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Biomass is an important indicator for evaluating crops. The rapid, accurate and

nondestructive monitoring of biomass is the key to smart agriculture and precision

agriculture. Traditional detection methods are based on destructive measurements.

Although satellite remote sensing, manned airborne equipment, and vehicle-mounted

equipment can nondestructively collect measurements, they are limited by low accuracy,

poor flexibility, and high cost. As nondestructive remote sensing equipment with high

precision, high flexibility, and low-cost, unmanned aerial systems (UAS) have been

widely used to monitor crop biomass. In this review, UAS platforms and sensors,

biomass indices, and data analysis methods are presented. The improvements of UAS in

monitoring crop biomass in recent years are introduced, and multisensor fusion, multi-

index fusion, the consideration of features not directly related to monitoring biomass,

the adoption of advanced algorithms and the use of low-cost sensors are reviewed to

highlight the potential for monitoring crop biomass with UAS. Considering the progress

made to solve this type of problem, we also suggest some directions for future research.

Furthermore, it is expected that the challenge of UAS promotion will be overcome in the

future, which is conducive to the realization of smart agriculture and precision agriculture.

Keywords: unmanned aerial systems, unmanned aerial vehicle, remote sensing, crop biomass, smart agriculture,

precision agriculture

INTRODUCTION

Agriculture plays an important role in maintaining all human activities. By 2050, population
and socioeconomic growth are expected to double the current food demand (Niu et al.,
2019). To solve the increasingly complex problems in the agricultural production system, the
development of smart agriculture and precision agriculture provides important tools for meeting
the challenges of sustainable agricultural development (Sharma et al., 2020). Biomass is a basic
agronomic parameter in field investigations and is often used to indicate crop growth status, the
effectiveness of agricultural management measures and the carbon sequestration ability of crops
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(Bendig et al., 2015; Li W. et al., 2015). Fast, accurate and
nondestructive monitoring of biomass is the key to smart
agriculture and precision agriculture (Lu et al., 2019;
Yuan et al., 2019).

Traditional biomass measurement methods are based on
destructive measurements that require the manual harvesting
(Gnyp et al., 2014), weighing and recording of crops, which
makes large-scale, long-term measurements challenging and
time-consuming, and these measurements are not only time-
consuming and laborious but also difficult to apply over large
areas (Boschetti et al., 2007; Yang et al., 2017). In other
research areas, many studies have used satellite remote sensing
to monitor biomass. Navarro et al. (2019) used Sentinel-1 and
Sentinel-2 data to monitor the aboveground biomass (AGB) of
a mangrove plantation. However, meteorological conditions have
a great influence on satellite images, such as cloud and aerosol
interference, surface glare and poor synchrony with tides (Tait
et al., 2019). In addition, satellite data cannot provide sufficient
data resolution for precision agricultural applications (Jiang et al.,
2019; Song et al., 2020), and it is difficult to obtain timely and
reliable data (Prey and Schmidhalter, 2019). Similar to satellite
remote sensing, manned airborne equipment can cover a wide
range, but the data are not detailed enough (Sofonia et al., 2019;
ten Harkel et al., 2020). Meanwhile, although vehicle-mounted
equipment can guarantee high accuracy, it has poor flexibility
and slow speed (Selbeck et al., 2010; Tian et al., 2020). Unmanned
aerial systems (UAS) represent a noncontact and nondestructive
measurement method that can obtain the spectral, structural, and
texture features of the target at different spatiotemporal scales
(Jiang et al., 2019). These systems have the ability to obtain high
spatial and temporal resolution data and have great application
potential (Niu et al., 2019; Ramon Saura et al., 2019).

To date, most reviews of UAS in the field of agriculture
are general reviews involving multiple fields in agriculture, and
the description of biomass monitoring is not detailed enough
(Hassler and Baysal-Gurel, 2019; Kim et al., 2019; Maes and
Steppe, 2019). Reviews of remote sensing for crop biomass
monitoring are rare and mainly introduce satellite remote
sensing, while the application of UAS in crop biomass monitoring
is rarely introduced (Chao et al., 2019). Therefore, the motivation
of our study was to conduct a comprehensive review of almost
all UAS-related studies in the field of crop biomass monitoring,
including information on the equipment used in the field of crop
biomass monitoring, biomass indices, and data processing and
analysis methods. Finally, the relevant applications are reviewed
according to different development directions.

THE COMPOSITION OF UAS

Unmanned aerial systems consist of unmanned aerial vehicle
(UAV) platforms, autopilot systems, navigation sensors,
mechanical steering components, data acquisition sensors,
and other components (Jeziorska, 2019), among which the
most important are the data acquisition sensors (Toth and
Jozkow, 2016). Meanwhile, the type of UAV platforms and flight
conditions will have a great impact on the data acquisition

process of sensors, which need to be considered (Domingo et al.,
2019; ten Harkel et al., 2020).

UAV Platforms
The most commonly used platforms in crop biomass monitoring
are fixed-wing drones and rotor drones (Hassler and Baysal-
Gurel, 2019). Hogan et al. (2017) summarized the characteristics
of fixed-wing aircrafts and rotorcrafts. Fixed-wing aircrafts
usually have a larger payload capacity, faster flight speed, longer
flight time, and longer range than rotorcrafts. For these reasons,
fixed-wing systems are particularly useful for collecting data
over large areas. Fixed-wing aircrafts have poor mobility, need
more space to land, and have more expensive prices than rotor
UAVs. Rotor UAVs are very maneuverable and can hover, rotate
and take pictures at almost any angle. Although there are also
expensive models, more low-cost models have widely appeared
in the market. Compared with fixed-wing aircrafts, the main
disadvantage of rotor UAVs is their short range and flight time.
Figure 1 shows DJI Inspire 2 Rotor Drone1 and eBee X Fixed-
Wing Drone2.

The flight planning of a fixed-wing UAV is very similar to
that of a manned aircraft, while a rotor UAV can meet almost
any trajectory requirements, including hover, slow motion and
attitude control (Toth and Jozkow, 2016). These features enable
rotor UAVs to perform extremely accurate tasks (Kim et al.,
2019). Therefore, rotor UAVs are more commonly used in
biomass monitoring than fixed-wing aircrafts.

Data Acquisition Sensors
Unmanned aerial systems usually obtain data through spectral
sensors and depth sensors (Toth and Jozkow, 2016). Spectral
sensors mainly include RGB sensors, multispectral sensors,
and hyperspectral sensors, which can obtain color and texture
information from the crop surface (Li et al., 2019). The difference
between these three types of sensors is their ability to sense the
spectrum (Shentu et al., 2018; Zhong et al., 2018; Kelly et al.,
2019). Light detection and ranging (LiDAR) is a typical example
of a depth sensor and can clearly obtain the three-dimensional
structure and height information of crops (Wijesingha et al.,
2019). Figure 2 shows several UAV-mounted sensor types.

Spectral Sensors

Based on the same imaging principle, RGB, multispectral, and
hyperspectral sensors all capture images by sensing spectral bands
but have abilities to sense different spectral bands.

RGB sensors are a type of visible light camera that can
detect three bands of color: red (R), green (G), and blue (B)
(Shentu et al., 2018). The data from the three bands represent
the intensity of R, G, and B in each pixel (Tait et al., 2019).
Although RGB sensors have low accuracy compared with other
sensors because they can collect spectral data from only three
bands, the low-cost characteristic of RGB sensors is not possessed
by others. Due to the need for low cost during the large-scale
use of UAS in the monitoring of crop biomass, RGB sensors

1www.dji.com/inspire-2
2www.sensefly.com/drone/ebee-x-fixed-wing-drone/
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FIGURE 1 | (A) DJI Inspire 2 Rotor Drone and (B) eBee X Fixed-Wing Drone.

have received increasing attention because of their low-cost
characteristics (Calou et al., 2019; Lu et al., 2019; Yue et al.,
2019). The combination of RGB data with better biomass indices
and advanced algorithms can obtain high accuracy at a low cost
(Acorsi et al., 2019; Lu et al., 2019; Yue et al., 2019). Therefore, in
the field of crop biomass monitoring by UAS, RGB sensors play
an irreplaceable role.

Since spectral information is lost during the process of
color image recording, the use of RGB input obviously limits
the amount of information to extract from the highlighted
area (Kelly et al., 2019). Compared with three-channel RGB
imaging, multispectral images contain more imaging bands
(Shentu et al., 2018).

Multispectral image data containing several near-infrared
(NIR) spectral regions are superior to RGB data (Cen et al., 2019),
but the disadvantage is that the cost of multispectral sensors is
higher than that of RGB sensors (Costa et al., 2020). Different
spectral bands can reflect the characteristics of different plants
and can be used to effectively distinguish different crops (Xu et al.,
2019). Song and Park (2020) used the RedEdge multispectral
camera from MicaSense to analyze the spectral characteristics
of aquatic plants and found that waterside plants exhibited the
highest reflectivity in the NIR band, while floating plants had high
reflectivity in the red-edge band.

Hyperspectral sensors can obtain more abundant spectral
information than multispectral sensors (Zhong et al., 2018).

FIGURE 2 | UAV-mounted sensor types.

Yue et al. (2018) used the UHD 185 Firefly (UHD 185
Firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany)
hyperspectral sensor to collect panchromatic images with
radiation records of 1000 × 1000 (1 band) and hyperspectral
cubes of 50 × 50 (125 bands), with rich texture and
spectral information. The disadvantage is that the cost of
hyperspectral sensors is higher than that of multispectral
sensors. In addition, the spatial resolution of hyperspectral
images is lower than that of ordinary images, which may cause
the loss of detail information for small targets. Meanwhile,
more spectral information may not be useful in some cases.
Tao et al. (2020) used hyperspectral sensors to study the
correlation between different vegetation indices (VIs) and
red-edge parameters and crop biomass. It was found that
using too many spectral features as independent variables will
lead to overfitting of the model, so it is necessary to use
an appropriate number of spectral features that are highly
related to biomass.

How to improve the reliability of spectral data is an
unavoidable problem when using spectral sensors to collect
data. First, the image resolution will affect the results of AGB
monitoring, and the higher the image resolution is, the higher
the prediction accuracy (Domingo et al., 2019). Yue et al. (2019)
found that using image texture information to estimate the best
image resolution for AGB monitoring depends on the size and
row spacing of the crop canopy. Second, fisheye lenses may have
an advantage over flat lenses. Calou et al. (2019) coupled a 16-
megapixel plane lens with a 12-megapixel fisheye lens on a UAV
for data collection, and the results showed that the fisheye lens
estimation was the most accurate at an altitude of 30 m. Finally,
at present, some applications using spectral data are processed
without accurate or rough calibration. Guo et al. (2019) proposed
a general calibration equation that is suitable for images under
clear sky conditions and even under a small amount of clouds.
The method needs to be further verified.

Although RGB sensors can only collect spectral data from
the R, G, and B bands, the equipment is inexpensive. Although
hyperspectral sensors can collect spectral information from
many bands, the equipment is expensive. Unless there are
special requirements for detailed hyperspectral images and the
equipment is inexpensive, a multispectral sensor that balances
the richness of spectral bands and equipment costs exhibits the

Frontiers in Plant Science | www.frontiersin.org 3 April 2021 | Volume 12 | Article 616689

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. UAS in Crop Biomass Monitoring

highest cost performance and should be the default imaging
choice (Hassler and Baysal-Gurel, 2019; Niu et al., 2019).

Light Detection and Ranging

Spectral data have poor robustness in the case of target overlap,
occlusion, large illumination changes, shadows, and complex
scenes. Depth data that do not change with brightness and color
can provide additional useful information for complex scenes
(Shuqin et al., 2016). At present, the depth sensors on UAV
platforms are mainly LiDAR (Wallace et al., 2012; Qiu et al., 2019;
Tian et al., 2019; Wang D.Z. et al., 2019; Yan et al., 2020). LiDAR
has become an important information source for the evaluation
of the vegetation canopy structure, which is especially suitable for
species that limit artificial and destructive sampling (Brede et al.,
2017). Figure 3 shows a schematic illustration of the difference
between LiDAR and spectral data (Zhu Y.H. et al., 2019).

Light detection and ranging is an active remote sensing
technology that accurately measures distance by emitting laser
pulses and analyzing the returned energy (Calders et al.,
2015). With the development of global positioning system
(GPS), inertial measurement unit (IMU), laser and computing
technology, which make it possible to use LiDAR more
inexpensively and accurately, a LiDAR system based on a
UAV platform has become possible (Lohani and Ghosh, 2017).
Compared with spectral sensors, LiDAR tends to provide
accurate results of biomass prediction (Acorsi et al., 2019)
because spectral data tend to be saturated in the middle and high
canopy (Féret et al., 2017), and LiDAR can improve this through
depth information (Hassler and Baysal-Gurel, 2019).

However, when it is difficult to estimate plant height, it
is difficult to accurately monitor biomass through LiDAR. ten
Harkel et al. (2020) used a VUX-SYS laser scanner to monitor the
biomass of potato, sugar beet, and winter wheat. The researchers
achieved good results in monitoring the biomass of sugar beet
(R2 = 0.68, RMSE = 17.47 g/m2) and winter wheat (R2 = 0.82,
RMSE = 13.94 g/m2), but the reliability for monitoring potato
biomass was low. The reason for this result is that potatoes
have complex canopy structures and grow on a ridge, and the
other two crops have vertical structures and uniform heights.
Therefore, for potatoes, it is difficult to visually determine the
highest point of a specific position.

Finally, how to improve the data reliability by adjusting the
LiDAR parameters is still lacking in more research. For instance,
the sampling intensity of LiDAR has an impact on the accuracy
of monitoring biomass (Wang D.Z. et al., 2020), but the current
research in this area needs to be further verified.

Multisensor Fusion

The combination of data obtained from multiple sensors is an
effective method to improve the accuracy of biomass estimation.
On the one hand, the density of LiDAR point clouds has
been improved with increased data resolution and penetrability
(Wallace et al., 2012; Yan et al., 2020), which can improve the
disadvantage that spectral data collected by RGB, multispectral
and hyperspectral sensors are easily saturated in the middle and
high canopy (Gitelson, 2004; Féret et al., 2017). On the other
hand, the texture and spectral features that can be collected by

RGB, multispectral, and hyperspectral sensors are also beyond
the reach of LiDAR (Liu et al., 2019; Yue et al., 2019; Zheng
et al., 2019). A variety of sensors with different characteristics
are used to collect data, and the data that can reflect different
characteristics of target crops are combined to provide more
effective characteristics that are not cross-correlated that are
needed for data analysis with a regression algorithm (Niu et al.,
2019) to improve the accuracy of biomass estimation.

Wang et al. (2017) first evaluated the application of the fusion
of hyperspectral and LiDAR data in maize biomass estimation.
The results show that the fusion of hyperspectral and LiDAR data
can provide better estimates of maize biomass than using LiDAR
or hyperspectral data alone. Different from the previous methods
of using LiDAR and optical remote sensing data to predict AGB
separately or in combination, Zhu Y.H. et al. (2019) divided
the estimation of maize AGB into two parts: aboveground leaf
biomass (AGLB) and aboveground stem biomass (AGSB). AGLB
was measuring with multispectral data, which are sensitive to the
vegetation canopy. AGSB was measured with LiDAR point cloud
data, which are sensitive to the vegetation structure. Compared
with using LiDAR data alone or using multispectral data alone,
the combination of LiDAR data and multispectral data can more
accurately estimate AGB, in which the R2 increases by 0.13 and
0.30, the RMSE decreases by 22.89 and 54.92 g/m2, and the
NRMSE decreases by 4.46 and 7.65%.

Other researchers have also carried out many studies in the
field of multisensor data fusion and obtained the same results
in studies on the monitoring of crop biomass, such as rice (Cen
et al., 2019) and soybean (Maimaitijiang et al., 2020). In addition,
different crops have different characteristics, and the same
crop will show different characteristics under different growth
conditions (Johansen et al., 2019; ten Harkel et al., 2020), which
requires the use of different sensors to collect crop information
comprehensively and screen out some information most related
to biomass. The combination of data from multiple sensors is an
effective method to improve the accuracy of biomass estimation.

Flight Parameters
To ensure the most accurate results for biomass monitoring,
further tests should be carried out before experiments to
determine the optimal flight parameters, such as altitude, speed,
location of flight lines, and overlap (Domingo et al., 2019).
Increasing the UAV flight height will reduce image resolution
(Lu et al., 2019), and the sensitivity of the accuracy of biomass
monitoring to the image spatial resolution is an important
reference for the configuration of a UAV flight height. The
estimation of the other flight parameters did not exhibit much
different effects on the overall effect of biomass monitoring from
that of standard flight parameters, but different flight parameters
can lead to different point densities and distributions, which
have a greater impact on biomass monitoring than altitude and
velocity. A better crossover model and a closer flight path may
improve biomass monitoring overall (ten Harkel et al., 2020). The
images need to be overlapped sufficiently to improve the accuracy
of biomass monitoring (Borra-Serrano et al., 2019). Therefore,
the UAV flight plan should be wide enough. Domingo et al.
(2019) found that reducing side overlap from 80 to 70% while
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FIGURE 3 | A schematic illustration of the difference between LiDAR and spectral data.

maintaining a fixed forward overlap of 90% may be an option
to reduce flight time and procurement costs. For specific species,
such as rice, due to the physiological characteristics of rice, the
analysis of the solar elevation angle during the creation of a flight
plan is very important to avoid the influence of sun glint and
hotspot effects (Jiang et al., 2019).

BIOMASS INDICES

It is a common method in biomass monitoring to use biomass
indices to obtain data directly related to biomass. Common
biomass indices include VIs and crop height (CH), which are
extracted from images or three-dimensional point clouds. There
are also relevant studies that do not use biomass indices but
directly use images or three-dimensional point clouds to conduct
correlation analysis with biomass (Nevavuori et al., 2019).

Vegetation Indices
A variety of VIs from remote sensing images can be used to
monitor the state of vegetation on the ground. Thismethod is also
able to quantitatively evaluate the richness, greenness and vitality
of vegetation. After years of development, VIs can be divided
into various monitoring and calculation methods, among which
the most commonly used is the normalized difference vegetation
index (NDVI) proposed by Rouse et al. (1974). The NDVI is
usually used to reflect information such as vegetation cover and
growth, and its calculation formula is as follows:

NDVI =
NIR − R

NIR + R

Near-infrared is the reflectance in NIR band, and R is the
reflectance in red band. The value range of NDVI is (−1,
1). It is generally believed that an NDVI value less than 0
represents no vegetation coverage, while a value greater than
0.1 represents vegetation coverage (Li Z. et al., 2015). Since
the index is positively correlated with the density of vegetation,

the higher the NDVI value is, the higher the vegetation
coverage will be.

Different VIs have unique characteristics, and more spectral
features can be identified by using multiple VIs to obtain
high monitoring accuracy. Marino and Alvino (2020) used the
soil adjusted vegetation index (SAVI), NDVI and OSAVI to
characterize 10 winter wheat varieties in a field at different
growth stages and obtained optimal biomass monitoring results.
Villoslada et al. (2020) combined 13 VIs to obtain the
highest accuracy.

Vegetation indices can be built not only on the basis of
spectral information but also on the basis of texture information.
Texture is an important characteristic for identifying objects
or image areas of interest. In several texture algorithms,
the gray level co-occurrence matrix (GLCM), which includes
variance (VAR), entropy (EN), data range (DR), homogeneity
(HOM), second moment (SE), dissimilarity (DIS), contrast
(CON), and correlation (COR), which are based on Haralick
et al. (1973), is often used to test the effects of texture
analysis from UAS data on biomass estimation potential
(Zheng et al., 2019).

Vegetation indices based on image texture are usually
combined with VIs based on spectral information to monitor
crop biomass, and this combination can improve the accuracy
of monitoring biomass significantly (Liu et al., 2019; Yue et al.,
2019; Zheng et al., 2019). Zheng et al. (2019) predicted rice AGB
using stepwise multiple linear regression (SMLR) in combination
with VIs and image texture, and the results showed that the
combination of texture information and spectral information
significantly improved the accuracy of rice biomass estimations
compared with the use of spectral information alone (R2 = 0.78,
RMSE = 1.84 t/ha).

Previously, as the required data were obtained by satellites, the
spectral data collected would be affected by clouds. When there
was cloud cover in the observation area, the information received
by the satellite-borne sensor would be all cloud information,
instead of reflecting the local vegetation cover (Feng et al., 2009).
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The low altitude and flexibility of UAS solve this problem,making
VIs more widely used. At present, VIs have become indispensable
biomass indices for monitoring crop biomass. Common VIs are
shown in Table 1.

Crop Height
Crop height is an important indicator to characterize the vertical
structure, and CH is usually strongly correlated with biomass
(Scotford and Miller, 2004; Prost and Jeuffroy, 2007; Salas
Fernandez et al., 2009;Montes et al., 2011; Hakl et al., 2012; Alheit
et al., 2014). The crop surface model (CSM) is an effective CH
information extraction technique and has been widely used for
different crops (Han et al., 2019).

Crop height data can be obtained using RGB sensors and
multispectral sensors. Cen et al. (2019) established a CSM to
determine the CH (Tilly et al., 2014) based on spliced RGB
images. First, structure from motion (SfM) was used to generate
a point cloud, and the specific steps can be found in the study
of Tomasi and Kanade (1992). Point clouds consist of matching
points between overlapping images such as crop canopies and
topographic surfaces. A digital elevation model (DEM) and
digital terrain model (DTM) were obtained by classifying the
point clouds. The DEM was based on a complete dense point
cloud representing the height of the crop canopy, while the DTM
was developed from only the surface dense point cloud. The
CSM could be obtained by subtracting the DTM from the DEM
by importing the two models into ArcGIS software (ArcGIS,
Esri Inc., Redlands, CA, United States). Hassan et al. (2019)
used a Sequoia 4.0 multispectral camera with the same method
to measure the CH of wheat, and the results showed that the
correlation between the CH data from UAS and the actual height
was very high (R2 = 0.96).

Crop height data can also be obtained using LiDAR. Zhu
W.X. et al. (2019) used CloudCompare open-source software to
construct CH raster data from the LiDAR point cloud and studied
the effects of CH on monitoring the AGB of crops. The results
showed that CH is a robust indicator that can be used to estimate
biomass, and the high spatial resolution of the CH data set was
helpful to improve the effect of maize AGB estimation.

The monitoring of crop biomass by a single biomass index is
sometimes unreliable. On the one hand, it is difficult to obtain
reliable CHdata from LiDAR in some cases. Johansen et al. (2019)
found that dust storms can cause tomato plants to flatten and
that once the tomato fruits become large and heavy, the weight
may cause the branches to bend downward, thereby reducing
the height of the plants. ten Harkel et al. (2020) found that
potatoes have complex canopy structures and grow on ridges, so
it is difficult to visually determine the highest point of a specific
position. In the above cases, VIs can achieve better results than
other measurements. On the other hand, CH data can better
reflect the three-dimensional information of crops and can more
accurately reflect the biomass of crops in the scene of target
overlap, occlusion, large changes in light, shadow, and complex
scenes. In addition, the information collected by UAS includes
not only target crops but also other interference information. If
this interference information cannot be effectively eliminated, it
will have a negative impact on the monitoring of crop biomass,

which can be improved by the combination of multiple biomass
indices (Niu et al., 2019). Therefore, the combination of multiple
models for biomass estimation is an effective method to improve
the accuracy of biomass estimation.

Multi-index Fusion
The combination of multiple models for biomass estimation is an
effective method to improve the accuracy of biomass estimation.
The combination of spectral and textural features to construct
VIs or the combination of VIs and CH has been shown to
improve the results of biomass estimation.

Based on the idea of combining VIs with CH, Cen et al.
(2019) used a biomass model that combined VIs and CH to
monitor rice biomass under different nitrogen treatments. The
results showed that the CH extracted by the CSM exhibited a
high correlation with the actual CH. The monitoring model that
incorporated RGB and multispectral image data with random
forest regression (RFR) significantly improved the prediction
results of AGB, in which the RMSEP decreased by 8.33–16.00%,
R2 = 0.90, RMSEP = 0.21 kg/m2, and RRMSE = 14.05%.

Relevant studies have proven that a biomass model combined
with VIs and CH can also improve the biomass estimation
accuracy for corn (Niu et al., 2019), wheat (Lu et al., 2019),
ryegrass (Borra-Serrano et al., 2019), and other crops. These cases
prove that the combination of VIs and CH is an effective way to
build a biomass model. However, Niu et al. (2019) pointed out
that the fusion of CH data derived from RGB images in the VIs
model, which was based on MLR, did not significantly improve
the estimation of the VI model, which may be caused by the
clear correlation between VIs and CH in this crop (Schirrmann
et al., 2016). Therefore, it is necessary to combine biomass indices
reasonably for different crops.

According to the idea of combining spectral information
with image texture to build VIs, Liu et al. (2019) used a linear
regression model to convert the digital number (DN) of the
original image into surface reflectance. The reflectivity obtained
from the gain and offset values of each band was used to
calculate the VIs and image texture. The results showed that
the introduction of image texture into the partial least squares
regression (PLSR) and RFR models could estimate winter rape
AGB more accurately than a model based on VIs alone. The
accuracy of the prediction of AGB by the RFR model using VIs
and texture measurements (RMSE = 274.18 kg/ha) was slightly
higher than that of the PLSR model (RMSE = 284.09 kg/ha).
The same idea has also obtained good results in applications to
winter wheat (Yue et al., 2019), rice (Zheng et al., 2019), soybean
(Maimaitijiang et al., 2020), and other crops. Biomass models
combined with VIs and image texture have great potential in the
estimation of crop biomass.

DATA PROCESSING AND ANALYSIS
METHODS

Data analysis is the key link to build the relationship between the
data obtained from UAS and the actual crop biomass, and it is
an important part of UAS. The data obtained from UAS often
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TABLE 1 | Introduce the formulation and features of common VIs.

VIs Formulation Features References

Ratio vegetation index RVI = NIR / R Monitor the photosynthetically active

biomass of plant canopies.

Tucker, 1979

Green chlorophyll index GCI = (NIR/G) − 1 Estimation of spatially distributed

chlorophyll content in crops.

Gitelson et al., 2005

Red-edge chlorophyll index RECI = (NIR / RE) − 1 Estimation of spatially distributed

chlorophyll content in crops.

Gitelson et al., 2005

Normalized difference vegetation index NDVI = (NIR − R)/(NIR + R) Quantitative measurement of vegetation

conditions over broad regions.

Rouse et al., 1974

Green normalized difference vegetation

index

GNDVI = (NIR − G)/(NIR + G) Nondestructive chlorophyll estimation in

leaves.

Gitelson et al., 2003

Green-red vegetation index GRVI = (G − R) / (G + R) Monitor the photosynthetically active

biomass of plant canopies.

Tucker, 1979

Normalized difference red-edge NDRE = (NIR − RE) / (NIR + RE) Increases the sensitivity of NDVI to

chlorophyll content by approximately

fivefold.

Gitelson and Merzlyak, 1997

Normalized difference red-edge index NDREI = (RE − G) / (RE + G) Estimation of senescence rate at

maturation stages.

Hassan et al., 2018

Simplified canopy chlorophyll content

index

SCCCI = NDRE / NDVI Real-time detection of nutrient status. Raper and Varco, 2015

Enhanced vegetation index EVI = 2.5 × (NIR − R) / (1 + NIR − 2.4 × R) The EVI remains sensitive to canopy

variations while the NDVI is

asymptotically saturated in high

biomass regions.

Huete et al., 2002

Two-band enhanced vegetation index EVI2 = 2.5 × (NIR − R) / (NIR + 2.4 × R + 1) A 2-band EVI (EVI2), without a blue

band, which has the best similarity with

the 3-band EVI (EVI).

Jiang et al., 2008

Wide dynamic range vegetation index WDRVI = (a × NIR − R) / (a × NIR + R) (a = 0.12) The sensitivity of the WDRVI to

moderate-to-high LAI (between 2 and

6) was at least three times greater than

that of the NDVI.

Gitelson, 2004

Soil adjusted vegetation index SAVI = (1 + L) (NIR − RE) / (NIR + RE + L) Almost eliminated soil-induced changes

in vegetation index.

Huete, 1988

Optimized soil adjusted vegetation

index

OSAVI = (NIR − R) / (NIR − R + 0.16) Less sensitive to soil background and

atmospheric effects.

Rondeaux et al., 1996

Modified chlorophyll absorption in

reflectance index

MCARI = [(RE − R) − 0.2 × (RE − G)] × (RE / R) Evaluate the nutrient variability over

large fields quickly.

Daughtry et al., 2000

MCARI/OSAVI MCARI / OSAVI Evaluate the nutrient variability over

large fields quickly.

Daughtry et al., 2000

Transformed chlorophyll absorption in

reflectance index

TCARI = 3 × [(RE − R) − 0.2 × (RE − G) × (RE / R)] Minimizing LAI (vegetation parameter)

influence and underlying soil

(background) effects.

Haboudane et al., 2002

TCARI/OSAVI TCARI / OSAVI Minimizing LAI (vegetation parameter)

influence and underlying soil

(background) effects.

Haboudane et al., 2002

Generally, one or several kinds of VIs should be selected according to different situations. Abbreviate green, red, red-edge, and near-infrared to G, R, RE, and

NIR in formulation.

contain different noises, and the information is highly correlated.
Generally, effective data analysis methods are needed to interpret
the data and establish a robust predictionmodel (Cen et al., 2019).
Therefore, scientific and systematic data analysis methods often
play an important role.

Data Preprocessing Methods
Since the data collected by UAS cannot be directly used to
monitor biomass, a series of preprocessing steps is needed for
the data. When spectral sensors are used, an indispensable step

is geometric correction and mosaicking of the image. Common
software includes Pix4DMapper and Agisoft Photoscan.

Pix4DMapper software (Pix4D, S.A., Lausanne, Switzerland)
is UAS photography geometric correction andmosaic technology
based on feature matching and SfM photogrammetry technology.
Initially, images were processed in any model space to create
three-dimensional point clouds. The point clouds could be
transformed into a real-world coordinate system using either
direct geolocation techniques to estimate the camera’s location
or GCP techniques for automatic identification within the point
cloud. The point cloud was then used to generate the DTM
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required for image correction. Subsequent geographic reference
images are linked together to form a mosaic of the study area
(Turner et al., 2012).

Agisoft Photoscan software (Agisoft LLC, St. Petersburg,
Russia) is also a common UAS data preprocessing software. The
processing procedure is similar to that of Pix4DMapper. Finally,
the UAS image is exported to TIFF image format for subsequent
analysis (Acorsi et al., 2019; Lu et al., 2019). Figure 4 shows
RGB imagery datasets were processed using the software Agisoft
PhotoScan (Sun et al., 2019).

(a) High-resolution proof images of the acquisition area
(b) Overall map of research area processed by Agisoft

PhotoScan.

Data Analysis Methods
Machine learning algorithms are widely used to process
biomass information. According to whether the input dataset
is labeled, machine learning algorithms can be divided into
supervised learning algorithms and unsupervised learning
algorithms (Dike et al., 2018). Supervised learning algorithms
depend on a labeled dataset. Classification algorithms and
regression algorithms are the two output forms of supervised
learning. In crop biomass monitoring, regression algorithms
are more often used than classification algorithms. Because
the expected biomass results are often continuous instead
of discrete. Unsupervised learning does not rely on a
labeled dataset. It is often used when the cost of labeled
datasets is unacceptable (Sapkal et al., 2007). This is also a
common method to reduce the dimensionality of the data.
Most unsupervised learning algorithms are in the form
of cluster analysis. Figure 5 shows the types of machine
learning algorithms.

Biomass monitoring is a typical regression problem, which
can to be solved by supervised learning algorithms. Enough
labeled datasets are the basis of supervised learning algorithms.
Actual biomass data tend to obtain through destructive samplings
(Jiang et al., 2019; Yue et al., 2019). Field trials are limited by
the area of cropland and the crop growing season. Therefore,
sufficiently large datasets are often not available. How to
properly divide the datasets into training datasets and validation
datasets is a challenge to train supervised learning algorithms.
To solve this problem, Jiang et al. (2019) used fivefold cross
validation, Han et al. (2019) used repeated 10-fold cross
validation, Zhu W.X. et al. (2019) used leave-one-out-cross
validation (LOOCV) to reduce generalization error. Fivefold
cross validation and repeated 10-fold cross validation belong to
k-fold cross validation. LOOCV is a special case of k-fold cross
validation, in which the number of folds equals the number
of instances (Wong, 2015). k-fold cross validation divides the
datasets into k folds, treats each fold as a validation dataset and
regards the other k−1 folds as a training dataset (Wong and
Yang, 2017). The value of folds can be large and the value of
replications should be small if k-fold cross validation is applied
in the classification algorithms (Wong and Yeh, 2020).

Support Vector Regression

Support vector regression (SVR) is a boundary detection
algorithm for identifying/defining multidimensional boundaries
(Sharma et al., 2020), and the basis of this method is to solve
the regression problem by using appropriate kernel functions to
map the training data to the new hyperspace characteristics and
transform the multidimensional regression problem into a linear
regression problem (Navarro et al., 2019). Duan et al. (2019) in an
analysis of VIs and image texture using SVR found that the SVR
itself has the ability to find a suitable combination of different
reflectance bands, which shown that SVR has strong adaptability
to complex data and is suitable for data analysis in biomass
monitoring. Yang et al. (2019) compared PLSR and SVR, and the
results showed that the accuracy of SVR was higher than that of
PLSR, and the SVR optimized by particle swarm optimization
(PSO) could obtain more appropriate parameters and improve
the accuracy of the model.

Random Forest Regression

Random forest regression is a data analysis and statistical method
that is widely used in machine learning and remote sensing
research (Viljanen et al., 2018). Compared with artificial neural
networks (ANNs), RFR does not suffer from overfitting problems
because of the law of large numbers, and the injection of suitable
randomness makes them precise regressors (Breiman, 2001). The
random forest algorithm makes full use of all input data and can
tolerate outliers and noise (Jiang et al., 2019). This algorithm has
the advantages of high prediction accuracy, no need for feature
selection and insensitivity to overfitting (Tewes and Schellberg,
2018; Viljanen et al., 2018).

Artificial Neural Network

An ANN is an information processing paradigm that is inspired
by the way biological nervous systems such as the brain
process information (Awodele and Jegede, 2013). ANN is a
nonparametric nonlinear model that uses a neural network to
transmit between layers and simulates reception and processing
of information by the human brain (Zha et al., 2020). In
individual cases, the results of the algorithm are not better than
those of themultiple linear regression (MLR)method. The reason
for this difference may be that in these applications, a small
sample set will not meet the needs of the artificial neural network
(Han et al., 2019; Zhu W.X. et al., 2019; Zha et al., 2020), and
compared with RFR, ANN needs large data sets and a large
number of repetitions to generate appropriate nonlinearmapping
and obtain the optimal neural network (Devia et al., 2019; Han
et al., 2019); however, RFR can still be applied for a small amount
of sample data (Han et al., 2019; Liu et al., 2019), which leads to
more frequent biomass monitoring use of RFR. Therefore, before
the development of a deep neural network (DNN), the remote
sensing field, including UAS studies, shifted the focus of data
analysis methods from ANN to SVR and RFR (Ma et al., 2019).

The appearance of DNN and a series of methods to solve
overfitting improved the effect of ANN (Maimaitijiang et al.,
2020). Nevavuori et al. (2019) used a convolutional neural
network (CNN) to predict the biomass of wheat and barley. The
researchers tested the influence of the selection of the training
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FIGURE 4 | RGB imagery datasets were processed using the software Agisoft PhotoScan. (A) High-resolution proof images of the acquisition area. (B) Overall map

of research area processed by Agisoft PhotoScan.

algorithm, the depth of the network, the regularization strategy,
the adjustment of super parameters, and other aspects of CNN
on the prediction efficiency to improve the monitoring effect.
This study proved that if enough information can be collected to
increase the number of samples and solve the overfitting problem,
ANN will perform no worse than RFR (Zhang et al., 2019).

Multiple Regression Techniques

Multiple linear regression (Borra-Serrano et al., 2019; Devia et al.,
2019; Han et al., 2019; Zhu W.X. et al., 2019), SMLR (Lu et al.,
2019; Zheng et al., 2019) and PLSR (Borra-Serrano et al., 2019;
Liu et al., 2019; Yue et al., 2019) are also commonly used multiple
regression algorithms. However, with the gradual progress of
SVR, RFR, and ANN, these algorithms have gradually become
references for SVR, RFR, and ANN and are no longer the main
focus of data analysis.

Devia et al. (2019) described an MLR equation for monitoring
rice biomass with VIs. In general, there was a linear relationship
between the accumulation of biomass and VIs. However, the

FIGURE 5 | The types of machine learning algorithms.
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TABLE 2 | Summarize the equipment, methods, and important results of the studies cited in the body.

Crop Platforms Sensors Biomass

indices

Data analysis

methods

Results References

Wheat DJI Phantom

series

A digital camera VIs, CH RFR R2 = 0.78, RMSE = 1.34 t/ha,

RRMSE = 28.98%

Lu et al., 2019

Rice DJI S1000

DJI Phantom 4

Pro

Mini-MCA 12 multispectral

camera

DJI FC6310 digital camera

VIs, CH

Meteorological

feature

SER R2 = 0.86,

RMSE = 178.37 g/m2,

MAE = 127.34 g/m2

Jiang et al., 2019

Potato

Sugar beet

Winter wheat

RIEGL

RiCOPTER

VUX-SYS laser scanner CH MLR Potato: R2 = 0.24,

RMSE = 22.09 g/m2

Sugar beet: R2 = 0.68,

RMSE = 17.47 g/m2

Winter wheat: R2 = 0.82,

RMSE = 13.94 g/m2

ten Harkel et al.,

2020

Maize DJI Phantom 2 Ricoh GR digital camera CH Statistical analysis The estimated values were

most accurate when using a

fisheye lens at 30 m altitude.

Calou et al., 2019

Winter wheat DJI S1000 DSC-QX100 digital camera VIs SMLR R2 = 0.89, MAE = 0.67 t/ha,

RMSE = 0.82 t/ha

Yue et al., 2019

Rice A lightweight

octorotor UAV

An RGB camera

A multispectral camera

VIs, CH RFR R2 = 0.90,

RMSEP = 0.21 kg/m2,

RRMSE = 14.05%

Cen et al., 2019

Winter wheat DJI S1000 DSC–QX100 digital camera

UHD 185 Firefly snapshot

hyperspectral sensor

VIs Exponential

regression

R2 = 0.67, MAE = 1.19,

RMSE = 1.71

Yue et al., 2018

Winter wheat DJI S1000 UHD 185-Firefly VIs PLSR The results of AGB monitoring

can be improved by combining

the red-edge parameters with

VIs.

Tao et al., 2020

Corn

Wheat

DJI M600 Pro Mini-MCA 6 multispectral

camera

VIs Linear regression A systematical radiometric

calibration method was

proposed.

Guo et al., 2019

Rice Mikrokopter

OktoXL

Tetracam mini-MCA6

multispectral camera

VIs SMLR R2 = 0.78, RMSE = 1.84 t/ha Zheng et al., 2019

Winter oilseed

rape

DJI S1000 Mini-MCA multispectral

camera

VIs PLSR

RFR

RFR: RMSE = 274.18 kg/ha

PLSR: RMSE = 284.09 kg/ha

Liu et al., 2019

Maize DJI Phantom 4

Pro

DJI M600 Pro

Parrot Sequoia

multispectral camera

DJI FC6310 digital camera

RIEGL VUX-1UAV laser

scanner

VIs, CH MLR

PLSR

MLR: R2 = 0.82,

RMSE = 79.80 g/m2,

NRMSE = 11.12%

PLSR: R2 = 0.86,

RMSE = 72.28 g/m2,

NRMSE = 10.07%

Zhu Y.H. et al.,

2019

Soybean DJI S1000 Mapir Survey2 RGB

camera

Parrot Sequoia

multispectral camera

FLIR Vue Pro R 640 thermal

imager

VIs, CH DNN-F2 R2 = 0.720,

RMSE = 478.9 kg/ha,

RRMSE = 15.9%

Maimaitijiang et al.,

2020

Tomato DJI Matrice 100 A RGB Zenmuse X3 sensor VIs RFR R2 = 0.85, RMSE = 0.052 m Johansen et al.,

2019

Ryegrass Onyxstar

HYDRA-12

RGB camera VIs, CH

Meteorological

feature

MLR

RFR

MLR: R2 = 0.81,

RMSE = 679 kg/ha,

NRMSE = 21.3%

RFR: R2 = 0.70,

RMSE = 769 kg/ha,

NRMSE = 24.2%

Borra-Serrano

et al., 2019

Wheat

Barley

Airinov Solo

3DR UAV

Parrot’s NIR-capable

SEQUIOA-sensor

None CNN MAE = 484.3 kg/ha,

MAPE = 8.8%

Nevavuori et al.,

2019

Ten winter

wheat cultivars

Ebee

fixed-wing UAV

Canon Powershot S110

RGB camera

Canon Powershot S110

NIR camera

VIs Cluster analysis Combination of multiple VIs can

be a valid strategy.

Marino and Alvino,

2020

(Continued
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TABLE 2 | Continued

Crop Platforms Sensors Biomass

indices

Data analysis

methods

Results References

Coastal

meadows

Ebee

fixed-wing UAV

Parrot Sequoia

multispectral camera

VIs RFR Combination of multiple VIs can

be a valid strategy.

Villoslada et al.,

2020

Maize DJI S1000 DSC-QX100 digital camera

Parrot Sequoia

multispectral camera

BIOVP (VIs, CH) RFR R2 = 0.944, RMSE = 0.495,

MAE = 0.355

Han et al., 2019

Bread wheat DJI Inspires 1

model T600

Sequoia 4.0 multispectral

camera

CH Linear regression R2 = 0.96 Hassan et al., 2019

Maize EWZ-D6

six-rotator UAV

DJI M100

four-rotator

UAV

Ebee

fixed-wing UAV

MultiSPEC-4C multispectral

camera

MicaSense RedEdge-M

multispectral camera

Alpha Series AL3-32 LiDAR

sensor

CH RFR R2 = 0.90, RMSE = 2.29,

MRE = 0.22

Zhu W.X. et al.,

2019

Rice An UAV

equipped with

a Mini-MCA

system

An array of 12 individual

miniature digital cameras

VIs SVR SVR itself has the ability to find

a suitable combination of

different reflectance bands.

Duan et al., 2019

Winter wheat Four-axis aerial

vehicle UAV 3P

Sony EXMOR HD camera VIs SVR R2 = 0.9025, RMSE = 0.3287 Yang et al., 2019

Rice UAV Tetracam ADC-lite

multispectral camera

VIs MLR R2 = 0.76 Devia et al., 2019

Eggplant

Tomato

Cabbage

DJI 3 Pro DJI FC300X RGB camera CH SVR

RFR

R2 ranging from 0.87 to 0.97

Bias ranging from −0.66 to

0.45 cm

Moeckel et al.,

2018

Sorghum Custom

designed UAV

platforms

Sony Alpha ILCE-7R

Velodyne VLP-16

Two Headwall Photonics

push-broom scanners

Four

hyperspectral-

based features

and four

LiDAR-based

features

PLSR

SVR

RFR

The data source was more

important than the regression

method.

Masjedi et al., 2020

Rice UAV platform Tetracam ADC-lite

multispectral camera

VIs Multivariable

regression

An average correlation of 0.76 Devia et al., 2019

This table covers plentiful case-studies from different regions for different crops.

relationship between biomass and VIs in other crops at maturity
can be nonlinear. Therefore, MLR does not apply to these
nonlinear relations of crops. Zheng et al. (2019) used SMLR
to establish the relationship between rice biomass and remote
sensing variables (VIs, image texture, and the combination of
VIs and image texture). Although the estimation accuracy was
high, the model was complex and difficult to generalize. Moeckel
et al. (2018) tested the ability of PLSR, RFR, and SVR to predict
the CH of eggplant, tomato and cabbage, and the results showed
that PLSR did not exceed the performance of RFR and SVR, so it
was excluded first.

The monitoring of biomass is a typical nonlinear problem
(Zha et al., 2020). These regression techniques are more suitable
for data showing linear or exponential relationships between
remote sensing variables and crop parameters (Atzberger et al.,
2010; Jibo et al., 2018; Lu et al., 2019). These methods are often
not as good as SVR, RFR, and ANN in themonitoring of biomass.

The construction of a high-performance monitoring model
based on advanced algorithms (such as machine learning
algorithms) is a good method to improve the effect of crop
biomassmonitoring (Niu et al., 2019). Themonitoring of biomass

is a typical multi-feature nonlinear problem (Zha et al., 2020),
and machine learning algorithms (such as SVR, RFR, and
ANN) exhibit superior results in solving these types of problems
(Breiman, 2001; Navarro et al., 2019; Maimaitijiang et al., 2020).
During the study, by comparing with RFR, the researchers found
that ANN was often superior to RFR when dealing with large
sample sizes and complex, nonlinear, and redundant data sets
(LeCun et al., 2015; Schmidhuber, 2015; Kang and Kang, 2017;
Zhang et al., 2018; Maimaitijiang et al., 2020). However, in a small
sample size, the lack of samples often leads to the phenomenon of
overfitting, and RFR will achieve better results than ANN due to
its stronger robustness and generalization ability (Zhang and Li,
2014; Yao et al., 2015; Yuan et al., 2017; Yue et al., 2017; Zheng
et al., 2018; Zhu W.X. et al., 2019; Zha et al., 2020).

THE PROMOTION OF LARGE-SCALE
UAS APPLICATIONS

Accuracy is an important indicator to evaluate the effects of UAS
in the field of crop biomass estimation. In addition, reducing the
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cost to promote the large-scale application of UAS in this field
is a difficult problem. From the perspective of improving the
accuracy of crop biomass estimations, multisensor data fusion,
multi-index fusion, the consideration of a variety of features not
directly related to the monitoring of biomass, and the use of
advanced algorithms are feasible directions (Maimaitijiang et al.,
2020). Considering the promotion of large-scale applications, the
use of low-cost sensors and the combination of suitable models
and algorithms to improve the estimation accuracy of low-cost
sensors, rather than the use of more expensive sensors, is an
effective research path to promote the large-scale application of
UAS in the field of crop biomass monitoring (Acorsi et al., 2019;
Lu et al., 2019; Niu et al., 2019; Yue et al., 2019). RGB sensors
are currently the most widely used low-cost sensor (Lussem
et al., 2019), and studies based on RGB sensors are expected to
promote the large-scale application of UAS in the field of crop
biomass monitoring.

RGB sensors are not capable of providing NIR band data.
Therefore, VIs associated with NIR bands cannot be used, which
inhibits the enhancement of vegetation vitality contrast (Lu et al.,
2019) and may affect the accuracy of biomass estimation. Lu
et al. (2019) used a combination of advanced algorithms and
multi-index fusion to compensate for this deficiency. Yue et al.
(2019) fused the image texture and VIs to obtain the most
accurate estimated value of AGB (R2 = 0.89, MAE = 0.67 t/ha,
RMSE = 0.82 t/ha). These study proves that the use of low-cost
sensors can guarantee the accuracy of biomass estimation and is
expected to promote large-scale applications.

Solar elevation angle (Jiang et al., 2019), meteorological
conditions (Devia et al., 2019; Wang F. et al., 2019), rainfall (Liu
et al., 2019; Rose and Kage, 2019), soil characteristics (Acorsi
et al., 2019; Vogel et al., 2019), the spatial distribution of multiple
plants in a block (Han et al., 2019), and other characteristics not
directly related to biomass monitoring also affect the accuracy
of biomass estimations. The monitoring accuracy of low-cost
sensors can be improved by considering the characteristics that
are not directly related to biomass monitoring.

Jiang et al. (2019) calculated the solar elevation angle to
avoid sun glint and hotspot effects. In addition, growing degree
days (GDD) was incorporated into the model to estimate
rice AGB as a meteorological feature. Models incorporating
meteorological features achieved better estimation accuracy
(R2 = 0.86, RMSE = 178.37 g/m2, MAE = 127.34 g/m2)
than models that did not use these features (R2 = 0.64,
RMSE = 286.79 g/m2, MAE = 236.49 g/m2).

Other studies have also demonstrated the importance of
considering features that are not directly related to monitoring
biomass. Borra-Serrano et al. (2019) also took GDD as a
meteorological feature and obtained the best estimate by
combining CH, VIs and meteorological data variables in an MLR
model (R2 = 0.81) to monitor ryegrass dry-matter biomass. Devia
et al. (2019) also mentioned the influence of solar elevation angle
and indicated that weather conditions (sunny and cloudy) can
affect the quality of the data, especially in lowland crops where
moisture reflection changes the appearance of the image. The
above studies showed that the accuracy of biomass estimation
can be improved by considering meteorological characteristics

and solar elevation angle. More sample points must be obtained
from multiple research sites and under different environmental
conditions in future studies to train a more robust multivariate
model (Liu et al., 2019). Summary of relevant studies are shown
in Table 2.

CONCLUSION AND FUTURE
PERSPECTIVES

As a high precision, high flexibility and nondestructive remote
sensing system, UAS have been widely used to monitor crop
biomass. The application of UAS in the monitoring of crop
biomass in recent years was reviewed in this article. Four kinds
of data acquisition equipment (LiDAR, RGB sensor, multispectral
sensor, and hyperspectral sensor), two biomass indices (VIs and
CH) and three data analysis methods (SVR, RFR, and ANN)
were introduced.

Despite the rapid progress in this area, difficulties remain.
First, we need to improve the speed of data acquisition and
processing. Although multisensor data fusion improves the
accuracy of evaluation, it makes the process of data collection
more complex, data sorting more difficult, and objectively
reduces the speed of monitoring. In addition, although advanced
algorithms improve the evaluation accuracy, they require a
long training time. Second, there is no universal method
that can be applied to all crops in all cases. Different crops,
even the same crops in different environments, have different
characteristics. This difference requires us to carefully distinguish
the characteristics of crops, use appropriate sensors to collect
characteristics, and test multiple indices to determine the best
biomass indices. Third, the high cost of equipment hinders the
large-scale use of UAS in crop biomass monitoring. Although
research on low-cost sensors has appeared, the method that
is needed to improve the estimation accuracy when using
low-cost sensors still needs further research. It is predicted
that adopting multi-index fusion, considering features not
directly related to monitoring biomass, and the adoption of
advanced algorithms can effectively improve the monitoring
effect of low-cost sensors on crop biomass, which is the future
development direction.

Because of its high precision, flexibility and nondestructive
nature, UAS have the potential to become an important method
for the monitoring of crop biomass. Crop biomass monitoring
systems based on multisensor fusion and multi-index fusion, the
consideration of features that are not directly related to biomass
monitoring and the adoption of advanced algorithms are effective
methods and development directions to improve the accuracy
of crop biomass estimation by UAS. Because of their low cost,
using RGB sensors have become an effective method to promote
the large-scale application of UAS in the field of crop biomass
monitoring. In the field of biomass monitoring, UAS still have
great attraction, and there are an increasing number of studies on
the monitoring of crop biomass based on UAS. Furthermore, it is
expected that the challenges of UAS promotion will be overcome
in the future, which is conducive to the realization of smart
agriculture and precision agriculture.
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