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Applied Chemometric Approach in Identification Sources of 
Air Quality Pattern in Selangor, Malaysia

(Aplikasi Pendekatan Kimometriks dalam Mengenal Pasti Corak Sumber Kualiti Udara di Selangor, Malaysia)

ANG KEAN HUA*

ABSTRACT

In recent years, Malaysia has experienced quite a few number of chronic air pollution problems and it has become a 
major contributor to the deterioration of human health and ecosystems. This study aimed to assess the air quality data 
and identify the pattern of air pollution sources using chemometric analysis through hierarchical cluster analysis (HCA), 
discriminant analysis (DA), principal component analysis (PCA) and multiple linear regression analysis (MLR). The air 
quality data from January 2016 until December 2016 was obtained from the Department of Environment Malaysia. Air 
quality data from eight sampling stations in Selangor include the selected variables of nitrogen dioxide (NO2), ozone (O3), 
sulfur dioxide (SO2), carbon monoxide (CO) and particulate matter (PM10). The HCA resulted in three clusters, namely low 
pollution source (LPS), moderate pollution source (MPS) and slightly high pollution source (SHPS). Meanwhile, DA resulted 
in two and four variables for the forward stepwise mode and the backward stepwise mode, respectively. Through PCA, 
it was identified that the main pollutants of LPS, MPS and SHPS came from industrial and vehicle emissions, agricultural 
systems, residential factors and natural emission sources. Among the three models yielded from the MLR analysis, it was 
found that SHPS is the most suitable model to be used for the prediction of Air Pollution Index. This study concluded that 
a clearer review and practical design of air quality monitoring network would be beneficial for better management of 
air pollution. The study also suggested that chemometric techniques have the ability to show significant information on 
spatial variability for large and complex air quality data.

Keywords: Discriminant analysis; hierarchical cluster analysis; multiple linear regression analysis; principal component 
analysis

ABSTRAK

Sejak beberapa tahun kebelakangan ini, Malaysia telah mengalami beberapa masalah pencemaran udara yang kronik 
dan ia telah menjadi salah satu penyebab utama dalam kemerosotan kesihatan manusia dan ekosistem. Matlamat kajian 
ini adalah untuk menilai data kualiti udara dan mengenal pasti corak sumber pencemaran udara menggunakan teknik 
kimometriks melalui analisis pengkelasan hierarki (HCA), analisis diskriminan (DA), analisis komponen berprinsip 
(PCA) dan analisis regrasi linear pelbagai (MLR). Data kualiti udara bermula dari Januari hingga Disember 2016 telah 
diperoleh daripada Jabatan Alam Sekitar Malaysia. Data kualiti udara dari lapan stesen persampelan di Negeri Selangor 
melibatkan pemboleh ubah terpilih nitrogen dioksida (NO2), ozon (O3), sulfur dioksida (SO2), karbon monoksida (CO) 
dan zarahan terampai (PM10). Proses HCA telah menghasilkan tiga kluster iaitu sumber pencemar rendah (LPS), sumber 
pencemar sederhana (MPS) dan sumber pencemar sedikit tinggi (SHPS). Sementara itu, proses DA telah menghasilkan 
dua pemboleh ubah bagi mod ke hadapan berperingkat dan empat pemboleh ubah bagi mod ikut langkah kebelakang. 
Melalui proses PCA, ia telah dikenal pasti bahawa bahan pencemar utama bagi LPS, MPS dan SHPS berasal daripada hasil 
pelepasan industri dan pengangkutan, sistem pertanian, faktor kediaman dan sumber pelepasan semula jadi. Antara 
ketiga-tiga model yang dihasilkan melalui analisis MLR, ia didapati bahawa SHPS adalah model yang paling sesuai untuk 
digunakan bagi kerja-kerja ramalan Indeks Pencemaran Udara. Kajian ini menyimpulkan bahawa ulasan serta reka 
bentuk praktikal ke atas rangkaian pengawasan kualiti udara akan memberi manfaat dalam usaha mengurus pencemaran 
udara dengan lebih baik. Kajian ini juga mencadangkan bahawa teknik kimometriks mempunyai keupayaan untuk 
mendedahkan maklumat yang penting tentang pemboleh ubah reruang bagi data kualiti udara yang besar dan rumit.

Kata kunci: Analisis diskriminan; analisis komponen berprinsip; analisis pengkelasan hierarki; analisis regrasi linear 
pelbagai

INTRODUCTION

Air pollution is an important factor that could influence 
the quality of life and it requires serious and immediate 
attention in both developed and developing countries. 

Air pollution can be explained as a circumstance where 
air pollutants concentration in the atmosphere exceeded 
the normal ambient levels (Seinfeld & Pandis 1998). The 
types of pollutants can be irregular depending on the time 
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period and it can also be in either scattered or concentrated 
form in the atmosphere. Air pollution problems often 
occurred in highly populated focus area such as urban 
and manufacturing industrial areas (Azid et al. 2013). 
This condition is not unfamiliar to a developing country 
such as Malaysia. Malaysia’s experiences with industrial 
pollution and urban environmental degradation can be 
credited to the rapid economic growth which started 
when it aimed to achieve the status of developed country 
by the year 2020. Nowadays, air pollution has become a 
major issue of debate because of its negative influence on 
humans, buildings, crops, and the ecosystems (Moustris 
et al. 2010). Continuous exposure to air pollution would 
threaten the wellbeing of public health and this condition 
requires close government monitoring especially at certain 
areas as to prevent the deterioration of air quality.
 In Malaysia, the main sources of air pollutants came 
from mobile, stationary and trans-boundary sources (Azid 
et al. 2014, 2013; Khan et al. 2015; Makmom et al. 2012; 
Mutalib et al. 2013; Sulong et al. 2017). Generally, mobile 
source pollution referred to any air pollution emitted by 
motor vehicles (Azid et al. 2014). Meanwhile, stationary 
source pollution originated from fossil fuel burning power 
plants, food processing plants, heavy industrial sources and 
open burning (Dominick et al. 2012). On the other hand, 
trans-boundary pollution comprises of forest burning or 
volcanic eruptions in neighboring countries which causes 
air pollution to the home ground (Makmom et al. 2012). 
The air quality status in Malaysia is measured using 
Malaysia Ambient Air Quality Standard (MAAQS) which 
was established by the Department of Environment (DOE), 
Malaysia. Air Pollutant Index (API) is calculated based on 
sub-index of SO2, NO2, CO, O3, and PM10; where only the 
highest value of sub-index in individual pollutants are taken 
as the API value (DOE 2012). Normally, PM10 and O3 were 
detected as major air pollutants in urban cities and sub urban 
areas and they both have quite an influenced on human health 
in the country (Mahiyuddin et al. 2013). This condition of 
air pollution was particularly influenced by the high traffic 
volume and industrial activities (Azmi et al. 2010).
 Chemometric techniques also known as multivariate 
techniques analysis is an excellent tool that is often used in 
the environmental field to identify the sources of pollution 
(Azid et al. 2014; Mutalib et al. 2013). Chemometric 
analysis include the interrelationship of faunal structure, 

physic-chemical and biological characteristic, as well 
as toxicity data that could be obtain from the laboratory 
analysis (Azid et al. 2015). This made the tool suitable 
for the reduction and interpretation of meaningful data 
(Azid et al. 2015; Mutalib et al. 2013) through hierarchical 
cluster analysis (HCA), discriminant analysis (DA), principal 
component analysis (PCA) and multiple linear regressions 
(MLR). Chemometric techniques is not only beneficial 
for the recognition of potential sources variations in air 
quality and manipulation of air quality, but it is also 
beneficial for the interpretation of complex databases for 
better understanding of the condition of air quality in a 
specific region (Azid et al. 2015; Hua et al. 2016; Mutalib 
et al. 2013). Therefore, these methods are appropriate for 
the development of efficient management of air quality 
monitoring network (Azid et al. 2015).
 This study was carried out to identify the spatial 
and temporal variations of air quality parameters using 
chemometric techniques and to determine the origin of 
pollution sources in Selangor, Malaysia. Specifically, the 
objective of this study were to identify the level of air 
quality in Selangor by recognizing the pollution source, 
to determine the most significant air quality variable 
and to produce a model for the prediction of air quality 
performance in Selangor.

MATERIALS AND METHODS

STUDY AREA

Selangor is located in the western part of Malaysia, lying 
within the latitude of 2°35’23.53”N to 3°47’55.09”N and 
longitude of 100°56’25.09”E to 101°57’58.50”E (Table 
1 & Figure 1). Selangor has an approximate square area 
of around 8104 km2 and it has an estimated number of 
populations at about five million people. While the west 
side of Selangor is facing the Straits of Malacca, Selangor 
shares its terrestrial boundary with Perak along the north, 
Pahang in the east and Negeri Sembilan along the south. 
Malaysia can be considered as a country which is free from 
natural disaster such as typhoon, volcanic eruption and 
earthquake; and this has helped in keeping the air quality 
under control. Nevertheless, the rapid economic growth 
experienced by the state and the country has become an 
aggravating factor towards the air quality level and hence, 

TABLE 1. Geographical Coordinate of 8 monitoring stations details in Selangor

  Station ID Location Latitude Longitude
Station 1
Station 2
Station 3
Station 4
Station 5
Station 6
Station 7
Station 8

Klang, Selangor
Petaling Jaya, Selangor
Shah Alam, Selangor
Kuala Selangor, Selangor
Putrajaya, Wilayah Persekutuan
Cheras, Kuala Lumpur
Batu Muda, Kuala Lumpur
Banting, Selangor

3° 0’53.72”N
3° 7’59.37”N
3° 6’17.03”N
3°19’16.13”N
2°54’52.49”N
3° 6’22.62”N
3°12’45.08”N
2°48’59.98”N

101°24’47.02”E
101°36’28.53”E
101°33’21.66”E
101°15’22.61”E
101°41’23.69”E
101°43’5.00”E
101°40’56.47”E
101°37’23.21”E
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this study would assist in determining the latest status of 
air quality in Selangor. 

DATA COLLECTION

Air quality data was retrieved from DOE, Malaysia, starting 
from January 2016 to December 2016. The variable of 
pollutants selected for the study such as nitrogen dioxide 
(NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide 
(CO), and particulate matter (PM10) were used to evaluate 
the API status and determine the pollution sources. 
Generally, the air quality assessment was done at the eight 
sampling stations in Selangor (Figure 1), where majority 
of the stations are located at urban, suburban and industrial 
areas. The statistical data used in this study consisted of 96 
dataset (12 data per stations × 8 stations) and a total number 
of 480 observations (12 data per stations × 8 stations × 5 
variables). All data were obtained from a monthly average 
that was established from the hourly monitoring sites.

CHEMOMETRIC ANALYSIS

HIERARCHICAL CLUSTER ANALYSIS (HCA)

HCA uses an unsupervised pattern method to identify the 
sources, by splitting a large group of data into smaller 
ones based on their similarities and produced the analysis 
in the form of ‘cluster’ (Azid et al. 2015). HCA involved 
with several procedures (Aris et al. 2013; Azid et al. 2015; 
Juahir et al. 2011; Mahiyuddin et al. 2013), namely; Ward’s 

method using variance analysis to determine the distance 
between two clusters by minimizing the sum of squares 
(SS) from each step; Euclidean distance to determine 
the similarity between two samples and a distance to 
characterized the differences between analytical values 
from the samples, which can be defined by (1):

  (1)

where d(x,y) is the Euclidean distance between two samples 
represented in xm and ym; and p is the dimensional space of 
the variables (Azid et al. 2015); and dendogram that shows 
the high similarity in small distances between clusters and 
dissimilarity of possible distances between clusters.

DISCRIMINANT ANALYSIS (DA)

DA is usually applied to evaluate an object of unknown 
origin to one of several naturally occurring groups 
(Manjunanth et al. 2012). This study applies DA together 
with HCA to establish significantly different variables and 
reduce the errors of these groups (Aris et al. 2013; Azid et 
al. 2015; Juahir et al. 2011). Every cluster from HCA will 
create discriminant function (DF) in DA, where the DF can 
be defined in (2):

  (2)

where i is the number of groups (G); ki is the constant to 
each group; n is the number of parameters used to classify 
a set of data into a given group; and wij is the weight 
coefficient assigned by DF analysis to a given parameter 
(Pij). This study applied DA in three modes, namely 
standard mode, forward stepwise mode and backward 
stepwise mode (Aris et al. 2013; Juahir et al. 2011). 
Standard mode would provide DFs for the evaluation of 
spatial variations in the air quality raw data. Meanwhile, 
forward stepwise mode would eliminate the variables 
from the most-significant to no-significant changes and 
backward stepwise mode would eliminate variables from 
the less-significant to no-significant changes.

PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is used to interpret interrelated variables to create 
new variables, which is known as principal components 
(PCs) and the value are known as principal component 
scores (PCS). In other words, the newly maximum number 
is equivalent to the original number (Juahir et al. 2011). 
In this study, PCA is used together with HCA to recognize 
the emission sources by presenting the details of most-
significant variables in the spatial and temporal variation 
and putting them with the less-significant variables, with 
minimum loss of the original information (Azid et al. 2015; 
Juahir et al. 2011). The PCA can be defined in (3):

 Zij = ai1x1j + ai2x2j + … + aimxmj (3)FIGURE 1. Study Area in Selangor, Malaysia
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where z is the component score; a is the component 
loading; x is the measured value of the variable; i is the 
component number; j is the sample number; and m is the 
total number of variables. The general procedures applied 
in PCA are: the hypothesis obtained from the original 
data will be reduced to dominant factors that influence 
the observed data variance; and the whole data set is 
extracted through eigenvalues and eigenvectors from the 
square matric produced by multiplying the data matrix 
(Aris et al. 2013; Azid et al. 2015; Juahir et al. 2011). To 
be considered as significant, varimax factors (VFs) of new 
group variables were defined based on the eigenvalues that 
were greater than 1 (Aris et al. 2013; Juahir et al. 2011). VFs 
coefficient that are greater than 0.75 would be considered 
as ‘strong’, 0.75 to 0.50 as ‘moderate’ and 0.50 to 0.30 as 
‘weak’ (Juahir et al. 2011). In this study, PCA was applied 
to classified datasets (five variables) independently based 
on the different spatial regions obtained from the HCA 
techniques.

MULTIPLE LINEAR REGRESSIONS (MLR)

MLR is widely used in atmospheric modeling (Azid et al. 
2015; Dominick et al. 2012). This method is an appropriate 
way to investigate the relationship between independent 
and dependent variables through the formation of linear 
equation of observed data (Ul-Saufi et al. 2011) and it 
would also provide the percentage of atmospheric pollution 
on each parameter (Aertsen et al. 2010). This study 
applied MLR to justify the relationship between air quality 
parameter (the most-significant among the five parameters) 
with the API data. The MLR model is defined by (4):

 Yi = β0 + β1x1 + β2x2 + … + βp–1xp–1 + ε  (4)

where Y is the response variable; p-1 is the explanatory 
variable for x1, x2, …, xp-1 with p is the parameter (regression 
coefficient) of β0, β1, β2, …, βp-1; and ε is the error 
associated with the regression.

 Determination of the best fitting linear regression 
equation was done using the coefficient of determination 
(R2), adjusted coefficient of determination (Adjusted R2) and 
root mean square error (RMSE). The value of R2 provides 
the information of how well the model performs using the 
external data (Dominick et al. 2012). Adjusted R2 considered 
all possible number of variables (Mutalib et al. 2013) and 
RMSE measure the residual error and the mean difference 
between observed and modeled value of API (Azid et al. 
2015). Generally, higher R2 value (which is near to 1) will 
be considered as the best linear model (Azid et al. 2015; 
Dominick et al. 2012; Mutalib et al. 2013). Consequently, 
chemometric techniques analysis through HCA, DA, PCA and 
MLR was performed using SPSS version 23.

RESULTS AND DISCUSSION

AN OVERVIEW ON THE RECORD OF AIR QUALITY DATA

The compilation of data from eight sampling stations in 
Selangor can be summarized in Table 2. The result showed 
that the average concentration of O3, CO, NO2, SO2 and 
PM10 were detected far below the value suggested by 
MAAQS for the average concentration (0.1 ppm for O3, 30 
ppm for CO, 0.18 ppm for NO2, 0.15 ppm for SO2, 120 
μgm-3 for PM10). Nevertheless, the average concentration 
of PM10 detected in most stations exceeded the value of 50 
μgm-3 as per recommended by the European Commission 
for PM10. Therefore, it can be said that this condition 
is a common occurrence in urban and suburban area, 
especially in areas with large number of motor vehicles, 
industrial areas and areas with high level of street dust, 
which increases the amount of suspended particulate in 
the atmosphere at all the stations in Selangor.

SPATIAL CLASSIFICATION BASED ON AIR 
QUALITY PARAMETERS

Analysis of HCA indicates the result of three clusters 
that were formed using the data collected from the eight 

TABLE 2. Overall data on air quality at different stations in Selangor in 2016

Parameters AT
Sampling station MAAQS

(2018)S1 S2 S3 S4 S5 S6 S7 S8
O3 (ppm) 1h M

SD
0.021
0.005

0.018
0.004

0.010
0.011

0.023
0.004

0.023
0.008

0.023
0.004

0.021
0.004

0.025
0.004

0.1

CO (ppm) 1h M
SD

0.287
0.367

0.196
0.458

0.535
0.572

0.736
0.251

0.730
0.300

0.845
0.550

0.845
0.273

0.712
0.261

30

NO2 (ppm) 1h M
SD

0.017
0.013

0.028
0.004

0.016
0.015

0.018
0.009

0.006
0.009

0.020
0.002

0.022
0.004

0.013
0.002

0.18

SO2 (ppm) 1h M
SD

0.002
0.002

0.003
0.002

0.001
0.002

0.004
0.001

0.001
0.002

0.002
0.001

0.002
0.001

0.003
0.002

0.15

PM10 (ugm-3) 24h M
SD

76.64
35.60

60.04
31.93

65.95
36.96

52.25
28.35

61.93
33.37

58.02
27.44

61.01
34.04

71.12
34.43

120

(AT=Average Time; M=Mean; SD=Standard Deviation; S=Station; MAAQS=Malaysian Ambient Air Quality Standard; O3=Ground Level Ozone; CO=Carbon Monoxide; 
NO2=Nitrogen Dioxide; SO2=Sulfur Dioxide; PM10=Particulate Matter with the Size of less than 10 Micron)
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sampling stations (Figure 2). Cluster 1 consisted of results 
of data from Stations 1, 3, and 8; while Cluster 2 consisted 
of results of data from station 2, 5, 6, and 7; and Cluster 3 
consisted of results of data from station 4. To summarize, 
Cluster 3 have an average API value of 42 which is classified 
as low pollution source (LPS). Meanwhile Cluster 1 have 
an API average of 55 (moderate pollution source (MPS)); 
and Cluster 2 recorded a slightly high pollution source 
(SHPS) with an average API value of 78. As a result, HCA 
technique has shown the ability to reduce the number of 
monitoring stations and basically suggested the category 
of air quality based on the regions and this is a beneficial 
finding for the process of improving the monitoring 
network system in future.

DISCRIMINANT ANALYSIS BASED ON SPATIAL VARIATION

Further analysis using DA method were carried out based 
on the clustering obtained from the HCA, which is the LPS, 
MPS and SHPS. DA techniques comprises of three modes, 

namely standard, forward stepwise and backward stepwise. 
The analysis of DA indicated that the accuracy of spatial 
variation for the three modes are at 95.38% with 5 variables 
for standard mode, 89.05% with 2 variables for forward 
stepwise mode and 93.23% with 4 variables for backward 
stepwise mode (Table 3). In this study, null hypothesis 
(H0) stated that at least one of the mean vectors is different 
from the others, while alternative hypothesis (Ha) stated 
that the mean vectors of the three classes are equal. 
Simultaneously, the p-value is lower than the significant 
level of alpha (0.05) and hence the null hypothesis (H0) will 
be rejected and the alternative hypothesis (Ha) would be 
accepted instead. Since the Pillai’s Trace test for standard 
mode, forward mode and backward mode provided the 
result of p<0.0001 with 1.321, p<0.0001 with 1.185 and 
p<0.0001 with 1.274, respectively, which are above 0.01%; 
is acceptable to discard the H0 which is lower than 0.05% 
and have the same mean vectors of in the three classes. The 
four selected variables of air quality which showed high 
spatial variations (with most-significant p-value of less than 
0.05) for the backward stepwise mode were applied into 
the box and whisker plots for further discussion (Figure 3).

IDENTIFICATION SOURCE OF VARIATION

PCA were applied to the air quality data to determine the 
pattern of air quality variables and further identify the 
factor based on the discovery regions (LPS, MPS and SHPS). 
As shown in Table 4, the result indicated that two VFs were 
obtained in the three regions with the eigenvalue of higher 
than 1. Meanwhile, the total variance for LPS, MPS and SHPS 
regions are at 66.27%, 66.39% and 62.26%, respectively.

Low pollution source (LPS) region   LPS region shows 
that VF1 contributed about 36.32% of the total variance 
to produce strong negative loadings of CO and moderate 

TABLE 3. Classification matrix of DA for spatial variation in Selangor

Sampling Regions % Correct Regions assigned by the DA

Cluster 1 Cluster 2 Cluster 3
Standard Stepwise
Cluster 1
Cluster 2
Cluster 3

94.29%
91.67%
93.24%

70
1
6

0
13
0

3
0
78

Total 95.38% 77 13 81
Forward Stepwise
Cluster 1
Cluster 2
Cluster 3

91.57%
90.67%
96.43%

65
3
2

0
11
0

2
0
82

Total 89.05% 70 11 84
Backward Stepwise
Cluster 1
Cluster 2
Cluster 3

93.06%
91.37%
95.42%

69
2
4

0
12
0

5
0
80

Total 93.23% 75 12 85

FIGURE 2. HCA using Ward linkage method 
to generate dendogram
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positive significant loadings of SO2 and PM10. Meanwhile, 
VF2 indicated a total variance of 29.94% resulting in strong 
positive loadings of O3 and strong negative loadings of 
NO2. In other words, the existence of CO and NO2 can 
be linked to the process of biomass burning and grazing 
and the residual of agricultural products from agricultural 
activities, as well as long range transportation air pollutants 
and domestic fuel sources (Haiduc & Beldean-Gale 2011; 
Rajab et al. 2011). Meanwhile O3, SO2, and PM10 can be 
link to motor vehicles, industrial activities and construction 

sites (Sadanaga et al. 2012; Wei et al. 2012). According 
to the Ministry of Transport (MOT), Malaysia, the total 
amount of newly registered motor vehicles in Malaysia 
increased by 7.24% from 1,160,082 in 2010 to 1,638,498 
in 2015; which increase the possibility of motor vehicles in 
becoming a major factor that contribute to the deterioration 
of atmospheric conditions.

Moderate pollution source (MPS) region   MPS region 
indicated that the VF1 contributed around 41.14% of 

TABLE 4. Varimax rotation PCs for air quality data based on three clusters in the Selangor

Variables LPS MPS SHPS

VF1 VF2 VF1 VF2 VF1 VF2
O3

CO
NO2

SO2

PM10

Eigenvalue
Variability (%)
Cumulative (%)

.038
-.909
.005
.745
.659
1.816
36.328
36.328

.811

.034
-.895
-.089
.174
1.497
29.947
66.274

.599

.789

.711
0.96
.049
2.057
41.145
41.145

.437

.291

.221

.921
-.300
1.263
25.252
66.397

.578

.813
-.260
.664
.622
1.890
37.796
37.796

-.015
.016
.882
.198
.637
1.224
24.473
62.269

*The bold value are factor loadings above 0.5 that were taken after Varimax rotation was performed

FIGURE 3. Box and whisker plot for (a) O3, (b) NO2, (c) SO2 and (d) PM10, that generated from 
backward stepwise mode in DA of air quality in Selangor
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total variance and has strong positive loadings on 
CO and moderate positive loadings of NO2 and O3. 
Simultaneously, VF2 resulted in 25.25% of total variance 
producing strong positive loading of SO2. The result 
showed that factors containing chemical compositions 
that were involved with fossil fuel combustion especially 
from industrial activities and vehicles have become 
the main source of air pollution (Mutalib et al. 2013). 
Generally, the release of O3 into the atmosphere can 
be related to photochemical oxidation and the main 
component of smog (Banan et al. 2013). Moreover, 
urban and suburban activities which causes the release 
of mono-nitrogen oxide (NOx) (Sadanaga et al. 2012), as 
well as industrial activities which released SO2 (Wei et 
al. 2013) could assist in the increase of O3 concentration 
in the atmosphere.

Slightly high pollution source (SHPS) region   SHPS region 
indicate that the VF1 with total of variance of 36.32% 
produced a strong positive loading of CO and moderate 
positive loadings of O3, SO2 and PM10. Meanwhile, 
VF2 with a total of variance of 29.94% produced strong 
positive loading of NO2 and moderate positive loading 
of PM10. Major pollution occurred in SHPS region 
could be related to the composition of chemicals from 
anthropogenic activities which consist of point source 
pollution. In other words, the pollutants originated from 
the burning of biomass and fossil fuels, particularly from 
industrial, residential and vegetation areas; as well as 
from motor vehicles and natural emission sources (Azid 
et al. 2015; Dominick et al. 2012; Mutalib et al. 2013). 
It should be noted that the concentration of PM10 was 
detected to be higher than other pollutants due to high 
traffic congestion of motor vehicles, industrial activities 
in construction site, soil dust and open burning activities 
(Azid et al. 2015, 2014, 2013; Mutalib et al. 2013).

MULTIPLE LINEAR REGRESSION (MLR) OF AIR 
POLLUTANT INDEX (API)

The MLR modeling was done to identify the behavior of 
variables, which can be done using the linear least-square 
fitting process and to determine all trace element sources 
(Henry et al. 1984). For that reason, this study used the 
source of apportionment of air pollutant parameter to 
identify the potential API. Three models were developed 
using the API value as a dependent variable, whereas the 
independent variables will be based on the air quality 
parameters taken from LPS (4 variables), MPS (4 variables) 
and SHPS (4 variables).
 R2, Adjusted R2 and RSME value are essential for better 
coefficient result, which is why they were used in the LPS, 
MPS and SHPS. The value for R2, Adjusted R2 and RSME for 
LPS are 0.837, 0.816 and 3.324, respectively; 0.878, 0.822, 
and 2.829 for MPS; and 0.894, 0.834, and 1.808 SHPS. The 
proposed equation of R2, Adjusted R2 and RMSE is shown 
in (5i) to (5iii):

LPS (4 variables)
 Total API  = 3.612 + 32.792 (NO2) – 875.640(CO) 
   + 0.783(PM10) + 210.13(SO2) 
 (R2 = 0.837; Adjusted R2 = 0.816; RMSE = 3.324)  

 (5i)

MPS (4 variables)
 Total API = 3.977 + 5.423(CO) – 178.579(NO2) 
   + 223.63 (SO2) + 54.29 (O3)
 (R2 = 0.878; Adjusted R2 = 0.822; RMSE = 2.829)  

 (5ii)

SHPS (4 variables)
 Total API = 4.596 – 58.943(O3) + 2.065(CO) 
   + 501.098(NO2) + 0.821(PM10)
 (R2 = 0.894; Adjusted R2 = 0.834; RMSE = 1.808)  

 (5iii)

 Measured results of (5i) to (5iii) shows that the 
highest coefficient of determination (R2) came from SHPS 
with 0.894 for NO2, CO and PM10, as well as a negative 
for O3; followed by MPS with R2 = 0.878 for CO, SO2, and 
O3, but negative for NO2; and the lowest came from LPS 
with R2 = 0.837 for NO2, PM10, and SO2, with negative for 
CO. From the finding, Cluster SHPS has been determined 
as the best model due to the closest R2 value to 1 and the 
smallest RMSE when compared to other parameters (Azid 
et al. 2015; Dominick et al. 2012; Mutalib et al. 2013).
 Figure 4 shows the perceived residual analysis and 
prediction of total API using LPS, MPS and SHPS. The results 
indicated that the deficiency of the model contained some 
differences in the range of -0.5 to 1.5 for LPS, -1.7 to 1.3 
for MPS and -2.3 to 1.5 for SHPS. Meanwhile, the standard 
predicted values for LPS, MPs and SHPS ranged between 
-0.8 and 1.6, -2.5 and 2.2, and -1.9 and 1.8, respectively. 
The main objective of the scatter plot diagram was to 
prove that the SHPS model is suitable to be used for total 
API prediction. This is because the model provided a results 
with greater difference between the predicted API and the 
calculated API.

CONCLUSION

The study concluded that spatial variations of air quality 
data in Selangor has been successfully studied using 
chemometric approach, such as HCA, DA, PCA and MLR. 
HCA has successfully grouped the eight sampling stations 
with five air quality variables into three significant clusters, 
namely LPS, MPS and SHPS. The HCA has benefitted the 
monitoring network approach by reducing the number of 
monitoring stations. Meanwhile, clusters delivered from 
HCA into DA has confirmed the standard mode, forward 
stepwise mode and backward stepwise mode with the 
accuracy of 95.38%, 89.05% and 93.23%, respectively, 
which confirmed the selection of the four variables of O3, 
NO2, SO2, and PM10 in backward stepwise mode. In PCA, 
two VFs were detected in LPS, MPS and SHPS regions, with 
the total of variance of 66.27%, 66.39% and 62.26%, 
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(a)

(b)

(c)

FIGURE 4. Scatter plot diagram of standardized residuals and standard predicted value for 
(a) LPS, (b) MPS and (c) SHPS

respectively. The sources of variations detected in this study 
are industrial emissions, transport emissions, agricultural 
systems, residential factors and natural emission sources. 
MLR analysis was carried out to determine the variability 

of proposed equation to predict the total values of the API. 
The strong result of R2 value was due to high significant 
p-value of smaller than 0.05 when compared to the three 
developed models. The highest R2 values are SHPS with 
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0.894, followed by MPS with 0.878 and LPS with 0.837. 
It was determined that the most suitable model to be 
used for total API prediction is the SHPS model due to the 
greater difference it provides between predicted API and 
calculated API. For effective air quality management, a new 
air monitoring network should be design for the purpose 
of practicality and cost saving. 
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