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CHAPTER 1

MULTIRESOLUTION IMAGE
SEGMENTATIONS IN GRAPH PYRAMIDS

1.1 INTRODUCTION

”How do we bridge the representational gap between image features and coarse model
features?” is the question asked by the authors of [47] when referring to several contempo-
rary research issues. They identify the one-to-one correspondence between salient image
features (pixels, edges, corners,...) and salient model features (generalized cylinders, poly-
hedrons, invariant models,...) as a limiting assumption that makes prototypical or generic
object recognition impossible. They suggested to bridge and not to eliminate the represen-
tational gap, as it is done in the computer vision community for quite long, and to focus
efforts on: i)region segmentation, ii) perceptual grouping, and iii) image abstraction. Let
us take these goals as a guideline to consider multiresolution representations under the
special viewpoint of segmentation and grouping. In [34] multiresolution representation is
considered under the abstraction viewpoint.

Wertheimer [51] has formulated the importance of wholes (Ganzen) and not of its indi-
vidual elements and introduced the importance of perceptual grouping and organization in
visual perception. Regions as aggregations of primitive pixels play an extremely important
role in nearly every image analysis task. Their internal properties (color, texture, shape, ...)
help to identify them, and their external relations (adjacency, inclusion, similarity of prop-
erties) are used to build groups of regions having a particular meaning in a more abstract
context. The union of regions forming the group is again a region with both internal and
external properties and relations.

Low-level cue image segmentation can not and should not produce a complete final
’good’ segmentation, because there is no general ’good’ segmentation. Without prior
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2 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

knowledge, segmentation based on low-level cues will not beable to extract semantics
in generic images. Using some similarity measures, the segmentation process results in
‘homogeneity’ regions with respect to the low-level cues. Problems emerge because i)
homogeneity of low-level cues will not map to the semantics [28] and ii) the degree of
homogeneity of a region is in general quantified by threshold(s) for a given measure [12].
Even though segmentation methods (including ours) that do not take the context of the im-
age into consideration can not produce a ’good’ segmentation, they can be valuable tools
in image analysis in the same sense as efficient edge detectors are. Note that efficient edge
detectors do not consider the context of the image, too. Thus, the low-level coherence
of brightness, color, texture or motion attributes should be used to sequentially come up
with hierarchical partitions [46]. Mid and high level knowledge can be used to either con-
firm these groups or select some further attention. A wide range of computational vision
problems could make use of segmented images, were such segmentation rely on efficient
computation, e.g. motion estimation requires an appropriate region of support for finding
correspondences; higher-level problems such as recognition and image indexing can also
make use of segmentation results in the problem of matching.

It is important for a grouping method to have the following properties [10]: i) capture
perceptually important groupings or regions, which reflectglobal aspects of the image, ii)
be highly efficient, running in time linear in the number of image pixels, and iii) create
hierarchical partitions [46]. To find region borders quickly and effortlessly in a bottom-
up ’stimulus-driven’ way based on local differences in a specific feature, we propose a
hierarchy of extended region adjacency graphs (RAG+) to achieve partitioning of the image
by using a minimum weight spanning tree (MST). A RAG+ is a region adjacency graph
(RAG) enhanced by non-redundant self loops or parallel edges. Rather than trying to
have just one ’good’ segmentation the method produces a stack of (dual) graphs (a graph
pyramid), which down-projected onto the base level gives a multi-level segmentation i.e.
a labeled spanning tree. The MST of an image is built by combining the advantage of
regular pyramids (logarithmic tapering) with the advantages of irregular graph pyramids
(their purely local construction and shift invariance). The aim is reached by using the
selection method for contraction kernels proposed in [19].Borůvka’s minimum spanning
tree algorithm [4] with the dual graph contraction algorithm [32] build in a hierarchical
way an MST, while preserving the proper topology. For visiontasks, in natural systems,
topological relations seem to play an even more important role than precise geometrical
positions.

Overview of the chapter The plan of the chapter is as follows. In order to make the
reading of this chapter easy, in Sec. 1.2 we recall some of thebasic notions of graph theory.
After a short introduction into image pyramids (Sec. 1.3) a detailed presentation of dual
graph contraction is given (Sec. 1.5). Using the dual graph contraction algorithm from
Sec. 1.5, Bor̊uvka’s algorithm is re-defined in Sec. 1.6, so that we can construct an image
graph pyramid, and at the same time, the minimum spanning tree. In Sec. 1.6 we give the
definition of internal and external contrast and the merge decision criteria based on these
definitions. In addition, the algorithm for building the hierarchy of partitions is introduced
in this section. Also Sec. 1.6 reports on experimental results. Evaluation of the quality of
the segmentation results is reported in Sec. 1.7. Parts of this chapter has been previously
published in [18].



BASICS OF GRAPH THEORY 3

A

B

C

D
a

b

c
d

e

f

g

Pregel vA

vB

vC

vD

ea eb

ec ed

ee

ef

eg
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Figure 1.1. The seven bridges problem and the abstracted graph.

1.2 BASICS OF GRAPH THEORY

In 1736, Leonard Euler was puzzled whether it is possible to walk across all the bridges on
the river Pregel in K̈onigsberg1 only once and return to the starting point (see Fig. 1.1.a).
In order to solve this problem, Euler in an ingenious way, abstracted the bridges and the
landmasses. He replaced each landmass by a dot (called vertex) and each bridge by an arch
(called edge or line) (Fig. 1.1.b). Euler proved that there is no solution to this problem. The
Königsberg bridge problem was the first problem studied in what is nowadays called graph
theory. This problem was a starting point also for another branch in mathematics, the
topology. The definitions given below are compiled from the books [8, 49, 17], therefore
the citations are not repeated. The interested reader can find all these definitions and more
in the above mentioned literature.

Formally, one can define graphG on setsV andE as:

Definition 1.1 (Graph) A graphG = (V (G), E(G), ιG(·)) is a pair of setsV (G) and
E(G) and an incidence relationιG(·) that maps pairs of elements ofV (G) (not necessarily
distinct) to elements ofE(G).

The elementsvi of the setV (G) are called vertices (or nodes, or points) of the graph
G, and the elementsej of E(G) are its edges (or lines). Let an example be used to clarify
the incidence relationsιG(·). Let the set of vertices of the graphG in Fig. 1.1.b) be given
by V (G) = {vA, vB, vC , vD} and the edge set byE(G) = {ea, eb, ec, ed, ef , eg}. The
incidence relation is defined as :

ιG(ea) = (vA, vB), ιG(eb) = (vA, vB), ιG(ec) = (vA, vC), ιG(ed) = (vA, vC),

ιG(ee) = (vA, vD), ιG(ef ) = (vB, vD), ιG(eg) = (vC , vD). (1.1)

For the sake of simplicity of the notation, the incidence relation will be omitted, therefore
one can write, without the fear of confusion:

ea = (vA, vB), eb = (vA, vB), ec = (vA, vC), ed = (vA, vC),

ee = (vA, vD), ef = (vB, vD), eg = (vC , vD). (1.2)

i.e. the graph is defined asG = (V,E) without explicit mentioning of the incidence
relation. The vertex setV (G) and the edge setE(G) are simply written asV andE. There

1Nowadays Pregoyla in Kaliningrad.
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will be no distinction between a graph and its sets, one may write a vertexv ∈ G or v ∈ V
instead ofv ∈ V (G), an edgee ∈ G or e ∈ E, and so on. Vertices and edges are usually
represented with symbols likev1, v2, ... ande1, e2, ..., respectively. Note that in Eq. 1.2,
each edge is identified with a pair of vertices. If the edges are represented with ordered
pairs of vertices, then the graphG is calleddirectedor oriented, otherwise if the pairs are
not ordered, it is calledundirectedor non-oriented. Two vertices connected by an edge
ek = (vi, vj) are calledend verticesor endsof ek. In the directed graph the vertexvi is
called thesource, andvj the targetvertex of edgeek. The elements of the edge setE are
distinct i.e. more than one edge can join the same vertices. Edges having the same end
vertices are calledparallel edges2. If ek = (vi, vi), i.e. the end vertices are the same,
thenek is called aself-loop. A graphG containing parallel edges and/or self-loops is a
multigraph. A graph having no parallel edges and self-loopsis called asimple graph. The
number of vertices inG is called itsorder, written as|V |; its number of edges is given as
|E|. A graph of order0 is called anempty graph3, and of order1 is simply calledtrivial
graph4. A graph isfiniteor infinitebased on its order. If not otherwise stated all the graphs
used in this chapter are finite and not empty.

Two verticesvi and vj are neighbors oradjacentif they are the end vertices of the
same edgeek = (vi, vj). Two edgesei andej areadjacentif they have an end vertex in
common, sayvk, i.e. ei = (vk, vl) andej = (vk, vm). If all vertices ofG are pairwise
neighbors, thenG is complete. A complete graph onm vertices is written asKm. An edge
is calledincidenton its end vertices. The degree (or valency)deg(v) of a vertexv is the
number of edges incident on it. A vertex of degree0 is calledisolated; of degree1 is called
pendant. Note that a self-loop at a vertexv contributes twice indeg(v).

Let G = (V,E) andG′ = (V ′, E′) be two graphs.G′ = (V ′, E′) is a subgraph ofG
(G′ ⊆ G) if V ′ ⊆ V andE′ ⊆ E, i.e. the graphG contains graphG′. GraphG is called
also a supergraph ofG′ (G ⊇ G′). If either V ′ ⊂ V or E′ ⊂ E, the graphG′ is called
a proper subgraph ofG. If G′ ⊆ G andG′ contains all the edgese = (vi, vj) ∈ E such
thatvi, vj ∈ V ′, G′ is the(vertex) induced subgraphof G andV ′ induces (spans)G′ in G.
It is written asG′ = G[V ′], i.e. sinceV ′ ⊂ G(V ), thenG[V ′] denotes the graph onV ′

whose edges are the edges ofG with both ends inV ′. If not otherwise stated, by induced
subgraph, the vertex-induced subgraph is meant. If there are no isolated vertices inG′,
thenG′ is called theinduced subgraph ofG on the edge setE′ or simply edge induced
subgraph ofG. If G′ ⊆ G andV ′ spans all ofG, i.e V ′ = V thenG′ is a spanning
subgraph ofG. A subgraphG′ of a graphG is a maximal (minimal) subgraph ofG with
respect to some propertyΠ if G′ has the propertyΠ andG′ is not a proper subgraph of
any other subgraph ofG having the propertyΠ. The minimal and maximal subsets with
respect to some property are defined analogously. This definition will be used later to
define a component ofG as a maximal connected subgraph ofG, and a spanning tree of a
connectedG is a minimal connected spanning subgraph ofG.

Let G = (V,E) be a graph with setsV = {v1, v2, · · · } andE = {e1, e2, · · · }. A
walk in a graphG is a finite non-empty alternating sequencev0, e1, v1, · · · , vk−1, ek, vk

of vertices and edges inG such thatei = (vi, vi+1) for all 1 ≤ i ≤ k. This walk is called
a v0 − vk walk with v0 andvk as the terminal vertices and all other vertices are internal
vertices of this walk. In a walk, edges and vertices can appear more than once. Ifv0 = vk,
the walk isclosed, otherwise it isopen. A walk is a trail if all its edges are distinct. A trail
is closed if its end vertices are the same, otherwise it is opened. By definition the walk can

2Also called double edges.
3A graph with no vertices and hence no edges.
4A graph with one vertex and possibly with self-loops.
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contain the same vertex many times. A pathP is a trail where all vertices are distinct. A
simple path is written asP = v0, v1, v2, · · · , vk, where edges are not explicitly depicted
since in a path all vertices are distinct and therefore in a simple graph all the edges are
distinct too. Note that in a multigraph a path is not uniquelydefined by this nomenclature,
because of possible multiple edges between two vertices. Verticesv0 andvk are linked
by the pathP , alsoP is called a path fromv0 to vk (as well as betweenv0 andvk). The
number of edges in the path is called the path length. The pathlength is denoted withP k,
wherek is the number of edges in the path. Note that by definition it isnot necessary that a
path contains all the vertices of the graph. Analogously onedefines the cycles as: a closed
trail is a cycleC if all its vertices except the end vertices are distinct. Cycles, like paths,
are denoted by the cyclic sequence of verticesC = v0, v1, · · · , vk, v0. The length of the
cycle is the number of edges in it is calledk-cycle written asCk. The minimum length
of a cycle in a graphG is the girthg(G) of G, and the maximum length of a cycle is its
circumference. The distance between two verticesv andw in G denoted byd(u,w), is
the length of the shortest path between these vertices. Thediameterof G, diam(G) is the
maximum distance between any two vertices ofG.

Connectivity is an important concept in graph theory and it is one of the basic concepts
used in this presentation. Two verticesvi andvj are connected in a graphG = (V,E) if
there is a pathvi−vj in G. A vertex is connected to itself. A non-empty graph is connected
if any two vertices are joint by a path inG. Let graphG = (V,E) be a non-connected
graph. The setV is partitioned into subsetsV1, V2, · · · , Vp if V1∪V2∪· · ·∪Vp = V and for
all i andj, i 6= j Vi∩Vj = ∅. {V1, V2, · · · , Vp} is called a partition ofV . Since the graph
G is non-connected, the vertex setV can be partitioned into subsetsV1, V2, · · · , Vp, such
that each vertex induced subgraphG[Vi] is connected, and there exists no path between a
vertex in subsetVi and a vertex inVj , j 6= i. A maximally connected subgraph ofG is
called a component of graphG. A component ofG is not a proper subgraph of any other
connected subgraph ofG. An isolated vertex is considered to be a component, since by
definition it is connected to itself. Note that a component isalways non-empty, and that if
a graphG is connected then it has only one component, i.e. itself.

The following theorem is used in the Sec. 1.5 to show that after the edge removal from
the cycle the graph stays connected.

Theorem 1.1 If a graphG = (V,E) is connected, then the graph remains connected after
the removal of an edgee of a cycleC ∈ E, i.e. G′ = (V,E − {e}) is connected.

Proof: The proof can be found in [8].�

From the above theorem one can conclude that edges that if removed disconnect a graph,
do not lie on any cycle.

The definition of cut and cut-set are as follows. Let{V1, V2} be partitions of the vertex
setV of a graphG = (V,E). The setK(V1, V2) of all edges having one end in one vertex
partition (V1) and the other end on the second vertex partition (V2) is called a cut. A cut-
setKS of a connected graphG is a minimal set of edges such that its removal fromG
disconnectsG, i.e. G − KS is disconnected. If the induced subgraphs ofG on vertex set
V1 andV2 are connected thenK = KS . If the vertex setV1 = {v}, the cut is denoted by
K(v).

Trees are simple graph structures, and are extensively usedin the rest of the discussion.
A graphG is acyclic if it has no cycles. A tree of graphG is a connected acyclic subgraph
of G. Vertices of degree1 in a tree are calledleaves, and all edges are called branches. A
non-trivial tree has at least two leaves and a branch, for example the simplest tree consists
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Figure 1.2. Operations on graph.

of two vertices joined by an edge. Note that an isolated vertex is by definition an acyclic
connected graph, and therefore a tree.

A spanning tree of graphG is a tree ofG containing all the vertices ofG. Edges of the
spanning tree are calledbranches. The tree containing all vertices, and only those edges
not in the spanning tree, is calledcospanning tree, and its edges are calledcords. An
acyclic graph withk components is called ak-tree. If thek-tree is a spanning subgraph of
G, then it is called a spanningk-tree ofG. A forestF of a graphG is a spanningk-tree of
G, wherek is the number of component ofG. A forest is simply a set of trees, spanning
all the vertices ofG. A connected subgraph of a treeT is called a subtree ofT . If T is a
tree then there is exactly one unique path between any two vertices ofT .

And finally some basic binary and unary operations on graphs are described. LetG =
(V,E) andG′ = (V ′, E′) be two graphs. Three basic binary operations on two graphs are
as follows:

Union and Intersection. Theunionof G andG′ is the graphG′′ = G ∪ G′ = (V ∪
V ′, E∪E′), i.e. the vertex set ofG′′ is the union ofV andV ′, and the edge set is the union
of E andE′, respectively. Theintersectionof G andG′ is the graphG′′ = G ∩ G′ =
(V ∩ V ′, E ∩ E′), i.e. the vertex set ofG′′ has only those vertices present in bothV and
V ′, and the edge set contains only those edges present in bothE andE′, respectively.

Symmetric Difference.Thesymmetric difference5 between two graphsG andG′, writ-
ten asG ⊕G′, is the induced graphG′′ on the edge setE ⊞ E′ = (E \ E′) ∪ (E′ \ E)6,
i.e. this graph has no isolated vertices and contains edges present either inG or in G′ but
not in both.

Four unary operations on a graph are as follows:
Vertex Removal. Let vi ∈ G, thenG − vi is the induced subgraph ofG on the vertex

setV − vi; i.e. G − vi is the graph obtained after removing the vertexvi and all the
edgesej = (vi, vj) incident onvi. The removal of a set of vertices from a graph is done
as the removal of single vertex in succession. An example of vertex removal is shown in
Fig. 1.2.a).

Edge Removal.Let e ∈ G, thenG−e is the subgraph ofG obtained after removing the
edgee from E. The end vertices of the edgee = (vi, vj) are not removed. The removal

5Called also ring sum.
6Where\ is the set minus operation and is interpreted as removing elements fromX that are inY .
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of a set of edges from a graph is done as the removal of single edge in succession. An
example of edge removal is shown in Fig. 1.2.b).

Vertex Identifying. Let vi andvj be two distinct vertices of graphG joined by the edge
e = (vi, vj). Two verticesvi andvj are identified if they are replaced by a new vertexv∗

such that all the edges incident onvi andvj are now incident on the new vertexv∗. An
example of vertex identifying is given in Fig. 1.2.c).

Edge Contraction. Let e = (vi, vj) ∈ G be the edge with distinct end pointsvi 6= vj

to be contracted. The operation of edge contraction denotesremoval of the edgee and
identifying its end verticesvi andvj into a new vertexv∗. If the graphG′ results from
G after contracting a sequence of edges, thanG is said to becontractibleto a graphG′.
Note the difference between vertex identifying and edge contraction, in Fig. 1.2.c) and d).
Vertex identifying preserves the edgeek, whereas edge contraction first removes this edge.
In Sec. 1.5 a detailed treatment of edge contraction and edgeremoval in the dual graphs
context is presented.

1.3 IMAGE PYRAMIDS

Visual data is characterized by large amount of data and highredundancy with relevant
information clustered in space and time. All this indicatesa need of organization and ag-
gregation principles, in order to cope with computational complexity and to bridge the gap
between raw data and symbolic description. Local processing is important in early vision,
since operations like convolution, thresholding, mathematical morphology etc. belong to
this class. However, using them is not efficient for high or intermediate level vision, such
as symbolic manipulation, feature extraction etc., because these processes need both local
and global information. Therefore a data structure must allow the transformation oflocal
information (based on sub-images) intoglobal information (based on the whole image),
and be able to handle both local (distributed) and global (centralized) information. Such
a data structure, the pyramid, is known ashierarchical architecturehierarchy [26], and it
allows distribution of the global information to be used by local processes. The pyramid
is a trade off between parallel architecture and the need fora hierarchical representation of
an image, i.e. at several resolutions [26].

An image pyramid (Fig. 1.3.a,b) describes the contents of animage at multiple levels of
resolution. High resolution input image is at the base level. Successive levels reduce the
size of the data by areduction factorλ > 1.0. Reduction windowsrelate one cell at the
reduced level with a set of cells in the level directly below.Thus, local independent (and
parallel) processes propagate information up and down and laterally in the pyramid. The
contents of a lower resolution cell are computed by means of areduction functionthe input
of which are the descriptions of the cells in the reduction window. Sometimes the descrip-
tion of the lower resolution needs to be extrapolated to the higher resolution. This function
is called therefinementor expansion function. It is used in Laplacian pyramids [5] and
wavelets [39] to identify redundant information in the higher resolution and to reconstruct
the original data. Two successive levels of a pyramid are related by the reduction window
and the reduction factor. Higher level description should be related to the original input
data in the base of the pyramid. This is identified by thereceptive field(RF) of a given
pyramidal cellci. TheRF (ci) aggregates all cells (pixels) in the base level of whichci is
the ancestor.

Based on how the cells in subsequent levels are joint, two types of pyramids exist:

• regular, and
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Figure 1.3. Multiresolution pyramid.

• irregular pyramids.

These concepts are strongly related to the ability of the pyramid to represent the regular
and irregular tessellation of the image plane.

Regular Pyramids Theconstant reduction factorandconstant size reduction window
completely define the structure of the regular pyramid. The decrease rate of cells from
level to level is determined by the reduction factor. The number of levelsh is limited by
the reduction factorλ > 1.0: h ≤ log(image size)/ log(λ). Themain computational ad-
vantageof regular image pyramids is due to theirlogarithmic complexity. Usually regular
pyramids are employed in a regular grid tessellated image plane, therefore the reduction
window is usually a square ofn×n, i.e. then×n cells are associated to a cell on a higher
level directly above. Regular pyramids are denoted using notationn × n/λ. The vertical
structure of a classical2×2/4 is given in Fig. 1.4.a). In this regular pyramid2×2 = 4 cells
are related to only one cell in the level directly above. Since the children have only one
parent this class of pyramids is also called non-overlapping regular pyramids. Therefore
the reduction factor isλ = 4. An example of2 × 2/4 regular image pyramid is given in
Fig. 1.4.b). The image size is512× 512 = 29× 29 therefore the image pyramid consist of
1 + 2 · 2 + 4 · 4 + ... + 28 × 28 + 29 × 29 cells, and the height of this pyramid is9. The
pyramid levels are shown by a white border on the left upper corner of image. See [30]
for extensive overview of other pyramid structures with overlapping reduction windows,
e.g. 3 × 3/2, 5 × 5/4. It is possible to define pyramids on other plane tessellation, e.g.
triangular tessellation [26].

Thus, because of the rigid vertical structure, the regular image pyramid is an efficient
structure for fast grouping and access to image objects across the input image, The regular

a) vertical structure b) image pyramid

Figure 1.4. 2× 2/4 regular pyramid.
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pyramid representation of a shifted, rotated and/or scaledimage is not unique, and more-
over it does not preserve the connectivity. Thus, [3] concludes that regular image pyramids
have to be rejected as general-purpose segmentation algorithms. This major drawback of
the regular pyramid motivated a search for a structure that is able to adapt on the image
data. It means, that the regularity of the structure is to be abandoned.

Irregular Pyramids Abandoning the regularity of the structure means that the hori-
zontal and vertical neighborhood have to be explicitly represented, usually by using graph
formalisms. These irregular structures are usually calledirregular pyramids. One of the
main goals of irregular pyramids is to achieve the shift invariance, and to overcome this ma-
jor drawback of their regular counterparts. Other motivations why one has to use irregular
structures are [36]: arrangement of biological vision sensors is not completely regular; the
CCD cameras cannot be produced without failure, resulting in an irregular sensor geome-
try; perturbation may destroy the regularity of regular pyramids; and image processing to
arbitrary pixels arrangement (e.g. log-polar geometries [1]).

Two main processing characteristics of the regular pyramids should be preserved by
building irregular ones [2]: (i) operation are local, i.e. the result is computed indepen-
dently of the order, this allows parallelization, and (ii) bottom-up building of the irregular
pyramid, with an exponential decimation of the number of cells.

The structure of the regular pyramid as well as the reductionprocess is determined by
the type of the pyramid (e.g.2 × 2/4). After removing this regularity constraint one
has to define a procedure to derive the structure of the reduced graphGk+1 from Gk,
i.e. a graph contraction method has to be defined. Irregular pyramids can be build by
parallel graph contraction [45], or graph decimation [41].Parallel graph contraction has
been developed only for special graph structures, like trees, and is not discussed in this
chapter. The graph decimation procedure is described in Sec. 1.5. An efficient random
decimation algorithm for building regular pyramids, called stochastic pyramids(MIS) is
introduced in [41]. A detailed discussion of this and similar methods is done in [35]. It is
shown that MIS in some cases is not logarithmically tapered,i.e. the decimation process
does not successively reduce the number of cells exponentially. The main reason for this
behavior is that the cell’s neighborhood is not bounded, forsome cases the degree of the
cell increases exponentially. In [35], two new methods based on maximal independent
edge set (MIES and MIDES) that overcome this drawback are presented. An overview of
the properties of regular and irregular pyramids is found in[37]. In irregular pyramids the
flexibility is paid by less efficient data access.

Most information in vision today is in the form of array representation. This is advanta-
geous and easily manageable for situations having the same resolution, size, and other typ-
ical properties equivalent. Various demands are appearingupon more flexibility and per-
formance, which makes the use of array representations lessattractive [15]. The increasing
use of actively controlled and multiple sensors requires a more flexible processing and rep-
resentation structure [36, 34]. CheaperCCD sensors could be produced if defective pixels
would be allowed, which yields in the resulting irregular sensor geometry [1, 50]. Image
processing functions should be generalized to arbitrary pixel geometries [44, 1]. The con-
ventional array form of images is impractical as it has to be searched and processed every
time if some action is to be performed and (i) features of interest may be very sparse over
parts of an array, leaving a large number of unused positionsin the array; (ii) a description
of additional detail can not be easily added to a particular part of an array.

In order to express the connectivity or other geometric or topological properties, the
image representation must be enhanced by a neighborhood relation. In the regular square
grid arrangement of sampling points, it is implicitly encoded as4- or 8-neighborhood with
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the well known paradox in conjunction with Jordan’s curve theorem. The neighborhood
of sampling points can be represented explicitly, too: in this case the sampling grid is
represented by agraph consisting of vertices corresponding to the sampling points and
of edges connecting neighboring vertices. Although this data structure consumes more
memory space it has several advantages, as follows [36]: thesampling points need not be
arranged in a regular grid; the edges can receive additionalattributes too; and the edges
may be determined either automatically or depending on the data. In irregular pyramids,
each level represents a partition of the pixel set into cells, i.e. connected subsets of pixels.
The construction of an irregular image pyramid is iteratively local [41, 19]: (i) the cells
have no information about their global position, (ii) the cells are connected only to (direct)
neighbors, and (iii) the cells cannot distinguish the spatial positions of the neighbors. This
means that we use only local properties to build the hierarchy of the pyramid. Usually,
on the base level (level0) of an irregular image pyramid the cells represent single pixels
and the neighborhood of the cells is defined by the4 -connectivity of the pixels. A cell
on levelk + 1 (parent) is a union of neighboring cells on levelk (children). As shown
in Sec. 1.5 this union is controlled bycontraction kernels(decimation parameters). Every
parent computes its values independently of other cells on the same level. This implies that
an image pyramid is built inO[log(image diameter)] parallel steps. Neighborhoods on
level k + 1 are derived from neighborhoods on levelk. Two cellsc1 andc2 are neighbors
if there exist pixelsp1 in c1 andp2 in c2 such thatp1 andp2 are4-neighbors.

Before we continue with the presentation of graph pyramids,a concept of planar graphs
is needed. A planar graph separates the plane into regions called faces. This idea of sep-
arating the plane into regions is helpful in defining the dualgraphs. Duality of a graph
brings together two important concepts in graph theory: cycles and cut-sets. This concept
of duality is also encountered in the graph-theoretical approach of image region and edge
extraction. The definition of dual graphs representing the partitioning of the plane, allows
one to apply transformations on these graphs, like edge contraction and/or removal to sim-
plify them in the sense of less vertices and edges. Edge contraction and removal introduces
naturally a hierarchy of dual graphs, the so calleddual graph pyramid.

1.4 PLANAR AND DUAL GRAPHS

A graphG̃ of finite sets of verticesV and edgesE is calledplane graphif it can be drawn
in a plane inR2 such that [8]:

• all V ⊂ R
2

• every edge is an arc7 between two vertices,

• no two edges are crossed.

Note thatR \ G̃ is an open set and its connected regions are facesf of G̃. It is said that
the plane graph divides the plane into regions. SinceG̃ is bordered, one of its faces is an
unbounded one (infinite area). This face is called thebackground face8. The other faces
enclose finite areas, and are called interior faces. Edges and vertices incident to a face
are called the boundary elements of that face. A planar embedding of a graphG is an
isomorphism betweenG and a plane graph̃G. G̃ is called a drawing ofG. Similar toG̃,
G is drawn so that its edges intersect only on vertices.

7An arc is a finite union of straight line segments, and a straight line segment in the Euclidean plane is a subset
of R

2 of the form{x + λ(y − x)|0 ≤ λ ≤ 1}∀x 6= y ∈ R
2.

8Called also exterior face.
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Figure 1.5. A planar graphG and its embedding in a plane, the plane grapheG.

A graphG is planar if it can be embedded on the plane. The concept of embeddings can
be extended to any surface. A graphG is embeddable in surfaceS if it can be drawn in
S so that its edges intersect only on their end vertices. A graph embeddable on the plane
is embeddable on the sphere too. It can be shown by using the stereoscopic projection of
the sphere onto a plane [49]. Note that the concept of faces isalso applicable to spherical
embeddings.

Let G in Fig. 1.5. represent a planar graph, in general with parallel edges and self-loops.
Since the graph is embedded onto a plane, it divides the planeinto faces. Let each of these
faces be denoted by a new vertex sayf , and let these vertices be put inside the faces, as
shown in Fig. 1.5. From this point on the notion of face vertices and face are synonymous.
Let the faces that are neighbors, i.e. that share the same edge e2 (they are incident on the
same edge), be connected by the edge, saye2, so that edgese2 ande2 are crossed. At the
end, for each edgee2 ∈ G there is an edgee2 of the newly created graphG, which is called
the dual graph ofG. If e2 is incident only with one face a self-loop edgee2 is attached to
the vertex on the face in which the edgee2 lays, of coursee2 and the self-loop edgee2 have
to cross each other. The adjacency of faces is expressed by the graphG. More formally
one can define dual graphs for a given plane graphG = (V,E) [49]:

Definition 1.2 (Dual graphs) A graphG = (V ,E) is a dual ofG = (V,E) if there is a
bijection between the edges ofG andG, such that a set of edges inG is a cycle vector if
and only if the corresponding set of edges inG is a cut vector.

There is a one-to-one correspondence between the vertex setV of G and the face setF
of G, therefore sometimes graphG = (V ,E) is written asG = (F,E) instead, without
fear of confusion. In order to show thatG is a dual ofG, one has to prove that vectors
forming a basis of the cycle subspace ofG correspond to the vectors forming a basis of the
cut subspace ofG. The edgesei of graphG in Fig. 1.6. correspond to edgesei in graph
G. The cycles{e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and{e6, e7, e8} form a basis of the
cycle subspace ofG. These cycles correspond to the set of edges{e1, e3, e4}, {e2, e3, e6},
{e4, e5, e8}, and {e6, e7, e8}, which form a basis of the cut subspace ofG. It follows
according to the definition of the duality, that graphG is a dual ofG. The graphG is called
theprimal graphandG thedual graph. Dual graphs are denoted by a line above the big
letter. If a planar graphG′ is a dual ofG, then a planarG is a dual ofG′ as well, and every
planar graph has a dual [8, 17] .

In the following, two important properties of dual graphs with respect to the edge con-
traction and removal operations are given, the proofs are due to [49]. These properties are
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Figure 1.6. A plane graphG and it dualG.

required to prove that during the process of dual graph contraction graphs stay planar and
are duals (Sec. 1.5). LetG and its dualG be two graphs. Let edgee ∈ G correspond to
edgee ∈ G. Note that a cycle inG corresponds to a cut inG and vice versa [49]. LetG′

denote the graphG after thecontractionof the edgee, andG′ the graph after theremoval
of the corresponding edgee from G.

Theorem 1.2 A graph and its dual are duals also after the removal of an edgee in the
primal graphG and the contraction of the corresponding edgee in the dual graphG.

Corollary 1.1 If a graphG has a dual, then every edge-induced subgraph ofG has also a
dual.

Theorem 1.3 (Whitney 1933)A graph is planar if and only if it has a dual.

Proof: The proofs can be found in [49] and [8].�

Dual Image Graphs An image is transformed into a graph such that, to each pixel a
vertex is associated, and pixels that are neighbors in the sampling grid are joint by an edge.
Note that no restriction on the sampling grid is made, therefore an image of regular as well
as non-regular sampling grid can be transformed into a graph. The gray value or any other
feature is simply considered as an attribute of a vertex (and/or an edge). Since the image is
finite and connected, the graph is finite and connected as well. The graph which represents
the pixels is denoted byG = (V,E) and is calledprimal graph9. Note that pixels represent
finite regions, and the graphG is representing in fact a graph with faces as vertices. The
dual of a face graph (see Sec. 1.4) is the graph representing borders of the faces, which in
fact are inter-pixel edges and inter-pixel vertices. This graph is denoted byG and is called
simply dual graph. Based on Theorem 1.3, dual graphs are planar, therefore images with
square grid are transformed into4− connected square grid graphs, since8− connected
square grid graphs are in general not planar10.

9Also called neighborhood graph.
10This holds for square grid graphs of grid size≥ 4 × 4.
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Primal graphG

Dual graphG

Figure 1.7. Image to dual graphs.

The same formalism as done for the pixels can be used at intermediate levels in image
analysis i.e. for region adjacency graphs (RAGs). RAGs can be the results of image
segmentation processes. Regions are connected sets of pixels, and are separated by region
borders. Their geometric dual though causes problems [32].This section is concluded by
a formal definition of the dual image graphs:

Definition 1.3 (Dual image graphs [31])The pair of graphs(G,G), whereG = (V,E)
and G = (V ,E) are called dual image graphs if both graphs(G,G) are finite, planar,
connected, not simple in general and duals of each other.

Dual graphs can be seen as an extension of the well know regionadjacency graphs
(RAG) representation. Note that this representation is capable to encode not only adjacency
relations but inclusion relations as well [32].

1.5 DUAL GRAPH CONTRACTION

Irregular (dual graph) pyramids are constructed in a bottom-up way such that a subse-
quent level (sayk + 1) results by (dually) contracting the precedent level (sayk). In this
section a short exposition of the dual graph contraction is given, following the work of
Kropatsch [32]. Building dual graph pyramids using this algorithm is presented in the next
section. Dual graph contraction (DGC) [32] proceeds in two steps:

I. primal-edge contraction and removal of its dual, and

II. dual-edge contraction and removal of its primal.

In Fig. 1.8. examples of these two steps are shown in three possible cases. Note that
these two steps correspond in [32] to the steps (I) dual edge contraction, and (II) dual face
contraction.

The base of the pyramid consists of the pair of dual image graphs(G0, G0). In order to
proceed with the dual graph contraction a set of so called contraction kernels (decimation
parameters) must be defined. The formal definition is postponed until the Sec. 1.5. Let
the set of contraction kernels be〈Sk, Nk,k+1〉. This set consists of a subset of surviving
verticesSk = Vk+1 ⊂ Vk, and a subset of non-surviving primal-edgesNk,k+1 ⊂ Ek

(where indexk, k+1 refer to contraction from levelk tok+1). Surviving vertices inv ∈ Sk

are vertices not to be touched by the contraction, i.e. aftercontraction these vertices make
up the setVk+1 of the graphGk+1; and every non-surviving vertexv ∈ Vk\Sk must be
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Pair of dual graphs(Gk, Gk) at levelk of the pyramid
ւ ց

primal graph dual graph

Gk = (Vk, Ek)
duals
↔ Gk = (V k, Ek)

⇓

I. Primal-edge contraction and removal of its dual
ւ ց

primal-edgecontractionin Gk and corresponding dual-edgeremovalin Gk

↓ ↓

G′ = (Sk, Ek \Nk,k+1)
duals
↔ G′ = (V k, Ek \Nk,k+1)

⇓

II. Dual-edge contraction and removal of its primal
ւ ց Remove allv with deg(v) ≤ 2

primal-edgeremovalin G′ and corresponding dual-edgecontractionin G′

↓ ↓

Gk+1 = (Vk+1, Ek+1)
duals
↔ Gk+1 = (V k+1, Ek+1)

⇓
Pair of dual graphs(Gk+1, Gk+1) at levelk + 1 of the pyramid

Figure 1.8. Dual graph contraction procedure (DGC).

paired to one surviving vertex in a unique way, by non-surviving primal-edges (Fig. 1.9.a).
In this figure, the shadowed vertexs is the survivor and this vertex is connected with arrow
edges (ns) with non-surviving vertices. Note that a contraction kernel is a tree of depth
one, i.e. there is only one edge between a survivor and a non-survivor, or analogously one
can say that the diameter of this tree is two.

The contraction of a non-surviving primal-edge consists inthe identification of its end-
points (vertices) and the removal of both the contracted primal-edge and its dual edge
(see Sec. 1.2 for details on these operations). Fig. 1.10.a)shows the normal situation,
Fig. 1.10.b) the situation where the primal-edge contraction creates multiple edges, and
Fig. 1.10.c) self-loops. In Fig. 1.10.c), redundancies (lower part) are decided through the
corresponding dual graphs and removed by dual graph contraction. In Fig. 1.10., the pri-
mal graph is shown with square (�) vertices and broken lines (- -) and its dual with circle
vertices (❍) and full lines (-).

In [32] it is shown that〈Sk, Nk,k+1〉 determine the structure of an irregular pyramid.
The relation between two pairs of dual graphs,(Gk, Gk) and(Gk+1, Gk+1), is established
by dual graph contraction with the set of contraction kernels 〈Sk, Nk,k+1〉 as:

(Gk+1, Gk+1) = C[(Gk, Gk), 〈Sk, Nk,k+1〉]. (1.3)

Dual-edge contraction and removal of its primal (second step) has a role of cleaning
the primal graph by simplifying most of the multiple edges and self-loops11, but not those
enclosing any surviving parts of the graph. They are necessary to preserve correct struc-

11Called also redundant edges.
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Figure 1.10. Dual graph contraction of a part of a graph.
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e
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middle partfirst part second part

Gk = (Vk, Ek) ↓

DGC
↓

e′ = (v, v′)

Gk+1 = (Vk+1, Ek+1)

Figure 1.11. Connecting pathCP (v, v′), e is the bridge of this path.

ture [32]. Dual graph contraction reduces the number of vertices and edges of a pair of
dual graphs, while preserving the topological relations among surviving parts of the graph.
In [31, 33] a detailed presentation of dual graph contraction is given.

Contraction Kernels Let S be the set of surviving vertices, andN the set of non-
surviving primal-edges. The connected components12 CC(s), s ∈ S, of subgraph(S,N)
form a set of rooted tree structuresT (s) that, if contracted, each of them would collapse
into the vertexs of the contracted graph. The number of these trees is|S|. The union
of treesT (s) contains the non-surviving primal-edgesN . T (s) is a spanning tree of
the connected componentCC(s), or equivalently,(V,N) is a spanning forest of the graph
G = (V,E). In order to decimate the graphG = (V,E) the set ofsurvivingverticesS ⊂ V
and the set ofnon-surviving primal-edgesN ⊂ E must be selected, such that the following
conditions are satisfied: (1) graph(V,N) is a spanning forest of graphG = (V,E), and
(2) the surviving verticess ∈ S ⊂ V are the roots of the forest(V,N).

Definition 1.4 (Contraction kernels) A set of disjoint rooted trees with length two of path
going through the root is called a set of contraction kernels.

Analogously, the treesT (v) of the forest(V,N) with rootsv ∈ V arecontraction kernels.
After applying the dual graph contraction algorithm on a graph, one has to establish a path
connecting two surviving vertices on the resulted new graph. Let G = (V,E) be a graph
with decimation parameters(S,N).

Definition 1.5 (Connecting path [31]) A path inG = (V,E) is called a connecting path
between two surviving verticess, s′ ∈ S if it consists of three subsets of edges:

• the first part is a possibly empty branch of contraction kernel T (s).

• the middle part is an edgee ∈ E \ N that bridges the gap between (connects) the
two contraction kernelsT (s) andT (s′).

• the third part is a possibly empty branch of contraction kernel T (s′).

See Fig. 1.11. for explanation. The connecting path is denoted byCP (s, s′). Edgee is
called thebridge of the connecting pathCP (s, s′). Each edgee′ = (v, v′) ∈ Ek+1 has
a corresponding connecting pathCPk(s, s′), wheres, s′ ∈ S ⊂ Vk are survivors in the

12Neglected level indexes refer to contraction from levelk to levelk + 1.
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Figure 1.12. Equivalent contraction kernel.

graphGk = (Vk, Ek). This means that two surviving verticess ands′, s 6= s′, that can
be connected by a path13 CPk(s, s′) in Gk are connected by an edge inEk+1. If the
graphGk is connected, after dual graph contraction the connectivity of the graphGk+1 is
preserved [31].

Dual edge contraction can be implemented by (1) simply renaming all the non-surviving
vertices to their surviving parent vertex (e.g. by using a find union set algorithm [7]), (2)
deleting all non-surviving edgesN and (3) their dualsN . We use different (MIS, MIES,
and D3P) stochastic methods to build contraction kernels [35].

Equivalent contraction kernels [5] combines two or more successive reductions in
one equivalent weighting function in order to compute any level of any regular pyramid
directly from the base level. Similarly, [33] combines two (or more) dual graph con-
tractions (as shown in Fig. 1.12.) of graphGk = (Vk, Ek) with decimation parameters
〈Sk, Nk,k+1〉 and〈Sk+1, Nk+1,k+2〉 into one single equivalent contraction kernel (ECK)
Nk,k+2 = Nk,k+1 ◦Nk+1,k+2

14:

C[C[Gk, 〈Sk, Nk,k+1〉], 〈Sk+1, Nk+1,k+2〉] = C[Gk, 〈Sk+1, Nk,k+2〉] = Gk+2

(1.4)

The structure ofGk+1 is determined byGk and the decimation parameters〈Sk, Nk,k+1〉.
Simply overlaying the two sets of contraction kernels,〈Sk, Nk,k+1〉 (the one from level
k to k + 1) and〈Sk+1, Nk+1,k+2〉 (the one from levelk + 1 to k + 2) will not yield a
proper equivalent contraction kernel〈Sk+1, Nk,k+2〉. The surviving vertices fromGk to
Gk+2 areSk+1 = Vk+2. The edges of the searched contraction kernels must be formed
by edgesNk,k+2 ⊂ Ek. An edgeek+1 = (vk+1, v

′
k+1) ∈ Nk+1,k+2 corresponds to a

connecting pathCPk(vk+1, v
′
k+1) in Gk

15. By Definition 1.5,CPk(vk+1, v
′
k+1) consists

of one branch ofTk(vk+1), one branch ofTk(v′
k+1), and one surviving edgeek ∈ Ek

connecting the two contraction kernelsTk(vk+1), andTk(v′
k+1).

Definition 1.6 (Bridge [31]) Function bridge: Ek+1 7→ Ek assigns to each edgeek+1 =
(vk+1, wk+1) ∈ Ek+1 one of the bridgesek ∈ Ek of the connecting pathsCPk(vk+1, wk+1):

bridge(ek+1) = ek. (1.5)

13By definition of the connectivity of a graph, there exists always a path between any two vertices of graph.
14Only Gk is shown instead of(Gk, Gk) for simplicity.
15If there are more than one connecting paths, one is selected.
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Connecting two disjoint tree structures by a single edge results in a new tree structure. Now,
Nk,k+2 can be defined as the result of connecting all contraction kernelsTk by bridges as:

Nk,k+2 = Nk,k+1 ∪
⋃

ek+1∈Nk+1,k+2

bridge(ek+1) (1.6)

This definition satisfies the requirements of a contraction kernel [31]. Analogously, the
above process can be repeated for any pair of levelsk andk′ such thatk < k′. If k =
0 andk′ = h, whereh is the level index of the top of the pyramid, with the resulting
equivalent contraction kernel (N0,h), the base level (0) is contracted in one step into an
apexVh = {vh}. ECKs are able to compute any level of the pyramid directly from the
base.

Dual Graph Pyramid A graph pyramid is a pyramid where each level is a graph
G(V,E) consisting of verticesV and of edgesE relating two vertices. In order to cor-
rectly represent the embedding of the graph in the image plane [13], we additionally store
the dual graphG(V ,E) at each level. The levels are represented as pairs(Gk, Gk) of dual
plane graphsGk andGk. See Sec. 1.4 for more details on this representation. The se-
quence(Gk, Gk), 0 ≤ k ≤ h is called dualgraph pyramid, where0 is the base level index
andh is the top level index, also called the height of the pyramid.Moreover the graphs
are attributed,G(V,E, attrv, attre), whereattrv : V → R

+ andattre : E → R
+, i.e.

content of the graph is stored in attributes attached to bothvertices and edges. In general a
graph pyramid can be generated bottom-up as shown in Alg. 1.

Algorithm 1 – Constructing Dual Graph Pyramid

Input : Graphs(G0, G0)

1: k ← 0.
2: while further abstraction is possibledo
3: determine contraction kernels,Nk,k+1.
4: perform dual graph contraction and simplification of dual graphs,(Gk+1, Gk+1) =

C[(Gk, Gk), Nk,k+1].
5: apply reduction functions to compute contentattr : Gk+1 → R

+ of new reduced
level.

6: k ← k + 1.
7: end while

Output : Graph pyramid –(Gk, Gk), 0 ≤ k ≤ h .

Let the building of the dual graph pyramid be explained by using the image in Fig. 1.7.
For the sake of simplicity of the presentation, in the figuresafterward, the dual graphs are
not shown explicitly as well as intra-level relations. An example of this intra-level rela-
tion is shown in Fig. 1.9.b) with the contraction kernel shadowed. In the example from
Fig. 1.13. initially the attributes of the vertices receivethe gray values of the pixels. The
first step determines what information in the current top level is important and what can
be dropped. A contraction kernel is a (small) sub-tree of thetop level, the root of which
is chosen to survive (black circles in Fig. 1.13.b). Fig. 1.13.a) shows the window and the
selected contraction kernels with gray. Selection criteria in this case contracts only edges
inside connected components having the same gray value. Allthe edges of the contraction
trees are dually contracted during step3 from Alg. 1. Dual contraction of an edgee (for-
mally denoted byG/{e}) consists of contractinge and removing the corresponding dual
edgee from the dual graph (formally denoted byG \ {e}). This preserves duality and the
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a) image to graphG0 b) contraction kernelN01

double edges

c) G′ after dual-edge contraction ofG0 d) G1 after the removal of redundant edges inG′

Figure 1.13. Dual graph contraction inG0 and the creation of theG1 of the pyramid.

dual graph needs not be constructed from the contracted primal graphG′ at the next level.
Since the contraction of an edge may yield multi-edges (an example shown with arrows in
Fig. 1.13.c) and self-loops there is a second simplificationphase of step3 which removes
all redundant multi-edges and self-loops. Note that not allsuch edges can be removed
without destroying the topology of the graph: if the cycle formed by the multi-edge or the
self-loop surrounds another part of the data its removal would corrupt the connectivity!
Fortunately this can be decided locally by the dual graph since faces of degree two(hav-
ing the double-edge as boundary) andfaces of degree one(boundary = self-loop) cannot
contain any connected elements in its interior. Since removal and contraction are dual oper-
ations, the removal of a self-loop or of one of the double edges can be done by contracting
the corresponding dual edges in the dual graph (which are notdepicted in our example for
the sake of simplicity). The dual contraction from our example remains a simple graph
G1 without self-loops and multi-edges (Fig. 1.13.d). Step3 generates a reduced pair of
dual graphs. Their contents is derived in step4 from the level below using the reduction
function. In our example reduction is very simple: the surviving vertex inherits the color
of its sons. The following table summarizes dual graph contraction in terms of the control
parameters used for abstraction and the conditions to preserve topology:

level representation contract / remove conditions

0 (G0, G0)
↓ contraction kernelN0,1 forest, depth 1

(G0/N0,1, G0 \N0,1)
↓ redundant edgesS0,1 deg v ≤ 2

1 (G1 = G0/N0,1 \ S0,1,
G1 = G0 \N0,1/S0,1)

↓ contraction kernelN1,2 forest, depth 1
...

1.6 A HIERARCHY OF PARTITIONS

The segmentation problem is supposed to find natural groupings of the pixel set given as
input. The first question that comes in mind is how these natural groupings are found.
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Algorithm 2 – Borůvka’s Algorithm
Input: graphG(V,E)

1: MST ← empty edge list
2: all verticesv ∈ V make a list of treesL
3: while there is more than one tree inL do
4: each treeT ∈ L finds the edgee with the minimum weight which connectsT to

G \ T and add edgee to MST.
5: using edgee merge pairs of trees inL
6: clean the graph from self-loops if necessary
7: end while

Output: minimum weight spanning tree - edge induced subgraph on MST.

In other words what makes pixels in a partition be more like one another than pixels in
other segments. This observation pours down into two issues[9]: (i) how to measure the
similarity between pixels, and (ii) how to evaluate a partitioning of the pixels into segments.

It is expected that, these measures of dissimilarity capture the expectation that the dis-
tance in a feature space of pixels within a segment is less than the distance between pixels
in different segments. The second issue is defining the criterion function to be optimized.
The goal is to find the groups or segments that have strong internal similarities, which opti-
mize the criterion function. But before we continue with thepresentation of the algorithm
for hierarchical image partitioning, let we recall the ideaof minimum spanning tree (MST)
and Bor̊uvka’s algorithm.

Minimum Weight Spanning Tree (MST) The minimum spanning tree, called after-
ward MST, is the simplest and best-studied optimization problem in computer science.
According to [42] the”Minimum spanning tree is a cornerstone problem of combinatorial
optimization and in a sense its cradle”. The problem is defined as follows. LetG = (V,E)
be a undirected connected plane graph consisting of the finite set of verticesV and the fi-
nite set of edgesE. Each edgee ∈ E is identified with a pair of verticesvi, vj ∈ V such
thatvi 6= vj . Let each edgee ∈ E be associated with auniqueweightw(e) = w(vi, vj),
from the totally ordered universe (it is assumed that weights are distinct, if not, ties can
be broken arbitrarily). Note that parallel edges, for e.g.e1 = (v1, v2) ande2 = (v1, v2)
e1 6= e2, have different weights. The problem is formulated as construction of a minimum
total weight spanning tree ofG.

Borůvka’s Algorithm The idea of Bor̊uvka [4] is to do steps like in Prim’s algorithm
[43], in parallel over the graph at the same time. This algorithm constructs a spanning tree
in iterations composed of the steps shown in Alg. 2. First create a listL of trees, each a
single vertexv ∈ V . For each treeT of L find the edgee with thesmallest weight, which
connectsT to G\T . The treesT are then connected toG\T with the edgese. In this way
the number of trees inL is reduced, until there is only one, the minimum weight spanning
tree.

Observation 1.1 In the3rd step of Alg. 2, each treeT ∈ L finds the edge with the minimal
weight, and as trees become larger, the process of finding these edges takes longer.

Minimum Spanning Tree with DGC Taking the Obs. 1.1 into consideration, the con-
traction of the edgee, which connectsT andG \ T in the4th step of Alg. 2 will speed up
the process of searching for minimum weight edges in Borůvka’s algorithm. If the graphs
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are represented as adjacency lists then a vertex with degreed can enumerate its incident
edges in its neighborhood in timeO(d). Since in the levelk + 1, after edge contraction,
each tree (from levelk) will be represented by a vertex, the search for the edge withthe
minimum weight would be a local search, and the resulting graph is smaller (in the sense
of less vertices and less edges), thus the next pass can run faster.

The dual graph contraction algorithm [32] is used to contract edges and createsuper
verticesi.e. it creates father-son relations between vertices in subsequent levels (vertical
relation), whereas Borůvka’s algorithm is used to create son-son relations between vertices
in the same level (horizontal relation). Here we expand Borůvka’s algorithm with the steps
that contract edges, remove parallel edges and self loops (if the connectivity of the graph
is not changed), see Alg. 3. In the section below we will refinethe son-son relation to
simulate the pop-out phenomena [27], and to find region borders quickly and effortlessly
in a bottom-up ’stimulus-driven’ way based on local differences in a specific feature (e.g.
color).

Algorithm 3 – Borůvka’s Algorithm with DGC
Input: attributed graphG0(V,E)

1: k ← 0
2: repeat
3: for each vertexv ∈ Gk find the minimum-weight edgee ∈ Gk incident to the vertex

v and mark the edgese to be contracted
4: determineCCk

i as the connected components of the marked edgese
5: contract connected componentsCCk

i in a single vertex and eliminate the parallel
edges (except the one with the minimum weight) and self-loops and create the graph
Gk+1 = C[Gk, CCk

i ]
6: k ← k + 1
7: until all connected components ofG are contracted into one single vertex

Output: a graph pyramid with an apex.

Building a Hierarchy of Partitions Hierarchies are a significant tool for image par-
titioning as they are naturally combined with homogeneity criteria. Horowitz and Pavlidis
[24] define a consistent homogeneity criteria over a setV as a boolean predicateP over its
partsΦ(V ) that verifies the consistency property:∀(x, y) ∈ Φ(V ) x ⊂ y ⇒ (P (y) ⇒
P (x)). In image analysis this states that the subregions of a homogeneous region are also
homogeneous. It follows that ifPyr is a hierarchy andP a consistent homogeneity crite-
ria onV then the set of maximal elements ofPyr that satisfyP defines a unique partition
of V . Thus the combined use of a hierarchy and homogeneity criteria allows to define a
partition in a natural way.

The goal is to find partitions of connected componentsPk = {CC(u1), ..., CC(un)}
such that these elements satisfy certain properties. We usethe pairwise comparison of
neighboring vertices (partitions) to check for similarities [10, 11, 16]. A pairwise compar-
ison function, B(CC(ui), CC(uj)) is true, if there is evidence for a boundary between
CC(ui) andCC(uj), and false when there is no boundary. Note thatB(·, ·) is a boolean
comparison function for pairs of partitions. The definitionof B(·, ·) depends on the ap-
plication. The pairwise comparison functionB(·, ·) that we use measures the difference
along the boundary of two components relative to the differences of component’s internal
differences. This definition tries to encapsulate the intuitive notion of contrast: a contrasted
zone is a region containing two components whose inner differences (internal contrast) are
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Gk−1

Gk

ui

uj

CCi CCjmax{attre(·)}

= Int(CCi)

max{attre(·)} = Int(CCj)

min{attre(·)} = Ext(CCi, CCj)

e

Figure 1.14. Internal and External contrast.

less then the differences between them (external contrast). We define anexternal contrast
between two components and aninternal contrastof each component. These measures are
defined analogously to [10, 11, 16].

Every vertexu ∈ Gk is a representative of a connected componentCC(u) of the par-
tition Pk. The equivalent contraction kernel [32] of a vertexu ∈ Gk, N0,k(u) is a set of
edges on the base level that are contracted, i.e. applyingN0,k(u) on the base level con-
tracts the subgraphG′ ⊆ G onto the vertexu. Theinternal contrastof CC(u) ∈ Pk is the
largest dissimilarityinside the componentCC(u) i.e. the largest edge weight ofN0,k(u)
of vertexu ∈ Gk, that is

Int(CC(u)) = max{attre(e), e ∈ N0,k(u)}. (1.7)

Let ui, uj ∈ Vk, ui 6= uj be the end vertices of an edgee ∈ Ek. Theexternal contrast
between two componentsCC(ui), CC(uj) ∈ Pk is thesmallest dissimilaritybetween
componentCC(ui) andCC(uj) i.e. the smallest edge weight connectingN0,k(ui) and
N0,k(uj) of verticesui, uj ∈ Gk:

Ext(CC(ui), CC(uj)) = min{attre(e), e = (ui, uj) : ui ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}.
(1.8)

This definition is problematic since it uses only the smallest edge weight between the two
components, making the method very sensitive to noise. But in practice this limitation
works well as shown in Sec. 1.6. In Fig. 1.14. an example ofInt(·) andExt(·, ·) is given.
TheInt(CC(ui)) of the componentCC(ui) is themaximum of the weights of the solid
edges (analogously forInt(CC(uj)) ), whereasExt(CC(ui), CC(uj)) is theminimum
of the weights of the dashed edges connecting componentCC(ui) andCC(uj). Vertices
ui anduj are the representatives of the componentsCC(ui) andCC(uj), i.e. by con-
tracting the edgesN0,k(ui) one arrives to the vertexui. The pairwise comparison function
B(·, ·) between two connected componentsCC(ui) andCC(uj) can now be defined as:

B(CC(ui), CC(uj)) =

{
True if Ext(CC(ui), CC(uj)) > PInt(CC(ui), CC(uj)),
False otherwise,

(1.9)
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Algorithm 4 – Hierarchy of Partitions
Input : Attributed graphG0.

1: k ← 0
2: repeat
3: for all verticesu ∈ Gk do
4: Emin(u)← argmin{attre(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: end for
6: for all e = (ui, uj) ∈ Emin with

Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)) do
7: includee in contraction edgesNk,k+1

8: end for
9: contract graphGk with contraction kernels,Nk,k+1: Gk+1 = C[Gk, Nk,k+1].

10: for all ek+1 ∈ Gk+1 do
11: set edge attributesattre(ek+1)← min{attre(ek) | ek+1 = C(ek, Nk,k+1)}
12: end for
13: k ← k + 1
14: until Gk = Gk−1

Output : A region adjacency graph (RAG) pyramid.

where the minimum internal contrast difference between twocomponents,PInt(·, ·), re-
duces the influence of too small components and is defined as:

PInt(CC(ui), CC(uj)) = min{Int(CC(ui)) + τ(CC(ui)), Int(CC(uj)) + τ(CC(uj))}
(1.10)

For the functionB(·, ·) to be true i.e. for the border to exist, the external contrastdiffer-
ence must be greater than the internal contrast differences. The reason for using a thresh-
old function τ(CC(·)) is that for small componentsCC(·), Int(CC(·)) is not a good
estimate of the local characteristics of the data, in the extreme case when|CC(·)| = 1,
Int(CC(·)) = 0. Any non-negative function of a single componentCC(·), can be used
for τ(CC(·)).

The algorithm to build the hierarchy of partitions is shown in Alg. 4. Each vertex
ui ∈ Gk defines aconnected regionCC(ui) on the base level of the pyramid, and since
the presented algorithm is based on Borůvka’s algorithm [4], it builds a MST(ui) of each
region, i.eN0,k(ui) =MST(ui) [21]. The idea is to collect the smallest weighted edges
e (4th step) that could be part of the MST, and then to check if the edge weightattre(e)
is smaller than the internal contrast of both of the components (MST of end vertices of
e) (5th step). If these conditions are fulfilled then these two components are merged (7th

step). All the edges to be contracted form the contraction kernelsNk,k+1, which are then
used to create the graphGk+1 = C[Gk, Nk,k+1] [36]. In generalNk,k+1 is a forest.
We update the attributes of those edgesek+1 ∈ Gk+1 with the minimum attribute of the
edgesek ∈ Ek that are contracted intoek+1 (9th step). The output of the algorithm is a
pyramid where each level represents a RAG, i.e a partition. Each vertex of these RAGs
is the representative of a MST of a region in the image. The algorithm is greedy since it
collects only the nearest neighbor with the minimum edge weights and merges them if the
pairwise comparison (Eq. 1.9) evaluates to ‘false’. Some properties of the algorithm are
given in [22].

Experiments on Image Graphs The base level of our experiments is the trivial par-
tition, where each pixel is a homogeneous region. The attributes of edges can be de-



24 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

fined as the difference between features of end vertices,attre(ui, uj) = |F (ui)− F (uj)|,
whereF is some feature. Other attributes could be used as well e.g. [46] attre(ui, uj) =

exp{−||F (ui)−F (uj)||
2
2

σI
}, whereF is some feature, andσI is a parameter, which controls

the scale of proximity measures ofF . F could be defined asF (ui) = I(ui), for gray value
intensity images, orF (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV
color distance [46]. However the choice of the definition of the weights and the features
to be used is in general a hard problem, since the grouping cues could conflict with each
other [38].

For our experiments we use, as attributes of edges, the difference between pixel inten-
sitiesF (ui) = I(ui), i.e. attre(ui, uj) = |I(ui) − I(uj)|. For color images we run the
algorithm by computing the distances (weights) in RGB colorspace. We choose this simple
color distances in order to study the properties of the algorithm. To compute the hierarchy
of partitions we defineτ(CC) to be a function of the size ofCC e.g.τ(CC) := α/|CC|,
where|CC| is the size of the componentCC andα is a constant. The algorithm has one
running parameterα, which is used to compute the functionτ . A larger constantα sets the
preference for larger components. A more complex definitionof τ(CC), which is large
for certain shapes and small otherwise would produce a partitioning which prefers certain
shapes. To speed up the computation, vertices are attributed (attrv) with the internal dif-
ferences, average color and the size of the region they represent. Each of these attributes is
computed for each level of the hierarchy. Note that the height of the pyramid depends only
on the image content.

We use indoor and outdoor RGB images.We found thatα := 300 produces the best hier-
archy of partitions of the images shown in Monarch16, Object45 and Object1117 Fig.1.15.(I,
III, IV) and α := 1000 for the Woman image in Fig.1.15.(II), after the average intensity
attribute of vertices is down-projected onto the base grid.Fig. 1.15. shows some of the par-
titions on different levels of the pyramid and the number of components. Note that in all
images there are regions of large intensity variability andgradient. This algorithm copes
with this kind of gradient and variability.

The algorithm is capable of grouping perceptually important regions despite of large
intensity variability and gradient. In contrast to [10] theresult is a hierarchy of partitions
at multiple resolutions suitable for further goal driven, domain specific analysis. On lower
levels of the pyramid the image is over-segmented whereas inhigher levels it is under-
segmented. Since the algorithm preserves details in low-variability regions, a noisy pixel
would survive through the hierarchy, see Fig. 1.15.(Id). Image smoothing in low variabil-
ity regions would overcome this problem. We do not smooth theimages, as this would
introduce another parameter into the method. The robustness of topology is discussed in
the section below. The hierarchy of partitions can also be built from an over-segmented
image to overcome the problem of noisy pixels. Note that the influence ofτ in the decision
criterion is smaller as the region gets bigger for a constantα. The constantα is used to
produce a kind of over-segmented image and the influence ofτ decays with each new level
of the pyramid. For an over-segmented image, where the size of the regions is large, the
algorithm becomes parameterless.

Robustness of Graph Pyramids There are several places in the construction of a
graph pyramid where noise can affect the result: (1) the input data; (2) during selection
of contraction kernels; (3) when summarizing the content ofa reduction window by the
reduction function.

16Waterloo image database.
17Coil 100 image database.
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I) Monarch768× 512

a)0 (393 216) b) 14 (108) c) 18 (35) d) 22 (18)
II) Woman116× 261

a)0 (25 056) b) 10 (38) c) 14 (7) d) 15 (3)
III) Object45 128× 128

a)0 (16 384) b) 10 (43) c) 12 (13) d) 14 (3)
IV) Object11 128× 128

a)0 (16 384) b) 10 (38) c) 12 (6) d) 13 (2)
Legend:Level (# of partitions)

Figure 1.15. Partitioning of images.

The effects on the topology can be the following: a connectedregion falls into parts;
two regions merge into one; break inclusion, create new inclusions; two adjacent regions
become separated; two separated regions become adjacent. All these changes reflect in
the Euler characteristic which we will use to judge the topological robustness of graph
pyramids. Let us start with the influence of a wrong pixel on the connectivity structure. A
wrong pixel adjacent to a region can corrupt its connectivity (and the property of inclusion
in 2D) if it falls on a one pixel wide branch of the figure. The consequence can be that the
region breaks into two parts which increases the Euler characteristic by1. A noisy pixel
inside a region creates a new connected component which is a topological change (e.g.



26 MULTIRESOLUTION IMAGE SEGMENTATIONS IN GRAPH PYRAMIDS

a new inclusion) but it can be easily recognized and eliminated by its size. However the
change is again not very drastic since one noisy pixel can change the Euler characteristic
only by1. If all regions of the picture both foreground and background are at least2 pixels
wide a single wrong pixel changes their size but not their connectivity.

For a branch of two pixels in width, two noisy pixels in a particular spatial position
relative to each other are needed to modify the topology. More generally to break the
connectivity across ann-pixel wide branch of a region noisy pixels are needed, forming
a connected path from one side of the branch to the other. Thiscan be considered as
the consequence of the sampling theorem (see [29]). All these topological modifications
happen in the base of our pyramid. As long as we use topology-preserving constructions
and/or consider identified noise pixels as non-survivors the topology is not changed in
higher levels.

Different criteria and functions can be used for selecting contraction and reduction ker-
nels. In contrast to data, noise errors are introduced by thespecific operations and may
be the consequence of numerical instabilities or quantizations errors. There is no general
property allowing to derive an overall property like robustness of all possible selection or
reduction functions. Hence operational robustness needs to be checked for any particular
choice.

1.7 EVALUATION OF SEGMENTATIONS

The segmentation process results in ’homogeneous’ regionswith respect to the low-level
cues using some similarity measures. Problems emerge because the homogeneity of low-
level cues does not always lead to semantics and the difficulty of defining the degree of
homogeneity of a region. Also some of the cues can contradicteach other. Thus, low-level
cue image segmentation cannot produce a complete final ‘good’ segmentation [48], leading
researchers to look at the segmentation only in the context of a task, as well as the evalua-
tion of the segmentation methods. However in [40] the segmentation is evaluated purely18

as segmentation by comparing the segmentation done by humans with those done by a par-
ticular method. As can be seen in Fig. 1.16. 2, 3, 4 there is a consistency in segmentations
done by humans (already demonstrated empirically in [40]),even thought humans segment
images at different granularity (refinement or coarsening). This refinement or coarsening
could be thought as hierarchical structure of the image, i.e. the pyramid.

Evaluation of the segmentation algorithms is difficult because it depends on many fac-
tors [23] among them: the segmentation algorithm; the parameters of the algorithm; the
type(s) of images used in the evaluation; the method used forevaluation of the segmenta-
tion algorithms, etc. Our evaluation copes with these facts: (i) real world images should
be used, because it is difficult to extrapolate conclusion based on synthetic images to real
images [53], and (ii) the human should be the final evaluator [6].

There are two general methods to evaluate segmentations:

• qualitative, and

• quantitative methods.

Qualitative methods involve humans for doing the evaluation, meaning that different ob-
servers would give different opinions about the segmentations (e.g. already encountered
in edge detection evaluation [23], or in image segmentation[40]). On the other hand,

18The context of the image is not taken into consideration during segmentation.
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quantitative methods are classified into analytical and empirical methods [52]. Analytical
methods study the principles and properties of the algorithm, like processing complexity,
efficiency and so on. Empirical methods study properties of the segmentations by mea-
suring how ‘good’ a segmentation is close to an ‘ideal’ one, by measuring this ‘goodness’
with some function of parameters. Qualitative and empirical methods depend on the sub-
jects, the first one in coming up with the reference (perfect)segmentation19 and the second
one defining the function. The difference between the segmented image and the reference
(ideal) one can be used to asses the performance of the algorithm [52]. The reference im-
age could be a synthetic image or manually segmented by humans. Higher value of the
discrepancy means bigger error, signaling poor performance of the segmentation method.
In [52], it is concluded that evaluation methods based onmis-segmented pixels should be
more powerful than other methods using other measures. In [40] the error measures used
for segmentation evaluation ‘count’ the mis-segmented pixels.

Note that the segmented image #35/2 in Fig. 1.16. can be coarsened to obtain the image
in #35/4, this is calledsimple refinement; whereas to obtain image in #35/3 from #35/2 (or
vice versa) we must coarsen in one part of the image and refine in the other (notice the chin
of the man in #35/3, this is calledmutual refinement. Therefore in [40] a segmentation
consistency measure that does not penalize this granularity difference is defined (Sec. 1.7).

The segmentation results of NCutSeg [46] on gray value images are shown in Fig. 1.16.
in 5, and 6, of Bor̊uSeg with MIS [41] decimation strategy in 7, and 8; with MIES [19] in 9,
and 10; and with D3P [25] in 11, and 12. Note that the NCutSeg and BorůSeg methods are
capable of producing a hierarchy of images. These methods use only local contrast based
on pixel intensity values. As it is expected, and can be seen from the Fig. 1.16., segmen-
tation methods which are based only on low-level local cues cannot create segmentation
results as good as humans. Even thought it looks like the NCutSeg method produces more
regions, actually the overall number of regions in Fig. 1.16. 6, 8, 10, 12 is almost the same,
but Bor̊uSeg produces a bigger number of small regions. The methods (see Fig. 1.16.)
were capable of segmenting the face of a man satisfactory (image #35). The BorůSeg
method did not merge the statue on the top of the mountain withthe sky (image #17), but
it merged it with the mountain, compared to humans which do segment this statue as a
single region. All methods have problems segmenting the seecreatures (image #12). Note
that the segmentation done by humans on the image of rocks (image #18), contains the
axis of symmetry, even thought there is no ’big’ change in thelocal contrast, therefore the
NCutSeg and Bor̊uSeg methods fail in this respect. It must be mentioned that none of the
methods is ’looking’ for this axis of symmetry.

In the rest of this section, we evaluate two graph-based segmentation methods, the nor-
malized cut [46] (NCutSeg) and the method based on the Borůvka’s minimun spanning
tree (MST) [21] (Bor̊uSeg). In fact we evaluate three flavors of the BorůSeg depending on
the decimation strategy used: MIS, MIES or D3P, denoted by BorůSeg (MIS), Bor̊uSeg
(MIES) and Bor̊uSeg (D3P). See [35] for details on these decimation strategies. We com-
pare these methods following the framework of [40] i.e. comparing the segmentation result
of the two graph-based methods with the human segmentations. The results of the evalua-
tion are reported in the section below. Also the variation ofregions sizes is shown in this
section.

Some examples of applying BorůSeg on color images are shown in Sec. 1.6, where for
visualization purposes each region has the mean color value. In this section we use the
region borders to highlight the regions. Note that, two pixel wide borders are used only for

19Also called a gold standard [14].
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better visualization purposes, and are not produced by these segmentation methods nor are
part of the evaluation process.

Segmentation Benchmarking In [40] segmentations made by humans are used as a
reference and basis for benchmarking segmentations produced by different methods. The
concept behind this is the observation that even though different people produce different
segmentations for the same image, the obtained segmentations differ, mostly, only in the
local refinement of certain regions. This concept has been studied on the human segmen-
tation database (see Figure 1.16. 2, 3, 4) by [40] and used as abasis for defining two error
measures, which do not penalize a segmentation if it is coarser or more refined than an-
other. In this sense, apixel error measureE(S1, S2, p), called the local refinement error,
is defined as:

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|

|R(S1, p)|
, (1.11)

where\ denotes set difference,|x| the cardinality of a setx, andR(S, p) is the set of
pixels corresponding to the region in segmentationS that contains pixelp. Using the local
refinement errorE(S1, S2, p) the following error measures are defined [40]: theglobal
consistency error(GCE), which forces all local refinements to be in the same direction,
and is defined as:

GCE(S1, S2) =
1

|I|
min





∑

p∈I

E(S1, S2, p),
∑

p∈I

E(S2, S1, p)



 , (1.12)

and thelocal consistency error(LCE), which allows refinement in different directions in
different parts of the image, and is defined as:

LCE(S1, S2) =
1

|I|

∑

p∈I

min {E(S1, S2, p), E(S2, S1, p)} , (1.13)

where|I| is the number of pixels in the imageI. Notice that LCE≤ GCE for any two
segmentations. GCE is a tougher measure than LCE, because GCE tolerates only simple
refinements, while LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented above to do an evaluation of the
BorůSeg method using the human segmented images from the Berkley humans segmented
images database [40]. The results of comparison of the NCutSeg method versus humans
and humans versus humans are confirmed [40].

Evaluation of Segmentations on the Berkley Image Database As mentioned
in [40] a segmentation consisting of a single region and a segmentation where each pixel is
a region, is the coarsest and finest possible of any segmentation. In this sense, the LCE and
GCE measures should not be used when the number of regions in the two segmentations
differs a lot. Taking into consideration that both methods can produce segmentations with
different number of regions, we have taken for each image as aregion count reference
number the average number of regions from the human segmentations available for that
image. We instructed the NCutSeg to produce the same number of regions and for the
BorůSeg we have taken the level of the pyramid that has the regionnumber closest to the
same region count reference number.

As data for the experiments, we take100 gray level images from the Berkley Image
Database20. For segmentation, we have used the normalized cuts implementation available

20http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
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on the Internet21 and for the Bor̊uSeg we have implementations based on combinatorial
pyramids22 [20].

For each of the images in the test, we have calculated the GCE and LCE using the results
produced by the two methods and all the human segmentations available for that image.
Having more then one pair of GCE and LCE for the methods NCutSeg and Bor̊uSeg (all
its versions) and each image, we have calculated the mean andthe standard deviation.

In Fig. 1.17., the histogram of error values LCE (a) and GCE (b) ([0 . . . 1], where zero
means no error) of Humans vs. Humans, NCutSeg vs. Human, BorůSeg (all versions)
vs. Human are shown.̂µ represents the mean value of the error. Notice that the humans
are consistent in segmenting the images and the Human versusHuman histogram shows a
peak very close to0. i.e. a small̂µ = 0.0592 for LCE andµ̂ = 0.0832 for GCE. For the
NCutSeg and Bor̊uSeg there is not a significant difference between the valuesof LCE and
GCE (see the mean values of the respective histograms). One can conclude that the quality
of segmentation of these methods seen over the whole database is not different.

We wanted to also see how produced region sizes vary from one method to the other
and how this variation depends on the content of the segmented images. For this, we have
normalized the size of each region by dividing it to the size of the segmented image it be-
longed to (number of pixels), and for each segmentation, we have calculated the standard
deviation (σS) of the normalized region sizes. For the case of human segmented images,
we have done separately the calculation for each segmentation and taken the mean of the
results for the segmentations of the same image. Fig. 1.18.a) shows the resultingσS for
70 images (a clear majority for which theσS order Humans>MSTBorůSeg>NCutSeg ex-
isted). Results are shown sorted by the sum of the 3σS for each image. The average
region size variation for the whole dataset is:0.1537 forHumans,0.0392 for NCutSeg, and
0.0872 for MSTBorůSeg (MIES). Note, that the size variation is smallest and almost con-
tent independent for the NCutSeg and largest for Humans. We calculated the variation of
regions sizes for the different decimation strategies MIS,MIES and D3P. The average re-
gion size variation for the whole data set is0.0893 for MSTBorůSeg (MIS) and0.1037 for
MSTBorůSeg (D3P). In Fig. 1.18.b) a solid line represents the mean region size variation
of the three decimation strategies MIES, MIS, and D3P, and the doted line the standard de-
viation. Note that the standard deviation stays small for the whole spectrum which shows
the region size variation consistency between the three decimation methods.

1.8 CONCLUSION

Image segmentation aggregates sets of pixels into connected regions that satisfy a certain
homogeneity criteria. All such regions partition a given image into homogeneous areas.
Real objects are composed of such homogeneous regions but there are no globally unified
criteria to aggregate the smaller homogeneous regions intothe larger regions correspond-
ing to objects. We therefore need a representation able to aggregate smaller regions into
larger regions using different criteria on different levels of abstraction. Starting with the
dual graphs created for the input image, the irregular graphpyramid is constructed bottom-
up by repeatedly applying dual graph contraction. This progressively simplifies the graphs,
level by level, obtaining a topmost level usually made out ofone single vertex, called the

21http://www.cis.upenn.edu/∼jshi/software/.
22http://www.prip.tuwien.ac.at/Research/FSPCogVis/Software/.
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apex. Dual graph contraction involves concepts from graph theory like edge contraction
and it’s dual, edge removal to simplify a pair of dual graphs while preserving planarity
and duality. The edges to be removed/contracted build up contraction kernels which form
a spanning forest of the input graph. Repeated contraction steps can be combined in a
single contraction using large equivalent contraction kernels. The receptive field of a high
level vertex is spanned by the tree of the equivalent contraction kernel. The corresponding
regions are connected and form an inclusion hierarchy well suited to hold the intended seg-
mentations. In this chapter, we presented a hierarchical image partitioning method using
a pairwise similarity function. The function encapsulatesthe intuitive notion of contrast
by measuring the difference along the boundary of two components, relative to a mea-
sure of differences of the components’ internal variation.Two components are merged
if there is an edge with low-cost connection between them. Borůvka’s minimum weight
spanning tree algorithm together with the dual graph contraction algorithm is used for
building a minimum weight spanning tree, and at the same time, preserving the connec-
tivity of the input graph. For vision tasks, in natural systems, the topological relations
seem to play a role even more important than precise geometrical position. Even though
the minimum weight spanning tree algorithm makes local greedy decisions, it produces
perceptually important partitions by finding region borders quickly and effortlessly in a
bottom-up ’stimulus-driven’ way based only on local differences in a specific feature. The
framework is general and can handle large variation and gradient intensity in images. Ex-
perimental results prove the validity of the theoretical concept. We evaluated quantitatively
the segmentation result produced by different methods. Theevaluation is done by using
discrepancy measures, that do not penalize segmentations that are coarser or more refined
in certain regions. We used only gray images to evaluate the quality of results on one
feature. It is shown that the graph-based method presented produce qualitatively similar
results.

Acknowledment Supported by the Austrian Science Found (FWF) under grants P18716-
N13 and S9103-N04.
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Figure 1.16. Segmentation of Humans, NCutSeg and MSTBorůSeg (MIS, MIES, D3P).
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Histograms of errors
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Figure 1.17. Histograms of discrepancy measure: LCE (a) and GCE (b).
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