples to determine which site and stand factors had the most significant impact on 

548 regeneration of ponderosa pine (Pinus ponderosa) stands in the southwestern United States. FIA data 

549 were used at a more regional scale, while soil samples were used at a more local scale. Wang et al. (2013) 

550 used FIA data to drive the LANDIS PRO model, which predicts competition factors and disturbances 

551 from small processes at a tree level and scales up projections to a landscape level. Westfall & Morin 

552 (2013) used FIA data to model crown cover of individual trees based on tree level attributes and 

553 established crown width models. Morin et al. (2015) looked at trends in mortality related to various crown 

554 health codes recorded by FIA; 2,616 plots from the 1999 inventory were resampled in the eastern United 

555 States to assess which recorded crown health conditions resulted in eventual mortality. Meng & 
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556 Cieszewski (2006) used data from the 1989 and 1997 FIA inventories in Georgia to look at the effect of 

557 spatial clusters on tree mortality, the results have potential to explain the spatial spread of different agents 

558 of mortality. 

559

560 Fuels and Fire Hazard

561 Following a century of fire suppression and other management actions that have increased stand densities 

562 and fuel loadings, wildfires are the most highly publicized disturbances to forested ecosystems. When 

563 compared to physical modeling of target forest structures, the geospatially uniform distribution of FIA 

564 data can be used to assess fuel and fire hazard spatially. Arriagada et al. (2008) used FIA data to estimate 

565 the gross cost of fuels reduction treatments ($1-9k per hectare) based on harvesting smaller diameter trees 

566 in the western United States. This study did not consider the commercial value of the volume being 

567 removed, which could offset some costs. Chojnacky et al. (2004) modeled DWM based on FIA Phase 2 

568 plots in the eastern United States and validated it against FIA Phase 3 plots. Chojnacky et al. (2013) then 

569 estimated DWM across the entire United States and made the resulting map available as an online web 

570 tool. Keane et al. (2013) looked at the accuracy of fuel classification systems, using two established 

571 systems and one new classification developed in their study from over 13,000 FIA plots. Low accuracies 

572 were found when fuel loadings from the classification were compared against actual plot values, which 

573 was attributed to high variability in fuel component loading even within classification categories. As one 

574 pathway to improve such assessments, Hudak et al. (2012) and Hudak et al. (2016) demonstrate the utility 

575 of k-NN (Nearest Neighbor) imputation for estimating fuel loads, which relies on the association between 

576 surface fuels and the overstory to estimate surface fuel loads indirectly as ancillary variables, rather than 

577 directly as the response variable in the model. By imputing a single nearest neighbor (k=1), the variance 

578 in the imputed fuel loads preserved the variance in observed fuel loads.

579

580 In terms of crown fire assessments, Cruz et al. (2003) modeled canopy fuels and structure based on FIA 

581 plot level attributes such as stand height and basal area. Estimates of canopy fuel loading were then 
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582 produced for areas highly susceptible to crown fire in the western United States. Skowronski et al. (2007) 

583 used a combination of LiDAR and FIA data to model canopy structure and ladder fuels for New Jersey 

584 pinelands. The study found relatively high accuracy at larger scales but noted increased variability at plot 

585 scales. Woodall et al. (2005) linked fuel loads with atmospheric data to estimate fire risk level under 

586 variable fuel moisture levels. The end product was a large-scale fire risk map based on fuel loading and 

587 moisture levels. Through coupling United States census and FIA data, Zhai et al. (2003) linked fire 

588 probability, road proximity, wildland urban interface (WUI) proximity, education level of local residents, 

589 stand composition, management history, and fire history. A similar study by Munn et al. (2002) focused 

590 on harvest trends with increased proximity to urban areas by combining harvest data from FIA with 

591 census data in the southern United States. In general, the closer a stand is to urbanized areas the less likely 

592 it is to be harvested, potentially due to impacts of public perception and opinion.

593

594 Insects and Pathogens

595 Numerous studies have also taken advantage of FIA’s damage codes to study the impacts and spread of 

596 forest insects and pathogens. One of the impetuses of this was when Cowling & Randolph (2013) called 

597 for increased collaboration between FIA and forest pathologists, specifically those working on fusiform 

598 rust which primarily affects southern pine plantation species. Baker et al. (2012) used FIA and Minnesota 

599 DNR data from over 200 stands to evaluate the frequency of dwarf mistletoe in black spruce (Picea 

600 mariana) stands. They found that FIA and Minnesota DNR databases underestimate the abundance of 

601 dwarf mistletoe by a large margin--roughly a factor of five. Similarly, Lamsal et al. (2011) used FIA data 

602 and a local northern California plot network to map the distribution of oak species susceptible to sudden 

603 oak death, the current status of infection, and the potential for future spread of the disease. Several studies 

604 have used FIA data to evaluate oak decline (Kromroy et al. 2008; Fei et al. 2011; Hanberry 2013; Knoot 

605 et al. 2015), which is a serious forest health issue that is attributed to a variety of causes including 

606 changes in climate, fire regimes, invasive species, insects and disease, and forest management practices. 

607 Randolph et al. (2013) investigated the potential to use FIA to track the presence of thousand cankers 
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608 disease in black walnut (Juglans nigra) from tree attributes such as overall health and crown condition. 

609 Though the study saw limited temporal change in the abundance and presence of thousand cankers 

610 disease, the authors noted this could have been due to an actual absence of the disease or an inability of 

611 the FIA program to detect the diseases presence. The authors discuss that accurately assessing the 

612 causality of tree mortality in the FIA database can be difficult with return intervals of 7-10 years. In a 

613 similar study, Shearman et al. (2015) used FIA to track changes in redbay (Persea borbonia) resulting 

614 from laurel wilt disease and demonstrated potential in tracking mortality at plot, county, and state levels. 

615 Finally, Witt (2010) used FIA data to examine tree and stand level attributes associated with heart rot in 

616 aspen species. The results showed that older trees and larger trees were more susceptible to heart rot, but 

617 the author points out that this may be due to a longer exposure time to potential pathogens. The author 

618 also noted that FIA lacks any sort of genetic data which could be useful in detecting susceptibility to 

619 various forest pathogens.

620

621 Many other studies have focused on insect disturbance agents including Thompson (2009), who coupled 

622 aerial detection surveys with FIA annual inventories in Colorado to track insect caused mortality in 

623 lodgepole pine (Pinus contorta), finding a 10-fold increase over a 10 year period. Haavik et al. (2012) 

624 used FIA to identify red oak stands in Arkansas and then surveyed those stands to look for red oak borer 

625 presence. Not surprisingly, stands with increasing numbers of red oak borer showed increased red oak 

626 mortality. Moser et al. (2003) used FIA in a model run to provide recommendations to land managers on 

627 which pine species to favor in southern plantation forestry, based on a combination of growth rates and 

628 predicted volume loss from various insects and diseases. 

629

630 Invasive Species

631 There has been a rise in the number, range, and severity of invasive species outbreaks impacting forests in 

632 the United States over the last several decades. The temporal continuity and spatial distribution of FIA 

633 plots allows analysts to identify and monitor the spread of these organisms to better understand 
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634 mechanisms promoting their spread. Huebner et al. (2009) used FIA data to quantify the abundance of 

635 exotic and invasive plants in the Allegheny National Forest, Pennsylvania. The abundance of invasive 

636 species was linked to stand characteristics and to further identify potentially vulnerable areas prior to 

637 establishment of invasives. Similarly, Lemke et al. (2011) used FIA data to model the potential for 

638 invasion of Japanese honeysuckle in the Cumberland Plateau and Mountain Region located in the 

639 southeastern United States. Japanese honeysuckle is a highly prolific invasive plant; using FIA to identify 

640 areas prone to invasion allows land managers to prepare for and possibly prevent the spread of invasive 

641 species. Hussain et al. (2008) used FIA data to identify common stand characteristics for areas with 

642 invasive plants, similar to the work done by Huebner et al. (2009). Hussain et al. (2008) also included 

643 economic and social factors such as land ownership and proximity to large cities were factors contributing 

644 to vulnerability to invasive species. DeSantis et al. (2013), in a study focusing on the emerald ash borer, 

645 linked FIA and climate data to map how the spatial distribution of ash species (Fraxinus spp.) overlapped 

646 with the optimal temperature range of emerald ash borer. They showed that ash species growing in the 

647 most northern latitudes of the range have potential to survive despite the tenacity and prolific nature of 

648 emerald ash borer, but the study was limited by lack of data outside the United States. Riiters et al. (2017) 

649 used over 20,000 FIA plots to quantify landscape pattern effects on the probability of invasive plant 

650 invasion and found that while proximity to road impacted invasion probability, proximity to agricultural 

651 land and forest fragmentation had the greatest impact. One of the more sophisticated approaches utilized a 

652 spatial association of scalable hexagons analysis in combination of FIA field plots, Forest Health 

653 Protection aerial surveys, and the MODIS active fire product to run Getis-Ord hotspot analysis to identify 

654 clustering of invasive plant occurrences, bark beetle activity, and fire ignitions (Potter et al. 2016). Such 

655 an analysis has widespread applications for identify the origin and vector of invasive species.

656

657 Habitat Suitability

658 Several studies have applied FIA data directly to wildlife-related research questions. Two of these studies 

659 explored the relationship between tree/stand attributes and the abundance of cavity trees, which are often 
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660 favored as nesting sites by birds (Fan et al. 2003; Temesgen et al. 2008). Fan et al. (2003) used FIA to 

661 identify plots which had at least one cavity tree present and then evaluated common stand characteristics, 

662 with stand age and basal area identified as the most predictive attributes. Temesgen et al. (2008) also used 

663 FIA to identify common stand characteristics for sites with cavity trees, but found stronger relationships 

664 with stand composition, density, site index, and quadratic mean diameter. Brooks (2003) used FIA data to 

665 track trends in early successional stage forests in the northeastern United States. Despite their temporary 

666 nature, these forests provide critical habitat for wildlife species across the country. A similar study used 

667 FIA to examine relationships between birds and forest habitats at large spatial scales (Fearer et al. 2007), 

668 where FIA data was used to produce a bird-habitat database by combining FIA’s forest habitat data with 

669 information from the USGS Breeding Bird Survey database to model bird-habitat relations across 

670 ecoregions. Similarly, Twedt et al. (2010) combined FIA and Breeding Bird Survey data to predict how 

671 decadal changes in forest conditions will impact avian species abundance, and identified species that will 

672 be winners and other species that will be losers. Zielinski et al. (2006) and Zielinski et al. (2012) in two 

673 consecutive studies used forest attributes in FIA data from northern California to model resting habitat for 

674 fishers. Finally, Welsh et al. (2006) described a methodology to model wildlife habitat from FIA variables 

675 that could be applied to any species. Such models could be developed from cooccurring forest inventory 

676 and wildlife species use observations, potentially highlighting an area for future joint data collection 

677 efforts.

678

679 While FIA data has informed findings across an amazing range of applications in assessing forest health, 

680 use of the data has not been without its challenges. A consistent and repeated criticism of the dataset is 

681 confusion surrounding the FIA damage codes, with many studies remarking that it is necessary to have an 

682 FIA expert involved to decipher the data structure and coding protocols. Prior to the consolidation of FIA 

683 programs that resulted in the annualized FIA inventory, problems with data continuity and consistency 

684 made the temporal tracking of mortality agents nearly impossible from the dataset. Following the program 

685 change, Shaw et al. (2005) used FIA annual inventory plots to track mortality in Pinyon-Juniper forests 
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686 and were able to discern interannual variations in drought induced mortality. Westfall & Woodall (2007) 

687 examined the reliability of fuel estimated from FIA data, and observed that many of the measurements 

688 were not repeatable and that roughly one third of all measurements had biases which made the data 

689 unreliable. The paper further discussed the causes of measurement error and suggested that small tweaks 

690 in FIA protocols such as emphasizing key measurements in training and eliminating recording errors 

691 through electronic systems could increase measurement consistency and overall data reliability. Another 

692 study noted that certain forest pathogens, such as Armillaria fungi, which are associated with root decay 

693 in many western plant species, are difficult to detect when signs are found on the tree roots and require 

694 destructive sampling. In response, Hoffman et al. (2014) surveyed established FIA plots in Arizona for 

695 presence of Armillaria fungi, utilizing a new supplemental subplot 36.6 meters away at 300 degrees 

696 azimuth from the center of the existing FIA subplot. The destructive nature of the sampling necessitates 

697 that a new subplot be established outside of the current FIA plot. The method presented can be used 

698 successfully to sample for Armillaria without disturbing the rest of the FIA plot, and can be readily 

699 incorporated into the current FIA sampling protocol. While the method is feasible, its implementation 

700 would require increased time and cost in sampling and data archiving. 

701

702 Remote Sensing Applications

703 The association of FIA with remote sensing datasets has been a two-way street, with early mergers of the 

704 datasets focusing on improving regional and national level reporting of FIA (McRoberts et al. 2002a). 

705 FIA started using remotely sensed imagery in the 1960s via aerial photography to increase the precision 

706 of inventory estimates by improving the identification of forest type and their extents (Hansen 1990). 

707 Although satellite sensor data was later employed to improve forest area estimates (Hansen and Wendt 

708 2000), the limited temporal availability of these data led to studies not meeting FIA precision standards 

709 (McRoberts et al. 2002a). Most modern studies attempting to develop models from field observations 

710 with remote sensing data utilize some form of multivariate regression or classification scheme. Brosofske 

711 et al. (2014) provided a summary of the advantages and limitations of various modeling and mapping 
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712 methods, such as regression, decision tree, and imputation, for use with remotely sensed datasets. Plot 

713 data imputation techniques have been demonstrated with LiDAR and Landsat remote sensing datasets to 

714 produce forest type assessments with improved spatial precision (Ohmann and Gregory 2002, 2011; 

715 Hudak et al. 2008; Hudak et al. 2012; McRoberts et al. 2002b; McRoberts et al. 2007; Powell et al. 2010). 

716 Although the earlier sections of this synthesis already highlight many studies which have utilized FIA 

717 data in combination with well-established remotely sensed image datasets, these studies were not self-

718 identified as being remote sensing studies. Within all the reviewed applications of FIA for remote 

719 sensing, FIA data have been used for both model development and validation by the different authors. 

720 Most of the studies identified as serving remote sensing purposes attempt to either create broad scale 

721 forest biomass estimates or to classify and map forest types and their characteristics. 

722

723 One of the earlier uses of FIA with remote sensing for biomass mapping was when Blackard et al. (2008) 

724 used FIA estimates of total biomass to develop unique total biomass regression tree models for 65 

725 ecological zones across the conterminous United States, Alaska, and Puerto Rico. The model predicted 

726 biomass estimates came from MODIS, National Land Cover Dataset, and climate observations and were 

727 validated through a randomized block withhold of FIA plots from each ecological zone. Model 

728 predictions narrowed the range of local biomass values, but seemed to accurately represent regional and 

729 national estimates from both FIA summaries and other mapping efforts. At an even broader scale, 

730 Pflugmacher et al. (2008) developed a biomass model based on tree heights from FIA plot data and 

731 applied the model to forest heights derived from the Geoscience Laser Altimeter System (GLAS) to 

732 estimate global forest biomass. Results from this biomass estimation were validated against a separate set 

733 of FIA plots. GLAS is the first spaceborne LiDAR system, and the sensor is carried onboard NASA’s Ice, 

734 Cloud and Land Elevation satellite (ICESat). The use of GLAS for biomass estimation allows for 

735 estimation of biomass at a scale not previously possible. However, if the area of interest is particularly 

736 large, such as the entire east coast of the United States or an entire nation, then the coarser resolution 

737 MODIS dataset may be more practical as it will provide a sufficient pixel density each day, as compared 
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738 to Landsat every 16 days. In a smaller scale application, Kwon & Larsen (2012) used FIA plots located 

739 across eastern United States forests to validate gross primary production (GPP) estimated from MODIS 

740 data. A set of screening variables were applied to the FIA plots used in validation, which improved the 

741 correlation between MODIS GPP and FIA NPP from 0.01 to 0.48. Following this, Kwon & Larsen (2013) 

742 identified an optimal mapping resolution for MODIS based biomass estimation at 390 square kilometers, 

743 this time using NPP from MODIS. Finally, looking at temporal biomass changes, Powell et al. (2010) 

744 developed models of biomass fluxes from FIA data and annual Landsat images over a 20-year period. 

745 Once the annual Landsat response parameters were smoothed, the projected maps were able to depict the 

746 location and timing of forest disturbances and their subsequent regrowth, providing a finer temporal and 

747 spatial representation of biomass flux. Landsat products, at a 30-m pixel resolution, will provide a more 

748 detailed estimation than a 500 m resolution MODIS pixel. Each of these models employ different model 

749 development and validation techniques, which makes their direct comparison difficult. After noticing 

750 these inconsistencies in the broader remote sensing literature, Riemann et al. (2010) proposed a method 

751 for evaluating the effectiveness of a remotely sensed dataset using FIA as a reference to validate remote 

752 sensing data. Utilizing such a consistent framework for validation provides essential information on the 

753 type, magnitude, frequency, and location of errors in a dataset, allowing for direct comparison between 

754 multiple model development techniques.

755

756 Forest type classification and estimation of forest structure and composition parameters are also common 

757 applications of remote sensing data that are integrated or validated using FIA data. Haapanen et al. (2004) 

758 used the k-NN imputation method with FIA and Landsat TM/ETM+ data to map land cover types in the 

759 Great Lakes area with accuracies around 90%. Land cover was classified as forest, non-forest, and water 

760 at the 30-m resolution of Landsat TM/ETM+. White et al. (2005) used FIA and Southwest Regional GAP 

761 plots to validate estimates of tree canopy cover from the vegetation continuous field (VCF) tree cover 

762 product derived from MODIS. Results compared to FIA and Southwest Regional GAP plots were 

763 similarly biased, while the MODIS VCF consistently underestimated canopy cover and the negative bias 
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764 increased as canopy cover increased. Sivanpillai et al. (2007) evaluated the use of Advanced Very High-

765 Resolution Radiometer (AVHRR) imagery to replace aerial photo methods used in Phase 1 FIA estimates 

766 of forest cover. AVHRR produced lower accuracies than the aerial photography at a plot level, 

767 misidentifying fields with sparse trees as forest and recently harvested pine stands as non-forest. 

768 However, at county level estimation accuracies were within 95%. Chojnacky et al. (2012) developed a 

769 Phase 1 mask with MODIS to increase vegetation cover types from 2 to 5 in order to improve forest 

770 attribute data from FIA in these sparse pinyon-juniper woodlands, which had been a noted limitation from 

771 previous FIA-related research efforts in the region. Leefers and Subedi (2012) used FIA data to validate 

772 forest type estimates in Michigan derived from other state and national forest inventory programs and a 

773 state remote sensing data set. Although field based inventories showed a higher level of agreement with 

774 FIA observations of forest type, the authors suggest that their inability to access unperturbed FIA plot 

775 locations may have significantly increased the predicted errors of the remote sensing data set. Each of 

776 Sader et al. (2005), Thomas et al. (2011), and Schroeder et al. (2014) combined annual Landsat imagery 

777 with FIA data to improve estimation and detection of forest disturbance. Given that the FIA sampling 

778 protocol only has each plot re-measured every 5 to 10 years with a spatial resolution of roughly 2,428 ha, 

779 use of annual Landsat imagery can provide additional data to detect disturbance events. With the launch 

780 of Landsat 8 in 2013, the proposed launch of Landsat 9 in December 2020, and the goals of the Data 

781 Continuity Mission, the potential applications integrating FIA and Landsat will only increase (Landsat 

782 2016; Figure 1). FIA plots also work well to approximate the size of 30 m Landsat image pixels that are 

783 roughly equal to the area of one macroplot, and each subplot is roughly one fifth the area of a Landsat 

784 pixel (Figure 4). On the other hand, the round macroplots and systematic subplot configuration does not 

785 align well with the square pixel grid, which inevitably adds noise to relationships, especially wherever 

786 different condition classes prevail due to forest edges in the scene (Ohmann and Gregory 2002). 

787

788 Although Landsat and other moderate to high resolution datasets have been shown to typically provide 

789 fairly accurate estimates of stand variables, within highly variable landscapes accuracies can break down 
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790 when trying to estimate tree species, understory species, successional stage, and age class (Liu et al. 

791 2008). One of the earliest uses of FIA with remote sensing to estimate tree and stand parameters was 

792 when Gill et al. (2000) used FIA data to validate tree size and crown closure estimates from Landsat 

793 derived vegetation maps for northeast California, demonstrating the strength and cost-effectiveness of 

794 using FIA data for validation purposes. Zhang et al. (2009) used Landsat TM data and FIA data to map 

795 species composition and tree age in the Missouri Ozark Highlands. Landsat imagery was used to define 

796 ecotypes which were then stratified by composition and age from FIA data. Taking this further, Al-

797 Hamdan et al. (2014) used Landsat TM data to develop a model to predict the size class and wood type of 

798 stands in the southeastern United States. Size class was categorized as either sawtimber or saplings and 

799 wood type was categorized as either hardwood or softwood. FIA data for the study region was used to 

800 validate the model predictions, which showed high predictive power. Wang et al. (2006) created a 3-

801 dimensional map of the forest landscape in the Washburn District of Wisconsin by integrating FIA, 

802 Landsat, and the Forest Vegetation Simulator (FVS). Forest types were classified using Landsat imagery, 

803 and data from FIA plots within each forest type were used in a 50-year FVS simulation. The most recent 

804 integration of Landsat imagery with FIA data came from Wilson et al. (2018) who demonstrated the 

805 Landsat timeseries can be utilized through harmonic regression to achieve a two- to threefold increase in 

806 explained variance over using monthly image composites. The ability to fully utilize timeseries 

807 observations along with the report FIA field plots could greatly advance our ability to map forested 

808 landscapes. Popescu et al. (2002) highlighted the potential of airborne LiDAR data to be integrated into 

809 FIA by modeling tree heights and validated the measurements using ground plots established following 

810 the FIA protocol (not actual FIA program plots). Such integrations of LiDAR with FIA plot data have 

811 become much more frequent and have been leveraged to characterize highly heterogeneous landscapes 

812 like Hawaii and Alaska. 

813

814 While the combination of FIA and remotely sensed data is well established, there are some limitations 

815 which need to be addressed. Most applications of remotely sensed data require highly accurate ground 
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816 control points, which become increasingly important at higher spatial resolutions. Even when researchers 

817 undertake the legal requirements to have access to untruncated FIA plot locations, most FIA plots are 

818 located using recreational grade GPS systems, which typically have accuracies of less than 3-7 m 

819 (Anderson et al. 2009). While this accuracy level is not limiting with MODIS pixels, reliable use with 30 

820 m Landsat pixels and spatially precise, point-based LiDAR datasets requires accurate plot location data. 

821

822 Discussion of FIA Program

823 The temporal continuity, spatial balance, and consistent protocols of the FIA program make the dataset 

824 particularly well suited for the incredible range of applications that have been described. Although much 

825 knowledge has been amassed through the synthesis and application of FIA data, advances in statistical 

826 techniques and remote sensing methodologies are pushing the dataset limits and there is increasing 

827 acknowledgement of these new limitations within the FIA program and its protocols. As the FIA program 

828 has grown in both scope and complexity since the 1998 Farm Bill, which incorporated many elements of 

829 forest health monitoring into the FIA inventory protocols, a growing list of limitations have been formed. 

830 While this list has continued to grow, many solutions have been put forward and some have already been 

831 adopted by the FIA program, potentially opening other exciting avenues of investigation.

832

833 Limitations

834 Perhaps the most widely recognized limitation of working with FIA data is the confusion that exists 

835 around data coding, interpretation, and definitions. As Kromroy et al. (2008) remarked, damage codes in 

836 FIA data are unique to the program and are difficult to interpret and understand to non-FIA users. 

837 Although studies such as Bechtold & Patterson (2005) provide detailed descriptions of the program and 

838 many resources can be found related to the program, there is still a lack of clear definitions. Currently, the 

839 simplest solution is to collaborate with an FIA researcher who understands the intricacies of the program. 

840 Because of this, there has been a growing call for improved user manuals designed for non-FIA 

841 researchers such as industry and academic scientists or even the general public, which could greatly 
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842 improve user understanding. Such a manual could also make the data more appealing to a larger audience 

843 and increase the utilization of this vast and powerful resource. Revised user manuals and a simplified 

844 version of the program framework could also make it more feasible for other countries to adopt and 

845 implement similar monitoring protocols based on the FIA design, extending the scope and inference of 

846 future datasets available more broadly to researchers. 

847

848 In a study by Roesch et al. (2012) it was revealed that FIA’s current techniques for area estimation of 

849 forest land categories suffers from higher bias and mean squared error than two more recently developed 

850 techniques. While not presently addressed, adopting one of these new approaches has the potential to 

851 reduce error in all FIA reports beyond the plot-level as errors in area estimation will propagate through. 

852 Such changes are particularly important for broad scale applications like carbon pool monitoring and 

853 greenhouse gas modeling.

854

855 Another complicated and growing limitation of FIA is access to untruncated sample locations. FIA has 

856 long been conscious to this concern and took time to demonstrate that the ‘fuzzing’ process has minimal 

857 impact on remote sensing models developed with moderate resolution imagery (Healey et al. 2011). 

858 However, this issue has only increased as modeling efforts and remote sensing capabilities have advanced 

859 to finer spatial resolutions. The ‘fuzzing’ of publicly available plot locations is Congressionally mandated 

860 by the need to protect data integrity from being used against private landowners for various reasons 

861 (McRoberts et al. 2005). However, empirical models associating plot-level FIA data with spatially precise 

862 remote sensing data requires accurate plot locations. Furthermore, imputation of forest inventory 

863 parameters using technologies such as LiDAR, requires that plot locations are recorded and documented 

864 to sub-meter precision, which greatly exceeds that of the recreational grade GPS systems currently in use 

865 throughout much of the FIA program. In the near future, FIA will increasingly be called upon to 

866 streamline access to accurate, untruncated plot locations, while maintaining the legal obligation to protect 

867 data integrity. Creating a simplified pathway to grant researchers access to untruncated sample locations 
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868 will facilitate more accurate modeling and mapping of forest parameters from increasingly resolute 

869 remote sensing products.

870

871 Recent Improvements

872 FIA has already implemented improvements to address other acknowledged limitations. FIA’s prior focus 

873 on purely merchantable biomass allometric relationships received criticisms, largely as a result of 

874 technological advances in utilization of non-merchantable biomass. It has been noted that the older 

875 methods did not account for biomass in a tree bole past a small end diameter or the contribution of other 

876 biomass pools like tree branches and foliage. To resolve this issue and provide a more robust estimate of 

877 total biomass, Domke et al. (2012a and 2013b) demonstrated how estimating biomass with the component 

878 ratio method and refining total stem biomass estimates can improve accuracies when estimating both 

879 merchantable and total biomass. These new methods have since been adapted into the FIA program for 

880 biomass summarization. 

881

882 An additional long-standing consequence of the FIA systematic sampling design is the limited 

883 representation of rare objects of interest such as very large diameter trees. In response to this issue within 

884 the Pacific Northwest Region of the FIA program, Roesch & Van Deusen (2010) demonstrated that 

885 inclusion of 17.95 m radius macroplots can capture rarer large trees with high accuracy and discussed 

886 how such a protocol could be adapted to monitor most other rare objects of interest in different regions. 

887 Other similar criticisms and resultant research have resulted in proposed changes in FIA sampling 

888 protocols to allow for additional monitoring of specialized observations. To allow for destructive 

889 measurements, such as root samples for Armillaria monitoring, Hoffman et al. (2014) suggested installing 

890 a supplemental subplot located 36.6 m from the existing plot center. This subplot could be rotated 

891 circularly around the plot center for each measurement cycle to allow locations of destructive samples to 

892 recover and not impact the primary sample. 

893
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894 In recent years there have also been concerted efforts to improve both the spatial and temporal 

895 representativeness of FIA data. Although the area encompassed by the FIA program is already vast, two 

896 efforts have sought to increase the area surveyed. The early history of forest inventory work within 

897 United States territories and Hawaii is relatively sparse and sporadic, with only Puerto Rico and Hawaii 

898 having ever received more than one inventory prior to 2000 and many territories never having been 

899 inventoried. Following the 1998 Education and Reform Act that charged FIA to standardize the sampling 

900 of all United States forest lands, including Alaska, Hawaii, and all territories, the FIA Tropical Island 

901 Forest Inventory Work Group put forward a proposal to adapt the common FIA protocols for working in 

902 tropical environments (Willits et al. 2000). Following the standard FIA protocols implemented in the 

903 continental United States, inventories of Hawaii and the island territories were planned and began in 

904 2001. However, to ensure these inventories were representative of the ecological complexity found in 

905 these tropical systems, after the initial hexagonal grid was installed for plot selection in forested areas, 

906 unique forest types found to be underrepresented had additional sample locations randomly selected until 

907 10-15 samples were located in each forest type (Brandeis 2003). Due to logistical challenges of working 

908 in these regions, inventories of each of the United States territories is implemented on a focused five-year 

909 schedule instead of on the annual cycle as within the coterminous United States. The use of a similar 

910 minimum number of representative samples for unique forest systems could address related user critiques 

911 to improve our understanding and modeling of these smaller populations. Within these tropical systems, 

912 emerging novel research into the spatial distribution and abundance of endemic endangered species is 

913 highlighting the importance of FIA in the tropics (Rojas-Sandoval and Meléndez-Ackerman 2013). 

914 Additionally, work is starting to investigate the effects of FIA plot phase intensity and density, along with 

915 the benefits of merging FIA and LiDAR data in quantifying the forests of Hawaii, finding that the more 

916 intensive plots have a greater benefit over standard Phase 2 plots in quantify aboveground forest carbon 

917 and that LiDAR is a logical and affordable way to significantly improve these estimates in heterogeneous 

918 areas (Hughes et al. 2018).

919
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920 In a further effort to expand the inferential utility of FIA data, Barrett and Gray (2011) argued for a more 

921 intensive FIA monitoring system in the boreal region of Alaska; this has high importance given that 

922 extreme northern regions are proving to be the first to show effects of altered climate conditions. Since 

923 this publication, the FIA program has begun establishing and inventorying plots in the Alaska interior 

924 boreal forest at the proposed density of one plot every 12,000 hectares, or one fifth the FIA plot density in 

925 the coterminous United States. Utilizing the first Alaska interior boreal forest FIA acquisition of 67 plots 

926 in 2014, Ene et al. (2018) demonstrated that merged FIA plots with aerial LiDAR sampling over such 

927 large landscapes can significantly enhance estimates of forest characteristics. While many of these 

928 changes have long been sought by users, there is still a large user base that would also ask the FIA to 

929 reduce or eliminate methodological changes as these will introduce issues for the long-term continuity of 

930 the dataset.

931

932 Future Directions

933 FIA is a continuously evolving program in response to a growing list of user needs. FIA priorities are 

934 based on its Strategic Plan that are currently framed by the 2014 Farm Bill. To meet program 

935 requirements and user needs, FIA has outlined the following: 1) bring data collection to “full field 

936 operations,” which means annually measuring 10% of the plots in the West and 15% in the East, and an 

937 annualized program in all of Alaska; 2) enhance timber products monitoring; 2) enhance forest landowner 

938 studies; 4) improve carbon/biomass estimates; 5) expand land use/land cover monitoring to include all 

939 lands; 6) adapt and expand the inventory to urban forests. Funding increases are prioritized to bring data 

940 collection to the 20% annual measurement specified in the 1998 Farm Bill. Other identified focus areas 

941 include increasing outreach, engagement, communication, and dissemination efforts (Shaw 2017). These 

942 efforts will have a multipronged approach that will be split between online content, interactive content, 

943 and workshop/training opportunities. The hope is that through these efforts, user knowledge and 

944 understanding gaps like that of database coding can be significantly narrowed, and that accessibility to the 

945 FIA database will be substantially eased. To address some of these issues, the FIA program has created 
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946 tools like the Spatial Data Services team (https://www.fia.fs.fed.us/tools-data/spatial/) to assist the public 

947 with data acquisition, spatial summaries, spatial overlays with geospatial data, and with gaining access to 

948 actual plot coordinates in some cases.

949

950 Following direction from the 2014 US Farm Bill, the FIA program was expanded to create Urban FIA 

951 (UFIA) with its own sampling protocols. The UFIA protocols were piloted in 2014 in Austin, TX and 

952 Baltimore, MD (Vogt and Smith 2016). Importantly, UFIA’s implementation has been intensified to one 

953 plot for every 354 ha and that existing FIA plot locations that fall within forested areas of defined city 

954 limits will in the future be inventoried using both FIA and UFIA protocols. Plans for the program are to 

955 expand as funding and partnerships allow, with 14 cities participating in UFIA in 2016 and further 

956 expanding to include all UFIA regions in 2017 (Vogt and Smith 2016). Recent work is investigating ways 

957 of merging these datasets for rural-urban landscape assessments (Westfall et al. 2018).

958

959 There are other ongoing efforts focused on expanding the temporal inference and thereby, the temporal 

960 applications of the FIA database. DeRose et al. (2017) outlines the efforts behind developing a tree-ring 

961 data set based on >14,000 tree cores from the Interior West region of the FIA program. Although an 

962 ongoing effort, more than 3,000 tree cores have already been fully cross-dated for the eight-state region. 

963 One of the initial goals of the data is to link it with the FIA plot database for use in development, 

964 calibration, and validation of forest growth and yield models like the Forest Vegetation Simulator. In the 

965 last few years, the Pacific Northwest region of the FIA program has begun providing additional tree cores 

966 for processing within the database. As the database continues to grow, it will represent the highest 

967 resolution means of reconstructing climatological records across the western United States. Efforts such 

968 as these are only possible because of the individuals involved in the FIA program and will result in 

969 additional future research opportunities. In addition, the FIA program and other NFI datasets have 

970 considerable potential to be used as baseline and monitoring data when assessing vulnerabilities to critical 
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971 ecosystem goods and services or in the development of spatially explicit disaster early warning systems 

972 (Smith et al. 2014).

973

974 Conclusion

975 The FIA program provides a comprehensive forest inventory annually to inform a wide and rich range of 

976 natural resource science and management applications. The public availability and use of the data for any 

977 purpose further increases their value. The intricacies of the FIA inventory design can be confusing for 

978 non-FIA users and the exact definitions can be difficult to interpret. The data are excellent for large scale 

979 analysis and are more applicable over larger areas than smaller ones. The large spatial and temporal scale 

980 makes FIA excellent for long term analysis on multiple themes such as climate monitoring, trends in 

981 carbon stocks, and changing forest growth rates. 

982

983 Most applications of FIA data have attempted to use it in a few ways. At its most basic application, FIA 

984 data summaries have been mined to understand coarse scale forest distributions and ownerships either at 

985 the county scale or through course-resolution remotes sensing products. The next level of application 

986 commonly utilizes FIA data in the development or validation of a modeling system. To date, the majority 

987 of FIA related research has operated in this way. Finally, the more unique applications of FIA data are 

988 those that have tried to extend data utility by assessing characteristics and process mechanisms not found 

989 in the FIA database, such as creating point process models or using FIA to impute and then model 

990 landscape respiration processes. For either of these last two application categories to continue to expand, 

991 certain challenges need to be overcome within the FIA program. For researchers to effectively embrace 

992 the FIA database and utilize it in the most cutting edge of ways, they will need to be able to utilize the 

993 FIA database in conjunction with statistical processes and remote sensing datasets that are continually 

994 being designed for finer resolutions. This means two things; first, FIA will need to provide users a 

995 simplified and more understandable key to FIA data collection and coding protocols, and FIA will need to 
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996 find ways to more readily assist an expanding subset of users who need to accurately associate remote 

997 sensing data to plot-level FIA data at the untruncated plot locations. 

998
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1706 Figure Captions

1707

1708 Figure 1. Timeline of substantial FIA program changes through Congressional Acts, internal program 

1709 changes, and technological advances particularly remote sensing.

1710

1711 Figure 2. Number of published papers by year identified for potential inclusion and number of cited in 

1712 the synthesis.

1713

1714 Figure 3. Current FIA plot layout.

1715

1716 Figure 4. Example FIA plot, overlaid on imagery from a) Landsat OLI, 30 m pixels; b) NAIP, 1 m pixels; 

1717 and c) sample photos of subplot 1 taken from plot center and arranged clockwise: North, East, South, 

1718 West.

1719

1720 Table Captions

1721

1722 Table 1. Breakdown of cited literature by the section of occurred.

1723 Table 1.

FIA Data Applications Papers Cited Proportion

Carbon Cycle Applications 45 23.1%

Forest Products and Forest Growth Applications 27 13.8%

Climate Applications 15 7.7%

Forest Health Applications 57 29.2%

Remote Sensing Applications * 33 16.9%

Introduction, Design, and Discussion Sections 18 9.2%

Total 194 100%

* may be underrepresented as articles were attributed to the first section 

they appeared in.
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