
Applied Geostatistics with SGeMS:

A Users’ Guide

Nicolas Remy, Alexandre Boucher & Jianbing Wu

This document presents an extract of an upcoming book written by Nico-

las Remy, Alexandre Boucher and Jianbing Wu. The book has 10 chapters

detailing how to use the SGeMS software. SGeMS is a software for 3D

geostatistical modeling. It implements many of the classical geostatistics

algorithms, as well as new developments related to multiple-point geostatis-

tics. The software is open source and free of charge, it can be downloaded

at http://sgems.sourceforge.net/. Included is the book table of content

and the more theoretical Chapter 3 Geostatistics: A recall of concept
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Chapter 3

Geostatistics: A Recall of Concepts

This user’s manual is no place for another presentation of the theory of geo-

statistics. Many excellent books and reference papers are available to such pur-

pose: Journel and Huijbregts (1978); Isaaks and Srivastava (1989); Cressie (1993);

Wackernagel (1995); Goovaerts (1997); Deutsch and Journel (1998); Chilès and

Delfiner (1999); Olea (1999); Lantuejoul (2002); Mallet (2002). In this chapter

we will only review the basic concepts and geostatistical principles underlying

the algorithms offered in SGeMS. The more recent developments of multiple-

point geostatistics are presented in relatively greater length because they are less

known. Engineering-type presentations are preferred over more rigorous but less

intuitive developments. These presentations point to programs coded into SGeMS

whenever available.

A warning about reference: We have limited citations to a few most relevant

and easily accessible references. We gave page number to the only three books

by Goovaerts (1997); Deutsch and Journel (1998) and Chilès and Delfiner (1999).

For an extensive list of references the reader may turn to the list proposed by

Cressie (1993) and that of Chilès and Delfiner (1999).

The concept of random variable presented in Section 3.1 is introduced to

model the uncertainty about a single variable. Section 3.2 extends that concept

to a random function modeling the joint uncertainty about several interdependent

variables distributed in space. The various possible outcomes of a random vari-

able or random function are controlled by probability distribution functions made

conditional to the data available; simulated outcomes can then be drawn from

these conditional distributions, as discussed in Section 3.3. Conversely, a set of

simulated outcomes can define a random function which is then seen as algorithm-
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42 CHAPTER 3. GEOSTATISTICS: A RECALL OF CONCEPTS

driven, the algorithm being that used to generate these outcomes. At the core of

any random function there is a structural model which indicates how the various

constitutive random variables relate to each other and to the data; inference of

such model necessarily requires a prior decision of stationarity, as discussed in

Section 3.4. That structural model can be limited to a variogram-type relation

between any two variables as presented in Section 3.5. The structural model can

also involve many more than two variables at a time. In the latter case, inference

of the corresponding multiple-point statistics calls for a training image. Section

3.6 presents the kriging paradigm which is at the origin of most geostatistical

algorithms whether aimed at estimation or simulation. Section 3.7 introduces

the theory underlying the multiple-point geostatistical algorithms. The traditional

variogram-based simulation algorithms, SGSIM, DSSIMand SISIMare presented

in Section 3.8. The two multiple-point simulation algorithms, SNESIMand FIL-

TERSIM, are presented in Section 3.9. The nu/tau expression for compositing

probabilities conditional to different data events is given in Section 3.10; this

non traditional yet exact expression of the fully conditioned probability provides

a useful separation of data information content and data redundancy.

3.1 Random Variable

The conceptual model at the root of geostatistics, and for that matter of all of

statistics and probability theory, is that of a random variable or random function.

This is the model that allows making uncertainty assessment about an imperfectly

known value.

A deterministic variable takes only one outcome; that outcome is either known

or unknown leaving no flexibility for uncertainty. Conversely, a random variable

(RV) can be seen as a variable that can take a series of possible outcomes, each

with a certain probability or frequency of occurrence (Goovaerts (1997, p.63);

Deutsch and Journel (1998, p.11); Jensen et al. (1997)). A random variable is tra-

ditionally denoted with a capital letter, say, Z. Its possible outcomes are denoted

with the corresponding small case letter, say, {zi, i = 1, . . . , n} for a discrete vari-

able with n outcomes, or {z ∈ [zmin, zmax]} for a continuous variable valued in

the interval bounded by a maximum and minimum value.

In the discrete case, to each outcome zi is attached a probability value

pi = Prob{Z = zi} ∈ [0, 1] , with:

n∑

i=1

pi = 1 (3.1)
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In the continuous case, the distribution of probability values can take the form

of

• a cumulative distribution function (cdf), pictured as a cumulative histogram,

providing the probability for the RV not to exceed a given threshold value

z, see Fig. 3.1(a):

F (z) = Prob {Z ≤ z} ∈ [0, 1] (3.2)

• a probability density function (pdf) or histogram, defined as the derivative

of the previous cdf at z-values of non discontinuity: f(z) = dF (z)/dz.

From such pdf or cdf probability intervals can be derived, see Fig. 3.1(b):

Prob {Z ∈ (a, b]} = F (b) − F (a) =

∫ b

a

f(z)dz (3.3)

(a) Cumulative distribution function (cdf) (b) Probability density function (pdf)

Figure 3.1: Probability distribution function

The key to a probabilistic interpretation of a variable z is the modeling of

the distribution function, cdf or pdf, of the corresponding random variable Z.

Note that such modeling does not mean necessarily fitting a parametric function

to either the cdf or pdf; a series of classes with attached probability values is a

valid model (Deutsch and Journel, 1998, p.16). That distribution function should

account for all information available; it then provides all that is needed to quantify

the uncertainty about the actual outcome of the variable z. For example,
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• probability intervals can be derived as in Eq. 3.3;

• quantile values can be derived such as the .1 quantile or 1st decile:

q0.10 = F−1(0.10) = z-outcome value such that Prob {Z ≤ q0.10} = 0.10

• simulated values can be drawn by reading quantile values z(l) corresponding

to a series of random numbers p(l), l = 1, . . . , L uniformly distributed in

[0, 1]:
z(l) = F−1(p(l)), l = 1, · · · , L (3.4)

This process, called Monte Carlo drawing, ensures that the cdf of the L val-

ues z(l) will reproduce the Z-cdf F (z), see Fig. 3.1(a) and Goovaerts (1997,

p.351), Deutsch and Journel (1998, p.154). Conversely, a random variable

Z can be modeled by the distribution of a number L of simulated values z(l)

generated from a process initiated with equally probable uniform random

numbers p(l): this is the concept of algorithm-driven random variable, see

hereafter and Section 3.3, Deutsch (1994a).

From the distribution of Z, specific moments or characteristic values can be

derived such as,

• the mean m, or expected value of the RV Z, which can be retained as an

estimate of the unknown value z, best in a least squared error sense. This

mean is here written for a continuous variable Z in terms of its cdf, pdf, or

as the arithmetic mean of L equiprobable realizations z(l) if the RV is so

defined:

m = E {Z} =

∫ zmax

zmin

zdF (z) =

∫ zmax

zmin

zf(z)dz

=
1

L

L∑

l=1

z(l) (3.5)

• the median, or .5 quantile q.50, a z-value which leaves 50% of the possible

outcome values above it and 50% below it, see Fig. 3.1(a). The median

can be used as yet another estimate of the unknown value z, best in a least

absolute error sense:

M = q(0.50) : value such that Prob {Z ≤M} = 0.50 (3.6)
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If the RV Z is defined through L realizations z(l) with L an even number,

trivial adjustment to the definition of the median realization is needed; sim-

ilar adjustments may be needed for other quantile values.

• the variance which can be used as a single summary of the uncertainty

around the mean estimate m:

σ2 = V ar {Z} = E
{
(Z −m)2} =

∫ zmax

zmin

(z −m)2 f(z)dz

=
1

L

L∑

l=1

(
z(l) −m

)2
(3.7)

Beware that the two most-used moments, mean and variance, generally do not

suffice by themselves to define a distribution, hence to define probability intervals

such as given in relation 3.3. Often a Gaussian-related distribution is adopted pro-

viding the missing information. The problem is that errors associated to the var-

ious data integration processes involved in spatial interpolation are almost never

Gaussian-distributed as opposed to direct errors due to measurement devices.

One definite advantage of a RV modeled through a set of L realizations z(l) is

that probability intervals can be defined without going through any variance calcu-

lation. Also these probability intervals are independent of the particular estimated

value retained, as opposed to the variance (Eq. 3.7) which is specific to the mean

estimate m. If one accepts that there is no unique ‘best in absolute’ estimated

value for any unknown, probability intervals and uncertainty measures should in-

deed be independent of the particular estimated value retained (Srivastava (1987);

Goovaerts (1997, p.340); Isaaks and Srivastava (1989)).

Algorithm-driven random variable

One can argue that all of predictive geostatistics amounts to the determination of a

probability distribution model, a model that accounts for all information available

about the unknown value(s) z. A distribution model cannot be reduced to its mean

and variance unless some two-parameter distribution is adopted; one must then

question why mean and variance should be carefully determined if the far more

consequential distribution type retained is not appropriate. Instead of determining

mean and variance of the possible outcomes of an unknown, modern geostatistics

aims at building a process (an algorithm) mimicking the data environment of that

unknown; that algorithm then allows generating many (L) alternative outcomes of
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that unknown, although possibly not all of them. These L simulated realizations

z(l) define an algorithm-driven random variable from which probability intervals

for the unknown can be retrieved, as well as an estimated value which need not be

the mean (Journel, 1993b; Deutsch, 1994a).

The number L of realizations can be as large as can be comfortably processed

(Deutsch and Journel (1998, p.133); Chilès and Delfiner (1999, p.453)). Note that

a different set of L′ realizations, with possibly L = L′, actually defines a different

random variable. The number L is part of the defining algorithm.

This book and the SGeMS software provide tools for building up these models

of uncertainty. The details are in the ‘how to’ and in the presentation, mostly

graphical (maps), of the results.

Beware that a model of uncertainty is just that, a model, and there could be

alternative models, each delivering possibly different results such as different es-

timates of the unknown, yet using the same original information (data) but in a

different manner. There is no unique model of uncertainty, and most trouble-

some, there is neither a ‘best’ model nor a fully objective model. We will return

repeatedly to that point. Geostatistics, and for that matter all of probability the-

ory, can only provide consistency with a prior model necessarily partly subjective,

it cannot provide fully objective decisions (Goovaerts (1997, p.442); Chilès and

Delfiner (1999, p.22); Matheron (1978); Journel (1993b); Dubrule (1994)).

3.2 Random Function

Most applications of geostatistics in the earth sciences involve mapping, which is

the joint consideration of several variables in space and/or time. Some of these

variables are known through sampling; most others are unknown with varying

degrees of uncertainty, they should therefore be modeled as random variables.

However, we are not interested in evaluating each unknown independently of the

others nearby; we are interested in an assessment of the joint spatial distribu-

tion of all unknowns, which is an assessment of their relation and connectivity in

space. The uncertainty modeling should therefore consider all unknown variables

together. The concept of a random function answers that requirement (Goovaerts

(1997, p.68); Chilès and Delfiner (1999, p.12)).

A Random Function (RF), denoted Z(u), is a set of dependent random vari-

ables {Z(u),u ∈ S}, each marked with a coordinate vector u spanning a field

or study area S. That field is typically a 3D physical volume, in which case

u = (x, y, z) is the vector of the 3 Cartesian coordinates; the common notation (z)
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for the variable and the vertical coordinate does not usually pose problem. The

variable could also be time in which case u = t, or it could involve both space

and time as for atmospheric pressure in which case u = (x, y, z, t).
Just like a single random variable Z is characterized by a distribution function,

say its cdf F (z) for a continuous variable, a RF Z(u) would be characterized by

its multivariate distribution function:

Prob {Z(u) ≤ z,u ∈ S} (3.8)

a function of many parameters, any number N of locations u in S and the corre-

sponding threshold values z possibly all different from one location to another.

The analytical expression of such multivariate distribution is highly impracti-

cal on sizeable grid; there can be many millions of locations in a 3D grid! Ex-

ceptions are analytical distributions defined from a very small number of param-

eters, e.g. Gaussian-related (Anderson (2003); Goovaerts (1997, p.265); Chilès

and Delfiner (1999, p.404)). But parameter-poor distributions are very specific in

their properties, hence very restrictive. Last and not least, any advantage provided

by an analytical definition vanishes when data locations and values are included

into the field S, unless these data honor exactly the prior RF (unlikely in practice).

This process of including into the RF Z(u) random variables that are actually

sampled is known as ‘data conditioning’.

3.2.1 Simulated realizations

Just like a single RV can be defined by a finite set of simulated realizations, a RF

Z(u) is displayed and used through its realizations
{
z(l)(u),u ∈ S

}
,

l = 1, · · · , L (Lantuejoul (2002); Isaaks and Srivastava (1989); Goovaerts (1997,

p.369); Chilès and Delfiner (1999, p.449); Deutsch and Journel (1998, p.119)).

In practice these realizations take the form of a finite number L of simulated

maps, each providing an alternative, equally probable, representation of the un-

known ‘true’ map z(u),u ∈ S, see Fig. 3.2.a. Any one specific such realization

is denoted z(l)(u),u ∈ S, where the upper script l indicates the id number of that

specific realization. A realization can be seen as a numerical model of the pos-

sible distribution in space of the z-values. That numerical model can be used

to different purposes, including visualization and input to some transfer function

representing the process under study. e.g. mining out the z-grade values.

Ideally, one would like to have access to a RF such that one of its realizations

identifies the actual distribution of the true values z(u),u ∈ S; this is very unlikely
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if S contains millions or even only thousands of unknown values z(u). In practice,

this latter limitation is not a matter of concern if the L realizations available allow

a reasonable assessment of the consequent uncertainty on any processing of these

unknown values. Recall the previous warning that a RF model is just a model, and

asking that this model includes the unknown reality is naive.

It is the set of all such L simulated realizations, not any single realization,

which provides an uncertainty assessment of the spatial distribution of the z-

values over the study area. For example,

• the probability distribution of the unknown z(u) at any particular location

u can be retrieved from the L simulated values z(l)(u) at that same loca-

tion u. This is much more than a mere estimation of z(u), even if attached

with an error variance since an error variance does not suffice to specify

an error distribution. In a spatial interpolation setting, one could easily

check through cross-validation that the cdf of the L simulated error val-

ues
[
z(l)(u) − z∗(u)

]
, l = 1, · · · , L, takes very different shapes depending

on the data environment of location u and these shapes could be quite non-

Gaussian.

• the probability that two nearby unknown values z(u) and z(u′) be simul-

taneously greater than any given threshold z0 can be evaluated by the pro-

portion of the L realizations which display simultaneously high simulated

values at these two locations.

The reader should convince himself that this result could not be obtained,

in general, from sole knowledge of the two cdf’s

F (u, z0) = Prob {Z(u) ≤ z0} and F(u′, z0) = Prob {Z(u′) ≤ z0} ;

indeed the uncertainties related to two nearby values z(u) and z(u′) are

not in general independent, hence the two RVs Z(u) and Z(u′) are not

independent, and their two cdf’s cannot be combined straightforwardly.

• the probability that there exists a connected path of high z-values between

two distant locations u and u
′ can be similarly evaluated by the proportion

of simulated realizations (out of the L available) displaying such connected

paths.

A great part of the SGeMS software deals with the generation of simulated

realizations of the type shown in Fig. 3.2.a, and their utilization in assessing spatial

uncertainty, that is, uncertainty involving jointly many different locations in space.
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Figure 3.2: Simulated realizations and different estimation maps; a. alternative

equiprobable realizations of a random function; b. E-type estimated map mini-

mizing local squared error; c. estimated map minimizing a specific loss function

of the local error

The issue of equiprobable realizations

Through the cdf F (z) = Prob{Z ≤ z} of a single analytically-defined RV, one

can define the probability of any outcome value z or class thereof. The case of an

algorithm-driven RF is more delicate, if only because an analytical multivariate

cdf characterizing that RF is rarely available; in practice it is never available after

data conditioning. Indeed real and reasonably complex data are rarely perfectly

consistent with a necessarily restrictive analytically-defined RF model, hence con-

ditioning that model to these data changes the model in an unpredictable way

depending on the algorithm retained for the conditioning process.

In the vast majority of practical applications, the RF is defined through a finite

number L of simulated realizations
{
z(l)(u),u ∈ S

}
, l = 1, · · · , L. If any number

n ≤ L of realizations are exactly identical, these n realizations can be collated
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into a single one with probability n/L. However, in most practical applications

no two realizations would be exactly identical, in which case all realizations are

equiprobable, each with probability 1/L.

How many realizations?

How many realizations (L) should be drawn from a given algorithm-driven RF

model (Chilès and Delfiner (1999, p.453); Deutsch and Journel (1998, p.133))?

The number L is part of the algorithm defining the RF model itself, hence the

question could be dismissed. However, it is a fair question for practice: one could

process L = 10, possibly 100, not comfortably 1000 or 10,000 realizations. Since

there is no reference model to approach, the number L should be chosen large

enough to ensure stability of the results and small enough to allow the intended

processing of the L simulated realizations.

Consider as ‘result’ a specific function ϕ
(
z(l)(u),u ∈ S

)
built from anyone

simulated realization. The number L of realizations should be large enough such

that, e.g., the variance of the L′ values
{
ϕ

(
z(l)(u),u ∈ S

)
, l = 1, · · · , L′

}
stabi-

lizes as L′ increases towards L.

3.2.2 Estimated maps

There can be applications where values z(u) are dealt one at a time independently

of the next one z(u′), no matter how close are the locations u and u
′. We will

argue that those applications are few; even the most selective mining or environ-

mental cleaning of single values z(u) do account for close-by values z(u′), e.g.

for reason of cost and/or accessibility (Journel and Huijbregts, 1978; Isaaks and

Srivastava, 1989). Notwithstanding, consider the derivation of a single-valued

estimate z∗(u) at each unsampled location u.

Since the L simulated realizations of any single unsampled RV z(u) are equi-

probable, their point-wise arithmetic average provides a single estimated value, of

least squared error-type, also called the E-type estimated value where E is short

for ‘expected value’, more precisely ‘conditional expectation’ (Goovaerts (1997,

p.341); Deutsch and Journel (1998, p.81)):

z∗E(u) =
1

L

L∑

l=1

zl(u). (3.9)

The E-type map corresponding to the L realizations of Fig. 3.2a is shown in

Fig. 3.2b. Note how much ‘smoother’ the estimated map is compared to anyone
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of the L simulated realizations. What is missing in an estimated map is the joint

dependency of the many variables Z(u),u ∈ S, beyond they sharing common

data. Far away from the data locations two estimated values would typically be

identical; in the case of simple kriging they would be equal to the data mean value

(Isaaks and Srivastava, 1989; Goovaerts, 1997, p.130, 369). Clearly geological or

physical heterogeneity should not vanish just because there is no data nearby!

As a consequence, the probability that two nearby unknown values z(u) and

z(u′) be simultaneously greater than any given threshold z0 could not be evaluated

from an estimated map. More generally any assessment or estimation involving

more than one location at a time should not be made on an estimated map, par-

ticularly if that estimation is based on sparse data which is the case in many earth

sciences applications.

In all rigor a set of estimated values should only be tabulated, not displayed

as a map; a map entices the user to read relations between estimated z∗-values

at different locations when these relations may not reflect that between the actual

z-values. Only simulated values z(l)(u) should be mapped because a simulated

realization is precisely a representation of the RF modeling the joint distribution in

space of all random variables Z(u),u ∈ S. Beware, however, that if an estimated

map is unique, there are many alternative equiprobable simulated realizations for

any given data set. A simulation work ethic forces the user to face uncertainty as

represented by the L simulated realizations generated.

Alternative estimation criteria

Instead of the mean value defining the E-type estimated map as in expression (3.9),

one could have retained the median z∗M(u) of the L simulated values z(l)(u) at

each location u. This would define a M-type estimated map, where each estimated

value z∗M(u) has a 50% chance to be higher (or lower) than the actual unknown

value. It can be shown that such M-type estimate is ‘best’ in a least absolute er-

ror sense. In any particular application where single-location estimated values are

needed, there is no a priori reason to minimize the squared error (e2) or the ab-

solute error (|e|); one may want to minimize an application-specific loss function

Loss(e), for example, in environmental applications using a non-linear function

Loss(.) that penalizes more underestimation of a lethal pollutant than overestima-

tion. Availability of the L simulated maps
{
z(l)(u),u ∈ S

}
, l = 1, · · · , L, allows

considering such loss function-specific estimate, see Fig. 3.2.c, Srivastava (1987),

Goovaerts (1997, p.340).

Kriging could provide directly and faster an estimated map, similar but not
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identical to the E-type map but it does not allow the flexibility to consider other

types of estimates. In addition, the kriging variance map is an incomplete, when

not misleading, measure of uncertainty as opposed to the distribution provided

by the L simulated maps
{
z(l)(u),u ∈ S

}
, l = 1, · · · , L, see later discussion in

Section 3.6.1, and Goovaerts (1997, p.180), Journel (1986), Chilès and Delfiner

(1999, p.178).

3.3 Conditional Distributions and Simulations

As already stated, the main task of any probabilistic assessment is to build a model

for the probability distribution of the unknown(s), either taken one at a time as

displayed by the histogram of Fig. 3.1(b), or altogether as displayed by the set of

simulated realizations of Fig. 3.2a. The uncertainty of any unknown, or any num-

ber of unknowns taken jointly, necessarily depends on the amount and types of

data available and their assumed relation to the unknown(s) considered. Take the

simple example of a single unsampled continuous variable at location u, and de-

note by n(u) the set of data informing it. The relevant cdf providing an assessment

of the uncertainty about the unsampled value z(u) is specific to the location u and

the data set n(u) and is written (Chilès and Delfiner (1999, p.380); Goovaerts

(1997, p.69)):

F (u; z|n(u)) = Prob {Z(u) ≤ z|n(u)} ,

in words, the probability that the unknown Z(u) be valued no greater than the

threshold value z conditional to (knowing) the data set n(u).
That conditional probability is, by definition, equal to the following ratio, with

as numerator the probability of the event to be assessed Z(u) ≤ z occurring

jointly with the data event, and as denominator the probability of that data event

occurring:

Prob {Z(u) ≤ z|n(u)} =
Prob {Z(u) ≤ z, n(u)}

Prob {n(u)}
. (3.10)

Expression (3.10) makes explicit the dependence of that cdf on the location u,

more precisely, the relation of that location with the n(u) data retained. In all

rigor, one should also make explicit the type, location and value of each datum

constituting the set n(u). Indeed if any aspect of that data set changes, the distri-

bution (3.10) is changed.

The distribution (3.10) is called the conditional cumulative distribution func-

tion (ccdf) of the specific RV Z(u) given the data set n(u). When many unknowns



3.3. CONDITIONAL DISTRIBUTIONS AND SIMULATIONS 53

{z(u),u ∈ S} are jointly involved, the conditional probability required becomes

multivariable; it is written as (Goovaerts (1997, p.372); Anderson (2003); Johnson

(1987)):

Prob {Z(u) ≤ z,u ∈ S|n(u)} =
Prob {Z(u) ≤ z,u ∈ S, n(u)}

Prob {n(u)}
. (3.11)

Probability distributions of type (Eq. 3.1) or (Eq. 3.2) which are not made con-

ditional to the data available are of little practical interest. Similarly, it is the

moments of the conditional distributions which are of practical interest, and only

those should be used for estimation. For example it is the mean of the ccdf

F (u; z|(n)) which should be used as the least squared error estimate of the un-

known z(u) at location u, not the mean of the marginal distribution F (z) as de-

fined in Eq. 3.2 since that marginal distribution does not account for the specific

dependence of location u with the data.

Similarly, the L realizations
{
z(l)(u),u ∈ S

}
, l = 1, · · · , L, displayed in

Fig. 3.2.a are useful only if they are outcomes of the multivariate probability

distribution (Eq. 3.11) conditioned to all relevant data available over the study

field S (Goovaerts, 1997, p.372). For example, the arithmetic average of the L
simulated values z(l)(u) at any given location u provides an estimate of the un-

known z(u) at that location; the cumulative histogram of these L simulated values

provides a discrete representation of the ccdf (Eq. 3.10), itself a measure of uncer-

tainty about z(u) (Journel and Huijbregts (1978); Isaaks and Srivastava (1989);

Goovaerts (1997, p.180)).

Consider a specific zone or block V within S; each simulated map provides a

simulated value for the average z-value over V denoted z
(l)
V , then the histogram of

the L simulated values z
(l)
V , l = 1, · · · , L provides a measure of uncertainty about

the unknown average value zV (Journel and Kyriakidis, 2004). Instead of a mere

average taken over the zone V , any complex non-linear function of the z-values

over all or part of the field S could be considered.

3.3.1 Sequential simulation

How does one go about building a complex distribution such as that in expression

3.11 involving jointly many unknowns and many data possibly of different types?

This is indeed the main challenge of geostatistics. A solution to such formidable

task is provided by the ‘divide and conquer’ paradigm:

1. divide the problem into a series of easier problems involving only one un-

known at a time, that is address the easier problem of determining the ccdf
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(Eq. 3.10) of each unknown z(u). The task of recombining these elemen-

tary conditional probabilities accounting for spatial dependence underlies

the sequential simulation algorithm (Deutsch and Journel (1998, p.125);

Goovaerts (1997, p.390); Chilès and Delfiner (1999, p.462); Rosenblatt

(1952));

2. divide the possibly large and complex data set n(u) constituted of many dif-

ferent data types into a set of smaller more homogeneous data sets nk(u),
k = 1, · · · , K, and address the easier problem of determining the K ccdf’s

Prob{Z(u) < z|nk(u)} conditioned to each of the smaller data set nk(u).
The nu/tau model presented in Section 3.9 addresses the problem of com-

bining these K ccdf’s into a single one of type 3.10, (Journel, 2002; Krish-

nan, 2004; Bordley, 1982; Polyakova and Journel, 2008).

We will develop the first divide paradigm by considering the case of only three

interdependent unknowns z(u1), z(u2), z(u3), at different locations u1, u2, u3.

These three interdependent variables could also relate to three different attributes,

say the grades of three different metals. The generalization to more than three

unknowns is immediate. The joint pdf of three random variables conditional to

the same data set (n) can be decomposed as (Goovaerts, 1997, p.376):

Prob {Z(u1) = z1,Z(u2) = z2,Z(u3) = z3|(n)} =

Prob {Z(u1) = z1|(n)} ·

Prob {Z(u2) = z2|(n),Z(u1) = z1} ·

Prob {Z(u3) = z3|(n),Z(u1) = z1,Z(u2) = z2}

(3.12)

In words, the tri-variate joint pdf has been decomposed into the product of

three univariate conditional pdf’s, each involving only one variable, Z(u1) first,

then Z(u2), last Z(u3), but with increased data conditioning.

Provided that the problem of conditioning to the common data set (n) can be

solved (see hereafter), each of these three single variable conditional pdf’s can be

determined. The decomposition (Eq. 3.12) then allows the process of sequential

simulation (Deutsch and Journel, 1998, p.125), more precisely:

• a value for Z(u1) is drawn from the first pdf Prob {Z(u1) = z1|(n)}, say

that simulated value is z
(l)
1 ;

• next a value for Z(u2) is drawn from the second pdf

Prob
{
Z(u2) = z2|(n),Z(u1) = z

(l)
1

}
, say that value is z

(l)
2 ;
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• last a value for Z(u3) is drawn from the third pdf

Prob
{
Z(u3) = z3|(n),Z(u1) = z

(l)
1 ,Z(u2) = z

(l)
2

}
, say that value is z

(l)
3 ;

The three simulated values z
(l)
1 , z

(l)
2 , z

(l)
3 , although drawn in sequence one

after the other, stem from the joint tri-variate distribution conditional to the

common data set (n).

• If another set of three simulated values is needed, one can repeat the process

using different random numbers for the drawings.

The interdependence between the three variables z
(l)
1 , z

(l)
2 , z

(l)
3 , has been taken

into account by conditioning the simulation of each single variable to values of

all previously simulated variables. We have traded the problem of simulating

jointly many variables for that of simulating only one variable at a time but with

an increasing conditioning data set, from (n) to (n + 1) then (n + 2). In prac-

tice, the problem created by the increasing data set size is solved by retaining

into the conditioning data set of each variable only the closest or most related

previously simulated values (Gómez-Hernández and Cassiraga (1994); Goovaerts

(1997, p.390,400)).

Retaining only the n(u) closest data to inform any unknown location u amounts

to an approximation of Eq. 3.12 since not all the previously simulated variables

are taken into consideration. On the other hand, retaining only the closest data

allows tighter local conditioning. A consequence of retaining only the closest pre-

viously simulated values is that the sequence along which the nodes are visited

matters. That sequence is called the simulation path, it is usually random to avoid

artifacts (Daly and Verly, 1994).

The joint-pdf in Eq. 3.12 using the sequence {u1,u2,u3} and retaining only

one previously simulated value in addition to the original (n) becomes, with u2

being closer to u3 than u1 :

Prob {Z(u1) = z1,Z(u2) = z2,Z(u3) = z3|(n)} ≈

Prob {Z(u1) = z1|(n)} ·

Prob {Z(u2) = z2|(n),Z(u1) = z1} ·

Prob {Z(u3) = z3|(n),Z(u2) = z2}

(3.13)

Another realization could be obtained by changing the uniform random num-

bers used for the drawing and/or changing the sequence in which the locations

{u1,u2,u3} are visited and simulated.
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3.3.2 Estimating the local conditional distributions

The critical step in sequential simulation consists of estimating at each location u

along the simulation path the conditional distribution given a specific conditioning

data set (n(u)). There have been essentially two avenues for approaching the

determination of the single variable Z(u) conditional pdf Prob {Z(u) = z|n(u)},

both calling for a multiple-point (mp) RF model:

1. The traditional 2-point statistics approach consists of evaluating the rela-

tion of the single unknown Z(u) with one datum Z(uα) at a time; thus no

more than 2 locations or 2 variables are involved at any time. Such relation

typically takes the form of a covariance/correlation or, equivalently, a var-

iogram; these are 2-point statistics. Then calling on a prior multiple-point

model requiring only 2-point stats for its calibration, the previous condi-

tional pdf Prob {Z(u) = z|(n)} is determined through some form of krig-

ing. Examples of such simple mp models that can be calibrated from only

2-point stats are:

• the multivariate Gaussian model underlying the sequential Gaussian

simulation algorithm (SGeMS program SGSIM, Section 8.1.2), Goovaerts

(1997, p.380); Anderson (2003); Chilès and Delfiner (1999, p.462);

Gómez-Hernández and Journel (1993)

• the truncation at order two of an expansion of the exact conditional

probability in the discrete case. Such truncation underlies the indica-

tor simulation algorithm (SGeMS program SISIM), see the decompo-

sition Eq. 3.12 and Section 3.8.4, Goovaerts (1997, p.393), Journel

and Alabert (1989).

In short, a 2-point statistics approach aims at dividing the data set (n) into

single locations or variables. First each single data variable is related to

the single unknown (1+1=2-point statistics), then these elementary results

are pieced together through kriging using some simple prior multiple-point

(mp) probabilistic model. The results are no better than this prior mp model,

be it Gaussian-related or algorithm-driven.

2. The second approach avoids such extreme division of the conditioning data

event. Instead it consists of using an explicit multiple-point (mp) model,

which allows considering the (n) data altogether, or together a set n(u) of

neighbor data. The necessary n(u) + 1 multiple-point statistics are lifted
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from replicates of the n(u)-data event found in a visually explicit training

image (Ti) (Guardiano and Srivastava, 1993; Srivastava, 1994; Strebelle,

2000, 2002; Zhang. et al., 2006). The results of such explicit mp geo-

statistics application are no better than the prior model implicit to the Ti

used. The consideration of training images, if available, allows making use

of the mp structural information carried by these Ti’s much beyond their

variograms.

A training image is a representation of how z values are jointly distributed

in space (Farmer, 1992; Strebelle, 2002; Journel, 2002; Zhang, 2006). A

training image (Ti) is essentially an unconditional realization of a RF model

Z(u), that is a prior conceptual depiction of the distribution in space of

z-values, a depiction that need not honor at their location any of the data

values included in the set (n). The joint distribution in space of the actual

unknown values {z(u),u ∈ S} is assumed to ‘look like’ the Ti but would

also honor the data (n). The role of a mp simulation is strictly one of data

conditioning, ‘morphing’ the Ti to honor the conditioning data (n). A 2-

point simulation aims at generating simulated realizations that honor the

data and a variogram model. A mp simulation aims at generating simulated

realizations that honor the data and the multiple-point structures present in

the training image.

The necessity of an mp model

It is important to understand that there cannot be any probabilistic estimation or

simulation without the necessary multiple-point (mp) statistics linking the data

taken altogether to the unknown(s) (Journel, 1993b). Those mp statistics are either

delivered explicitly through an analytical multivariate model or a training image or

they are implicitly provided by the specific simulation algorithm retained. Tradi-

tional algorithms that call for input of only two-point statistics (variograms) adopt

implicitly the higher order statistics in-built into the simulation algorithm retained,

and these are most often of high entropy character. High or maximum entropy

leads to maximizing disorder beyond the input variogram model(s) (Goovaerts

(1997, p.335); Journel and Alabert (1989); Journel and Deutsch (1993)). An im-

plicit model that maximizes disorder beyond specified two-point statistics is no

less a model than a training image with its specific (lower entropy) structures and

patterns much beyond the reach of a mere variogram. Also it can be argued that a

high entropy model is often inappropriate for an earth sciences application where

complex curvilinear structures involving many more than 2 locations in space are
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known to exist, even if these structures are not immediately apparent from the lim-

ited local data available. The 2-point stats-based realizations are consistent with

the implicit maximum entropy hypothesis beyond the input variogram model. If,

however, one has any inkling of the existence of definite structures or patterns,

this is precious structural information that must be accounted for in addition to

the local data in the exercise of building alternative representations of the true im-

age (Journel and Zhang, 2006). Two-point statistics, covariance or variogram, do

not suffice to carry such mp information.

3.4 Inference and Stationarity

The concept of stationarity is at the basis of all probabilistic inference: you try to

associate the (data) environment of any unknown value to ‘similar’ environments

for which you know the outcome of the variable, this allows you to make pre-

diction of the unknown from the known outcomes. The critical decision is that

of similarity of the data environments, a decision which is never fully objective

even though it defines the probabilistic model and thus impacts critically the pre-

dictions made (Goovaerts (1997, p.70); Chilès and Delfiner (1999, p.16); Deutsch

and Journel (1998, p.12); Wackernagel (1995); Journel and Huijbregts (1978)).

Consider the most elementary problem of inferring the possible outcomes of a

single unknown value z, which is inference of the distribution of the correspond-

ing random variable Z. To be more specific, consider a petroleum reservoir and

say that z is the unsampled porosity value at a given location u, in which case

the corresponding RV is denoted Z(u). Many alternative decisions, all somewhat

subjective, are possible:

• One may associate broadly the environment of the unknown z(u) to the

entire reservoir S which includes the location u; in which case the distri-

bution of Z(u) could be inferred from the histogram of all samples z(uα)
available in S whether the sample location uα belongs or not to the lithofa-

cies prevailing at location u. The decision of stationarity then encompasses

the whole reservoir.

• If one knows that the unsampled location u is within a sand facies, it would

make sense to restrict the previous histogram to only those samples known

to have been collected in a sand facies. The decision of stationarity is now

restricted to the sand facies. There is one caveat however: there should be
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enough sand samples in S for their porosity histogram to be deemed rep-

resentative; if not, one may have to pool samples from different lithofacies

into the same histogram, or consider using sand porosity samples coming

from deposits other than S but deemed similar. Thus, the decision of sta-

tionarity is necessarily subjective, conditioned in particular by data avail-

ability; that decision will change as the deposit S matures becoming better

known and sampled. Yet, a different decision of stationarity implies a dif-

ferent probabilistic model, different data and different estimation results.

The deposit S is the same, it is our model of it which has changed.

• Consider the favorable case of a well sampled deposit S where enough sand

porosity samples are available to build a histogram deemed reliable. Should

that histogram be considered as the probabilistic model for the location-

specific RV Z(u)? Among those sand samples, one may want to give more

weight to samples z(uα) at locations uα closer to the unsampled location u,

and also give more weight to isolated sample locations as opposed to clus-

tered sample locations to reduce the impact of preferential over-sampling

(data clustering) in certain zones. This suggestion is at the basis of the

concept of kriging (Krige, 1951; Matheron, 1970; Journel and Huijbregts,

1978). In the process of kriging the Euclidean distance between any two

(sand) locations |u − u
′| is replaced by a variogram distance γ(u,u′) read

from a variogram model, itself inferred from the sand porosity samples. In-

ference of that variogram model calls for extending the decision of station-

arity to pairs of sample values z(uα) and z(uβ) separated by approximately

the same distance vector h = uβ − uα (Deutsch and Journel (1998, p.43);

Goovaerts (1997, p.50)). A model of isotropy, whereby only the modulus

of vector h is retained, actually corresponds to yet another extension of the

stationarity decision allowing the pooling of sample pairs with the same sep-

aration distance |uβ−uα| irrespective of the direction of the vector uβ−uα.

In the end, what is important is not kriging but the series of decisions of sta-

tionarity which allowed implementing that kriging, in our case stationarity

of porosity in sand, then stationarity (of order 2) allowing inference of the

variogram model, last and not least the local stationarity decision used to

specify how far away from location u should one go (within sand) to define

the data event n(u) informing that location u.

In many applications involving subsurface deposits where local data are sparse,

inference of a variogram is difficult particularly if the decision of stationarity re-
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stricts samples to one specific facies, rock type or sub zone. Yet without a vari-

ogram, a mere 2-point statistics, there is no kriging, hence no traditional geostatis-

tics. In presence of sparse data, the necessary variogram is often borrowed from

deposits or outcrops different from the reservoir under study, or it is simply drawn

to reflect the geologist’s appreciation of correlation ranges. The problem is that

many earth sciences structures (spatial variability) do not lend themselves well to

a variogram characterization: very different patterns of variability may share the

same variogram , see Fig. 3.3, Fig. 3.4 and Strebelle (2000); Caers (2005). As

to borrow or draw a variogram to depict the spatial variability of a variable z(u),
u ∈ S, why not borrow or draw a more relevant conceptual image of that vari-

ability? Geologists do not think in terms of variograms or covariance matrix, their

expertise often takes the form of pictures, sketches, cartoons, as evident to anyone

opening a structural geology book. One could consider an outcrop photograph

or a geological sketch as a training image, which is a realization of a random

function model. The corresponding decision of stationarity is that the actual data

environment of the unsampled value z(u) in S, has approximate replicates over

that training image (Strebelle, 2002; Journel and Zhang, 2006).

Figure 3.3: The two SNESIM generated images have more continuous and

smoother features than the SISIM generated image, nevertheless they share the

same variogram model
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Figure 3.4: Reproduction of the E-W training image variogram by the two

SNESIM and two SISIM generated images shown in Fig. 3.3.

The subjectivity of model decision

It does take some effort for accepting the fact that stationarity, which is theoret-

ically defined as invariance by translation of spatial statistics (Goovaerts (1997,

p.70); Chilès and Delfiner (1999, p.16)), is a modeling decision, not some hy-

pothesis or property of the data which could be tested (Matheron, 1978; Journel,

1986). Such decision is necessarily subjective and can only be judged after the

fact by whether or not the resulting model has helped achieving the task at hand.

Subjectivity is at the source of any prediction process, it defines the repetition pro-

cess that provides replicates; without such repetition there is no inference possible.

Unless a prior model is given fully determined, stationarity is a necessary decision

that allows building the random function model and inference of its characteristic

moments.

• Accepting a fully defined model, such as the independence model, or a

Gaussian model with a given covariance, or accepting a specific training

image, amount to different decisions of stationarity. In the case of a train-

ing image, its selection represents a decision of stationarity, which allows its

scanning to find replicates of any specific data event and retrieval of the cor-

responding replicates of the central value informed by that data event. The

histogram of these central value replicates is then taken as the conditional

distribution of the actual unknown. This is the inference process underlying

the SNESIM mp simulation algorithm, see Section 3.7 and Guardiano and
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Srivastava (1993); Strebelle (2000).

• Accepting a Gaussian model allows building a kriging system to retrieve by

kriging the two conditional moments (mean and variance) which suffice to

specify the Gaussian conditional distribution, see Section 3.6 and Goovaerts

(1997, p.266); Anderson (2003); Chilès and Delfiner (1999, p.381).

A priori, one decision is no better than another. There is no universality at-

tached to the Gaussian model or any theoretical aura attached to the task of solv-

ing a system of equations (kriging) as opposed to the more trivial task of scanning

a training image for replicates. Conversely, the patterns described by the Ti re-

tained may not be the ones relevant to the actual deposit S. Adopting a wrong

Ti may lead to severe errors, all the more dangerous that one is comforted by the

final numerical representation of S fitting both the data and one’s prior (and pos-

sibly erroneous) vision of the structures of variability. Hence, we insist on the

absolute necessity of considering alternative different structural models, whether

these are explicit training images or implicit models anchored on variogram mod-

els; these different structural models should reflect the range of possible different

(geological) scenarios for the spatial variability ref.

Which model, 2-point or mp?

The better model is that which delivers the ‘deemed’ better result: did mimicking

the training image patterns yield a ‘more’ satisfactory result than the less-pattern

result yielded by variogram-based geostatistics? Again, the final judgment is nec-

essarily case and application-dependent and is in part subjective.

One could leave aside some critical data, of a global nature as opposed to the

local data used for conditioning, and check which of the final numerical represen-

tation of S fits best these ‘check’ data. Examples of such test data could be some of

the production data in a producing hydrocarbon reservoir or mining deposit, they

could be a subset of ‘ground truth’ data in an environmental application (Caers

and Hoffman (2006); Goovaerts (1997, p.105); Journel and Zhang (2006)).

There is place in a geostatistical tool box for both sets of algorithms, 2-point

and mp statistics are complementary: SGeMS proves it.
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3.5 The Variogram, a 2-point Statistics

The main tool for traditional geostatistics, and for that matter, most statistical pre-

diction algorithm, is the covariance or its equivalent the variogram. Consider a

stationary random function Z(u), and any two of its random variables Z(u) and

Z(u+h) separated by vector h. The relation between these two RVs is character-

ized by any one of the following 2-point statistics, functions of the separation vec-

tor h (Anderson (2003); Goovaerts (1997, p.28); Journel and Huijbregts (1978);

Matheron (1970)):

• the covariance:

C(h) = E {[Z(u) − m] [Z(u + h) − m]} (3.14)

• the correlogram, or coefficient of correlation:

ρ(h) = C(h)/C(0) ∈ [−1,+1]

• the variogram:

2γ(h) = E
{
[Z(u + h) − Z(u)]2

}

= 2 [C(h) − C(0)] , if C(h) exists,

where m = E {Z(u)}, C(0) = σ2 = Var {Z(u)} are the stationary marginal, or

1-point, statistics.

Any of these 2-point moments can be inferred by the corresponding experi-

mental statistics, say from n(h) pairs of data z(uα + h), z(uα), α = 1, · · · , n(h)
approximately distant of h and for the variogram (Goovaerts (1997, p.28); Wack-

ernagel (1995); Isaaks and Srivastava (1989)):

2γ∗(h) =
1

n(h)

n(h)∑

α=1

[z(uα + h) − z(uα)]2. (3.15)

Modeling

In practice, available information only provides enough data pairs for a few dis-

tance |h| and along a few directions. However, that statistics, say γ(h), is needed

for all vectors h = u − uα linking an unsampled location u to any nearby datum
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location uα; thus there is a need to interpolate/extrapolate experimental statistics

such as γ∗(h) into a model γ(h) available for all h. Because covariance and vari-

ogram are used to calculate variances and these variances are non-negative, not all

analytical function g(h) can be used as a covariance or a variogram model (Chilès

and Delfiner (1999, p.59); Goovaerts (1997, p.87); Journel and Huijbregts (1978);

Christakos (1984)). Positive linear combinations of basic acceptable (licit) models

g(h) are also acceptable, this allows defining a large family of acceptable covari-

ance/variogram models sufficient for most practical studies. SGeMS allows con-

sideration of any positive linear combination of the three most commonly used

basic variogram models, the spherical, exponential and Gaussian models intro-

duced in Chapter 5 (Deutsch and Journel, 1998, p.25).

The reader is referred to Goovaerts (1997, p.87) and other relevant papers and

publications (Matheron, 1962, 1963; David, 1977; Journel and Huijbregts, 1978;

Journel and Froidevaux, 1982; Chauvet, 1982; Cressie, 1993; Yao and Journel,

1998) for the practice of modeling experimental variograms, a sometimes delicate

task in presence of directional anisotropy, sparse data and prior non-quantitative

information.

Cross-variogram

In the previous expressions 3.14 and 3.15, the two RVs may relate to two dif-

ference attributes, say Z1(u) is porosity at location u and Z2(u + h) is seis-

mic impedance measured at location u + h. The corresponding 2-point statistics

is then, e.g. a cross-variogram defined as (Goovaerts (1997, p.46), Chilès and

Delfiner (1999, p.328), Journel and Huijbregts (1978); Wackernagel (1995)):

2γ12(h) = E {[Z1(u + h) − Z1(u)] [Z2(u + h)) − Z2(u)]} . (3.16)

In presence of only two different attributes Z1, Z2, one must model a matrix of

four (cross) covariance functions, C11(h), C12(h), C21(h), C22(h), or only three

(cross) variogram functions γ11(h), γ12(h) = γ21(h), γ22(h), under restrictive

conditions of positive definiteness, see Goovaerts (1997, p.108). In presence of N
different attributes Z1, · · · , ZN , there would be N2 (cross) covariance functions

or N(N − 1)/2 (cross) variogram functions to model! Subsurface data are rarely

enough to allow inference of statistics involving more than N = 2 attributes si-

multaneously, even if these statistics are only 2-point statistics involving only 2

space locations at a time, u and u + h.
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Multiple-point statistics

To characterize the relation between two patterns of data, say, n1 data on attribute

Z1: {z1(u + hα);α = 1, · · · , n1} and n2 data on attribute Z2: {z2(u
′ + h

′
β);

β = 1, · · · , n2}, one would need much more than cross-covariances or cross-

variograms. One needs in all rigor the joint distribution of the (n1 + n2) RVs

Z1(u+hα), Z2(u
′+h

′
β); α = 1, · · · , n1; β = 1, · · · , n2 (Goovaerts (1997, p.72)).

No experimental data would be ever enough to infer such multiple-variable, multiple-

point statistics; not to mention the nightmare of their modeling. There are only

two escape avenues:

1. assume a parameter-poor random function model {Z1(u),Z2(u
′)} fully de-

fined from a few low-order statistics that can be inferred from data. Most

often such models are related to the multivariate Gaussian model fully char-

acterized by the sole covariance matrix [Cij; i, j = 1, · · · , N ], with N = 2
for the example above (Anderson (2003); Goovaerts (1997, p.265)).

2. build training images depicting the relation in space of the two variables

z1(u) and z2(u
′). These training images should reflect whatever physics

or geology is known to control the joint spatial distributions of these two

variables (Strebelle, 2000; Arpat, 2004; Zhang, 2006; Journel and Zhang,

2006).

In both cases, most of the structural (n-point statistics) information capital-

ized upon for estimation or simulation of an unsampled value (or set of values) is

coming not from the data but from the model, multivariate Gaussian in case 1, the

training image in case 2.

It would be a severe error, though both naive and common, to believe that

one could do away with models falling in either of the two previous categories.

The reason is that, whenever maps of estimated or simulated values are used, one

necessarily draws from such maps much more than the 2-point or lower order

statistics actually modeled from data; this ‘much more’ comes the n-point statis-

tics of the RF model, whether Gaussian-related or training image-based (Journel,

1993b).

3.6 The Kriging Paradigm

Kriging has been historically at the source of acceptance of geostatistics (Krige,

1951; Matheron, 1970; Journel and Huijbregts, 1978); it remains a major data
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integration tool and is used in most estimation and simulation algorithms. In its

simplest indicator kriging form with a single (normal) equation, it identifies Bayes

relation and the very definition of a conditional probability (Journel, 1983).

Kriging is in essence a generalized linear regression algorithm (Goldberger,

1962; Luenberger, 1969), extending the data-to-unknown correlation to data-to-

data correlation through a non-diagonal kriging matrix. It is a regression with

non-independent data: actually it can be shown that kriging consists, first of de-

correlating the data by defining linear combinations of the original data which are

orthogonal for a given covariance/variogram model, then of a traditional linear

regression from these ‘independent’ data transforms (Journel, 1989).

The practice of geostatistics in very diverse earth sciences fields has led to

a large number of variants from the theoretically rigorous yet simplest ‘simple

kriging’.

3.6.1 Simple kriging

Because kriging is at the source of so many geostatistical algorithms it is worth to

briefly recall here the basic simple kriging (SK) system, then its multiple variants

(Goovaerts (1997, p.127); Deutsch and Journel (1998, p.77); Chilès and Delfiner

(1999, p.154)).

Consider within a stationary field S the estimation of an unsampled value

z(u) from n(u) neighboring data values z(uα), α = 1, · · · , n(u). If the estimate

z∗SK(u) is restricted to be a linear combination of the data, it is written:

z∗SK(u) − m =

n(u)∑

α=1

λSK
α (u) [z(uα) − m] = λ

t · D, (3.17)

where λ is the column matrix of the n(u) kriging weights λSK
α (u) and D is the

column matrix of the n(u) residual data values [z(uα) − m] built from the sta-

tionary and assumed known mean value m. Consideration of the residual vari-

ables rather than the original Z-variables ensures unbiasedness defined as zero

expected error:

E {Z∗
SK(u) − Z(u)} = 0. (3.18)

Remarks

• The zero expected error should be understood as a zero average error if the

same geometric configuration of n(u) data were applied elsewhere in the
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stationary zone, therefore in effect averaging over all possible combinations

of the n(u) data values. Ideally, one should ensure unbiasedness conditional

to both data configuration and data values (the z(uα)’s), that is:

E {Z∗
SK(u) − Z(u)|Z(uα) = z(uα), α = 1, · · · , n(u)} = 0. (3.19)

Conditional unbiasedness for all possible combination of data values z(uα)
entails unbiasedness as in relation Eq. 3.18, not the reverse (Journel and

Huijbregts (1978); Goovaerts (1997, p.182); Deutsch and Journel (1998,

p.94)). SK, as most other linear estimators such as inverse distance-based,

ensures unbiasedness not conditional unbiasedness. This limitation of the

unbiasedness property is at the source of many disappointments (David,

1977; Isaaks, 2004; Isaaks and Srivastava, 1989).

• A critical decision affecting the quality of the estimate (Eq. 3.17) is the

choice of the n(u) data retained to estimate any unsampled location u. Con-

sistency with the stationarity decision made to infer the covariance model

would call for all locations u ∈ S to be estimated from the same data

set n including all samples available over S. Such kriging with a ‘global’

neighborhood is rarely implemented in practice, precisely because of defi-

ance towards the decision of stationarity (Deutsch and Journel (1998, p.32);

Goovaerts (1997, p.178)). Not only one must decide the extent of the neigh-

borhood within which the n(u) data should be collected, but one may want

to privilege certain directions, for example the direction of maximum conti-

nuity starting from u (Deutsch and Journel (1998, p.33); Goovaerts (1997,

p.178)).

Convexity issue

A definite advantage of kriging over traditional linear interpolators is that it is non

convex: the kriging estimate need not be valued in the interval of the data values

retained (Goovaerts (1997, p.177)). For example, the SK estimate z∗SK(u) may be

valued greater than the largest datum value max {z(uα), α = 1, · · · , n(u)}.

This advantage can turn into an inconvenience if the estimate z∗SK(u) is val-

ued outside the z-physical bounds, for example a negative estimate for a positive

variable such as a metal grade. One solution (not the best) to ensure convexity is

to enforce the kriging weights to be all positive and sum up to 1; ordinary kriging

weights do add up to 1 but are not necessarily all positive, see hereafter Section

3.6.2, and Barnes and Johnson (1984); Rao and Journel (1996).
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Simple kriging system

If the estimation criterion is chosen to be ‘least squared error’, often a decision

of mere convenience, the weights λSK
α (u) are given by a kriging system of linear

equations built from a covariance model (Luenberger (1969); Matheron (1970);

Journel and Huijbregts (1978); Goovaerts (1997, p.127)):

K · λ = k (3.20)

where the transposed vector k
T = [C(u − uα), α = 1, · · · , n(u)] is the data-to-

unknown row covariance matrix, K = [C(uα − uβ), α, β = 1, · · · , n(u)] is the

data-to-data square covariance matrix; both matrices are built from the prior sta-

tionary covariance model:

C(h) = Cov {Z(u),Z(u + h)} = C(0) − γ(h), (3.21)

C(0) = Var {Z(u)} is the stationary variance, and

2γ(h) = Var {Z(u) − Z(u + h)} is the corresponding stationary variogram model.

The two main contributions of kriging to estimation are (Journel and Hui-

jbregts, 1978):

1. the utilization of a variogram distance γ(h) specific to the variable Z(u)
and the stationary zone S under study as opposed to a non specific Eu-

clidean distance h, as used in e.g. inverse distance interpolation. The vari-

ogram distance could be anisotropic, for example privileging data along the

direction of greater continuity from the location u being estimated;

2. the consideration of the data-to-data covariance matrix K allows ‘data

declustering’, which leads to give less weight to redundant data within a

cluster of data as opposed to isolated data. This property of kriging allows

correcting for bias due to preferential clustering of data, a common occur-

rence in earth sciences.

Kriging variance

A by-product of kriging and more generally of any least square regression is the

estimation variance or kriging variance, which is the expected squared error whose

minimization led to the kriging system (3.20) (Goovaerts (1997, p.179); Chilès

and Delfiner (1999, p.156)):

σ2
SK(u) = Var {Z(u) − Z∗

SK(u)} = C(0) − λ
t · k. (3.22)
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This variance is often misused as a measure of accuracy of the estimator Z∗
SK(u).

The variance expression (3.22) is data values-independent; it depends only on

the geometry of the data set n(u) retained and the covariance model adopted; it

is thus a covariance-dependent ranking index of data configuration, a valuable

index for comparison but not yet a measure of estimation accuracy (Journel and

Rossi, 1989). A better measure of the potential error associated with the estimator

Z∗
SK(u) would be the conditional error variance which is also dependent on the

data values z(uα) (Goovaerts (1997, p.180)):

σ2
SK(u) = Var {Z(u) − Z∗

SK(u)|Z(uα) = z(uα), α = 1, · · · , n(u)} .

It can be shown that the kriging variance (3.22) is the average of the condi-

tional error variance over all possible joint realizations of the n(u) data values, the

data configuration being fixed (Goovaerts (1997, p.180,361)). In the general case,

one cannot ignore the impact of the actual data values on estimation accuracy.

One notable exception is that provided by a Gaussian RF model where all

constitutive RVs Z(u), u ∈ S, are assumed jointly Gaussian-distributed. In that

case, the previous conditional error variance is indeed data values-independent

and identifies the kriging variance (3.22), a property known as homoscedasticity

(Goovaerts (1997, p.82,180); Anderson (2003)).

Distribution of error

Even if the kriging variance (3.22) could be retained as a representative error vari-

ance, one would know only two moments of the error distribution: the mean equal

to zero per unbiasedness and the kriging variance. A two-parameter distribution

type would have to be assumed, for example a Gaussian error distribution. There

is, unfortunately, no justification for such distribution type assumption; Central

Limit theorems do not apply to spatial interpolation errors essentially because

data and resulting errors are not independent one from each other. If a Gaussian

distribution assumption is accepted for convenience, one should be aware that

this distribution has short tails and its adoption is very consequential, particularly

when assessing the probability of large errors.

3.6.2 Ordinary kriging and other variants

The most restrictive aspect of any probabilistic approach is associated with the de-

cision of stationarity ( Section 3.6) which allows scanning a data set for replicates,
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averaging the latter to infer the required statistics. For example, the inference of

the covariance model C(h) needed to build any kriging system calls for pooling

together into a same experimental covariance pairs of data, {z(uα), z(uα + h)},

{z(uβ), z(uβ + h)} approximately separated by the same vector h but otherwise

taken at different locations uα and uβ . Once that covariance model is available,

the harsh consequences of the stationarity decision settle in. Rigorous theory

would demand that the covariance model C(h) and the corresponding station-

ary mean m be frozen over the area S of the stationarity decision. Yet in many

applications, local information calls for a locally variable mean and sometimes for

aspects of the covariance model to be made locally variable, for example the direc-

tion of anisotropy. Variants of the previous simple kriging system were developed

to allow such flexibility, all amounting to a deviation from rigorous theory.

In ordinary kriging (OK) the expected value of the random function is locally

re-estimated from local data, while the covariance model is kept stationary. The

OK concept has been extended to local estimation of the parameters of a func-

tional trend (KT or kriging with a trend). A locally varying mean (LVM) can also

be input directly and used in expression 3.17 in lieu of the stationary mean m.

All these variants of kriging amount to relax the decision of stationarity ini-

tially necessary to define the random function model and infer its constitutive

statistics, for example a variogram model. There have been many attempts at

extending the RF theory to justify such liberty with regard to the original restric-

tive decision of stationarity (Matheron (1971); Chilès and Delfiner (1999, p.243);

Goovaerts (1997, p.143)). These attempts, besides being awkward, have resulted

in other restrictions; the practice of geostatistics has essentially ignored them. Our

point is that the random function theory is a non-exclusive provider of tools for

assessing space/time distributions, as opposed to a binding exclusive model. The

RF-originated tools can be modified to a reasonable extent with proper documen-

tation; there is no need to build a new RF model in a vain attempt at gentrifying

tools that have a proven record of practice. Possibly, the best argument for such

lax consideration of RF theory is realizing that there would be no practical geo-

statistics without OK or without kriging with a local varying mean and, more

generally without the multiple code implementations that make it ‘work’.

Ordinary kriging

The simple kriging (SK) expression (Eq. 3.17) appears as an estimate of an un-

known deviation from a known stationary mean m. If that mean is considered

locally variable, it can be estimated from the same n(u) local data used in ex-
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pression (Eq. 3.17); the corresponding estimate then takes its ordinary kriging

(OK) expression (Goldberger (1962); Matheron (1970); Goovaerts (1997, p.132);

Journel and Huijbregts (1978)):

z∗OK(u) =

n(u)∑

α=1

λOK
α (u)z(uα), (3.23)

where the kriging weights sum to 1:
∑n(u)

α=1 λ
OK
α (u) = 1.

The corresponding kriging system is similar to the SK system (Eq. 3.20) with,

in addition, one Lagrange parameter and equation to account for the above con-

straint on the OK weights. The qualifier ’ordinary’ is appropriate since OK is

used more often than SK thanks to its robustness against local departures from the

original decision of stationarity.

Kriging with a trend

A locally varying unknown mean m(u) can be modeled by a function of the co-

ordinates (u). That function, called a trend function, if of known shape or type

but with unknown locally variable parameters; therefore the mean m(u) remains

unknown at any location u (ref.). In the space domain where u = (x, y, z) co-

ordinates, the trend function is usually a polynomial function of the coordinates;

for example a trend linear in the horizontal space (x, y) but possibly quadratic in

the vertical (z) would be written (Goovaerts (1997, p.141); Deutsch and Journel

(1998, p.67)):

E {Z(u)} = m(u) = a0(u) + a1(u)x + a2(u)y + a3(u)z + a4(u)z2. (3.24)

The 5 parameters a.(u) are unknown and are estimated from the n(u) local data

available. The location coordinates u = (x, y, z) are known.

Similarly, in the time domain, a time series Z(t) may present a periodic trend

modeled as a cosine function of known frequency ω but unknown varying phase

and amplitude a0(t), a1(t):

E {Z(t)} = m(t) = a0(t) + a1(t) · cos(2πωt). (3.25)

However such cosine trend function is not yet programmed in SGeMS.

Once the unknown parameters a.(u) are estimated (implicitly and by a form

of kriging), a simple kriging of type (3.17) is applied by replacing at each location
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u the constant stationary mean m by the resulting mean estimate m∗(u). The

corresponding estimate is said to be a kriging with a trend model (KT) and is

written:

z∗KT (u) =

n(u)∑

α=1

λKT
α (u)z(uα). (3.26)

The KT expression (Eq. 3.26) differs from the OK expression through its

weights. These KT weights λKT
α (u) are given by a kriging system similar to the

SK system (Eq. 3.20) but with additional constraints on the KT weights (Gold-

berger (1962); Goovaerts (1997, p.139); Journel and Huijbregts (1978)).

Actually OK is but a particular case of KT when the trend model (Eq. 3.24)

reduces to the sole term a0(u). In cases of interpolation with the n(u) data sur-

rounding the location u on both sides of the trend, OK would give results very

close to KT. The specification of the trend functional type, say linear or quadratic,

matters only in cases of extrapolation (Journel and Rossi (1989); Goovaerts (1997,

p.147)).

Kriging with a local varying mean

There are applications where some ancillary information (different from the z-

data) provides at all locations the locally varying mean (LVM), then denoted

m∗(u). The SK expression (Eq. 3.17) is then applied directly to the deviations

from these locally varying mean values (Goovaerts (1997, p.190)):

z∗LV M(u) − m∗(u) =

n(u)∑

α=1

λSK
α (u) [z(uα) − m∗(uα)]. (3.27)

Non-linear kriging

The qualifier ‘non-linear’ applied to kriging is misleading if it promises some ma-

jor breakaway from the fundamental limitation of considering only linear com-

binations of data. Most so-called non-linear kriging, including kriging of normal

score transform as used in program SGSIM(Deutsch and Journel, 1998, p.75), dis-

junctive kriging (Matheron, 1973) or indicator kriging (Journel, 1983), are in fact

all linear kriging applied to a non-linear transform of the variables involved. For

example, lognormal kriging is but a kriging applied on the logarithms of the data

(Rendu, 1979; Journel, 1980).

A non-linear transform of the original variable(s) is warranted if that transform

allows defining new variables that:
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• are more attuned to the problem addressed, as is the case for indicator trans-

form (see hereafter Section 3.6.5);

• satisfy better the requirements of the algorithm being considered, e.g. the

normal score transform allows meeting one requirement of the sequential

Gaussian simulation algorithm (SGeMS code SGSIM, see Section 8.1.2,

and Goovaerts (1997, p.380));

• deliver stronger correlation in space.

Remarks :

Any non-linear back transform of kriging results may lead to severe biases if not

carefully attended to. Non robust unbiasedness corrections associated to back

transform of kriging estimates may wipe out any benefit brought by working on

the transformed variable. This is the reason for lognormal kriging having fallen

into disuse: what is gained by working on the logarithm may be lost through

a back transform that involves an exponentiation (Journel (1980); Chilès and

Delfiner (1999, p.191); Deutsch and Journel (1998, p.76)). Note that indicator

kriging estimates are used as probability estimates, without any back transform,

see hereafter. Similarly, the kriging means and variances of normal score val-

ues are used directly to build the conditional distributions in sequential Gaussian

simulation, these kriging results are never back transformed; it is the final simu-

lated values that are back transformed, then indeed that back transform is sensitive

to the tail extrapolation decision (Deutsch and Journel (1998, p.135); Goovaerts

(1997, p.385)).

A non-linear transform of the variable does not remove the most fundamental

limitation of all kriging which is that the data are related to the unknown one at

a time; see the right hand side covariance matrix k in the SK system (Eq. 3.20).

Kriging remains, however, the ultimate estimation paradigm if applied to func-

tions of the data taken two by two, three by three, and ultimately taken altogether

as a single multiple-point event, see Sections 3.6.5 and 3.7.

3.6.3 Kriging with linear average variable

An application of kriging with linear average variable is to estimate the average

grade of a mining block from neighboring data which are both core grades and av-

erage grades of already mined-out blocks (Journel and Huijbregts, 1978; David,

1977). Another application is that related to tomographic imaging where data
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are defined as linear average over diverse ray paths (1D volume data) (Gómez-

Hernández et al., 2004; Hansen et al., 2006). These kriging systems call for

the covariance between any two block-support z-values, which happens to be a

linear average of the point covariance model C(h), see Journel and Huijbregts

(1978). Any kriging system can be used with linear average data as long as the

variogram/covariance values are properly regularized (averaged).

Covariance averaging

The covariance relating a point support value Z(u) to a linear average BV (s)
defined over a block of support volume V centered at s is derived from the point-

to-point covariance model C(u,u + h) = C(h) as:

C(u,V(s)) = Cov {BV(s),Z(u)} =
1

|V|

∫

u′∈V(s)

C(u − u
′)du′

Similarly, an average block-to-block variogram is given as:

C(V, V ′) =

∫

u∈V

∫

u′∈V′

C(u − u
′)dudu′

These upscaled or regularized covariances provide a valid model of point-to-block

and block-to-block covariances, they are used whenever linear average data are

present. Fast calculation of each block-averaged variogram/covariance is dis-

cussed in Section 7.4 and Kyriakidis et al. (2005).

Kriging with block and point data

Data taken at different scales, both on block-support and on point-support, can be

considered simultaneously in the kriging system. The only condition is that all

block data are linear averages of point values. For simplicity, the kriging theory is

illustrated here with simple kriging.

The block data B(vα) is defined as the spatial linear average of point values

Z(u′) within the block volume vα (Journel and Huijbregts (1978); Hansen et al.

(2006); Liu, Journel and Mukerji (2006); Goovaerts (1997, p.152)):

B(vα) =
1

|vα|

∫

vα

Lα(Z(u′))du′ ∀α (3.28)

where Lα is a known linear averaging function.
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The simple kriging estimator Z∗
SK(u) conditioned to both point and block data

is then written:

Z∗
SK(u) −m = Λt · D =

n(u)∑

α=1

λα(u) · [D(uα) −m] (3.29)

where: Λt = [λP λB] denotes the kriging weights for point data P and block

data B. D
t = [P B] denotes the data value vector. D(uα) is a specific datum at

location uα and n(u) denotes the number of data. m denotes the stationary mean.

The kriging weights Λ are obtained through the kriging system:

K · Λ = k (3.30)

with

K =

[
CPP ′ C̄PB

C̄
t
PB C̄BB′

]
and k =

[
CPP0

C̄BP0

]

where K denotes the data-to-data covariance matrix, k denotes the data-to-unknown

covariance matrix, C denotes the point covariance submatrix, C̄ denotes a covari-

ance submatrix involving a block support and P0 is the simulation location.

The kriging variance is then written:

σ2
SK(u) = V ar {Z(u) − Z∗

SK(u)} = C(0) − Λt · k

with: C(0) = V ar {Z(u)}, being the stationary variance.

3.6.4 Cokriging

There is nothing in the theory of kriging and expressions (3.17) to (3.27) that

constrains the unknown Z(u) and the data Z(uα) to relate to the same attribute.

One can extend the notation Z to different attribute values Zk(u), Zk′(uα), say

for estimation of a porosity value Zk(u) at location u from porosity data Zk(uα)
and seismic amplitude data Zk′(uα) with k′ 6= k at neighboring locations uα.

Cokriging is the extension of the kriging paradigm to estimation of one attribute

using a data set which contains data related to other attributes (Myers (1982);

Wackernagel (1995); Goovaerts (1997, p.203); Chilès and Delfiner (1999, p.296)).

For example, the simple cokriging estimate of an unsampled porosity z1(u)
from n1(u) neighboring porosity data z1(uα) and n2(u) seismic data z2(u

′
β) would

be written:

z∗1(u) − m1 =

n1(u)∑

α=1

λα [z1(uα) − m1] +

n2(u)∑

β=1

λβ

[
z2(u

′
β) − m2

]
, (3.31)
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where m1 and m2 are the two stationary means.

The only difficulty, but a serious one in practice, comes from the necessity to

infer and model jointly many cross-covariance/variogram models, up to K2 mod-

els in the case of cross-covariances. If it is already difficult to infer the variogram

of a single variable in a 3-dimensional possibly anisotropic space, real data are

rarely enough to infer a set of cross-variograms for more than K = 3 different

attribute variables.

In order to alleviate the burden of modeling all these variograms with the linear

model of coregionalization (Goovaerts (1997, p.108); Chilès and Delfiner (1999,

p.339)), various shortcut models have been proposed: two of which are available

in SGeMS: the Markov Model 1 and the Markov Model 2 (Almeida and Jour-

nel (1994); Journel (1999); Chilès and Delfiner (1999, p.305); Goovaerts (1997,

p.237)). For text clarity, we will only consider the case of a single secondary

variable (K = 2).

Markov Model 1 The Markov Model 1 (MM1) considers the following Markov-

type screening hypothesis:

E{Z2(u)|Z1(u); Z1(u + h)} = E{Z2(u)|Z1(u)}

i.e. the dependence of the secondary variable on the primary is limited to

the co-located primary variable. The cross-covariance is then proportional

to the auto-covariance of the primary variable:

C12(h) =
C12(0)

C11(0)
C11(h) (3.32)

Where C12 is the cross-covariance between the two variables Z1 and Z2

and C11 is the covariance of the primary variable Z1. Solving the cokriging

system under the MM1 model only calls for knowledge of C11, hence the

inference and modeling effort is the same as for kriging with only primary

Z1-data. Although very congenial the MM1 model should not be used when

the support of the secondary variable Z2 is larger than the one of Z1, lest

the variance of Z1 would be underestimated. It is better to use the Markov

Model 2 in that case.

Markov Model 2 The Markov Model 2 (MM2) was developed for the case where

the volume support of the secondary variable is larger than that of the pri-

mary variable (Journel, 1999). This is often the case with remote sens-

ing and seismic-related data. The more relevant Markov-type hypothesis is
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now:

E{Z1(u)|Z2(u); Z2(u + h)} = E{Z1(u)|Z2(u)}

i.e. the dependence of the primary variable on the secondary is limited to

the co-located secondary variable. The cross-variogram is now proportional

to the covariance of the secondary variable:

C12(h) =
C12(0)

C11(0)
C22(h) (3.33)

In order for all three covariances C11, C12 and C22 to be consistent, Jour-

nel (1999) proposed to model C11 as a linear combination of C22 and any

permissible residual correlation ρR. Expressed in term of correlograms

ρ11(h) =
C11(h)

C11(0)
, ρ22(h) =

C22(h)

C22(0)

this is written:

ρ11(h) = ρ2
12 · ρ22(h) + (1 − ρ2

12)ρR(h) (3.34)

where ρ12 is the co-located coefficient of correlation between Z1(u) and Z2(u).
Independently of the cross-modeling adopted, cokriging shares all the contribu-

tions and limitations of kriging: it provides a linear, least squared error, regression

combining data of diverse types accounting for their redundancy and respective

variogram distances to the unknown. Cokriging considers the data one at a time

and the cokriging variance being data values-independent is an incomplete mea-

sure of estimation accuracy. The linear limitation of kriging may be here more

serious, since cokriging would ignore any non-linear relation between two dif-

ferent attributes which could be otherwise capitalized upon for cross-estimation.

One possible solution is to apply cokriging on non-linear transforms of the origi-

nal variables, a transform chosen to reveal such non-linear dependence.

The kriging system with block data as described in Section 3.6.3 can also be

seen as a cokriging system, where the cross-dependence between points and block

is given by the regularization process.

3.6.5 Indicator kriging

Indicator kriging is yet another kriging but applied to variables that are binary

indicators of occurrence of an event, say:

Ik(u) =

{
1 if the event k occurs at location u

0 if not
(3.35)
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or for the continuous case :

I(u; zk) =

{
1 if Z(u) ≤ zk

0 if not

The event k to be estimated could be presence of facies of type k at location

u, or could be that the unsampled continuous variable z(u) is valued below the

threshold zk.

The particularity of indicator kriging (IK) is that it delivers a kriging estimate

that can be interpreted directly (without any transform) as an estimate of the prob-

ability for the unsampled event to occur at location u conditional to the data set

n(u) observed (Goovaerts (1997, p.293); Chilès and Delfiner (1999, p.383); Jour-

nel (1983)). The IK estimate is hereafter written under its simple kriging form:

I∗SK(u) = Prob∗ {I(u) = 1|n(u)}

=

n(u)∑

α=1

λα(u)Ik(uα) +


1 −

n(u)∑

α=1

λα(u)


 · p0, (3.36)

where p0 = E {I(u)} = Prob {I(u) = 1} is the prior probability of the event

occurring, λα(u) is the kriging weight associated to the indicator datum I(uα)
valued 0 or 1.

If, independently of the n(u) indicator data, soft information is available pro-

viding a location-specific prior probability p(u), that probability could replace p0

in expression (3.36). Indicator kriging can be seen as an updating of that prior

probability p(u) by the indicator data I(uα) ((Goovaerts, 1997, p.293)).

The fact that kriging is not a convex estimator valued between the minimum

and maximum indicator data value (here 0 and 1) is particularly damaging in that

IK may provide estimated probabilities outside the interval [0, 1]. Corrections are

made to this purpose. An alternative is to consider mp statistics through products

instead of linear combinations of the indicator data, see the following presentation

on extended normal equations and in Section 3.10 the nu/tau model (Journel,

2002).

On the positive side, kriging being an exact estimator, if estimation is per-

formed at any hard datum location uα, the resulting probability estimate is ‘hard’,

that is valued 0 or 1 identifying that hard datum value; if the indicator variogram

used is continuous with a small nugget effect the probability estimate would

smoothly departs from that hard value (0 or 1) as the location u to be estimated

gets away from uα.
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3.7 An Introduction to mp Statistics

Consider again the linear indicator kriging expression (3.36). First note that any

non-linear transform of a binary (indicator) variable is non-effective in that it re-

sults in just another binary variable. To extract more from the indicator data set

{I(uα), α = 1, · · · , n(u)}, one need to consider these data two by two, three by

three, . . ., at the limit altogether as a single data event.

Consider then the extended IK expression (3.37) which is a linear combina-

tion:

• of the indicator data taken one at a time as in expression (3.36), there are

n(u) such indicators;

• of the indicator data taken two at a time; there are a number (n(u), 2) of

combinations of such pairs;

• of the indicator data taken three at a time; there are (n(u), 3) such triplets;

• . . .

• of the indicator data taken altogether; there is only one such product:

I∗SK(u) = Prob∗ {I(u) = 1|n(u)} =

p0 (prior probability for I(u) = 1)

+

n(u)∑

α=1

λ(1)
α (u) [I(uα) − p0] ( one at a time)

+

(n(u),2)∑

α=1

λ(2)
α (u) [I(uα1

)I(uα2
) − E{I(uα1

)I(uα2
)}] (two at a time)

+

(n(u),3)∑

α=1

λ(3)
α (u) [I(uα1

)I(uα2
)I(uα3

) − E{I(uα1
)I(uα2

)I(uα3
)}]

(three at a time)

+ . . .

+λ(n(u))
α (u)




n(u)∏

α

I(uα) − E





n(u)∏

α

I(uα)






 (taken altogether)

(3.37)
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Remarks

• Expression 3.37 is a simple indicator (co)kriging estimator extended to in-

clude data taken 2, 3, up to all a time. The corresponding simple kriging

system is called ‘the extended system of normal equations’ (Journel and

Alabert, 1989); it has 2n(u) equations yielding the 2n(u) kriging weights λ
(.)
α .

• Note that a set of n(u) binary indicator data can take 2n(u) possible joint

outcomes, a number precisely equal to the number of kriging weights in the

extended IK expression 3.37; indeed:

n(u)∑

α=1

(n(u), α) = 2n(u).

It can be shown that the solution of the full extended normal system (Eq. 3.37)

provides the exact conditional probability value for I(u) = 1 for all possible

data value combinations; there are 2n(u) such combinations.

• The information carried by the product I(uα)I(uβ) is not redundant with

that carried by the two individual data I(uα) and I(uβ) or any of their linear

combinations. By restricting the expression 3.37 to indicator data taken

one at a time as in expression 3.36, one is loosing precious information,

that provided by observation of the data jointly at many locations. The

information I(uα)I(uβ) sits there ready for the taking as a covariate through

a form of cokriging. As in any other cokriging, it suffices to evaluate the

additional covariances required which are, in the case of data taken only up

to two at a time:

– the 3-point covariance linking any 2-point data I(uα)I(uβ) to the un-

known I(u);

– the 4-point covariance linking any two doublets of data, say I(u1)I(u2)
with I(u3)I(u4) and measuring the redundancy between these two

doublets.

The traditional IK estimator (Eq. 3.36) using the data one at a time calls for

traditional 2-point covariances. An extended IK estimator using data taken two

at a time would require in addition 3 and 4-point covariances. An extended IK

estimator using all possible combinations of data up to only two at a time would

call for a kriging system of dimension n(u) + (n(u), 2); e.g. if n(u) = 10, then
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n(u) + (n(u), 2) = 10 + 45 = 55, a considerable increase in dimension and

covariance modeling effort! Clearly this is not practical, particularly if data are to

be taken many more than two at a time.

The solution is to consider all n(u) data grouped together into a single multiple-

point data event which corresponds to the last term of expression (Eq. 3.37). The

corresponding IK estimate is then written:

I∗SK(u) = λ ·

n(u)∏

α=1

I(uα).

The corresponding kriging system reduces to one single equation, also called

single normal equation, delivering the single kriging weight λ. It can be shown

that this single normal equation identifies the exact expression of the conditional

probability:

I∗SK(u) ≡ Prob {I(u) = 1|n(u)}

=
Prob {I(u) = 1, n(u)}

Prob {n(u)}

=
Prob {I(u) = 1, I(uα) = iα, α = 1, · · · , n(u)}

Prob {I(uα) = iα, α = 1, · · · , n(u)}
(3.38)

Note that the probability in the numerator of the exact expression (Eq. 3.38)

is actually a (n(u) + 1)-point, non-centered, covariance while the denominator is

a n(u)-point covariance. Indeed, and as an example for the case of the specific

two data values I(u1) = 1 and I(u2) = 0, that numerator is written as the 3-point

non-centered covariance:

Prob {I(u) = 1, I(u1) = 1, I(u2) = 0} = E {I(u) · I(u1) · [1 − I(u2)]} .

Indicator kriging, when considering the n(u) data altogether as a single

multiple-point data event, identifies Bayes relation (Eq. 3.38). Simulating the

value I(u) from probabilities of type (3.38) is at the root of the Single Normal

Equation SIMulation algorithm SNESIM (Strebelle, 2000). Instead of modeling

a mp covariance as function of Euclidean distances h as one would model a 2-

point covariance C(h), the two mp covariance values appearing as numerator and

denominator of expression 3.38 are lifted directly from a training image. In even

simpler terms, the conditional probability (Eq. 3.38) is identified to the experi-

mental proportion of those training replicates of the mp data events that feature at

their center location u
′ an event I(u′) = 1 (Strebelle, 2002).
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In essence, the training image provides all the necessary mp covariance values;

the decision of stationarity allows scanning a specific training image for replicates

(exact or approximate) of the single mp conditioning data event. This is no differ-

ent from scanning a training image for replicates of pairs of values allowing the

modeling of a 2-point covariance/variogram. One may argue that with a variogram

one borrows less from that training image; one then forgets that the missing mp

stats are then implied in a non-controllable fashion by the simulation algorithm re-

tained; indeed there cannot be any stochastic simulation without a full mp model;

recall the previous discussion on the necessity of an mp model in Section 3.3.2.

The better answer is that one does trust the training image characteristic structures

and mp patterns and wish to use them in the estimation/simulation exercise, and

this cannot be done through 2-point statistics such as the variogram.

3.8 Two-point Simulation Algorithms

Traditional (2-point) simulation algorithms aim at reproducing a prior covariance

C(h) model, or equivalently a variogram model, that is a statistical relation be-

tween any two values z(u) and z(u+h) in space. The missing information about

what should be the relation in space of three or more values taken jointly is then

necessarily provided by the simulation algorithm retained. Multiple-point struc-

tures, if not specified explicitly by the algorithm, are most likely of high entropy

nature minimizing organization (Journel and Zhang, 2006).

If you wish the simulated realizations to reflect specific structures and pat-

terns beyond 2-point correlation, these structures must be specified as input to a

simulation algorithm that can reproduce them. Specific structures never occur by

chance.

The covariance-based simulation algorithms widely used in practice stem from

essentially two classes; the first class is anchored on the properties of the mul-

tivariate Gaussian RF model (Goovaerts, 1997, p.380), the second class builds

on the interpretation of an indicator expected value as a conditional probability

(Goovaerts, 1997, p.393), recall expression 3.36. These widely used algorithms

all rely on the sequential approach (Section 3.3.1) which divides the task of joint

simulation of a large number of variables into that of simulating in sequence each

variable one at a time.

This initial release of SGeMS proposes the following well established covariance-

based (2-point) simulation algorithms:

• LUSIM, or Gaussian simulation with LU decomposition, see Section 8.1.1
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and Deutsch and Journel (1998, p.169)

• SGSIM, or sequential Gaussian simulation, see Section 8.1.2 and Deutsch

and Journel (1998, p.170)

• COSGSIM, or sequential Gaussian co-simulation, see Section 8.1.3

• DSSIM, or direct sequential simulation, see Section 8.1.4

• SISIM, or sequential indicator simulation, see Section 8.1.5 and Deutsch

and Journel (1998, p.175)

• COSISIM, or sequential indicator co-simulation, see Section 8.1.6

• BSSIM, or block sequential simulation, see Section 8.1.7

• BESIM, or block error simulation, see Section 8.1.8

3.8.1 Sequential Gaussian simulation

The remarkably convenient properties of the Gaussian RF model explain its suc-

cess, an almost quasi monopoly of probabilistic models for continuous variable.

Indeed any set of Gaussian RVs is fully characterized by its mean vector and co-

variance matrix; all conditional distributions are Gaussian fully characterized by

only two moments, the conditional mean and variance themselves given by sim-

ple kriging (Journel and Huijbregts (1978); Anderson (2003)). Thus a Gaussian

RF model would appear as the ultimate model when only two-point statistics can

be inferred. Unfortunately, the qualifier is that a Gaussian RF maximizes entropy

(disorder) beyond the input covariance model (Chilès and Delfiner (1999, p.412);

Journel and Deutsch (1993)), hence a Gaussian-based simulation algorithm such

as SGSIM cannot deliver any image with definite patterns or structures involving

more than 2 locations at a time. The previous limitation matters little only if one

is simulating a ‘homogeneously heterogeneous’ spatial distribution such as poros-

ity or metal grade within the pre-defined geometry of a relatively homogeneous

lithofacies or rock type.

In the SGSIM algorithm (Journel (1993a); Goovaerts (1997, p.380)) the mean

and variance of the Gaussian distribution at any location along the simulation path

is estimated by the kriging estimate and the kriging variance. The value drawn

from that distribution is then used as conditioning data. Transform of the original

data into a Gaussian distribution may be necessary and is normally performed by

the normal score transform, see Section 8.1.2 for the SGeMS implementation.
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3.8.2 Direct sequential simulation

It can be shown that reproduction of a covariance model does not require a Gaus-

sian RF, but just that the mean and variance of every conditional distribution be

those given by SK; the conditional distribution type need not be Gaussian, it can

also vary from one simulation node to another (Journel, 1994; Bourgault, 1997).

Consequently there is no need for any normal score transform and back transform.

The sequential simulation can be performed directly with the original z-variable

and data, hence the name ‘direct sequential simulation’ (program DSSIM).

One main advantage of DSSIM is that the simulation can be made conditional

to local linear average z-data. Indeed kriging can accommodate data defined on

volume/block support as long that these data are linear average of z-values, see

Section 3.6.3. The normal score transform being non-linear would undo such

linearity. The absence of a prior transformation of the data in DSSIM makes it

an algorithm of choice for ‘downscaling’, a process whereby large scale block-

support data are ‘un-averaged’ into realizations of smaller support values (Kyr-

iakidis and Yoo, 2005; Boucher and Kyriakidis, 2006). The DSSIM simulated

values reproduce the target covariance model and honor whatever small support

data are available; in addition their block averages match the corresponding block

data (Hansen et al., 2006).

The price to pay for the absence of normal score transform is absence of a back

transform, hence there is no guarantee for the DSSIM simulated z-realizations to

reproduce the z-data histogram.

Such global histogram reproduction can be obtained in two ways

• a post-processing similar to the normal score back-transform done in Gaus-

sian simulation. Such back-transform should be such not to undo the data

reproduction (Deutsch, 1994b; Journel and Xu, 1994). The utility program

TRANS discussed in Section 9.1 allows such transform honoring the origi-

nal point-support data values; this comes, however, at some loss of covari-

ance reproduction.

• put to use the large degree of freedom represented by the ability to choose

at any simulation node any distribution type (Bourgault, 1997). The pro-

cedure retained by the DSSIM code consists of sampling only that part of

a translated z-target histogram that match the local SK mean and variance

(Soares, 2001; Oz et al., 2003a).
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3.8.3 Direct error simulation

In all generality one can express any unsampled value z(u) as the sum of its

estimate z∗(u) plus the corresponding estimation error:

z(u) = z∗(u) + r(u), with: r(u) = z(u) − z∗(u)

The estimated value z∗(u) is known, but the error is not. Thus simulation

would consist of simulating that error r(u) under various constraints. For exam-

ple, the simulated error should have mean zero and variance equal to the known

kriging variance if z∗(u) is obtained by kriging. As for the distribution from

which the simulated error should be drawn, it can be Gaussian or else. If the

random variable error R(u) is orthogonal (uncorrelated) to the random variable

estimator Z∗(u), as guaranteed by kriging (Luenberger (1969); Journel and Hui-

jbregts (1978); Chilès and Delfiner (1999, p.465)), then the error value rs(u) can

be drawn independently of the estimated value z∗(u):

zcs(u) = z∗K(u) + rs(u) (3.39)

where: z∗K(u) is the kriging estimate;

rs(u) is an error value drawn from a distribution with zero mean and vari-

ance equal to the kriging variance σ2
K(u) = Var {Z(u) − Z∗

K(u)};

zcs(u) is the simulated value.

The simulated field {zcs(u),u ∈ study area}

- honors the data value z(uα) at data location uα since z∗K(uα) = z(uα) per

kriging exactitude

- has the correct variance since:

V ar {Zcs(u)} = V ar {Z∗
K(u)} + V ar {R(u)}

= V ar {Z∗
K(u)} +

[
σ2

K(u) = Var {Z(u) − Z∗
K(u)}

]

per orthogonality of the error R(u) with Z∗
K(u).

However, there remains to ensure that the simulated field Zcs(u) features the

same covariance asZ(u). This is obtained in sequential simulation (Sections 3.8.1

and 3.8.2) by adding into the kriging data set for z∗K(u) all previously simulated

value zcs(u
′) found in its neighborhood. An alternative is to simulate the error

rs(u) by lifting it from an error training image sharing the same (non-stationary)
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covariance as the actual errorR(u) = Z(u)−Z∗
K(u). That error training image can

be generated by repeating the estimation procedure used to generate z∗K(u) from

data z(uα), α = 1, · · · , n on a non-conditional simulated realization zs(u) of

the random function Z(u) using the same geometric configuration of ‘simulated’

data zs(uα), α = 1, · · · , n. This process is written (Journel and Huijbregts (1978);

Deutsch and Journel (1998, p.127); Chilès and Delfiner (1999, p.465)):

z(l)
cs (u) = z∗K(u) +

[
z(l)
s (u) − z

∗(l)
Ks (u)

]
(3.40)

where: z
(l)
s (u) is the lth non-conditional simulated realization of the random field

Z(u) honoring its covariance model;

z∗K(u) =
∑n

α=1 λα(u) · z(uα) is the kriging estimate built from the actual

data value z(uα), α = 1, · · · , n, the λα(u) are the kriging weights;

z
∗(l)
Ks (u) =

∑n
α=1 λα(u) · z

(l)
s (uα) is the kriging estimate built from the

simulated data values z
(l)
s (uα) taken from the non-conditionally simulated field

zs(u) at the actual data locations uα, α = 1, · · · , n;

z
(l)
cs (u) is the lth conditionally simulated realization.

Warning: a histogram input is required to simulate the intermediate uncon-

ditional realizations, however that histogram may not be reproduced in the final

simulated conditional realizations.

Note that the kriging weights λα(u) used for both kriging estimates z∗K(u) and

z
∗(l)
Ks (u) are the same, since the simulated field Zs(u) shares the same covariance

model and the same data geometry as the actual field Z(u). There lies the main

(potential) advantage of the direct error simulation approach: one single kriging

is needed per simulation node u no matter the number L of conditional simulated

realizations z
(l)
cs (u), l = 1, · · · , L, needed. One could then utilizes any fast non-

conditional simulation algorithm to generate the L required fields z
(l)
s (u) (Chilès

and Delfiner (1999, p.494,513); Oliver (1995); Lantuejoul (2002)); the L krigings

to obtain the z
∗(l)
Ks (u) are then obtained very fast by mere matrix multiplication

from the stored kriging weights λα(u); last, a mere addition (Eq. 3.39) gives the

L conditional fields z
(l)
cs (u).

The caveat though is that the error field R(u) = Z(u) − Z∗
K(u) must be in-

dependent (or at least uncorrelated) to the estimated signal Z∗
K(u). This is not a

trivial requirement, only guaranteed if simple kriging is applied to a multiGaus-

sian field Z(u).
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3.8.4 Indicator simulation

Indicator simulation was introduced to simulate categorical variables defined through

a set of K binary indicator variables (Journel (1983); Goovaerts (1997, p.423);

Chilès and Delfiner (1999, p.512)). The algorithm was later extended to simula-

tion of a continuous variable made discrete over K classes. Consider the corre-

sponding two definitions:

Ik(u) =

{
1 if the categoryk occurs at u

0 if not
, (3.41)

or

I(u; zk) =

{
1 if Z(u) ≤ zk

0 if not
.

Indicator kriging (Section 3.6.5) would provide estimates of theK class prob-

abilities conditional to the local data set n(u), respectively:

Prob {u ∈ k|n(u)} ∈ [0, 1] , k = 1, · · · , K, (3.42)

with:
∑K

k=1 Prob {u ∈ k|n(u)} = 1, or

Prob {Z(u) ≤ zk|n(u)} ∈ [0, 1] , k = 1, · · · , K,

with Prob {Z(u) ≤ zk|n(u)} ≤ Prob {Z(u) ≤ zk′|n(u)}, ∀zk′ ≤ zk.

From these IK-derived conditional probabilities a class indicator can be simu-

lated at each simulation node u, the indicator of a category or of the class to which

the continuous z-value belongs.

Note that at each node (K-1) indicator krigings are needed if K classes are

considered, each kriging calling for its own indicator covariance model. In the

case of a continuous variable Z(u), the modeling task is considerably reduced

if one adopts a median indicator model, whereby all (K-1) indicator covariance

models are chosen proportional to the single covariance corresponding to the in-

dicator defined by the median threshold value zk = M (Goovaerts (1997, p.304);

Chilès and Delfiner (1999, p.384)).

Recall that the individual indicator kriging results must be corrected to honor

the constraints associated to expression 3.42 (Goovaerts, 1997, p.324). These

order relation corrections are made before simulated values can be drawn from

the IK-estimated conditional probabilities.

It can be shown that the indicator covariance models are reproduced, except

for the impact of the order relation corrections.
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Remarks

The indicator formalism was originally designed for categorical variables and

later extended to continuous variables. As for simulation of categorical variables,

SISIM should not be used for more than 3 or 4 categories; beyond K = 4 the

number and magnitude of order relation corrections become prohibitive and re-

production of the numerous indicator covariances is poor.

Hierarchy and spatial nesting of categories can be used to split the simulation

of a large number K of categories into a series of independent simulations, each

with a smaller number of categories (Maharaja and Journel, 2005). For example,

the simulation ofK = 5 lithofacies may be reduced to, first a simulation of the two

dominant groups of facies (K = 2), followed by the simulation of the individual

facies nested within each group, say K = 3 within any previously simulated first

group and K = 2 for the second group.

3.9 Multiple-point Simulation Algorithms

The concept of multiple-point simulation was triggered by the failure of well es-

tablished object-based algorithms to honor either a large amount of local data.

With object-based algorithms, also called Boolean algorithms, ‘objects’ of given

shape are dropped onto the simulation study area thus painting onto that area

the desired shapes and patterns (Chilès and Delfiner (1999, p.545); Stoyan et al.

(1987); Haldorsen and Damsleth (1990); Lantuejoul (2002); Mallet (2002)). The

object shape parameters, e.g. size, anisotropy, sinuosity are made random thus

making the simulation process stochastic. A cumbersome iterative process is then

applied for local data conditioning: objects are displaced, transformed, removed,

replaced until a reasonable match of these local data was achieved. Object-based

algorithms proved ideal for building a training image with the required spatial

structures and patterns, but they are notoriously difficult to condition to local data,

particularly when these data are of small support volume, numerous and of di-

verse types. Conversely, pixel-based traditional algorithms are easy to condition

because the simulation progresses one pixel (point) at a time: modifying a single

point-support value to match local data does not affect a whole object area around

that point. But traditional algorithms being 2-point statistics-based could only re-

produce a variogram or covariance model, failing to reproduce definite shapes and

patterns.
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3.9.1 Single normal equation simulation (SNESIM)

Without losing the data conditioning flexibility of a pixel-based progress, one had

to find a way around the variogram limitation. That variogram comes in only when

building from kriging the local conditional probability distributions (see previous

Section 3.8), hence the idea of collecting directly those distributions from training

images that display the required spatial patterns. By so doing one would sidestep

any variogram/covariance modeling and also any kriging. The probability distri-

butions are chosen from the training image such as to match, exactly or approxi-

mately, the local conditioning data. More precisely, the training image is scanned

to retrieve replicates of the conditioning data event; these replicates define a sub

training population conditioned to the data from which the previous conditional

distributions could be retrieved (Guardiano and Srivastava, 1993; Strebelle, 2002).

The SNESIM algorithms reads conditional distributions from training images that

could have built using ideally suited non-conditional object-based algorithms, and

progresses sequentially one pixel at a time thus capitalizing on the data condition-

ing ease of sequential simulation.

The main requisite, and a difficult one of the SNESIM algorithm is, a ‘rich’

training image where enough exact replicates can be found for any conditioning

data event encountered during the sequential simulation process. At any location,

if not enough such replicates are found some of the local conditioning data are

dropped, allowing the possibility to find more replicates but at the cost of poorer

data conditioning. That limitation becomes prohibitive if the simulation addresses

too many categories (K > 4), or worse if the variable simulated is continuous.

One must then reverts to the FILTERSIM algorithm (Journel and Zhang, 2006;

Zhang. et al., 2006) which accepts approximate replicates of the conditioning

data event..

The multiple-point (mp) sequential simulation algorithm whereby all condi-

tional probabilities are read as corresponding proportions from a training image

is called ‘Single Normal Equation SIMulation’. This name recalls that any such

proportion is in fact the result of a single indicator kriging (normal) equation, see

relation 3.38.

The original SNESIM code (Guardiano and Srivastava, 1993) had to re-scan

the training image anew at each simulation node to collect replicates of that node

conditioning data event; it gave good results but was CPU-prohibitive. The break-

through came with the introduction of the search tree concept which allowed for

a single scan of the training image and smart storage in central memory of all re-

sulting training proportions (Strebelle, 2002). These proportions are then directly
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read from the search tree during the course of sequential simulation. The road-

block of the SNESIM algorithm is not anymore one of CPU, it is the demand for a

large and ‘rich’ enough training image carrying enough replicates of most of the

conditioning data events found in the course of simulation.

Details about the search tree-based SNESIM algorithm can be found in Stre-

belle (2000). The implementation of the SNESIM algorithm can be found in Sec-

tion 8.2.1.

3.9.2 Filter-based algorithm (FILTERSIM)

A middle alternative between pixel-based and object-based algorithms is to cut

into small pieces the objects or, better, a whole non conditional training image,

then use those pieces to reconstruct that training image making sure the pieces fit

the conditioning data (Arpat, 2004; Zhang, 2006; Journel and Zhang, 2006). The

best analogy is perhaps that of building a puzzle, where each new piece patched

onto the image being simulated must fit close-by previously placed pieces and

original data. Similar to a smart puzzle reconstruction, the search for pieces that

would fit is speeded up by looking into bins containing previously classified ‘sim-

ilar’ looking pieces; say, one specific bin would contain all Ti pieces with some

elements of sky in it, another bin would contain parts of trees and houses in it. As

opposed to the puzzle game, any piece taken out of a bin is immediately replaced

by an identical one thus no bin ever gets exhausted. Also the fit required is only

approximate and it can be reconsidered later in the sequential simulation path.

Instead of putting down on the simulation field an entire Ti piece, only the

central part of that piece can be patched down. That central part or patch size can

be as small as the single central pixel value.

The critical key to the success of the FILTERSIM algorithm is the classifica-

tion of local patterns of the training image into a not too large number of bins of

‘similar’ looking patterns. That classification requires reducing any pattern to a

small number of characteristic scores, say, sky with clouds or sky without clouds.

In FILTERSIM these scores are defined through linear filters applied to the set

of pixel values constituting the pattern (Schneiderman and Kanade, 2004). Next,

one must define a distance between a conditioning data event and any such pre-

vious bin. This is needed to select the bin closest, that is with training patterns

most similar, to the conditioning data event. Future research will undoubtedly

suggest better pairs of (filters + distance) than that coded in this early version of

the FILTERSIM code.

The FILTERSIM algorithm, originally designed for simulation of continuous
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variables, has been extended to categorical variables. However and because the

notion of linear filters does not extend naturally to categorical variables, we rec-

ommend using the categorical FILTERSIM approach only when it is absolutely

necessary to simulate jointly a large number of categorical variables (K > 4).

For a reasonable hence small number of categories the SNESIM approach is a

better choice provided a corresponding large and varied (rich) training image is

available.

Conversely, SNESIM should not be used to simulate simultaneously too many

categories (> 4) or the too many classes needed to discretize a continuous vari-

able. Indeed the SNESIM search for exact replicates of the conditioning data

event is too strict for a continuous variable: there would never be enough such

exact replicates.

3.9.3 Hierarchical simulation

Because of the difficulty in obtaining very large and rich training images, par-

ticularly in 3D, and because of the RAM demand of the corresponding search

trees, it may not be feasible to apply the SNESIM algorithm to the joint simula-

tion of more than K = 4 categories. That limitation is generally not a problem

in earth sciences applications, since facies or rock types are often nested in each

other, which allows decomposing the problem, see Maharaja and Journel (2005);

Walker (1984).

Consider, for example, the simulation of 7 facies, with facies#5 and #6 nested

within facies#3, and facies#7 nested within facies#4. A first run of SNESIM

with a four-facies Ti would yield simulated realizations of the four principal fa-

cies (#1,2,3,4) distributions. Consider any one such realization and isolate the

corresponding zones simulated as facies#3 and facies#4; within the zone#3 use

SNESIM with the proper Ti to simulate the distribution of facies#5 and #6; within

the zone#4 use SNESIM with yet another Ti to simulate the distribution of fa-

cies#7.

3.10 The nu/tau Expression for Compositing

Conditional Probabilities

Stochastic prediction is all about proposing a model for the probability distribu-

tion of possible outcomes of an unknown given all the data available. From such
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distribution model, one can simulate a set of outcomes for the unknown(s). The

fundamental task is thus to determine the previous conditional distributions, a task

particularly difficult when data of different types are present; data that are often

redundant one with each and all others, and data whose information content goes

much beyond a linear correlation with the unknown being assessed. Recent devel-

opments have uncovered a dormant general formulation of that general problem,

one that lends itself remarkably to the modern mp approach to data integration

(Bordley, 1982; Benediktsson and Swain, 1992; Journel, 2002; Polyakova and

Journel, 2008).

At this level of absolute generality, some notations are necessary; we will

endeavor, however, to back these notations with intuitive examples.

Adopt the notation A for the unsampled RV, and the notations Di = di,

i = 1, · · · , n for the n data events, with capital letters denoting the RVs and

the corresponding small case letters denoting any observed data value. In mp ap-

plications, the Di ’s are actually vectors involving multiple data locations, but we

will keep the scalar notation Di for simplicity.

The ultimate goal of probabilistic prediction is to evaluate the fully conditional

probability:

Prob {A = a|Di = di, i = 1, · · · , n} , (3.43)

a function of the (n+ 1) values (a; di, i = 1, · · · , n).

If each data event Di relates to a single location in space, say di = z(ui), then

a traditional two-point statistics such as the covariance suffices to relate any datum

Di to any other Dj or to the unknown A.

If each data event Di involves jointly multiple data locations (it is then a vec-

tor) all related to the same attribute z which is also the A-attribute, then one could

hope to find or build a Z-training image depicting the joint distribution of A and

any vector of Z-values. Using such training image, the mp algorithms SNESIM

and FILTERSIM could be implemented, see Section 3.9.1 and 3.9.2.

However, in the general situation where each data event Di , in addition of

being multiple-point, is also related to a different attribute, the task becomes in-

superable. For example, D1 could be a mp pattern of facies indicator data as

interpreted from well logs, D2 could be a set of seismic impedance data involving

many locations in space but locations different from those related to D1; as for A
it may relate to a third attribute, say porosity, at yet a different location (or set of

locations).

The solution is again to ‘divide and conquer’, decomposing the global data

event D = {Di = di, i = 1, · · · , n} into n component data events Di for which
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each of the individual conditional probabilities Prob {A = a|Di = di},

i = 1, · · · , n could be evaluated by traditional two-point or by mp geostatistics or

by any other means. The general problem is then that of recombining n individual

probabilities into an estimate of the fully conditioned probability (Eq. 3.43); this

calls for determination of the integration function ϕ below:

Prob {A = a|Di = di, i = 1, · · · , n} = ϕ (Prob {A = a|Di = di} , i = 1, · · · , n) .
(3.44)

Returning to the previous example:

P (A|D1) could be evaluated from a training image depicting the joint dis-

tribution of porosity (the A-attribute) and facies indicators (the D1 categorical

attribute),

P (A|D2) could be evaluated independently from calibration of porosity to a

set of neighboring seismic impedance data (the D2 categorical attribute),

There remains to combine these two partially conditioned probabilities ac-

counting for the redundancy of seismic and facies data when it comes to evaluate

porosity (A).

Fortunately there exists an exact decomposition formula of the type (Eq. 3.44),

the so-called nu or tau expression. This expression has been known for some time

(Bordley, 1982; Benediktsson and Swain, 1992), but its generality or exactitude

had not been established until recently, nor was its importance for data integration

fully recognized.

Warning

All probabilities in expressions 3.43 and 3.44 are functions of the (n + 1) values

a and di , more if di is a mp vector of data values. However for simplicity we

will use the short notations P {A|D} and P {A|Di} whenever there is no risk of

confusion.

Why probabilities?

Before developing the expression of the compositing function ϕ, one should an-

swer the question whether a probabilistic approach is the most appropriate for this

data integration problem. The answer lies in the notation 3.44 itself:

• probabilities provide a unit-free, standardized [0, 1], coding of information,

across all data types, which facilitates the task of data integration;
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• as opposed to a deterministic estimate of A, each elementary probability

P (A = a|Di = di) includes both the di information content and the uncer-

tainty of its contribution to evaluating A = a.

The nu/tau expression

Consider the probability-into-distance transform of each individual probability:

x0 =
1 − P (A)

P (A)
, x1 =

1 − P (A|D1)

P (A|D1)
, xn =

1 − P (A|Dn)

P (A|Dn)
, (3.45)

all valued in [0,+∞].
P (A) = P (A = a) is the prior probability of event A = a occurring, ‘prior’

to knowing any of the n data Di = di,

x0 is the prior distance to A = a occurring,

equal to zero if P (A) = 1, equal to ∞ if P (A) = 0,

and similarly for each of the elementary distance xi.

We will use the notation: 1−P (A|Di) = P (Ã|Di), where Ã stands for nonA.

The distance x to A = a occurring given jointly all n data is given by the nu,

expression:

x

x0

=
n∏

i=1

νi

xi

x0

= ν0 ·

n∏

i=1

xi

x0

, with: νi ≥ 0

or equivalently the tau expression:

x

x0

=
n∏

i=1

(
xi

x0

)τi , with: τi ∈ [−∞,+∞] (3.46)

with

νi =

(
xi

x0

)τi−1

, or: τi = 1 +
logνi

log xi

x0

and

ν0 =
n∏

i=1

νi ∈ [0,+∞] (3.47)

Recall that:

x =
P

(
Ã|Di, · · · , Dn

)

P (A|D1, · · · , Dn)
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thus

P (A|D1, · · · , Dn) =
1

1 + x
∈ [0, 1] (3.48)

The tau/nu expressions give the fully conditioned relative distance x/x0 as

function of the n elementary relative distances xi/x0. Recall that these n ele-

mentary distances are assumed known, the only problem addressed by the two

equivalent relations 3.46 is that of combining the elementary distances into the

fully conditioned distance x. Expressions 3.46 shows the combination function to

be a weighted product as opposed to an approach by indicator kriging that consid-

ers weighted linear combination, see Section 3.6.5. The relative distances carry

the information content of each elementary data event Di; the tau or nu weights

account for the additional information (beyond redundancy) carried by the various

data events as to evaluating the probability for A = a.

The exact expression of the ν-parameters is (Polyakova and Journel, 2008):

νi =

P (Di|Ã,Di−1)

P (Di|A,Di−1)

P (Di|Ã)
P (Di|A)

∈ [0,+∞] , ν1 = 1, (3.49)

and similarly for the tau parameters (Krishnan, 2004):

τi =
log P (Di|Ã,Di−1)

P (Di|A,Di−1)

log P (Di|Ã)
P (Di|A)

∈ [−∞,+∞] , τ1 = 1, (3.50)

where Di−1 = {Dj = dj, j = 1, · · · , i− 1} denotes the set of all data events con-

sidered before the ith data event Di = di.

Prob(Di|A) is the (likelihood) probability of observing the datum value Di =

di given the outcome A = a, Prob(Di|Ã) is the probability of observing the same

data but given Ã, thus the ratio
Prob(Di|Ã)
Prob(Di|A)

appearing in the denominator of the νi

or τi expression can be read as a measure of how datum Di = di discriminates A
from Ã. The ratio appearing in the numerator is the same discrimination measure

but in presence of all previous data considered Di−1 = {D1 = d1, . . . , Di−1 =
di−1}. The unit value νi = τi = 1 would correspond to full information redun-

dancy between the data event Di = di and the previously considered data Di−1.

Thus the parameter values |1 − νi| or |1 − τi| could be read as the additional infor-

mation content brought by Di above the previous data Di−1 as to discriminating

A = a from A = non a.
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Note that the single correction parameter ν0 is data sequence-independent;

also the case ν0 = 1 is more general than νi = 1, ∀i; it encompasses complex case

of data redundancies (νi 6= 1) that cancel each other globally into ν0 = 1.

Tau or Nu model?

Recall that all expressions above (Eq. 3.43 to 3.50) are data values-dependent

notwithstanding their short notation, say, P (A|Di) should be read P (A = a|Di =
di); similarly the elementary distance xi is both a and di values-dependent.

If the νi, τi parameters are actually evaluated, e.g. from training image, and

made data values-dependent, the two expressions in Eq. 3.47 are equivalent. One

would then prefer the nu-formulation because it puts forward a single correc-

tion parameter ν0(a, di; i = 1, · · · , n) which is independent of the data sequence

D1, D2, · · · , Dn. Also, evaluation of the τi parameter associated to a non-informative

datum such that P (Di|Ã) ≈ P (Di|A) would run into problem because of a divi-

sion by a log ratio close to zero, see Eq. 3.50.

However, if the νi, τi parameters are assumed constant, independent of the

(a, di; i = 1, · · · , n) values, then the tau formulation should be preferred. Indeed,

consider the case of only two data events with the two different sets of data values:

{D1 = d1, D2 = d2} and {D1 = d′1, D2 = d′2}

• the nu model with constant (homoscedastic) ν0 parameter value is written:

x

x0

= ν0 ·
x1

x0

·
x2

x0

for data set {d1, d2}

x′

x0

= ν0 ·
x′1
x0

·
x′2
x0

for data set {d′1, d
′
2}

where x, x1, x2 are the distance corresponding to {d1, d2} and x′, x′1, x
′
2

are the distance corresponding to {d′1, d
′
2}. Conditional distances are data

values-dependent, as opposed to the prior distance x0 = x′0. Therefore,

x′

x
=
x′1
x1

·
x′2
x2

, ∀ν0

The parameter ν0 is seen to be ineffective.

• Conversely, the tau model with constant τ1, τ2 parameter values is written:

log
x

x0

= τ1 · log
x1

x0

+ τ2 · log
x2

x0

for data set {d1, d2}

log
x′

x0

= τ1 · log
x′1
x0

+ τ2 · log
x′2
x0

for data set {d′1, d
′
2}
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Thus:

log
x′

x
= τ1 · log

x′1
x1

+ τ2 · log
x′2
x2

, or equivalently

x′

x
=

x′1
x1

τ1

·
x′2
x2

τ2

The tau parameters, although data values-independent, remain effective un-

less τ1 = τ2 = ν0 = 1.

This latter property of the tau expression, remaining effective even if the τi’s
are considered data values-independent, make the tau expression 3.46 a conve-

nient heuristic to weight more certain data events. It suffices to make τi > τj > 0
to give more importance to data event Di as compared to data event Dj , whatever

the actual data values (di, dj). That heuristic utilization of the tau model com-

pletely misses the main contribution of the tau/nu expression which is the quan-

tification of data redundancy for any specific set of values (a, di; i = 1, · · · , n).

SGeMSproposes a utility program, NU-TAU MODEL see Section 9.5, to com-

bine prior probabilities using either the nu or the tau expression 3.46 with as input

data values-dependent nu or tau parameters. However, in programs SNESIM and

FILTERSIM, only the tau expression is allowed with tau parameters input as data

values-independent constant values.

3.11 Inverse problem

A major topic not directly addressed by the SGeMS software is that of integration

of difficult data D expressed as a non-analytical, non-linear function ψ of a large

number of values z(uα) being simulated :

D = ψ(z(uα), α = 1, ..., n)

The simulated fields {z(l)(u),u ∈ S}, l = 1, ...L, must be such that they all

reproduce such data, i.e.

D(l) = ψ({z(l)(u), α = 1, ..., n) ≈ D ∀ l = 1, ..,L

where the function ψ is known, although typically only through an algorithm such

as a flow simulator.
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SGeMS provides realizations {z(l)(u),u ∈ S} that can be selected, combined,

perturbed and checked to fit approximately the data D. This is known as the gen-

eral ‘inverse problem’ (Tarantola, 2005); see Hu et al. (2001); Caers and Hoffman

(2006) for a geostatistical perspective.
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