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1. Introduction

In recent years, a great deal of work has been done in the study of the existence of
solutions for impulsive boundary-value problems, by which a number of chemotherapy,
population dynamics, optimal control, ecology, industrial robotics and physics phenom-
ena are described. For relevant and recent references on impulsive differential equa-
tions, we refer the reader to [12, 19–21, 25, 26]. For the background and applications
of the theory of impulsive differential equations to different areas, we refer the reader
to [5,7,10,13,17,18,28,31,32,34,35].

Some classical tools have been used to study impulsive differential equations in the
literature. These classical tools include fixed-point theorems in cones [1,9,11,14] and
the method of lower and upper solutions with monotone iterative technique (see [15]).

On the other hand, in the last few years, many researchers have used variational
methods to study the existence of solutions for boundary-value problems [4,23,24,29,30].
Variational methods have become a powerful tool. For related basic information, we refer
the reader to [16,22].
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However, to the best of our knowledge, few authors have studied the existence of
positive solutions for impulsive boundary-value problems by using variational methods.
As a result, the goal of this paper is to fill the gap in this area.

Motivated by the above facts, in this paper, we study the existence of multiple positive
solutions to the Sturm–Liouville boundary-value problem for the second-order impulsive
differential equations

−(ρ(t)Φp(x′(t)))′ + s(t)Φp(x(t)) = f(t, x(t)), t �= ti, a.e. t ∈ [a, b],

−∆(ρ(ti)Φp(x′(ti))) = Ii(x(ti)), i = 1, 2, . . . , l,

αx′(a) − βx(a) = A, γx′(b) + σx(b) = B,

⎫⎪⎬
⎪⎭ (1.1)

where p > 1, Φp(x) := |x|p−2x, ρ, s ∈ L∞[a, b] with ess inf [a,b]ρ > 0 and ess inf [a,b] s > 0,
0 < ρ(a), ρ(b) < ∞, A � 0, B � 0, α, β, γ, σ > 0, a = t0 < t1 < · · · < tl < tl+1 = b,
∆(ρ(ti)Φp(x′(ti))) = ρ(t+i )Φp(x′(t+i )) − ρ(t−i )Φp(x′(t−i )), where x′(t+i ) and x′(t−i ) denote
the right and left limits, respectively, of x′(t) at t = ti, Ii ∈ C([0, +∞), [0, +∞)), i =
1, 2, . . . , l, f ∈ C([a, b] × [0, +∞), [0, +∞)), f(t, 0) �≡ 0 for t ∈ [a, b].

Our aim is to apply critical-point theory to problem (1.1) and prove the existence
of at least two positive solutions. With the impulse effects and the Sturm–Liouville
boundary conditions taken into consideration, difficulties such as how to construct suit-
able functional ϕ and how to prove that the critical points of ϕ are just the solu-
tions of problem (1.1) must be overcome. In addition, this paper is a generalization
of [2,3,6,8,30], in which impulse effects are not involved. Moreover, the conditions on
f and Ii, i = 1, 2, . . . , l, are easily verified.

The following lemmas will be needed in our argument, which can be found in [9,16,33].

Lemma 1.1 (Zeidler [33, Theorem 38.A]). For the functional F : M ⊆ X →
[−∞, +∞] with M �= ∅, minu∈M F (u) = α has a solution for which the following hold:

(i) X is a real reflexive Banach space;

(ii) M is bounded and weak sequentially closed;

(iii) F is weakly sequentially lower semi-continuous on M , i.e. by definition, for each
sequence (un) in M such that un ⇀ u as n → ∞, we have F (u) � limn→∞ F (un)
holds.

Lemma 1.2 (Mawhin and Willem [16, Theorem 4.10]). Let E be a Banach
space and let ϕ ∈ C1(E, R). Assume that there exist x0 ∈ E, x1 ∈ E and a bounded
open neighbourhood Ω of x0 such that x1 ∈ E \ Ω̄ and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).

Let
Γ = {h ∈ C([0, 1], E) : h(0) = x0, h(1) = x1}

and
c = inf

h∈Γ
max

s∈[0,1]
ϕ(h(s)).

https://doi.org/10.1017/S0013091506001532 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001532


Variational methods for impulsive differential equation BVPs 511

If ϕ satisfies the Palais–Smale (PS)c-condition, i.e. the existence of a sequence (xk) in E

such that ϕ(xk) → c and ϕ′(xk) → 0 as k → ∞ implies that c is a critical value of ϕ,
then c is a critical value of ϕ and c > max{ϕ(x0), ϕ(x1)}.

Lemma 1.3 (Guo [9]). Let E be a Banach space and let ϕ ∈ C1(E, R) satisfy the
Palais–Smale condition, i.e. every sequence {xn} in E satisfying ϕ(xn) is bounded and
ϕ′(xn) → 0 has a convergent subsequence. Assume there exist x0, x1 ∈ E and a bounded
open neighbourhood Ω of x0 such that x1 ∈ E \ Ω̄ and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).

Let
Γ = {h | h : [0, 1] → E is continuous and h(0) = x0, h(1) = x1}

and
c = inf

h∈Γ
max

s∈[0,1]
ϕ(h(s)).

Then c is a critical value of ϕ, that is, there exists x∗ ∈ E such that ϕ′(x∗) = Θ and
ϕ(x∗) = c, where c > max{ϕ(x0), ϕ(x1)}.

Proof. By Lemma 1.2, we need only to show that the (PS)-condition implies the
(PS)c-condition for each c ∈ R. By the (PS)-condition, every sequence {xn} in E sat-
isfying ϕ(xn) is bounded and ϕ′(xn) → 0 has a convergent subsequence; without loss
of generality, we assume (xnk

) → x0 as k → ∞. Since ϕ is a continuous functional,
ϕ(x(nk)) → ϕ(x0). Let c = ϕ(x0). Clearly, ϕ′(xnk

) → 0 = ϕ′(x0) since ϕ ∈ C1(E, R). So
c is a critical value of ϕ, and ϕ satisfies the (PS)c-condition. The proof is complete. �

In this paper, we will need the following conditions.

(C1) There exist µ > p, h ∈ C([a, b] × [0, +∞), [0, +∞)), g ∈ C([0, +∞), [0, +∞)),
r ∈ C([a, b], [0, +∞)), η > 0 and

∫ b

a

r(s) ds + η > 0,

such that

f(t, x) = r(t)Φµ(x) + h(t, x), Ii(x) = ηΦµ(x) + g(x).

(C2) There exist c ∈ L1([a, b], [0, +∞)), d ∈ C([a, b], [0, +∞)), ξ � 0, such that

h(t, x) � c(t) + d(t)Φp(x), g(x) � ξΦp(x).

The remainder of the paper is organized as follows. In § 2, some preliminary results
will be given. In § 3, we will state and prove the main results of the paper, as well as
some applications to (1.1).
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2. Related lemmas

To begin with, we introduce some notation. Henceforth, we assume that [a, b] is a compact
real interval. Define the space X = W 1,p([a, b]) equipped with the norm

‖x‖X =
( ∫ b

a

ρ(t)|x′(t)|p + s(t)|x(t)|p dt

)1/p

,

the norm in W 1,p([a, b]) is equivalent to the usual norm. Hence, X is reflexive. F is the
real function

F (t, ξ) =
∫ ξ

0
f(t, x) dx.

We define the norm in C([a, b]) as ‖x‖∞ = maxx∈[a,b] |x(t)|.
Definition 2.1. A function

x ∈ Z = {x ∈ X : ρΦp(x′)(·) ∈ W 1,∞([a, b] \ {t1, t2, . . . , tl})}

is said to be a classical solution of problem (1.1) if x satisfies the equation in (1.1)
for a.e. t ∈ [a, b] \ {t1, t2, . . . , tl} and the impulsive condition and boundary condition
of (1.1) hold. Moreover, x is said to be a positive classical solution of problem (1.1) if
x(t) � 0, x(t) �≡ 0, t ∈ [a, b].

Lemma 2.2. For x ∈ X, let x± = max{±x, 0}. Then the following six properties
hold:

(i) x ∈ X ⇒ x+, x− ∈ X;

(ii) x = x+ − x−;

(iii) ‖x+‖X � ‖x‖X ;

(iv) if (xn) uniformly converges to x in C([a, b]), then (x+
n ) uniformly converges to x+

in C([a, b]);

(v) x+(t)x−(t) = 0, (x+)′(t)(x−)′(t) = 0 for a.e. t ∈ [a, b];

(vi) Φp(x)x+ = |x+|p, Φp(x)x− = −|x−|p.
Proof. It is easy to show that properties (i)–(iv) and (vi) hold.
Now we will show that (v) holds. Since x ∈ W 1,p([a, b]), there exists a subset S ⊂ [a, b]

with meas S = 0 (i.e. the measure of S is equal to 0), such that x′(t) exists on [a, b] \ S.
Let K = [a, b] \ S,

K+ = {t ∈ K : x(t) � 0}, K− = {t ∈ K : x(t) < 0},

K1 = {t ∈ K : x(t) = 0, x′(t) = 0}, K2 = {t ∈ K : x(t) = 0, x′(t) �= 0}.

Clearly, (x+)′(t)(x−)′(t) = 0 if t ∈ K+∪K−∪K1. Now we prove meas K2 = 0. Otherwise,
there is a closed interval J ⊆ K2 such that x(t) = 0, x′(t) �= 0 for each t ∈ J with
meas J > 0. Then we have

x′(t) = 0 for t ∈ IntJ,

which is a contradiction. So (v) holds. �
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Lemma 2.3. If x ∈ C([a, b]) is a classical solution of problem

−(ρ(t)Φp(x′(t)))′ + s(t)Φp(x(t)) = f(t, x+(t)), t �= ti, a.e. t ∈ [a, b],

−∆(ρ(ti)Φp(x′(ti))) = Ii(x+(ti)), i = 1, 2, . . . , l,

αx′(a) − βx(a) = A, γx′(b) + σx(b) = B,

⎫⎪⎬
⎪⎭ (2.1)

then x(t) � 0, x(t) �≡ 0, t ∈ [a, b], and hence it is a positive classical solution of prob-
lem (1.1).

Proof. If x ∈ C([a, b]) is a classical solution of problem (2.1), by Lemma 2.2 we have

0 =
∫ b

a

[(ρ(t)Φp(x′(t)))′ − s(t)Φp(x(t)) + f(t, x+(t))] × x−(t) dt

=
l∑

i=0

ρ(t)Φp(x′(t))x−(t)
∣∣∣∣
ti+1

t=t+i

−
∫ b

a

[ρ(t)Φp(x′(t))(x−)′(t) + s(t)Φp(x(t))x−(t)] dt +
∫ b

a

f(t, x+(t))x−(t) dt

= −
l∑

i=1

∆(ρ(ti)Φp(x′(ti)))x−(ti)

− ρ(a)Φp

(
A + βx(a)

α

)
x−(a) + ρ(b)Φp

(
B − σx(b)

γ

)
x−(b)

+
∫ b

a

ρ(t)|(x−)′(t)|p + s(t)|x−(t)|p dt +
∫ b

a

f(t, x+(t))x−(t) dt

�
l∑

i=1

Ii(x+(ti))x−(ti) + ρ(b)
∣∣∣∣B − σx(b)

γ

∣∣∣∣
p−2

Bx−(b) + σ(x−(b))2

γ

+ ρ(a)
∣∣∣∣A + βx(a)

α

∣∣∣∣
p−2 −Ax−(a) + β(x−(a))2

α
+ ‖x−‖p

X

� ‖x−‖p
X , (2.2)

so x−(t) = 0 for t ∈ [a, b], that is x(t) � 0 for t ∈ [a, b]. If x(t) ≡ 0 for t ∈ [a, b], the fact
that f(t, 0) �≡ 0 for t ∈ [a, b] gives a contradiction. �

Remark 2.4. By Lemma 2.3, in order to find the positive classical solutions of prob-
lem (1.1) it suffices to obtain classical solutions of (2.1).

For each x ∈ X, set

ϕ(x) :=
‖x‖p

X

p
+

γρ(b)
σp

∣∣∣∣B − σx(b)
γ

∣∣∣∣
p

+
αρ(a)

βp

∣∣∣∣A + βx(a)
α

∣∣∣∣
p

−
∫ b

a

[F (t, x+(t)) − f(t, 0)x−(t)] dt −
l∑

i=1

[ ∫ x+(ti)

0
Ii(s) ds − Ii(0)x−(ti)

]
. (2.3)
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Clearly, ϕ is a Gâteaux differentiable functional whose Gâteaux derivative at the point
x ∈ X is the functional ϕ′(x) ∈ X∗ given by

〈ϕ′(x), v〉 =
∫ b

a

[ρ(t)Φp(x′(t))v′(t) + s(t)Φp(x(t))v(t)] dt

− ρ(b)Φp

(
B − σx(b)

γ

)
v(b) + ρ(a)Φp

(
A + βx(a)

α

)
v(a)

−
∫ b

a

f(t, x+(t))v(t) dt −
l∑

i=1

Ii(x+(ti))v(ti) (2.4)

for every v ∈ X. Obviously, ϕ′ : X → X∗ is continuous.

Lemma 2.5. If the function x ∈ X is a critical point of the functional ϕ, then x is a
solution of problem (2.1).

Proof. Let x ∈ X be a critical point of the functional ϕ. Then 〈ϕ′(x), v〉 = 0. By
integrating (2.4), one has
∫ b

a

[ρ(t)Φp(x′(t))v′(t) + s(t)Φp(x(t))v(t)] dt − ρ(b)Φp

(
B − σx(b)

γ

)
v(b)

+ ρ(a)Φp

(
A + βx(a)

α

)
v(a) −

∫ b

a

f(t, x+(t))v(t) dt −
l∑

i=1

Ii(x+(ti))v(ti)

=
l∑

i=0

ρ(t)Φp(x′(t))v(t)
∣∣∣∣
ti+1

t=t+i

−
∫ b

a

[(ρ(t)Φp(x′(t)))′ − s(t)Φp(x(t)) + f(t, x+(t))]v(t) dt

− ρ(b)Φp

(
B − σx(b)

γ

)
v(b) + ρ(a)Φp

(
A + βx(a)

α

)
v(a) −

l∑
i=1

Ii(x+(ti))v(ti)

= −
l∑

i=1

[∆(ρ(ti)Φp(x′(ti))) + Ii(x+(ti))]v(ti) + ρ(b)Φp(x′(b))v(b) − ρ(a)Φp(x′(a))v(a)

−
∫ b

a

[(ρ(t)Φp(x′(t)))′ − s(t)Φp(x(t)) + f(t, x+(t))]v(t) dt

− ρ(b)Φp

(
B − σx(b)

γ

)
v(b) + ρ(a)Φp

(
A + βx(a)

α

)
v(a)

= −
l∑

i=1

[∆(ρ(ti)Φp(0x′(ti))) + Ii(1x+(ti))]v(ti)

+ ρ(b)
[
Φp(2x′(b)) − Φp

(
3
B − σx(b)

γ

)]
v(b)

+ ρ(a)
[

− Φp(4x′(a)) + Φp

(
5
A + βx(a)

α

)]
v(a)

−
∫ b

a

[(6ρ(t)Φp(7x′(t)))′ − s(t)Φp(8x(t)) + f(9t, x+(t))]v(t) dt. (2.5)
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Thus,

−
l∑

i=1

[∆(ρ(ti)Φp(x′(ti))) + Ii(x+(ti))]v(ti)

+ ρ(b)
[
Φp(x′(b)) − Φp

(
B − σx(b)

γ

)]
v(b)

+ ρ(a)
[

− Φp(x′(a)) + Φp

(
A + βx(a)

α

)]
v(a)

−
∫ b

a

[(ρ(t)Φp(x′(t)))′ − s(t)Φp(x(t)) + f(t, x+(t))]v(t) dt = 0 (2.6)

holds for all v ∈ X. Without loss of generality, we assume that v ∈ C∞
0 (ti, ti+1), v(t) ≡ 0,

t ∈ [a, ti] ∪ [ti+1, b]. Then, substituting it into (2.6), we get

(ρ(t)Φp(x′(t)))′ − s(t)Φp(x(t)) + f(t, x+(t)) = 0 a.e. t ∈ (ti, ti+1).

Thus, x satisfies the equation in (2.1). So, by (2.6),

l∑
i=1

[∆(ρ(ti)Φp(x′(ti))) + Ii(x+(ti))]v(ti)

+ ρ(b)
[
Φp(x′(b)) − Φp

(
B − σx(b)

γ

)]
v(b)

+ ρ(a)
[

− Φp(x′(a)) + Φp

(
A + βx(a)

α

)]
v(a) = 0, (2.7)

holds for all v ∈ X. Next we shall show that x satisfies the impulsive condition in (2.1).
If not, without loss of generality, we assume that there exists i ∈ {1, 2, . . . , l} such that

∆(ρ(ti)Φp(x′(ti))) + Ii(x+(ti)) �= 0. (2.8)

Let

v(t) =
l+1∏

j=0, j �=i

(t − tj).

Then

−
l∑

k=1

[∆(ρ(tk)Φp(x′(tk))) + Ik(x+(tk))]v(tk)

+ ρ(b)
[
Φp(x′(b)) − Φp

(
B − σx(b)

γ

)]
v(b)

+ ρ(a)
[

− Φp(x′(a)) + Φp

(
A + βx(a)

α

)]
v(a)
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=
l∑

k=1

[∆(ρ(tk)Φp(x′(tk))) + Ik(x+(tk))]
l+1∏

j=0, j �=i

(tk − tj)

+ ρ(b)
[
Φp(x′(b)) − Φp

(
B − σx(b)

γ

)] l+1∏
j=0, j �=i

(tl+1 − tj)

+ ρ(a)
[

− Φp(x′(a)) + Φp

(
A + βx(a)

α

)] l+1∏
j=0, j �=i

(t0 − tj)

= −[∆(ρ(ti)Φp(x′(ti))) + Ii(x+(ti))]
l+1∏

j=0, j �=i

(ti − tj) �= 0, (2.9)

which contradicts (2.7). So x satisfies the impulsive condition in (2.1). Similarly, x satisfies
the boundary condition. Therefore, x is a solution of problem (2.1). �

Lemma 2.6. For x ∈ X, we then have ‖x‖∞ � γ̄‖x‖X , where

γ̄ = 21/q × max
{

1
(b − a)1/p(ess inf [a,b] s)1/p

,
(b − a)1/q

(ess inf [a,b] ρ)1/p

}
,

1
p

+
1
q

= 1.

Proof. For x ∈ X, it follows from the mean-value theorem that

x(τ) =
1

b − a

∫ b

a

x(θ) dθ

for some τ ∈ [a, b]. Hence, for t ∈ [a, b], using Hölder’s inequality,

|x(t)| =
∣∣∣∣x(τ) +

∫ t

τ

x′(θ) dθ

∣∣∣∣
� 1

b − a

∫ b

a

|x(θ)| dθ +
∫ b

a

|x′(θ)| dθ

� (b − a)−1/p

( ∫ b

a

|x(θ)|p dθ

)1/p

+ (b − a)1/q

( ∫ b

a

|x′(θ)|p dθ

)1/p

� 1
(b − a)1/p(ess inf [a,b] s)1/p

( ∫ b

a

s(θ)|x(θ)|p dθ

)1/p

+
(b − a)1/q

(ess inf [a,b] ρ)1/p

( ∫ b

a

ρ(θ)|x′(θ)|p dθ

)1/p

� 21/q × max
{

1
(b − a)1/p(ess inf [a,b] s)1/p

,
(b − a)1/q

(ess inf [a,b] ρ)1/p

}
‖x‖X ,

which completes the proof. �

Lemma 2.7. Suppose that (C1) and (C2) hold. Furthermore, we assume the following.
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(C3) We have

µ − p >
µ‖d‖∞

ess inf [a,b] s
+ µblγ̄p,

where γ̄ is defined in Lemma 2.6.

Then the functional ϕ satisfies the Palais–Smale condition.

Proof. First we prove that (xn) is a bounded sequence in X. By Lemma 2.2 (vi) and
(2.4) we have

〈ϕ′(xn), x−
n 〉 =

∫ b

a

[ρ(t)Φp(x′
n(t))(x−

n )′(t) + s(t)Φp(xn(t))x−
n (t) − f(t, x+

n (t))x−
n (t)] dt

− ρ(b)Φp

(
B − σxn(b)

γ

)
x−

n (b) + ρ(a)Φp

(
A + βxn(a)

α

)
x−

n (a)

−
l∑

i=1

Ii(x+
n (ti))x−

n (ti)

=
∫ b

a

[−ρ(t)|(x−
n )′(t)|p − s(t)|x−

n (t)|p − f(t, x+
n (t))x−

n (t)] dt

− ρ(b)Φp

(
B − σxn(b)

γ

)
x−

n (b) + ρ(a)Φp

(
A + βxn(a)

α

)
x−

n (a)

−
l∑

i=1

Ii(x+
n (ti))x−

n (ti)

= −‖x−
n ‖p

X −
∫ b

a

f(t, x+
n (t))x−

n (t) dt

− ρ(b)
∣∣∣∣B − σxn(b)

γ

∣∣∣∣
p−2(

Bx−
n (b) + σ(x−

n (b))2

γ

)

+ ρ(a)
∣∣∣∣A + βxn(a)

α

∣∣∣∣
p−2(

Ax−
n (a) − β(x−

n (a))2

α

)

−
l∑

i=1

Ii(x+
n (ti))x−

n (ti)

� −‖x−
n ‖p

X . (2.10)

Set w−
n = x−

n /‖x−
n ‖X . Dividing by ‖x−

n ‖X on both sides of the above inequality, we have

‖x−
n ‖p−1

X � −〈ϕ′(xn), w−
n 〉 → 0 as n → ∞.

So x−
n → 0 in X. Now we shall show that (x+

n ) is bounded.
Let

J(xn) = µ
γρ(b)
σp

∣∣∣∣B − σxn(b)
γ

∣∣∣∣
p

+ µ
αρ(a)

βp

∣∣∣∣A + βxn(a)
α

∣∣∣∣
p

+ ρ(b)Φp

(
B − σxn(b)

γ

)
x+

n (b) − ρ(a)Φp

(
A + βxn(a)

α

)
x+

n (a).
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By (2.3) and (2.4) we have

µ

p
‖xn‖p

X − ‖x+
n ‖p

X = µϕ(xn) − 〈ϕ′(xn), x+
n 〉 − J(xn)

+ µ

∫ b

a

[F (t, x+
n (t)) − f(t, 0)x−

n (t)] dt −
∫ b

a

f(t, x+
n (t))x+

n (t) dt

+ µ
l∑

i=1

[ ∫ x+(ti)

0
Ii(s) ds − Ii(0)x−

n (ti)
]

−
l∑

i=1

Ii(x+
n (ti))x+

n (ti).

(2.11)

By (C1), (C2) and Lemma 2.6, one obtains

µ

∫ b

a

[F (t, x+
n (t)) − f(t, 0)x−

n (t)] dt −
∫ b

a

f(t, x+
n (t))x+

n (t) dt

� µ

∫ b

a

H(t, x+
n (t)) dt

� µ

∫ b

a

[
c(t)x+

n (t) +
d(t)
p

|x+
n (t)|p

]
dt

� µ‖c‖L1 γ̄‖x+
n ‖X +

µ‖d‖∞
p(ess inf [a,b] s)

‖x+
n ‖p

X , where H(t, x) =
∫ x

0
h(t, τ) dτ,

(2.12)

and

µ

l∑
i=1

[ ∫ x+
n (ti)

0
Ii(s) ds − Ii(0)x−

n (ti)
]

−
l∑

i=1

Ii(x+
n (ti))x+

n (ti) � µξ

p

l∑
i=1

|x+
n (ti)|p

� µξl

p
γ̄p‖x+

n ‖p
X . (2.13)

We compute

−J(xn) = −ρ(b)
∣∣∣∣B − σxn(b)

γ

∣∣∣∣
p−2

Bx+
n (b) − σxn(b)x+

n (b)
γ

+ ρ(a)
∣∣∣∣A + βxn(a)

α

∣∣∣∣
p−2

Ax+
n (a) + βxn(a)x+

n (a)
α

− µγρ(b)
σp

∣∣∣∣B − σxn(b)
γ

∣∣∣∣
p

− µαρ(a)
βp

∣∣∣∣A + βxn(a)
α

∣∣∣∣
p

� ρ(b)B(2µ − p)
γp

∣∣∣∣B − σxn(b)
γ

∣∣∣∣
p−2

x+
n (b)

+
ρ(a)A(p − 2µ)

αp

∣∣∣∣A + βxn(a)
α

∣∣∣∣
p−2

x+
n (a). (2.14)
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Substituting (2.12)–(2.14) into (2.11), in view of Lemma 2.2 (ii) one has

(
µ

p
− 1

)
‖x+

n ‖p
X � µϕ(xn) − 〈ϕ′(xn), x+

n 〉 +
ρ(b)B(2µ − p)

γp

∣∣∣∣B − σxn(b)
γ

∣∣∣∣
p−2

x+
n (b)

+
ρ(a)A(p − 2µ)

αp

∣∣∣∣A + βxn(a)
α

∣∣∣∣
p−2

x+
n (a)

+ µ‖c‖L1 γ̄‖x+
n ‖X +

µ‖d‖∞
p(ess inf [a,b] s)

‖x+
n ‖p

X +
µξl

p
γ̄p‖x+

n ‖p
X . (2.15)

Suppose that (x+
n ) is unbounded. Passing to a subsequence, we may assume, if nec-

essary, that ‖x+
n ‖X → ∞ as n → ∞. Dividing both sides of (2.15) by ‖x+

n ‖p
X , with

w+
n = x+

n /‖x+
n ‖X , we have

µ

p
− 1 � µϕ(xn)

‖x+
n ‖p

X

− 〈ϕ′(xn), w+
n 〉

‖x+
n ‖p−1

X

+
ρ(b)B(2µ − p)

γp‖x+
n ‖p

X

∣∣∣∣B − σxn(b)
γ

∣∣∣∣
p−2

x+
n (b)

+
ρ(a)A(p − 2µ)

αp‖x+
n ‖p

X

∣∣∣∣A + βxn(a)
α

∣∣∣∣
p−2

x+
n (a)

+
µγ̄‖c‖L1

‖x+
n ‖p−1

X

+
µ‖d‖∞

p(ess inf [a,b] s)
+

µξl

p
γ̄p. (2.16)

Since ϕ(xn) is bounded and ϕ′(xn) → 0, x−
n → 0 in X, let n → ∞ in the above inequality.

We have
µ

p
− 1 � µ‖d‖∞

p(ess inf [a,b] s)
+

µξl

p
γ̄p,

which contradicts (C3). Therefore, (xn) is bounded in X.
From the reflexivity of X, we may extract a weakly convergent subsequence that,

for simplicity, we call (xn), xn ⇀ x. In the following we will show that (xn) strongly
converges to x. By (2.4) we have

〈ϕ′(xn) − ϕ′(x), xn − x〉

=
∫ b

a

{ρ(t)[Φp(x′
n(t)) − Φp(x′(t))] × (x′

n(t) − x′(t))

+ s(t)[Φp(xn(t)) − Φp(x(t))] × (xn(t) − x(t))} dt

−
∫ b

a

[f(t, x+
n (t)) − f(t, x+(t))](xn(t) − x(t)) dt

−
l∑

i=1

[Ii(x+
n (ti)) − Ii(x+(ti))](xn(ti) − x(ti))
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− ρ(b)
[
Φp

(
B − σxn(b)

γ

)
− Φp

(
B − σx(b)

γ

)]
× (xn(b) − x(b))

+ ρ(a)
[
Φp

(
A + βxn(a)

α

)
− Φp

(
A + βx(a)

α

)]
× (xn(a) − x(a)). (2.17)

By xn ⇀ x in X, we see that (xn) uniformly converges to x in C([a, b]). So

∫ b

a

[f(t, x+
n (t)) − f(t, x+(t))](xn(t) − x(t)) dt → 0,

l∑
i=1

[Ii(x+
n (ti)) − Ii(x+(ti))](xn(ti) − x(ti)) → 0,

xn(b) → x(b), xn(a) → x(a) as n → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

By ϕ′(xn) → 0 and xn ⇀ x, we have

〈ϕ′(xn) − ϕ′(x), xn − x〉 → 0 as n → ∞. (2.19)

By [27, Equation (2.2)], there exist cp, dp > 0 such that

∫ b

a

{ρ(t)[Φp(u′(t)) − Φp(v′(t))] × (u′(t) − v′(t))

+ s(t)[Φp(u(t)) − Φp(v(t))] × (u(t) − v(t))} dt

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cp

∫ b

a

[ρ(t)|u′(t) − v′(t)|p + s(t)|u(t) − v(t)|p] dt if p � 2,

dp

∫ b

a

[
ρ(t)|u′(t) − v′(t)|2

(|u′(t)| + |v′(t)|)2−p
+

s(t)|u(t) − v(t)|2
(|u(t)| + |v(t)|)2−p

]
dt if 1 < p < 2.

(2.20)

If p � 2, then (2.17)–(2.20) yield that ‖xn − x‖X → 0 in X.
If 1 < p < 2, by Hölder’s inequality, for u, v ∈ X, we obtain

∫ b

a

ρ(t)|u′(t) − v′(t)|p dt

�
( ∫ b

a

ρ(t)|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt

)p/2( ∫ b

a

ρ(t)(|u′(t)| + |v′(t)|)p dt

)(2−p)/2

�
( ∫ b

a

ρ(t)|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt

)p/2

2(p−1)(2−p)/2
( ∫ b

a

ρ(t)[|u′(t)|p + |v′(t)|p] dt

)(2−p)/2

� 2(p−1)(2−p)/2
( ∫ b

a

ρ(t)|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt

)p/2

(‖u‖X + ‖v‖X)(2−p)p/2. (2.21)
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Similarly,

∫ b

a

s(t)|u(t) − v(t)|p dt

� 2(p−1)(2−p)/2
( ∫ b

a

s(t)|u(t) − v(t)|2
(|u(t)| + |v(t)|)2−p

dt

)p/2

(‖u‖X + ‖v‖X)(2−p)p/2. (2.22)

So (2.20)–(2.22) yield

∫ b

a

ρ(t)[Φp(x′
n(t)) − Φp(x′(t))](x′

n(t) − x′(t))

+ s(t)[Φp(xn(t)) − Φp(x(t))](xn(t) − x(t)) dt

� dp

∫ b

a

[
ρ(t)

|x′
n(t) − x′(t)|2

(|x′
n(t)| + |x′(t)|)2−p

+ s(t)
|xn(t) − x(t)|2

(|xn(t)| + |x(t)|)2−p

]
dt

� dp

2(p−1)(2−p)/p(‖xn‖X + ‖x‖X)2−p

×
{( ∫ b

a

ρ(t)|x′
n(t) − x′(t)|p dt

)2/p

+
( ∫ b

a

s(t)|xn(t) − x(t)|p dt

)2/p}

� dp

2(p−1)(2−p)/p max{2(2/p)−1, 1}
‖xn − x‖2

X

(‖xn‖X + ‖x‖X)2−p
. (2.23)

Then (2.17)–(2.19) and (2.23) yield that ‖xn−x‖X → 0 in X, i.e. (xn) strongly converges
to x in X. �

3. Main results

Theorem 3.1. Suppose that (C1)–(C3) hold. Furthermore, we assume the following.

(C4) There exists an M0 > 0 such that

1
p

[
1 − ‖d‖∞

ess inf [a,b] s
− ξlγ̄p

]
Mp

0

>
[‖r‖∞(b − a) + ηl]γ̄µMµ

0

µ
+ ‖c‖L1 γ̄M0 +

ρ(b)|B|p
σpγp−1 +

ρ(a)|A|p
βpαp−1 .

Then problem (1.1) has at least two positive classical solutions, x0, x∗, with
‖x0‖X < M0.

Proof. We complete the proof in three steps.

Step 1. By Lemma 2.7, the functional ϕ satisfies the Palais–Smale condition.

Step 2. We shall show that there exists M > 0 such that the functional ϕ has a local
minimum x0 ∈ BM := {x ∈ X : ‖x‖X < M}.
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Let M > 0, which will be determined later. First we claim that B̄M is bounded and
weak sequentially closed. In fact, let (un) ⊆ B̄M and (un) ⇀ u as n → ∞. By the Mazur
theorem [16], there exists a sequence of convex combinations

vn =
n∑

j=1

αnj
uj ,

n∑
j=1

αnj
= 1, αnj

� 0, j ∈ N,

such that vn → u in X. Since B̄M is a closed convex set, (vn) ⊂ B̄M and u ∈ B̄M . Now
we claim that ϕ has a minimum x0 ∈ B̄M . We will show that ϕ is weak sequentially
lower semi-continuous on B̄M . For this, let

ϕ1(x) =
1
p

∫ b

a

[ρ(t)|x′(t)|p + s(t)|x(t)|p] dt

and

ϕ2(x) = −
∫ b

a

[F (t, x+(t)) − (f(t, 0), x−(t))] dt

−
l∑

i=1

[ ∫ x+(ti)

0
Ii(s) ds − Ii(0)x−(ti)

]

+
γρ(b)
σp

∣∣∣∣B − σx(b)
γ

∣∣∣∣
p

+
αρ(a)

βp

∣∣∣∣A + βx(a)
α

∣∣∣∣
p

.

Then ϕ(x) = ϕ1(x)+ϕ2(x). By xn ⇀ x on X we see that (xn) uniformly converges to x in
C([a, b]). So ϕ2 is weak sequentially continuous. Clearly, ϕ1 is continuous, which, together
with the convexity of ϕ1, implies that ϕ1 is weak sequentially lower semi-continuous.
Therefore, ϕ is weak sequentially lower semi-continuous on B̄M . Besides, X is a reflexive
Banach space and B̄M is a bounded and weak sequentially closed set, so our claim follows
from Lemma 1.1. Without loss of generality, we assume that ϕ(x0) = minx∈B̄M

ϕ(x). Now
we will show that

ϕ(x0) < inf
x∈∂BM

ϕ(x). (3.1)

If this is true, the result of Step 2 holds.
In fact, for any x ∈ ∂BM , by (2.3), (C1) and Lemma 2.6, we have

ϕ(x) � Mp

p
−

∫ b

a

F (t, x+(t)) dt −
l∑

i=1

∫ x+(ti)

0
Ii(s) ds

� Mp

p
−

∫ b

a

[
r(t)|x+(t)|µ

µ
+ c(t)x+(t) +

d(t)|x+(t)|p
p

]
dt

−
l∑

i=1

[
η

µ
|x+(ti)|µ +

ξ

p
|x+(ti)|p

]

� Mp

p
− ‖r‖∞(b − a)

µ
‖x‖µ

∞ − ‖c‖L1‖x‖∞

− ‖d‖∞
p(ess inf [a,b] s)

‖x‖p
X − ηlγ̄µ

µ
‖x+‖µ

X − ξlγ̄p

p
‖x+‖p

X
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� Mp

p
− ‖r‖∞(b − a)

µ
γ̄µ‖x‖µ

X − ‖c‖L1 γ̄‖x‖X

− ‖d‖∞
p(ess inf [a,b] s)

‖x‖p
X − ηlγ̄µ

µ
‖x+‖µ

X − ξlγ̄p

p
‖x+‖p

X

=
Mp

p
− ‖r‖∞(b − a)

µ
γ̄µMµ − ‖c‖L1 γ̄M

− ‖d‖∞
p(ess inf [a,b] s)

Mp − ηlγ̄µ

µ
Mµ − ξlγ̄p

p
Mp. (3.2)

So

inf
x∈∂BM

ϕ(x) � Mp

p
− ‖r‖∞(b − a)

µ
γ̄µMµ

− ‖c‖L1 γ̄M − ‖d‖∞
p(ess inf [a,b] s)

Mp − ηl

µ
γ̄µMµ − ξlγ̄p

p
Mp.

Noting that

ϕ(x0) � ϕ(0) =
ρ(b)|B|p
σpγp−1 +

ρ(a)|A|p
βpαp−1 ,

by (C4) there exists M0 > 0 such that ϕ(x) > ϕ(0) � ϕ(x0) for any x ∈ ∂BM0 . So (3.1)
holds and x0 ∈ BM0 .

Step 3. We shall show that there exists x1 with ‖x1‖X > M0 such that ϕ(x1) <

infx∈∂BM0
ϕ(x).

Let ẽ(t) = 1 ∈ X, λ̄ > 0. Then

ϕ(λ̄ẽ) =
λ̄p

p

∫ b

a

s(t) dt −
∫ b

a

[F (t, λ̄) − f(t, 0)λ̄] dt

−
l∑

i=1

[ ∫ λ̄

0
Ii(s) ds − Ii(0)λ̄

]
+

γρ(b)
σp

∣∣∣∣B − σλ̄

γ

∣∣∣∣
p

+
αρ(a)

βp

∣∣∣∣A + βλ̄

α

∣∣∣∣
p

� λ̄p

p

∫ b

a

s(t) dt −
∫ b

a

[
r(t)λ̄µ

µ
+ H(t, λ̄)

]
dt + λ̄

∫ b

a

f(t, 0) dt

− lηλ̄µ

µ
+

γρ(b)
σp

∣∣∣∣B − σλ̄

γ

∣∣∣∣
p

+
αρ(a)

βp

∣∣∣∣A + βλ̄

α

∣∣∣∣
p

� λ̄p

p

∫ b

a

s(t) dt − λ̄µ

µ

∫ b

a

r(t) dt + λ̄

∫ b

a

f(t, 0) dt

− lηλ̄µ

µ
+

γρ(b)
σp

∣∣∣∣B − σλ̄

γ

∣∣∣∣
p

+
αρ(a)

βp

∣∣∣∣A + βλ̄

α

∣∣∣∣
p

. (3.3)

Since µ > p and (C1), we have limλ̄→+∞ ϕ(λ̄ẽ) = −∞. Therefore, there exists a suffi-
ciently large λ0 > 0 with ‖λ̄0ẽ‖ > M0 such that ϕ(λ̄0ẽ) < infx∈∂BM0

ϕ(x). Therefore, let
x1 = λ̄0ẽ and ϕ(x1) < infx∈∂BM0

ϕ(x).
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Lemma 1.3 now gives the critical value

c = inf
h∈γ

max
t∈[0,1]

ϕ(h(t)),

where
γ = {h | h : [0, 1] → E is continuous and h(0) = x0, h(1) = x1},

that is, there exists x∗ ∈ X such that ϕ′(x∗) = 0. Therefore, x0 and x∗ are two critical
points of ϕ, ‖x0‖X < M0, and hence they are classical solutions of (2.1). Lemma 2.3
means that x0 and x∗ are positive classical solutions of problem (1.1). �

Example 3.2. Consider the following problem:

−
(

1
1 + t

Φ3(x′(t))
)′

+
1

1 + t
Φ3(x(t)) = f(t, x), t �= ti, t ∈ [0, 1],

−∆
(

1
1 + ti

Φ3(x′(ti))
)

= Ii(x(ti)), i = 1, 2,

x′(0) − 2x(0) = − 1
8 , x′(1) + 3x(1) = 1

4 ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

where

f(t, x) =
t

96
x13 +

t11

48
+

1
4 + 2t

x2,

and Ii(x) = 1
192x13 + 1

64x2, i = 1, 2.
Compared to (1.1), ρ(t) = 1/(1+ t), s(t) = 1/(1+ t), p = 3, l = 2, a = 0, b = 1, α = 1,

β = 2, γ = 1, σ = 3, A = − 1
8 , B = 1

4 .
Let

µ = 14, r(t) =
t

96
, h(t, x) =

t11

48
+

1
4 + 2t

x2, c(t) =
t11

48
, d(t) =

1
4 + 2t

,

η =
1

192
, g(x) =

x2

64
, ξ =

1
64

.

Clearly, (C1)–(C3) are satisfied. Setting M0 = 1
2 satisfies condition (C4). Applying

Theorem 3.1, the boundary-value problem (3.4) has at least two positive solutions, x0

and x∗, with ‖x0‖X < 1
2 .

Corollary 3.3. Suppose that (C1) holds. Moreover, we assume the following.

(C2′) There exist 0 � θ < p, c ∈ L1([a, b], [0, +∞)), d ∈ C([a, b], [0, +∞)) such that

h(t, x) � c(t) + d(t)Φθ(x), g(x) � ξΦθ(x).

(C4′) There exists an M0 > 0 such that

1
p
Mp

0 >
[‖r‖∞(b − a) + ηl]γ̄µMµ

0

µ

+ ‖c‖L1 γ̄M0 +
ρ(b)|B|p
σpγp−1 +

ρ(a)|A|p
βpαp−1 +

(
ξlγ̄θ

θ
+

‖d‖∞
θ · ess inf [a,b] s

)
Mθ

0 .

Then problem (1.1) has at least two positive classical solutions x0, x∗ with ‖x0‖X <

M0.
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Corollary 3.4. Suppose that (C1) and (C2′) hold. Moreover, we assume the following.

(C5) There exists M0 > 0 such that

1
p
Mp

0 >
‖r‖∞(b − a) + ηl

µ
γ̄µMµ

0 + ‖c‖L1 γ̄M0 +
(

‖d‖∞
θ · ess inf [a,b] s

+
ξlγ̄θ

θ

)
Mθ

0 .

Then problem (1.1) with A = B = 0 has at least two positive solutions x0, x∗.

Example 3.5. Consider the following problem:

−x′′ + x = r(t)xµ−1 + d(t)xθ−1, t �= ti, t ∈ [0, 1],

−∆x′(ti) = η(x(ti))µ−1 + ξ(x(ti))θ−1, i = 1, 2, . . . , l,

αx′(0) − βx(0) = 0, γx′(1) + σx(1) = 0,

⎫⎪⎬
⎪⎭ (3.5)

where µ > 2 > θ, r ∈ C([0, 1], [0, +∞)), η, ξ � 0. On applying Corollary 3.4, problem (3.5)
has at least two positive solutions provided there exists an M0 > 0 such that

1
2M2

0 >
‖r‖∞ + ηl

µ
γ̄µMµ

0 +
(

‖d‖∞
θ

+
ξlγ̄θ

θ

)
Mθ

0 , where γ =
√

2.

According to the proof of Lemma 2.7 and Theorem 3.1, we have the following result.

Theorem 3.6. Suppose that the following conditions hold:

(D1) f(t, x) = ◦(|x|p−1), Ii(x) = ◦(|x|p−1) as |x| → 0 uniformly for t ∈ [a, b];

(D2) there exist constants M > 0, µ > p such that

0 < µF (t, x) < xf(t, x), 0 < µ

∫ x

0
Ii(s) ds < xIi(x) for any x � M, t ∈ [a, b].

Then problem (1.1) with A = B = 0 has at least two positive solutions.

Proof. In the proof of (2.12), (2.13) in Lemma 2.7, we substitute conditions (D1)
and (D2) for (C1) and (C2). Then it is easy to show that (x+

n ) is bounded. In the proof
of (3.2) in Theorem 3.1, we apply (D1) (not (C1), (C2)). In fact, (D1) means that, for
0 < ε < 1/(p(b − a + l)γ̄p), there exists an M > 0 such that

F (t, x) � ε|x|p,
∫ x

0
Ii(s) ds � ε|x|p

hold for t ∈ [a, b], |x| < M . Thus,

ϕ(x) � Mp

p
−

∫ b

a

F (t, x+(t)) dt −
l∑

i=1

∫ x+(ti)

0
Ii(s) ds

� Mp

p
− ε

∫ b

a

|x(t)|p dt −
l∑

i=1

ε|x(ti)|p

=
Mp

p
− ε(b − a)γ̄pMp − εlγ̄pMp

=
[
1
p

− ε(b − a)γ̄p − εlγ̄p

]
Mp > 0 = ϕ(0).
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Finally, we apply (D2) to (3.3). Then the result of Step 3 follows. In fact, (D2) means
that there exist a1, a2 ∈ C([a, b], (0, +∞)), a3, a4 > 0 such that

F (t, x) � a1(t)|x|µ − a2(t),
∫ x

0
Ii(s) ds � a3|x|µ − a4,

which yields the result. �

Example 3.7. For problem (3.5), if d(t) ≡ 0, t ∈ [0, 1], ξ = 0, then problem (3.5) has
at least two positive solutions by using Theorem 3.6.
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