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CHAPTER 1

MULTIRESOLUTION IMAGE
SEGMENTATIONS IN GRAPH PYRAMIDS

1.1 INTRODUCTION

"How do we bridge the representational gap between imagerrfesand coarse model
features?” is the question asked by the authors of [47] wefamning to several contempo-
rary research issues. They identify the one-to-one cooretgnce between salient image
features (pixels, edges, corners,...) and salient modeitfes (generalized cylinders, poly-
hedrons, invariant models,...) as a limiting assumpti@ thakes prototypical or generic
object recognition impossible. They suggested to bridgeren to eliminate the represen-
tational gap, as it is done in the computer vision commurotyquite long, and to focus
efforts on: i)region segmentatiqni) perceptual groupingand iii) image abstractionLet
us take these goals as a guideline to consider multiresalugpresentations under the
special viewpoint of segmentation and grouping. In [34] tmegolution representation is
considered under the abstraction viewpoint.

Wertheimer [51] has formulated the importance of wholesn&ga) and not of its indi-
vidual elements and introduced the importance of percépgtoaping and organization in
visual perception. Regions as aggregations of primitixelgiplay an extremely important
role in nearly every image analysis task. Their internapprties (color, texture, shape, ...)
help to identify them, and their external relations (adjasgeinclusion, similarity of prop-
erties) are used to build groups of regions having a padianleaning in a more abstract
context. The union of regions forming the group is again @oregvith both internal and
external properties and relations.

Low-level cue image segmentation can not and should notusea@ complete final
‘'good’ segmentation, because there is no general 'goodneatation. Without prior
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2 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

knowledge, segmentation based on low-level cues will notlile to extract semantics
in generic images. Using some similarity measures, the setation process results in
‘homogeneity’ regions with respect to the low-level cuesolffems emerge because i)
homogeneity of low-level cues will not map to the semant8] [and ii) the degree of
homogeneity of a region is in general quantified by threqsdlibr a given measure [12].
Even though segmentation methods (including ours) thabtitaike the context of the im-
age into consideration can not produce a 'good’ segmentat@y can be valuable tools
in image analysis in the same sense as efficient edge detectorNote that efficient edge
detectors do not consider the context of the image, too. ,Ttmeslow-level coherence
of brightness, color, texture or motion attributes showddulsed to sequentially come up
with hierarchical partitions [46]. Mid and high level knawdge can be used to either con-
firm these groups or select some further attention. A widgeasf computational vision
problems could make use of segmented images, were such segiore rely on efficient
computation, e.g. motion estimation requires an apprtgriegion of support for finding
correspondences; higher-level problems such as recogritid image indexing can also
make use of segmentation results in the problem of matching.

It is important for a grouping method to have the followingperties [10]: i) capture
perceptually important groupings or regions, which refigobal aspects of the image, ii)
be highly efficient, running in time linear in the number ofage pixels, and iii) create
hierarchical partitions [46]. To find region borders quickind effortlessly in a bottom-
up 'stimulus-driven’ way based on local differences in acsfe feature, we propose a
hierarchy of extended region adjacency graphs (RAG+) teegelpartitioning of the image
by using a minimum weight spanning tree (MST). A RAG+ is a oegadjacency graph
(RAG) enhanced by non-redundant self loops or parallel £ddgeather than trying to
have just one 'good’ segmentation the method produces k sfgdual) graphs (a graph
pyramid), which down-projected onto the base level givesudtifievel segmentation i.e.
a labeled spanning tree. The MST of an image is built by combithe advantage of
regular pyramids (logarithmic tapering) with the advaewgf irregular graph pyramids
(their purely local construction and shift invariance). eTaim is reached by using the
selection method for contraction kernels proposed in [Bejilivka’s minimum spanning
tree algorithm [4] with the dual graph contraction algamitfi32] build in a hierarchical
way an MST, while preserving the proper topology. For vidiasks, in natural systems,
topological relations seem to play an even more importalet tftzan precise geometrical
positions.

Overview of the chapter  The plan of the chapter is as follows. In order to make the
reading of this chapter easy, in Sec. 1.2 we recall some difabie notions of graph theory.
After a short introduction into image pyramids (Sec. 1.3)etaded presentation of dual
graph contraction is given (Sec. 1.5). Using the dual grapitraction algorithm from
Sec. 1.5, Bdivka’s algorithm is re-defined in Sec. 1.6, so that we cantcocisan image
graph pyramid, and at the same time, the minimum spannieg neSec. 1.6 we give the
definition of internal and external contrast and the mergastlan criteria based on these
definitions. In addition, the algorithm for building the raechy of partitions is introduced
in this section. Also Sec. 1.6 reports on experimental tes@valuation of the quality of
the segmentation results is reported in Sec. 1.7. Partdothiapter has been previously
published in [18].
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a) The seven bridges on the river Pregel b) The abstracteth gra
A, B, C andD — landmasses v4, V8, v, andvp — vertices
a, b, ¢ d, e, f,andg — bridges €asr €b, ¢, €4, €e, €5, ande, — edges

Figure 1.1. The seven bridges problem and the abstracted graph.

1.2 BASICS OF GRAPH THEORY

In 1736, Leonard Euler was puzzled whether it is possibleatkwacross all the bridges on
the river Pregel in Kinigsberd only once and return to the starting point (see Fig. 1.1.a).
In order to solve this problem, Euler in an ingenious wayraosed the bridges and the
landmasses. He replaced each landmass by a dot (called)\arteeach bridge by an arch
(called edge or line) (Fig. 1.1.b). Euler proved that thened solution to this problem. The
Konigsberg bridge problem was the first problem studied intve@owadays called graph
theory. This problem was a starting point also for anothenbh in mathematics, the
topology. The definitions given below are compiled from tloeks [8, 49, 17], therefore
the citations are not repeated. The interested reader ahalfithese definitions and more
in the above mentioned literature.
Formally, one can define graghon setsl” andE as:

Definition 1.1 (Graph) A graphG = (V(G), E(G),tc(+)) is a pair of setsV(G) and
E(G) and an incidence relation; () that maps pairs of elementsB{G) (not necessarily
distinct) to elements df(G).

The elements; of the setV(G) are called vertices (or nodes, or points) of the graph
G, and the elements; of E(G) are its edges (or lines). Let an example be used to clarify
the incidence relationsg; (). Let the set of vertices of the graghin Fig. 1.1.b) be given
by V(G) = {va,vs,vc,vp} and the edge set bif(G) = {eq, ep,€c,e4,€5,€4}. The
incidence relation is defined as :

tg(ea) = (va,vB), ta(ep) = (va,vB), talec) = (va,ve), ta(ea) = (va,ve),

ta(ee) = (va,vp), Lalef) = (vB,vp), ta(eg) = (ve,vp). (L.1)
For the sake of simplicity of the notation, the incidencatieh will be omitted, therefore
one can write, without the fear of confusion:

eq = (va,vB), v = (V4,vB), ec = (Va,vc), ea = (va,ve),
€e = (vAva)v €f = ('UB,’UD), €g = (’Uc,'UD). (12)

i.e. the graph is defined a8 = (V, E) without explicit mentioning of the incidence
relation. The vertex séf (G) and the edge sét(G) are simply written ay” andE. There

INowadays Pregoyla in Kaliningrad.



4 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

will be no distinction between a graph and its sets, one mégavertexo € Gorv € V
instead ofv € V(G), an edge: € G ore € E, and so on. Vertices and edges are usually
represented with symbols likg , v-, ... andey, es, ..., respectively. Note that in Eq. 1.2,
each edge is identified with a pair of vertices. If the edgesrapresented with ordered
pairs of vertices, then the graghis calleddirectedor oriented otherwise if the pairs are
not ordered, it is calledindirectedor non-oriented Two vertices connected by an edge
er = (v;,v;) are calledend verticeor endsof e;. In the directed graph the vertex is
called thesource andv; thetargetvertex of edges,. The elements of the edge détare
distinct i.e. more than one edge can join the same verticdgeshaving the same end
vertices are callegarallel edge$. If e, = (v;,v;), i.e. the end vertices are the same,
theney is called aself-loop A graphG containing parallel edges and/or self-loops is a
multigraph. A graph having no parallel edges and self-lasslled asimple graph The
number of vertices iif7 is called itsorder, written as|V[; its number of edges is given as
|E|. A graph of ordei is called anempty graph, and of orderl is simply calledtrivial
graptt. A graph isfinite or infinite based on its order. If not otherwise stated all the graphs
used in this chapter are finite and not empty.

Two verticesv; andv; are neighbors oadjacentif they are the end vertices of the
same edge;, = (v;,v;). Two edges; ande; areadjacentif they have an end vertex in
common, sayy, i.e. e; = (vg,v;) ande; = (vk, vm). If all vertices of G are pairwise
neighbors, thex is complete A complete graph om vertices is written a&(™. An edge
is calledincidenton its end vertices. The degree (or valendyy(v) of a vertexv is the
number of edges incident on it. A vertex of degédas calledisolated of degreel is called
pendant Note that a self-loop at a vertexcontributes twice inleg(v).

LetG = (V, E) andG’ = (V', E’) be two graphsG’ = (V’, E’) is a subgraph of7
(G C@if V' CVandE' C E, i.e. the grapi7 contains grapltz’. GraphG is called
also a supergraph @’ (G 2 G’). If eitherV’ C V or E' C E, the graphG’ is called
a proper subgraph @F. If G’ C G andG’ contains all the edges= (v;,v;) € E such
thatv;,v; € V', G’ is the(vertex) induced subgraptf G andV"’ induces (spans}y’ in G.

It is written asG’ = G[V’], i.e. sinceV’ Cc G(V), thenG[V’] denotes the graph ov’
whose edges are the edgeg®dvith both ends inl/’. If not otherwise stated, by induced
subgraph, the vertex-induced subgraph is meant. If thereairisolated vertices i,
thenG’ is called theinduced subgraph off on the edge sek’ or simply edge induced
subgraph ofG. If G’ C G andV’ spans all ofG, i.e V' = V thenG’ is a spanning
subgraph of7. A subgraphG’ of a graphG is a maximal (minimal) subgraph @f with
respect to some properly if G’ has the propertyI andG’ is not a proper subgraph of
any other subgraph @ having the propertyI. The minimal and maximal subsets with
respect to some property are defined analogously. This tefiniill be used later to
define a component @¥ as a maximal connected subgraphhfand a spanning tree of a
connected~ is a minimal connected spanning subgrapldzof

Let G = (V, E) be a graph with set¥ = {v;,vs,---} andE = {ej,ea,---}. A
walk in a graphG is a finite non-empty alternating sequengee;, vy, -+ , Vg_1, €k, Uk
of vertices and edges ifi such thakt; = (v;,v;41) forall 1 <4 < k. This walk is called
avg — v, walk with vg andv;, as the terminal vertices and all other vertices are internal
vertices of this walk. In a walk, edges and vertices can appeae than once. Iy = vy,
the walk isclosed otherwise it isopen A walk is a trail if all its edges are distinct. A trail
is closed if its end vertices are the same, otherwise it inegeBy definition the walk can

2Also called double edges.
3A graph with no vertices and hence no edges.
4A graph with one vertex and possibly with self-loops.
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contain the same vertex many times. A pétls a trail where all vertices are distinct. A
simple path is written a® = vy, v1,v9,- - , Vg, Where edges are not explicitly depicted
since in a path all vertices are distinct and therefore imapka graph all the edges are
distinct too. Note that in a multigraph a path is not uniqueg§ined by this nomenclature,
because of possible multiple edges between two verticedic¥sv, and v, are linked
by the pathP, also P is called a path fromy to v, (as well as between, andwvy). The
number of edges in the path is called the path length. Thelgatith is denoted wit#®*,
wherek is the number of edges in the path. Note that by definitionribisnecessary that a
path contains all the vertices of the graph. Analogouslydefaes the cycles as: a closed
trail is a cycleC if all its vertices except the end vertices are distinct. I[Egclike paths,
are denoted by the cyclic sequence of verti€es- vy, vy, - , vk, vg. The length of the
cycle is the number of edges in it is calléecycle written asC’*. The minimum length
of a cycle in a graplt is the girthg(G) of G, and the maximum length of a cycle is its
circumference. The distance between two verticesmdw in G denoted byd(u, w), is
the length of the shortest path between these verticesdiingeterof G, diam(G) is the
maximum distance between any two verticeg;of

Connectivity is an important concept in graph theory and d@rie of the basic concepts
used in this presentation. Two verticgsandv; are connected in a graght = (V, E) if
there is a path; —v; in G. A vertex is connected to itself. A non-empty graph is comeec
if any two vertices are joint by a path ifi. Let graphG = (V, E) be a non-connected

graph. The st is partitioned into subseis , V5, --- , V, if ViuW,U- - -UV, = V and for
alliandj,i #j V;NV; =0.{Vy, Vo, ---, V, } is called a partition of’. Since the graph
G is non-connected, the vertex détcan be partitioned into subséts, V», --- , V},, such

that each vertex induced subgra@fi;] is connected, and there exists no path between a
vertex in subseV; and a vertex iV, j # i. A maximally connected subgraph 6fis
called a component of grapgh. A component of is not a proper subgraph of any other
connected subgraph ¢f. An isolated vertex is considered to be a component, since by
definition it is connected to itself. Note that a componerahigays non-empty, and that if
a graphG is connected then it has only one component, i.e. itself.

The following theorem is used in the Sec. 1.5 to show that #fteedge removal from
the cycle the graph stays connected.

Theorem 1.1 IfagraphG = (V, F) is connected, then the graph remains connected after
the removal of an edgeof acycleC € E,i.e. G’ = (V, E — {e}) is connected.

Proof: The proof can be found in [8]]

From the above theorem one can conclude that edges thataévezhdisconnect a graph,
do not lie on any cycle.

The definition of cut and cut-set are as follows. K&, V2 } be partitions of the vertex
setV of agraphG = (V, E). The set(V1, ;) of all edges having one end in one vertex
partition (/1) and the other end on the second vertex partitidy) {s called a cut. A cut-
setCg of a connected grapy is a minimal set of edges such that its removal fr6Gm
disconnectss, i.e. G — Kg is disconnected. If the induced subgraphgzobn vertex set
V1 andV; are connected thekl = Kg. If the vertex sel’; = {v}, the cut is denoted by
K(v).

Trees are simple graph structures, and are extensivelyinsied rest of the discussion.
A graphd is acyclic if it has no cycles. A tree of graghis a connected acyclic subgraph
of G. Vertices of degreé in a tree are calletbaves and all edges are called branches. A
non-trivial tree has at least two leaves and a branch, fanplathe simplest tree consists
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Figure 1.2. Operations on graph.

of two vertices joined by an edge. Note that an isolated xastdy definition an acyclic
connected graph, and therefore a tree.

A spanning tree of grap8y is a tree ofG containing all the vertices a¥. Edges of the
spanning tree are calld@tanches The tree containing all vertices, and only those edges
not in the spanning tree, is calledspanning treeand its edges are callabrds An
acyclic graph withk components is called/atree. If thek-tree is a spanning subgraph of
G, then it is called a spanningtree ofG. A forestF of a graphG is a spanning-tree of
G, wherek is the number of component 6f. A forest is simply a set of trees, spanning
all the vertices of5. A connected subgraph of a tréeis called a subtree d¢f. If T'is a
tree then there is exactly one unique path between any tvicesofT.

And finally some basic binary and unary operations on graphislescribed. Le€& =
(V,E)andG’ = (V', E’) be two graphs. Three basic binary operations on two grafghs ar
as follows:

Union and Intersection. Theunionof G andG’ is the graphG” = GUG' = (V U
V/,EUFE’),i.e. the vertex set & is the union oft” andV”’, and the edge set is the union
of £ and E’, respectively. Thentersectionof G andG’ is the graphG” = GN G’ =
(VNV' EnNE),ie. the vertex set af? has only those vertices present in bdtrand
V’, and the edge set contains only those edges present irEbatld £/, respectively.

Symmetric Difference. Thesymmetric differendebetween two graph§ andG’, writ-
ten asG @ G', is the induced grapt”’ on the edge ssE B E' = (E'\ E') U (E' \ E)S,

i.e. this graph has no isolated vertices and contains edgssent either iz or in G’ but
not in both.

Four unary operations on a graph are as follows:

Vertex Removal. Letv; € G, thenG — v; is the induced subgraph 6f on the vertex
setV — v;; i.e. G — v; is the graph obtained after removing the vertexand all the
edgese; = (v;,v;) incident onv;. The removal of a set of vertices from a graph is done
as the removal of single vertex in succession. An exampledéx removal is shown in
Fig. 1.2.a).

Edge Removal.Lete € G, thenG — e is the subgraph aff obtained after removing the
edgee from E. The end vertices of the edge= (v;,v;) are not removed. The removal

5Called also ring sum.
SWhere\ is the set minus operation and is interpreted as removing etsrfrem X that are inY’.
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of a set of edges from a graph is done as the removal of singje idsuccession. An
example of edge removal is shown in Fig. 1.2.b).

Vertex Identifying. Letv; andv; be two distinct vertices of graph joined by the edge
e = (v;,v;). Two verticesy; andv; are identified if they are replaced by a new vertéx
such that all the edges incident onandv; are now incident on the new vertex. An
example of vertex identifying is given in Fig. 1.2.c).

Edge Contraction. Lete = (v;,v;) € G be the edge with distinct end points # v,
to be contracted. The operation of edge contraction demetasval of the edge and
identifying its end vertices; andv; into a new vertex*. If the graphG’ results from
G after contracting a sequence of edges, thais said to becontractibleto a graphG’.
Note the difference between vertex identifying and edgeraation, in Fig. 1.2.c) and d).
Vertex identifying preserves the edgg whereas edge contraction first removes this edge.
In Sec. 1.5 a detailed treatment of edge contraction and emigeval in the dual graphs
context is presented.

1.3 IMAGE PYRAMIDS

Visual data is characterized by large amount of data and t@ghndancy with relevant
information clustered in space and time. All this indicadaseed of organization and ag-
gregation principles, in order to cope with computatiorahplexity and to bridge the gap
between raw data and symbolic description. Local procgssimmportant in early vision,
since operations like convolution, thresholding, mathiscahmorphology etc. belong to
this class. However, using them is not efficient for high aeimediate level vision, such
as symbolic manipulation, feature extraction etc., begdlisse processes need both local
and global information. Therefore a data structure mustathe transformation dbcal
information (based on sub-images) irgmbal information (based on the whole image),
and be able to handle both local (distributed) and globaitfedized) information. Such
a data structure, the pyramid, is knowntasrarchical architecturbierarchy [26], and it
allows distribution of the global information to be used bgdl processes. The pyramid
is a trade off between parallel architecture and the need fierarchical representation of
an image, i.e. at several resolutions [26].

An image pyramid (Fig. 1.3.a,b) describes the contents ahage at multiple levels of
resolution. High resolution input image is at the base le@iccessive levels reduce the
size of the data by eeduction factorA > 1.0. Reduction windowselate one cell at the
reduced level with a set of cells in the level directly beldWus, local independent (and
parallel) processes propagate information up and downatedlly in the pyramid. The
contents of a lower resolution cell are computed by meansedaction functiorithe input
of which are the descriptions of the cells in the reductiondew. Sometimes the descrip-
tion of the lower resolution needs to be extrapolated to thkdr resolution. This function
is called therefinementor expansion functionlt is used in Laplacian pyramids [5] and
wavelets [39] to identify redundant information in the héghesolution and to reconstruct
the original data. Two successive levels of a pyramid argedlby the reduction window
and the reduction factor. Higher level description showdddlated to the original input
data in the base of the pyramid. This is identified by tbeeptive field RF) of a given
pyramidal celle;. The RF(¢;) aggregates all cells (pixels) in the base level of whicls
the ancestor.

Based on how the cells in subsequent levels are joint, twestgb pyramids exist:

e regular, and
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a) Pyramid concept b) Discrete levels
Figure 1.3. Multiresolution pyramid.

e irregular pyramids.

These concepts are strongly related to the ability of therpyd to represent the regular
and irregular tessellation of the image plane.

Regular Pyramids  Theconstant reduction factoandconstant size reduction window
completely define the structure of the regular pyramid. Teerehse rate of cells from
level to level is determined by the reduction factor. The hanof levelsh is limited by
the reduction factoh > 1.0: h < log(image_size)/log(A). Themain computational ad-
vantageof regular image pyramids is due to th&garithmic complexityUsually regular
pyramids are employed in a regular grid tessellated imageepltherefore the reduction
window is usually a square @f x n, i.e. then x n cells are associated to a cell on a higher
level directly above. Regular pyramids are denoted usingtiomn x n/\. The vertical
structure of a classicalx 2/4 is given in Fig. 1.4.a). In this regular pyraniick 2 = 4 cells
are related to only one cell in the level directly above. 8itiwe children have only one
parent this class of pyramids is also called non-overlappagular pyramids. Therefore
the reduction factor i9. = 4. An example of2 x 2/4 regular image pyramid is given in
Fig. 1.4.b). The image size id2 x 512 = 29 x 2° therefore the image pyramid consist of
142-24+4-44 ... +28 x 28 4+ 29 x 29 cells, and the height of this pyramid9s The
pyramid levels are shown by a white border on the left uppenerof image. See [30]
for extensive overview of other pyramid structures with rtsyeping reduction windows,
e.g. 3 x 3/2,5 x 5/4. Itis possible to define pyramids on other plane tessefiatog.
triangular tessellation [26].

Thus, because of the rigid vertical structure, the regulerge pyramid is an efficient
structure for fast grouping and access to image objectsathe input image, The regular

Figure 1.4. 2 x 2/4 regular pyramid.



IMAGE PYRAMIDS 9

pyramid representation of a shifted, rotated and/or sdategye is not unique, and more-
over it does not preserve the connectivity. Thus, [3] cotetthat regular image pyramids
have to be rejected as general-purpose segmentationthlgeri This major drawback of
the regular pyramid motivated a search for a structure thable to adapt on the image
data. It means, that the regularity of the structure is tolidoned.

Irregular Pyramids ~ Abandoning the regularity of the structure means that thé ho
zontal and vertical neighborhood have to be explicitly espnted, usually by using graph
formalisms. These irregular structures are usually cattedular pyramids One of the
main goals of irregular pyramids is to achieve the shift ifarece, and to overcome this ma-
jor drawback of their regular counterparts. Other motagi why one has to use irregular
structures are [36]: arrangement of biological vision sengs not completely regular; the
CCD cameras cannot be produced without failure, resultireniirregular sensor geome-
try; perturbation may destroy the regularity of regulargigids; and image processing to
arbitrary pixels arrangement (e.g. log-polar geometriéks [

Two main processing characteristics of the regular pyrarsttbuld be preserved by
building irregular ones [2]: (i) operation are local, i.éhetresult is computed indepen-
dently of the order, this allows parallelization, and (igttom-up building of the irregular
pyramid, with an exponential decimation of the number olscel

The structure of the regular pyramid as well as the redugirogess is determined by
the type of the pyramid (e.g2 x 2/4). After removing this regularity constraint one
has to define a procedure to derive the structure of the redgphGy.; from Gy,
i.e. a graph contraction method has to be defined. Irregyleanuids can be build by
parallel graph contraction [45], or graph decimation [4Rhrallel graph contraction has
been developed only for special graph structures, likestraad is not discussed in this
chapter. The graph decimation procedure is described in1S&c An efficient random
decimation algorithm for building regular pyramids, cdlltochastic pyramidéMIS) is
introduced in [41]. A detailed discussion of this and simiteethods is done in [35]. Itis
shown that MIS in some cases is not logarithmically tapered,the decimation process
does not successively reduce the number of cells expotigniie main reason for this
behavior is that the cell's neighborhood is not boundedstone cases the degree of the
cell increases exponentially. In [35], two new methods Hase maximal independent
edge set (MIES and MIDES) that overcome this drawback argepted. An overview of
the properties of regular and irregular pyramids is founfB8if]. In irregular pyramids the
flexibility is paid by less efficient data access.

Most information in vision today is in the form of array repestation. This is advanta-
geous and easily manageable for situations having the sgsukition, size, and other typ-
ical properties equivalent. Various demands are appeagpog more flexibility and per-
formance, which makes the use of array representationateastive [15]. The increasing
use of actively controlled and multiple sensors require®eerflexible processing and rep-
resentation structure [36, 34]. Cheap#&r' D sensors could be produced if defective pixels
would be allowed, which yields in the resulting irregulanser geometry [1, 50]. Image
processing functions should be generalized to arbitratgl gieometries [44, 1]. The con-
ventional array form of images is impractical as it has todmrshed and processed every
time if some action is to be performed and (i) features ofragemay be very sparse over
parts of an array, leaving a large number of unused positiotie array; (ii) a description
of additional detail can not be easily added to a particudat gf an array.

In order to express the connectivity or other geometric potogical properties, the
image representation must be enhanced by a neighborhaitbrelln the regular square
grid arrangement of sampling points, it is implicitly eneddast- or 8-neighborhood with
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the well known paradox in conjunction with Jordan’s curvediem. The neighborhood
of sampling points can be represented explicitly, too: is ttase the sampling grid is
represented by graph consisting of vertices corresponding to the sampling goartd
of edges connecting neighboring vertices. Although thig ddructure consumes more
memory space it has several advantages, as follows [36Fampling points need not be
arranged in a regular grid; the edges can receive additattdbutes too; and the edges
may be determined either automatically or depending on #t&. dn irregular pyramids,
each level represents a partition of the pixel set into cedls connected subsets of pixels.
The construction of an irregular image pyramid is iterdyiiecal [41, 19]: (i) the cells
have no information about their global position, (ii) thdi€are connected only to (direct)
neighbors, and (iii) the cells cannot distinguish the spatsitions of the neighbors. This
means that we use only local properties to build the hiesaoftthe pyramid. Usually,
on the base level (level) of an irregular image pyramid the cells represent singkelpi
and the neighborhood of the cells is defined by 4heonnectivity of the pixels. A cell
on levelk + 1 (parent) is a union of neighboring cells on leve(children). As shown
in Sec. 1.5 this union is controlled lmpntraction kernel¢decimation parametefsEvery
parent computes its values independently of other celle®@same level. This implies that
an image pyramid is built il©[log(image_diameter)] parallel steps. Neighborhoods on
level k + 1 are derived from neighborhoods on le¥elTwo cellsc; andc, are neighbors
if there exist pixelg; in ¢; andps in ¢; such thap; andp, are4-neighbors.

Before we continue with the presentation of graph pyranadsncept of planar graphs
is needed. A planar graph separates the plane into regitled éaces. This idea of sep-
arating the plane into regions is helpful in defining the dyralphs. Duality of a graph
brings together two important concepts in graph theorylesyand cut-sets. This concept
of duality is also encountered in the graph-theoreticat@agh of image region and edge
extraction. The definition of dual graphs representing #itioning of the plane, allows
one to apply transformations on these graphs, like edgeasditgn and/or removal to sim-
plify them in the sense of less vertices and edges. Edgeamtitin and removal introduces
naturally a hierarchy of dual graphs, the so catledl graph pyramid

1.4 PLANAR AND DUAL GRAPHS

A graphé of finite sets of vertice¥” and edged’ is calledplane graphif it can be drawn
in a plane inR2 such that [8]:

e allV C R?
e every edge is an afetween two vertices,
e Nno two edges are crossed.

Note thatR \ Gis an open set and its connected regions are fﬁma‘sf}. It is said that
the plane graph divides the plane into regions. Sifide bordered, one of its faces is an
unbounded one (infinite area). This face is calledtihekground facé The other faces
enclose finite areas, and are called interior faces. Edggventices incident to a face
are called the boundary elements of that face. A planar edibgaf a graphG' is an
isomorphism betwee&' and a plane grapty. G is called a drawing ofy. Similar toG,

G is drawn so that its edges intersect only on vertices.

7An arc is a finite union of straight line segments, and a sttdigh segment in the Euclidean plane is a subset
of R? of the form{z + A\(y — z)|0 < A < 1}Vz # y € R2.
8Called also exterior face.
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Figure 1.5. A planar graphG and its embedding in a plane, the plane gréph

A graphG is planar if it can be embedded on the plane. The concept oéddihgs can
be extended to any surface. A graghis embeddable in surfacg if it can be drawn in
S so that its edges intersect only on their end vertices. Algeapbeddable on the plane
is embeddable on the sphere too. It can be shown by usingdatenstopic projection of
the sphere onto a plane [49]. Note that the concept of facasdsapplicable to spherical
embeddings.

LetG in Fig. 1.5. represent a planar graph, in general with paratiges and self-loops.
Since the graph is embedded onto a plane, it divides the pltméaces. Let each of these
faces be denoted by a new vertex ggyand let these vertices be put inside the faces, as
shown in Fig. 1.5. From this point on the notion of face veitiand face are synonymous.
Let the faces that are neighbors, i.e. that share the sangeeedtiey are incident on the
same edge), be connected by the edgegsayo that edges, ande, are crossed. At the
end, for each edge, € G there is an edge, of the newly created grapfi, which is called
the dual graph of5. If es is incident only with one face a self-loop edgeis attached to
the vertex on the face in which the edgdays, of course, and the self-loop edge have
to cross each other. The adjacency of faces is expresseclgraphG. More formally
one can define dual graphs for a given plane gi@ph (V, E) [49]:

Definition 1.2 (Dual graphs) A graphG = (V, E) is a dual ofG = (V, E) if there is a
bijection between the edges@fand GG, such that a set of edges @i is a cycle vector if
and only if the corresponding set of edge&ins a cut vector.

There is a one-to-one correspondence between the vertdk sty and the face sef
of G, therefore sometimes gragh = (V, E) is written asG = (F, E) instead, without
fear of confusion. In order to show thétis a dual ofG, one has to prove that vectors
forming a basis of the cycle subspacebtorrespond to the vectors forming a basis of the
cut subspace aff. The edgeg; of graphG in Fig. 1.6. correspond to edgésin graph
G. The cycles{ey, e3,e4}, {e2,e3,¢6}, {e4,e5,es}, and{es, ez, e} form a basis of the
cycle subspace af. These cycles correspond to the set of ed@eses, e}, {€2,€3,€6},
{e4,es5,es}, and {es, €7, €3}, which form a basis of the cut subspacef It follows
according to the definition of the duality, that gra@lis a dual ofG. The graphG' is called
the primal graphandG the dual graph Dual graphs are denoted by a line above the big
letter. If a planar graplt’ is a dual ofG, then a planaé is a dual ofG’ as well, and every
planar graph has a dual [8, 17] .

In the following, two important properties of dual graphgiwiespect to the edge con-
traction and removal operations are given, the proofs aea@{49]. These properties are
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Figure 1.6. A plane graphG and it dualG.

required to prove that during the process of dual graph aotitm graphs stay planar and
are duals (Sec. 1.5). Léf and its dualG’ be two graphs. Let edgec< G correspond to
edgee € G. Note that a cycle iy corresponds to a cut i and vice versa [49]. Let”’
denote the grapty after thecontractionof the edgee, andG’ the graph after theemoval
of the corresponding edgefrom G.

Theorem 1.2 A graph and its dual are duals also after the removal of an edgethe
primal graphG and the contraction of the corresponding edge the dual grapht:.

Corollary 1.1 If agraphG has a dual, then every edge-induced subgrapfi bhs also a
dual.

Theorem 1.3 (Whitney 1933) A graph is planar if and only if it has a dual.
Proof: The proofs can be found in [49] and [8]]

Dual Image Graphs An image is transformed into a graph such that, to each pixel a
vertex is associated, and pixels that are neighbors in thelgzg grid are joint by an edge.
Note that no restriction on the sampling grid is made, tlereeéin image of regular as well
as non-regular sampling grid can be transformed into a gréipé gray value or any other
feature is simply considered as an attribute of a vertex/(arzch edge). Since the image is
finite and connected, the graph is finite and connected as Wl graph which represents
the pixels is denoted b§ = (V, E) and is callegorimal grapi?. Note that pixels represent
finite regions, and the grapH is representing in fact a graph with faces as vertices. The
dual of a face graph (see Sec. 1.4) is the graph representidgiis of the faces, which in
fact are inter-pixel edges and inter-pixel vertices. Thipd is denoted bg and is called
simply dual graph Based on Theorem 1.3, dual graphs are planar, therefogesnaith
square grid are transformed inte- connected square grid graphs, si®e connected
square grid graphs are in general not plaiar

9Also called neighborhood graph.
10This holds for square grid graphs of grid size4 x 4.
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Figure 1.7. Image to dual graphs.

The same formalism as done for the pixels can be used at iatkate levels in image
analysis i.e. for region adjacency graphs (RAGs). RAGs aarhke results of image
segmentation processes. Regions are connected setslsf pixa are separated by region
borders. Their geometric dual though causes problems 3% section is concluded by
a formal definition of the dual image graphs:

Definition 1.3 (Dual image graphs [31]) The pair of graphgG, G), whereG = (V, E)
andG = (V, E) are called dual image graphs if both graph&', G) are finite, planar,
connected, not simple in general and duals of each other.

Dual graphs can be seen as an extension of the well know regiatency graphs
(RAG) representation. Note that this representation ialkgto encode not only adjacency
relations but inclusion relations as well [32].

1.5 DUAL GRAPH CONTRACTION

Irregular (dual graph) pyramids are constructed in a botbpnway such that a subse-
quent level (say + 1) results by (dually) contracting the precedent level (8pyin this
section a short exposition of the dual graph contractionivisrg following the work of
Kropatsch [32]. Building dual graph pyramids using thisoaithm is presented in the next
section. Dual graph contraction (DGC) [32] proceeds in treps.

I. primal-edge contraction and removal of its dual, and

Il. dual-edge contraction and removal of its primal.

In Fig. 1.8. examples of these two steps are shown in thregitjesases. Note that
these two steps correspond in [32] to the steps (1) dual edigeaction, and (1) dual face
contraction.

The base of the pyramid consists of the pair of dual imagehgré@o, G). In order to
proceed with the dual graph contraction a set of so callettaction kernels (decimation
parameters) must be defined. The formal definition is postpamtil the Sec. 1.5. Let
the set of contraction kernels B8}, Ny r+1). This set consists of a subset of surviving
verticesS;, = Vi+1 C Vi, and a subset of non-surviving primal-edg€g ;1 C Ej
(where index, k+1 refer to contraction from levéd to k+1). Surviving vertices i € Sy,
are vertices not to be touched by the contraction, i.e. afiatraction these vertices make
up the setV, 1, of the graphGy11; and every non-surviving vertex € V;\\S, must be
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Pair of dual graph$G, G1,) at levelk of the pyramid

/ N\
primal graph dual graph
’ Gy = (Vi, Ex) ‘ deals ’ Gr = (Vi, Ex) ‘
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’ . Primal-edge contraction and removal of its dqjal
/ N\
primal-edgecontractionin G;,  and corresponding dual-edgamovalin Gy,
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primal-edgeemovalin G’ and corresponding  dual-edgentractionin G’
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’ Git1 = (Vis1, Brt1) ‘ et ’ Grr1 = (Vig1, Bgi1)
I

Pair of dual graph$Gy 1, Gr41) at levelk + 1 of the pyramid

Figure 1.8. Dual graph contraction procedure (DGC).

paired to one surviving vertex in a unique way, by non-sung\primal-edges (Fig. 1.9.a).
In this figure, the shadowed vertexs the survivor and this vertex is connected with arrow
edges %s) with non-surviving vertices. Note that a contractionnedris a tree of depth
one, i.e. there is only one edge between a survivor and aummvsr, or analogously one
can say that the diameter of this tree is two.

The contraction of a non-surviving primal-edge consistthaidentification of its end-
points (vertices) and the removal of both the contracteth@redge and its dual edge
(see Sec. 1.2 for details on these operations). Fig. 1.50@ys the normal situation,
Fig. 1.10.b) the situation where the primal-edge contoactireates multiple edges, and
Fig. 1.10.c) self-loops. In Fig. 1.10.c), redundancies/@opart) are decided through the
corresponding dual graphs and removed by dual graph ceietnadn Fig. 1.10., the pri-
mal graph is shown with squargl) vertices and broken lines (- -) and its dual with circle
vertices (J) and full lines (-).

In [32] it is shown that{Sy, Vi x+1) determine the structure of an irregular pyramid.
The relation between two pairs of dual graghs,, G.) and(Gj.1, Gr+1), is established
by dual graph contraction with the set of contraction kesii8),, Ny, x+1) as:

(Grt1,Grr1) = Cl(Gr, Gi), (Sk, Nk k1)) (1.3)

Dual-edge contraction and removal of its primal (secong)stas a role of cleaning
the primal graph by simplifying most of the multiple edges aelf-loop3?, but not those
enclosing any surviving parts of the graph. They are necg$sgreserve correct struc-

11called also redundant edges.
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15




16 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

first part middle part second part
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!

Grt1 = (Vig1, Exg1) e Pie

Figure 1.11. Connecting pati P(v,v"), e is the bridge of this path.

ture [32]. Dual graph contraction reduces the number oficestand edges of a pair of
dual graphs, while preserving the topological relationsagsurviving parts of the graph.
In [31, 33] a detailed presentation of dual graph contradsagiven.

Contraction Kernels  Let S be the set of surviving vertices, and the set of non-
surviving primal-edges. The connected componéhsC(s), s € S, of subgrapH( S, N)
form a set of rooted tree structur@gs) that, if contracted, each of them would collapse
into the vertexs of the contracted graph. The number of these tred$/|is The union

of treesT'(s) contains the non-surviving primal-edgdé 7'(s) is a spanning tree of
the connected componefiC'(s), or equivalently(V, N) is a spanning forest of the graph
G = (V, E). In order to decimate the grapgh= (V, E) the set okurvivingverticesS C V
and the set ofion-surviving primal-edged’ C E must be selected, such that the following
conditions are satisfied: (1) gragl, V) is a spanning forest of graphi = (V, E), and
(2) the surviving vertices € S C V are the roots of the fore§V, N).

Definition 1.4 (Contraction kernels) A set of disjoint rooted trees with length two of path
going through the root is called a set of contraction kernels

Analogously, the tree®(v) of the forest(V, N) with rootsv € V' arecontraction kernels
After applying the dual graph contraction algorithm on gpf;eone has to establish a path
connecting two surviving vertices on the resulted new gragt G = (V, E) be a graph
with decimation paramete(s$, N).

Definition 1.5 (Connecting path [31]) A path inG = (V, E) is called a connecting path
between two surviving verticass’ € S if it consists of three subsets of edges:

o the first part is a possibly empty branch of contraction kéffigs).

e the middle part is an edge € E \ N that bridges the gap between (connects) the
two contraction kernel§’(s) and7'(s").

e the third part is a possibly empty branch of contraction ledffi(s’).

See Fig. 1.11. for explanation. The connecting path is @ehby C P(s, s’). Edgee is
called thebridge of the connecting patly P(s, s’). Each edge’ = (v,v’) € Exy1 has
a corresponding connecting pathP; (s, s’), wheres, s’ € S C Vj, are survivors in the

12Neglected level indexes refer to contraction from leveb levelk + 1.
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(Gx, Gr)
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- |
Figure 1.12. Equivalent contraction kernel.

graphGy = (Vi, Ex). This means that two surviving verticesands’, s # ¢, that can
be connected by a pathCPy(s,s’) in G}, are connected by an edge i, ,;. If the
graphGy, is connected, after dual graph contraction the connegtfithe graphGy. 41 is
preserved [31].

Dual edge contraction can be implemented by (1) simply rémgual the non-surviving
vertices to their surviving parent vertex (e.g. by using d fimion set algorithm [7]), (2)
deleting all non-surviving edgel and (3) their dualsV. We use different (MIS, MIES,
and D3P) stochastic methods to build contraction kernélg [3

Equivalent contraction kernels [5] combines two or more successive reductions in
one equivalent weighting function in order to compute amvgll®f any regular pyramid
directly from the base level. Similarly, [33] combines twar (more) dual graph con-
tractions (as shown in Fig. 1.12.) of gragh, = (Vi, E)) with decimation parameters
(Sk, N k+1) and(Si41, Nk+1.5+2) into one single equivalent contraction kernel (ECK)
Nikt2 = Nigg1 © Njg1 o2

C[C[Gr, (Sk, Nik+1)]s (Skt1: Nk 1,k42)] = ClGr, (Skt1, Nip2)] = Gryo
(1.49)

The structure 0&Fy,41 is determined by, and the decimation parametés,, Ny x+1)-
Simply overlaying the two sets of contraction kernélS, Ny .+1) (the one from level
ktok + 1) and (Sk+1, Nk11 k+2) (the one from levek + 1 to k + 2) will not yield a
proper equivalent contraction kerngy 1, Nk x+2). The surviving vertices frondsy, to
G410 areSi11 = Viyo. The edges of the searched contraction kernels must be dorme
by edgesNy 12 C Ex. An edgeeri1 = (ukﬂmgﬂ) € Nj41,k+2 corresponds to a
connecting pattC Py, (vi+1,v},,,) in G*°. By Definition 1.5,C Py, (vg41,v},,,) cONsists

of one branch off},(vi+1), one branch oka(v;GH), and one surviving edge, € Ey
connecting the two contraction kernélg(vi 1), andTy(v;, ;).

Definition 1.6 (Bridge [31]) Function bridge Ej.1 — E}, assigns to each edgg, =
(Vk+1,wk+1) € Er4q one of the bridges;, € Ej, of the connecting pathG Py, (vg 41, wWi+1):

bridge(ek+1) = ek. (1.5)

13By definition of the connectivity oLa graph, there existsaw a path between any two vertices of graph.
140nly G}, is shown instead of G, G, ) for simplicity.
151f there are more than one connecting paths, one is selected.
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Connecting two disjoint tree structures by a single edgdt®i a new tree structure. Now,
Ni k+2 can be defined as the result of connecting all contractiongte;, by bridges as:

Nigy2 = Ngpy1 U U bridge(er+1) (1.6)

ek+1E€ENK+1,k+2

This definition satisfies the requirements of a contractiemé&l [31]. Analogously, the
above process can be repeated for any pair of levelad £’ such thatt < k. If & =

0 andk’ = h, whereh is the level index of the top of the pyramid, with the resugtin
equivalent contraction kernel\, 5,), the base level()) is contracted in one step into an
apexV;, = {vy}. ECKs are able to compute any level of the pyramid direcityrfithe
base.

Dual Graph Pyramid A graph pyramid is a pyramid where each level is a graph
G(V, E) consisting of verticed” and of edges relating two vertices. In order to cor-
rectly represent the embedding of the graph in the imageedleB], we additionally store
the dual grapltZ(V, E) at each level. The levels are represented as p@ifsG;,) of dual
plane graphsG;, andGy. See Sec. 1.4 for more details on this representation. The se
quence(Gy, Gy), 0 < k < his called duabraph pyramid where0 is the base level index
andh is the top level index, also called the height of the pyranitbreover the graphs
are attributedG(V, E, attr,, attr.), whereattr, : V.— RT andattr, : E — RT, i.e.
content of the graph is stored in attributes attached to etiices and edges. In general a
graph pyramid can be generated bottom-up as shown in Alg. 1.

Algorithm 1 — Constructing Dual Graph Pyramid
Input: Graphs(Gy, Go)
1. k0.
2: while further abstraction is possibti
3:  determine contraction kerneldj, .
4. perform dual graph contraction and simplification of du&prs,(G+1, Gk+1) =
Cl(Gk, Gr), Nk gy1]-
5:  apply reduction functions to compute contemtr : G,.1 — R* of new reduced

level.
6: k<—k-+1.
7: end while

Output: Graph pyramid <G, G1), 0 < k< h.

Let the building of the dual graph pyramid be explained bygshe image in Fig. 1.7.
For the sake of simplicity of the presentation, in the figuafterward, the dual graphs are
not shown explicitly as well as intra-level relations. Araexple of this intra-level rela-
tion is shown in Fig. 1.9.b) with the contraction kernel shadd. In the example from
Fig. 1.13. initially the attributes of the vertices recethie gray values of the pixels. The
first step determines what information in the current togléy important and what can
be dropped. A contraction kernel is a (small) sub-tree ofttipelevel, the root of which
is chosen to survive (black circles in Fig. 1.13.b). Fig.31la) shows the window and the
selected contraction kernels with gray. Selection catérithis case contracts only edges
inside connected components having the same gray valuéhedidges of the contraction
trees are dually contracted during stefrom Alg. 1. Dual contraction of an edge(for-
mally denoted by&/{e}) consists of contracting and removing the corresponding dual
edgee from the dual graph (formally denoted lay\ {€}). This preserves duality and the



A HIERARCHY OF PARTITIONS 19

=

& e T
b) contraction kerneNy;

— —— —
A —-

T & — —7

+ "
double e?iges

c) G’ after dual-edge contraction 6f, d) G; after the removal of redundant edge<ih

Figure 1.13. Dual graph contraction iti¥o and the creation of thé'; of the pyramid.

dual graph needs not be constructed from the contracte@pgiraphG’ at the next level.
Since the contraction of an edge may yield multi-edges (amge shown with arrows in
Fig. 1.13.c) and self-loops there is a second simplificaploase of stef which removes
all redundant multi-edges and self-loops. Note that nosadh edges can be removed
without destroying the topology of the graph: if the cyclenfied by the multi-edge or the
self-loop surrounds another part of the data its removalldvoarrupt the connectivity!
Fortunately this can be decided locally by the dual grapbesiaces of degree tw(hav-
ing the double-edge as boundary) dades of degree on@oundary = self-loop) cannot
contain any connected elements in its interior. Since rexreovd contraction are dual oper-
ations, the removal of a self-loop or of one of the double sdga be done by contracting
the corresponding dual edges in the dual graph (which ardepitted in our example for
the sake of simplicity). The dual contraction from our exémemains a simple graph
G, without self-loops and multi-edges (Fig. 1.13.d). Ssegenerates a reduced pair of
dual graphs. Their contents is derived in stefpom the level below using the reduction
function. In our example reduction is very simple: the sung vertex inherits the color
of its sons. The following table summarizes dual graph @mion in terms of the control
parameters used for abstraction and the conditions toestgpology:

level | representation |  contract/remove | conditions
0 (G()a Gi())
1 contraction kernelVy ; | forest, depth 1
(Go/No,1,Go \ Noj1)
l redundant edgeSy; | degv <2

1] (G =Go/Noa\ So,
G1=Go\ No,1/S0,1)
l contraction kernelV; » | forest, depth 1

1.6 A HIERARCHY OF PARTITIONS

The segmentation problem is supposed to find natural grgepinthe pixel set given as
input. The first question that comes in mind is how these ahtynoupings are found.
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Algorithm 2 —Bortvka’s Algorithm

Input graphG(V, E)

: M ST «— empty edge list

all verticesv € V make a list of treed.

: while there is more than one tree Indo

each tre€l’ € L finds the edge with the minimum weight which connects to
G\ T and add edge to MST.

using edge: merge pairs of trees ih

clean the graph from self-loops if necessary

7: end while

Output minimum weight spanning tree - edge induced subgraph on.MST

PR

In other words what makes pixels in a partition be more like another than pixels in
other segments. This observation pours down into two isg@}esi) how to measure the
similarity between pixels, and (ii) how to evaluate a patiing of the pixels into segments.

It is expected that, these measures of dissimilarity captue expectation that the dis-
tance in a feature space of pixels within a segment is lessthieadistance between pixels
in different segments. The second issue is defining thericnitéunction to be optimized.
The goal is to find the groups or segments that have strongpaitsimilarities, which opti-
mize the criterion function. But before we continue with tiresentation of the algorithm
for hierarchical image partitioning, let we recall the idganinimum spanning tree (MST)
and Bofivka’s algorithm.

Minimum Weight Spanning Tree (MST) The minimum spanning tree, called after-
ward MST, is the simplest and best-studied optimizatiorbf@m in computer science.
According to [42] thé'Minimum spanning tree is a cornerstone problem of comkbmnial
optimization and in a sense its cradleThe problem is defined as follows. L@&t= (V, E)
be a undirected connected plane graph consisting of the firitof verticed” and the fi-
nite set of edge&. Each edge < E is identified with a pair of vertices;, v; € V' such
thatv; # v;. Let each edge € E be associated with aniqueweightw(e) = w(v;, v;),
from the totally ordered universe (it is assumed that waigine distinct, if not, ties can
be broken arbitrarily). Note that parallel edges, for eeg.= (v1,v2) andes = (v1,v2)
e1 # ez, have different weights. The problem is formulated as goieion of a minimum
total weight spanning tree @f.

Borlvka’'s Algorithm  The idea of Bolivka [4] is to do steps like in Prim’s algorithm
[43], in parallel over the graph at the same time. This athariconstructs a spanning tree
in iterations composed of the steps shown in Alg. 2. Firsatere listL of trees, each a
single vertexv € V. For each tred’ of L find the edge: with the smallest weightwhich
connectd’to G\ T. The treeq" are then connected @&\ T with the edges. In this way
the number of trees ih is reduced, until there is only one, the minimum weight sjragn
tree.

Observation 1.1 In the3"? step of Alg. 2, each tréE ¢ L finds the edge with the minimal
weight, and as trees become larger, the process of findirgptedges takes longer.

Minimum Spanning Tree with DGC Taking the Obs. 1.1 into consideration, the con-
traction of the edge, which connect§” andG \ T in the4!" step of Alg. 2 will speed up
the process of searching for minimum weight edges iniBka’s algorithm. If the graphs
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are represented as adjacency lists then a vertex with dégrer enumerate its incident
edges in its neighborhood in tim@(d). Since in the levek + 1, after edge contraction,
each tree (from levet) will be represented by a vertex, the search for the edge thdh
minimum weight would be a local search, and the resultinglyia smaller (in the sense
of less vertices and less edges), thus the next pass carsten fa

The dual graph contraction algorithm [32] is used to contemlges and creasuper
verticesi.e. it creates father-son relations between vertices liseguent levels (vertical
relation), whereas Béwka’s algorithm is used to create son-son relations betwegices
in the same level (horizontal relation). Here we expandiBka’s algorithm with the steps
that contract edges, remove parallel edges and self lobfhe(tonnectivity of the graph
is not changed), see Alg. 3. In the section below we will refime son-son relation to
simulate the pop-out phenomena [27], and to find region ergeickly and effortlessly
in a bottom-up ’stimulus-driven’ way based on local diffeces in a specific feature (e.g.
color).

Algorithm 3 —Borlvka’s Algorithm with DGC
Input attributed grapl@,(V, E)
1. k<0
2: repeat
3. foreach vertex € G find the minimum-weight edge € Gy, incident to the vertex
v and mark the edgesto be contracted
4:  determineC’C¥ as the connected components of the marked eeges
5. contract connected componerit€’* in a single vertex and eliminate the parallel
edges (except the one with the minimum weight) and self$@oml create the graph
Gri1 = C[Gy, CC¥F]
6 k—k+1
7: until all connected components 6fare contracted into one single vertex
Output a graph pyramid with an apex.

Building a Hierarchy of Partitions Hierarchies are a significant tool for image par-
titioning as they are naturally combined with homogeneitieda. Horowitz and Pavlidis
[24] define a consistent homogeneity criteria over d/5at a boolean predicaféover its
parts® (V) that verifies the consistency property(z,y) € (V) z Cy = (Ply) =
P(z)). Inimage analysis this states that the subregions of a honeoys region are also
homogeneous. It follows that iPyr is a hierarchy and® a consistent homogeneity crite-
ria onV then the set of maximal elements Bf)r that satisfyP defines a unique partition
of V. Thus the combined use of a hierarchy and homogeneity ierigdiows to define a
partition in a natural way.

The goal is to find partitions of connected componedts= {CC(uy),...,CC(uy,)}
such that these elements satisfy certain properties. Weheaspairwise comparison of
neighboring vertices (partitions) to check for simila#i[10, 11, 16]. A pairwise compar-
ison function, B(CC(u;), CC(u;)) is true, if there is evidence for a boundary between
CC(u;) andCC(u;), and false when there is no boundary. Note tBé&t, -) is a boolean
comparison function for pairs of partitions. The definitiohB(-,-) depends on the ap-
plication. The pairwise comparison functid¥(-, -) that we use measures the difference
along the boundary of two components relative to the diffees of component’s internal
differences. This definition tries to encapsulate the tiveinotion of contrast: a contrasted
Zone is a region containing two components whose innerdiifges iiternal contras} are
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max{attre(~) maz{attre(-)} = Int(CCy)

= Int(CC5)
min{attre(-)} = Ext(CC;, CCj)

Figure 1.14. Internal and External contrast.

less then the differences between thextiérnal contragt We define arexternal contrast
between two components andiaternal contrastof each component. These measures are
defined analogously to [10, 11, 16].

Every vertexu € G, is a representative of a connected comporiefi{«) of the par-
tition P,. The equivalent contraction kernel [32] of a vertexc G, No i (u) is a set of
edges on the base level that are contracted, i.e. applyingu) on the base level con-
tracts the subgrap@’ C G onto the vertex.. Theinternal contrasiof CC(u) € Py is the
largest dissimilarityinside the componer®C (u) i.e. the largest edge weight &f; 5 (u)
of vertexu € Gy, that is

Int(CC(u)) = maz{attre(e),e € No p(u)}. (1.7)

Let u;, u; € Vi, u; # u; be the end vertices of an edgec Ej. Theexternal contrast
between two componentsC(u;), CC(u;) € Py is thesmallest dissimilarity between
componentCC(u;) andCC(u;) i.e. the smallest edge weight connectiNg . (u;) and
No,k(uj) of verticesu;, u; € G

Ext(CC(u;), CC(uj)) = min{attre(e),e = (ui, uj) : u; € Nog(u;) Aw € Nop(u;)}
(1.8)

This definition is problematic since it uses only the smakeige weight between the two
components, making the method very sensitive to noise. Bptactice this limitation
works well as shown in Sec. 1.6. In Fig. 1.14. an exampl&of-) andExt(-, -) is given.
The Int(CC(u;)) of the componen€'C(u;) is themazimum of the weights of the solid
edges (analogously fdmt(CC(u;)) ), whereastzt(CC(u;), CC(uy)) is theminimum

of the weights of the dashed edges connecting compari€fii.;) andCC(u;). Vertices
u; andw; are the representatives of the componen€(u,;) andCC(u;), i.e. by con-
tracting the edged’y 1 (u;) one arrives to the vertex;. The pairwise comparison function
B(-,-) between two connected compone@ts'(u,;) andC'C(u;) can now be defined as:

True if Ext(CC(u;), CC(u;)) > PInt(CC(w;), CC(uj)),

B(CC(u;),CC(uy)) = { False otherwise

(1.9)
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Algorithm 4 — Hierarchy of Partitions
Input : Attributed graphG.

1. k<0

2: repeat

3. forall verticesu € G} do

Epmin(u) «— argmin{attr.(e) |e = (u,v) € Ey ore = (v,u) € E}

end for
forall e = (u;,u;) € Epin With
Ext(CC(u;), CC(u;)) < PInt(CC(u;), CC(uy)) do
: includee in contraction edged’y, 511

8. end for

9:  contract graplty;, with contraction kernelsVy, 4+1: Gi+1 = C[Gg, Ni k41]-
10. forall epy1 € Gg4q dO

11: set edge attributegtr. (ex+1) < min{attre(ex) | ex+1 = Cex, Nk k+1)}
12:  end for

13: k—k+1

14: until G, = Gg_1
Output: A region adjacency graph (RAG) pyramid.

o 9 &

where the minimum internal contrast difference betweendwmponentsPInt(-,-), re-
duces the influence of too small components and is defined as:

PInt(CC(u;),CC(uj)) = min{Int(CC(u;)) + 7(CC(w;)), Int(CC(u;)) + T(C(’f:%;))}

For the functionB(-, -) to be true i.e. for the border to exist, the external contéfter-
ence must be greater than the internal contrast differefidesreason for using a thresh-
old function 7(CC(-)) is that for small components'C(-), Int(CC(-)) is not a good
estimate of the local characteristics of the data, in theeext case whetCC(-)| = 1,
Int(CC(-)) = 0. Any non-negative function of a single componéif'(-), can be used
for 7(CC(")).

The algorithm to build the hierarchy of partitions is shownAlg. 4. Each vertex
u; € Gy, defines aconnected regioilw’C(u;) on the base level of the pyramid, and since
the presented algorithm is based on Bde@’s algorithm [4], it builds a MS{u;) of each
region, i.eNy ;(u;) =MST(u;) [21]. The idea is to collect the smallest weighted edges
e (4" step) that could be part of the MST, and then to check if theeadgightattr,(e)
is smaller than the internal contrast of both of the compé@dST of end vertices of
e) (5" step). If these conditions are fulfilled then these two congmts are merged(*
step). All the edges to be contracted form the contractionede Vy, 51, which are then
used to create the gragfly11 = C[Gk, Nk x+1] [36]. In generalN; ;41 is a forest.
We update the attributes of those edggs; € Gi.1 with the minimum attribute of the
edgese;, € Ey that are contracted inte,,; (91" step). The output of the algorithm is a
pyramid where each level represents a RAG, i.e a partitiaachEertex of these RAGs
is the representative of a MST of a region in the image. Therdhgn is greedy since it
collects only the nearest neighbor with the minimum edgetitsiand merges them if the
pairwise comparison (Eqg. 1.9) evaluates to ‘false’. Sonuperties of the algorithm are
given in [22].

Experiments on Image Graphs The base level of our experiments is the trivial par-
tition, where each pixel is a homogeneous region. The ate#of edges can be de-
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fined as the difference between features of end vertiges, (u;, ;) = |F(u;) — F(u; )|,
whereF is some feature. Other attributes could be used as well&6§aftr. (u;, u;) =

exp{— [1F(us) = F(“J)”z} whereF' is some feature, andl; is a parameter, which controls
the scale of prOX|m|ty measures Bf I could be defined aB(u;) = I(u;), for gray value
intensity images, of'(u;) = [v;, v; - $; - sin(h;), v; - s; - cos(h; )], for color images in HSV
color distance [46]. However the choice of the definitionttd tveights and the features
to be used is in general a hard problem, since the grouping cudd conflict with each
other [38].

For our experiments we use, as attributes of edges, thedtiffe between pixel inten-
sitiesF'(u;) = I(u;), i.e. attre(u;, u;) = |I(u;) — I(uy;)|. For color images we run the
algorithm by computing the distances (weights) in RGB cefmce. We choose this simple
color distances in order to study the properties of the élyor To compute the hierarchy
of partitions we define (CC) to be a function of the size @fC e.g.7(CC) :=
where|CC| is the size of the componeftC and« is a constant. The algorithm has one
running parametex, which is used to compute the functienA larger constant sets the
preference for larger components. A more complex definitibn(CC'), which is large
for certain shapes and small otherwise would produce atipaitig which prefers certain
shapes. To speed up the computation, vertices are attlilutie-,) with the internal dif-
ferences, average color and the size of the region theysepreEach of these attributes is
computed for each level of the hierarchy. Note that the hafthe pyramid depends only
on the image content.

We use indoor and outdoor RGB images.We founddhat 300 produces the best hier-
archy of partitions of the images shown in Monaf%iObjectt5 and Object1'’ Fig.1.15.(1,
I, IV) and « := 1000 for the Woman image in Fig.1.15.(ll), after the averagerinity
attribute of vertices is down-projected onto the base dtid. 1.15. shows some of the par-
titions on different levels of the pyramid and the number ainponents. Note that in all
images there are regions of large intensity variability gratlient. This algorithm copes
with this kind of gradient and variability.

The algorithm is capable of grouping perceptually impadrtagions despite of large
intensity variability and gradient. In contrast to [10] ttesult is a hierarchy of partitions
at multiple resolutions suitable for further goal drivepnnmhin specific analysis. On lower
levels of the pyramid the image is over-segmented whereager levels it is under-
segmented. Since the algorithm preserves details in loiahidity regions, a noisy pixel
would survive through the hierarchy, see Fig. 1.15.(Id)adg smoothing in low variabil-
ity regions would overcome this problem. We do not smoothitha&ges, as this would
introduce another parameter into the method. The robusfe®pology is discussed in
the section below. The hierarchy of partitions can also bk fsam an over-segmented
image to overcome the problem of noisy pixels. Note thatrtHaence ofr in the decision
criterion is smaller as the region gets bigger for a constanthe constanty is used to
produce a kind of over-segmented image and the influenceletays with each new level
of the pyramid. For an over-segmented image, where the §itteegegions is large, the
algorithm becomes parameterless.

Robustness of Graph Pyramids There are several places in the construction of a
graph pyramid where noise can affect the result: (1) thetidpte; (2) during selection
of contraction kernels; (3) when summarizing the conterd oéduction window by the
reduction function.

18waterloo image database.
17Coil 100 image database.
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I) Monarch768 x 512

aj ‘ 93 216)  b)14 (108) c) 18 (35) d) 22 (18)
) Woman116 x 261

41

a)0(25056)  b) 10 (38) c) 14 (7) d) 15 (3)
I11) Object45 128 x 128

ﬂ

a)0(16384)  b)10 (43) c) 12 (13) d) 14 (3)
IV) Objectl1 128 x 128

a)0(16384)  b)10(38) c) 12 (6) d) 13 (2)
Legend:Level (# of partitions)

Figure 1.15. Partitioning of images.

The effects on the topology can be the following: a conneotgibn falls into parts;
two regions merge into one; break inclusion, create newsichs; two adjacent regions
become separated; two separated regions become adjadétiede changes reflect in
the Euler characteristic which we will use to judge the topatal robustness of graph
pyramids. Let us start with the influence of a wrong pixel om¢bnnectivity structure. A
wrong pixel adjacent to a region can corrupt its connegti{and the property of inclusion
in 2D) if it falls on a one pixel wide branch of the figure. The conseqce can be that the
region breaks into two parts which increases the Euler cheniatic by1. A noisy pixel
inside a region creates a new connected component whichoigadogical change (e.g.
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a new inclusion) but it can be easily recognized and elinsithdtty its size. However the
change is again not very drastic since one noisy pixel cangehthe Euler characteristic
only by 1. If all regions of the picture both foreground and backgebare at leas? pixels
wide a single wrong pixel changes their size but not theineativity.

For a branch of two pixels in width, two noisy pixels in a peutar spatial position
relative to each other are needed to modify the topology. eMygnerally to break the
connectivity across an-pixel wide branch of a region noisy pixels are needed, fogni
a connected path from one side of the branch to the other. Cérisbe considered as
the consequence of the sampling theorem (see [29]). Alketh@sological modifications
happen in the base of our pyramid. As long as we use topologgepving constructions
and/or consider identified noise pixels as non-survivoesttpology is not changed in
higher levels.

Different criteria and functions can be used for selectiogtaction and reduction ker-
nels. In contrast to data, noise errors are introduced bgleeific operations and may
be the consequence of numerical instabilities or quamtizaterrors. There is no general
property allowing to derive an overall property like romests of all possible selection or
reduction functions. Hence operational robustness neells thecked for any particular
choice.

1.7 EVALUATION OF SEGMENTATIONS

The segmentation process results in ’homogeneous’ regidhgespect to the low-level
cues using some similarity measures. Problems emerge setaihomogeneity of low-
level cues does not always lead to semantics and the diffiofiltlefining the degree of
homogeneity of a region. Also some of the cues can contradith other. Thus, low-level
cue image segmentation cannot produce a complete final"gegthentation [48], leading
researchers to look at the segmentation only in the confextask, as well as the evalua-
tion of the segmentation methods. However in [40] the sedatien is evaluated purel§y
as segmentation by comparing the segmentation done by lsunitmthose done by a par-
ticular method. As can be seen in Fig. 1.16. 2, 3, 4 there iaistency in segmentations
done by humans (already demonstrated empirically in [48Bn thought humans segment
images at different granularity (refinement or coarsenifgyis refinement or coarsening
could be thought as hierarchical structure of the imagethe pyramid.

Evaluation of the segmentation algorithms is difficult hesmit depends on many fac-
tors [23] among them: the segmentation algorithm; the patars of the algorithm; the
type(s) of images used in the evaluation; the method useelduation of the segmenta-
tion algorithms, etc. Our evaluation copes with these fa}geal world images should
be used, because it is difficult to extrapolate conclusi@etan synthetic images to real
images [53], and (ii) the human should be the final evalu#@pr [

There are two general methods to evaluate segmentations:

e qualitative, and
e uantitative methods.

Qualitative methods involve humans for doing the evalumtioeaning that different ob-
servers would give different opinions about the segmenatie.g. already encountered
in edge detection evaluation [23], or in image segmentgd@}). On the other hand,

18The context of the image is not taken into consideration dusegmentation.
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quantitative methods are classified into analytical andigogh methods [52]. Analytical
methods study the principles and properties of the algorilike processing complexity,
efficiency and so on. Empirical methods study propertieshef¢egmentations by mea-
suring how ‘good’ a segmentation is close to an ‘ideal’ onemeasuring this ‘goodness’
with some function of parameters. Qualitative and empliricathods depend on the sub-
jects, the first one in coming up with the reference (perfeegimentatiotf and the second
one defining the function. The difference between the setgdémage and the reference
(ideal) one can be used to asses the performance of thetatgd62]. The reference im-
age could be a synthetic image or manually segmented by lindigher value of the
discrepancy means bigger error, signaling poor perforemafithe segmentation method.
In [52], it is concluded that evaluation methods basednisrsegmented pixels should be
more powerful than other methods using other measurep10] the error measures used
for segmentation evaluation ‘count’ the mis-segmentedIpix

Note that the segmented image #35/2 in Fig. 1.16. can bearaaido obtain the image
in #35/4, this is calledimple refinementvhereas to obtain image in #35/3 from #35/2 (or
vice versa) we must coarsen in one part of the image and refthe iother (notice the chin
of the man in #35/3, this is calleshutual refinement Therefore in [40] a segmentation
consistency measure that does not penalize this graryudiiffisrence is defined (Sec. 1.7).

The segmentation results of NCutSeg [46] on gray value imageshown in Fig. 1.16.
in 5, and 6, of BolSeg with MIS [41] decimation strategy in 7, and 8; with MIBSTin 9,
and 10; and with D3P [25]in 11, and 12. Note that the NCutSegBmiSeg methods are
capable of producing a hierarchy of images. These methaglenlyg local contrast based
on pixel intensity values. As it is expected, and can be se®n the Fig. 1.16., segmen-
tation methods which are based only on low-level local cuasot create segmentation
results as good as humans. Even thought it looks like the Skguimethod produces more
regions, actually the overall number of regions in Fig. 16,8, 10, 12 is almost the same,
but BortiSeg produces a bigger number of small regions. The metisedsKig. 1.16.)
were capable of segmenting the face of a man satisfactorggén#35). The BarSeg
method did not merge the statue on the top of the mountainthittsky (image #17), but
it merged it with the mountain, compared to humans which dpn&nt this statue as a
single region. All methods have problems segmenting themsdures (image #12). Note
that the segmentation done by humans on the image of rockgyén#18), contains the
axis of symmetry, even thought there is no 'big’ change initical contrast, therefore the
NCutSeg and BdrSeg methods fail in this respect. It must be mentioned thia¢ of the
methods is 'looking’ for this axis of symmetry.

In the rest of this section, we evaluate two graph-based set@tion methods, the nor-
malized cut [46] (NCutSeg) and the method based on thé\Bar’'s minimun spanning
tree (MST) [21] (BofiSeg). In fact we evaluate three flavors of the iB®g depending on
the decimation strategy used: MIS, MIES or D3P, denoted byiBeg (MIS), BouSeg
(MIES) and BotiSeg (D3P). See [35] for details on these decimation siesgele com-
pare these methods following the framework of [40] i.e. canng the segmentation result
of the two graph-based methods with the human segmentafitvasresults of the evalua-
tion are reported in the section below. Also the variatiomegfions sizes is shown in this
section.

Some examples of applying BifBeg on color images are shown in Sec. 1.6, where for
visualization purposes each region has the mean color vdfuthis section we use the
region borders to highlight the regions. Note that, two pixele borders are used only for

19Als0 called a gold standard [14].
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better visualization purposes, and are not produced by thegmentation methods nor are
part of the evaluation process.

Segmentation Benchmarking In [40] segmentations made by humans are used as a
reference and basis for benchmarking segmentations pedducdifferent methods. The
concept behind this is the observation that even thoughbréift people produce different
segmentations for the same image, the obtained segmestatiffer, mostly, only in the
local refinement of certain regions. This concept has baetiest on the human segmen-
tation database (see Figure 1.16. 2, 3, 4) by [40] and usethasigfor defining two error
measures, which do not penalize a segmentation if it is eoarsmore refined than an-
other. In this sense, pixel error measure?(S1, S, p), called the local refinement error,

is defined as:

|R(S1,p)\R(52,P)|
|R(S1,p)l ’

where\ denotes set differencés| the cardinality of a set, and R(S, p) is the set of
pixels corresponding to the region in segmentafidhat contains pixeb. Using the local
refinement erroi(S1, S2, p) the following error measures are defined [40]: tiebal
consistency erro{GCE), which forces all local refinements to be in the sameatiion,
and is defined as:

E(S1,52,p) =

(1.11)

1
GCE(S1,8,) = —min{ > E(S1,5,p), >  E(S2,51,p) ¢, (1.12)

|I| pel pel

and thelocal consistency erro(LCE), which allows refinement in different directions in
different parts of the image, and is defined as:

LCE(S1,8,) = ! > min{E(S1, Sa,p), E(S2, S1,p)} (1.13)

Rl

where|I]| is the number of pixels in the image Notice that LCE< GCE for any two
segmentations. GCE is a tougher measure than LCE, becauseditates only simple
refinements, while LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented above to dalizatien of the
BorliSeg method using the human segmented images from the Batkisans segmented
images database [40]. The results of comparison of the N&gut®thod versus humans
and humans versus humans are confirmed [40].

Evaluation of Segmentations on the Berkley Image Database As mentioned
in [40] a segmentation consisting of a single region and engegation where each pixel is
aregion, is the coarsest and finest possible of any segrimmtht this sense, the LCE and
GCE measures should not be used when the number of regiohs twé segmentations
differs a lot. Taking into consideration that both methods produce segmentations with
different number of regions, we have taken for each image ®gian count reference
number the average number of regions from the human segnomstavailable for that
image. We instructed the NCutSeg to produce the same nunfilvegions and for the
BorliSeg we have taken the level of the pyramid that has the regiotber closest to the
same region count reference number.

As data for the experiments, we take0 gray level images from the Berkley Image
Databas®. For segmentation, we have used the normalized cuts implatien available

2Onhttp:/iwww.cs.berkeley.edu/projectsivision/groupsegbenchy.
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on the Internét and for the BoSeg we have implementations based on combinatorial
pyramidg? [20].

For each of the images in the test, we have calculated the @EEGE using the results
produced by the two methods and all the human segmentati@ilalde for that image.
Having more then one pair of GCE and LCE for the methods NQut®el BofiSeg (all
its versions) and each image, we have calculated the meahesthndard deviation.

In Fig. 1.17., the histogram of error values LCE (a) and GCHJ(b. . . 1], where zero
means no error) of Humans vs. Humans, NCutSeg vs. HumariiS&gr (all versions)
vs. Human are showru represents the mean value of the error. Notice that the hsiman
are consistent in segmenting the images and the Human Jdtsnan histogram shows a
peak very close t6. i.e. a smallz = 0.0592 for LCE andj = 0.0832 for GCE. For the
NCutSeg and BarSeg there is not a significant difference between the valfle€E and
GCE (see the mean values of the respective histograms). @rmaclude that the quality
of segmentation of these methods seen over the whole databast different.

We wanted to also see how produced region sizes vary from atleadh to the other
and how this variation depends on the content of the seghéntges. For this, we have
normalized the size of each region by dividing it to the sizthe segmented image it be-
longed to (number of pixels), and for each segmentation, ave lealculated the standard
deviation ¢s) of the normalized region sizes. For the case of human segiohémages,
we have done separately the calculation for each segmamtatid taken the mean of the
results for the segmentations of the same image. Fig. }.8Baws the resulting s for
70 images (a clear majority for which the; order Humans MSTBorliISeg-NCutSeg ex-
isted). Results are shown sorted by the sum of the; 3or each image. The average
region size variation for the whole dataset(st537 forHumans{.0392 for NCutSeg, and
0.0872 for MSTBori1Seg (MIES). Note, that the size variation is smallest antbat con-
tent independent for the NCutSeg and largest for Humans. aldellated the variation of
regions sizes for the different decimation strategies NMES and D3P. The average re-
gion size variation for the whole data sebi§893 for MSTBortiSeg (MIS) and).1037 for
MSTBoriSeg (D3P). In Fig. 1.18.b) a solid line represents the megiom size variation
of the three decimation strategies MIES, MIS, and D3P, aaditted line the standard de-
viation. Note that the standard deviation stays small fenttnole spectrum which shows
the region size variation consistency between the threiend¢ion methods.

1.8 CONCLUSION

Image segmentation aggregates sets of pixels into corthesg@ns that satisfy a certain
homogeneity criteria. All such regions partition a giverage into homogeneous areas.
Real objects are composed of such homogeneous regionsbatate no globally unified
criteria to aggregate the smaller homogeneous regionghettarger regions correspond-
ing to objects. We therefore need a representation ablegeggte smaller regions into
larger regions using different criteria on different leveff abstraction. Starting with the
dual graphs created for the input image, the irregular gpgpaimid is constructed bottom-
up by repeatedly applying dual graph contraction. This psgjvely simplifies the graphs,
level by level, obtaining a topmost level usually made oubroé single vertex, called the

2lhttp://www.cis.upenn.eds/jshi/software/.
22http:/iwvww.prip.tuwien.ac.at/Research/FSPCogVistiBafe/.
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apex. Dual graph contraction involves concepts from graglory like edge contraction
and it's dual, edge removal to simplify a pair of dual graphslevpreserving planarity
and duality. The edges to be removed/contracted build upaction kernels which form
a spanning forest of the input graph. Repeated contracteps <an be combined in a
single contraction using large equivalent contractiom&s. The receptive field of a high
level vertex is spanned by the tree of the equivalent cotitra&ernel. The corresponding
regions are connected and form an inclusion hierarchy wi#d to hold the intended seg-
mentations. In this chapter, we presented a hierarchicayj@partitioning method using
a pairwise similarity function. The function encapsulates intuitive notion of contrast
by measuring the difference along the boundary of two corapts; relative to a mea-
sure of differences of the components’ internal variatidwo components are merged
if there is an edge with low-cost connection between themrliBa’s minimum weight
spanning tree algorithm together with the dual graph cotitia algorithm is used for
building a minimum weight spanning tree, and at the same, tpreserving the connec-
tivity of the input graph. For vision tasks, in natural syste the topological relations
seem to play a role even more important than precise geaakeposition. Even though
the minimum weight spanning tree algorithm makes local dyesecisions, it produces
perceptually important partitions by finding region bosdguickly and effortlessly in a
bottom-up ’'stimulus-driven’ way based only on local diffaces in a specific feature. The
framework is general and can handle large variation andgmnadtensity in images. Ex-
perimental results prove the validity of the theoreticalogpt. We evaluated quantitatively
the segmentation result produced by different methods. éakiation is done by using
discrepancy measures, that do not penalize segmentatianare coarser or more refined
in certain regions. We used only gray images to evaluate tladitg of results on one
feature. It is shown that the graph-based method presentellige qualitatively similar
results.
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