Sussex Research Online

Applied morphological processing of English

Article (Unspecified)

Minnen, Guido, Carroll, John and Pearce, Darren (2001) Applied morphological processing of
English. Natural Language Engineering, 7 (3). pp. 207-223. ISSN 1351-3249

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/1213/

This document is made available in accordance with publisher policies and may differ from the
published version or from the version of record. If you wish to cite this item you are advised to
consult the publisher’s version. Please see the URL above for details on accessing the published
version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable, the material
made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third
parties in any format or medium for personal research or study, educational, or not-for-profit
purposes without prior permission or charge, provided that the authors, title and full bibliographic
details are credited, a hyperlink and/or URL is given for the original metadata page and the
content is not changed in any way.

http://sro.sussex.ac.uk

http://sro.sussex.ac.uk/

Natural Language Engineering 7(?) ?-7. Printed in the United Kingdom 1
© 2001 Cambridge University Press

Applied morphological processing of English

GUIDO MINNEN {
JOHN CARROLL
DARREN PEARCE

Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH, UK
email: {firstname.lastname}Qcogs.susx.ac.uk

(Received 26 January 2001; revised 3 May 2001)

Abstract

We describe two newly developed computational tools for morphological processing: a
program for analysis of English inflectional morphology, and a morphological generator,
automatically derived from the analyser. The tools are fast, being based on finite-state
techniques, have wide coverage, incorporating data from various corpora and machine
readable dictionaries, and are robust, in that they are able to deal effectively with unknown
words. The tools are freely available. We evaluate the accuracy and speed of both tools
and discuss a number of practical applications in which they have been put to use.

1 Introduction

Morphological processing is a core component in many different types of language-
based computer applications. We describe two newly developed tools for robust
processing of English inflectional morphology that can be used in such applications:
a morphological analyser and a morphological generator.!

The morphological analyser maps a word form to its underlying lemma plus in-
flectional suffix (if any) using knowledge about the morphology of English acquired
semi-automatically from several large corpora and machine readable dictionaries.
The analyser is based on one originally developed as part of the GATE information
extraction framework (Cunningham, Wilks, & Gaizauskas, 1996). The morphologi-
cal generator is derived automatically from the analyser by means of a compilation
process. This means that any changes and improvements to the analyser are re-
flected in the generator with no manual effort. The generator synthesises a word
form given a lemma, its part-of-speech (PoS), and the type of inflection required.

t Current address: Motorola Human Interface Laboratory, Schaumburg, IL 60196, USA;
email: minnen@labs.mot.com

! Minnen, Carroll, and Pearce (2000) present some of the aspects of this work that relate
to generation.

2 G. Minnen, J. Carroll and D. Pearce

Neither the analyser nor the generator contain an explicit lexicon or word-list,
but instead comprise a set of morphological generalisations together with a list of
exceptions for specific (irregular) word forms. This organisation into generalisations
and exceptions can save time and effort in system development since the addition
of new vocabulary with regular morphology does not require any changes to the
source files. In addition, for generation, the generalisation-exception architecture
can be used to specify—and also override—preferences in cases where a lemma, has
more than one possible surface word form given a particular inflectional type and
part-of-speech.

The morphological tools are easy to integrate into applications, each being pack-
aged up as a Unix “filter’. The tools are based on efficient finite-state techniques, and
are implemented using the widely-available Flex utility (a reimplementation of the
AT&T Unix Lex tool (Levine, Mason, & Brown, 1992)). We evaluate the accuracy
and the speed of both tools using the CELEX lexical database of English (Baayen,
Piepenbrock, & van Rijn, 1993) and the British National Corpus (BNC; Burnard,
1995).

The analyser and the generator are freely available to the NLP research commu-
nity (see section 7 below), and are currently being applied in a number of practical
NLP systems. In this article we describe in detail one such use (of both tools), in a
prototype system for automatic simplification of English newspaper text. This ap-
plication gives rise to a number of practical morphological and orthographic issues
which we also discuss.

The article is structured as follows. Sections 2 and 3 describe the morphologi-
cal analyser and generator, respectively. Section 4 evaluates both tools. Section 5
discusses a number of practical applications in which the morphological processing
tools have been put to use. Section 6 relates our work to that of others, and we
conclude (section 7) with directions for future work.

2 Morphological analysis

Morphological analysis is a vital processing step in many NLP systems. It maps
word forms into lemmas together with any morphosyntactic information conveyed
by affixes. This enables a system, for instance, to store information about words
keyed by lemma rather than by full word form, to use the morphosyntactic in-
formation to guide subsequent linguistic processing, and to use words’ lemmas to
generalise across the corresponding word form tokens.

A number of wide-coverage morphological analysis systems for English have been
developed over the years. These differ along a number of dimensions. Firstly, the
processing techniques used include finite-state transduction, finite-state word seg-
mentation coupled with a morpheme-level grammar, and implementations of theo-
ries of lexical inheritance. Depending on the technique used, the systems might or
might not be efficient enough to process large amounts of text. Secondly, in some
analysers the lexical data consist of a list of lemmas and information about their
inflectional properties, whereas in others it comprises an exhaustive list of inflected
word forms. The data or the systems (or both) may be freely available, or only

Applied morphological processing of English 3

obtainable under restrictive licensing conditions. Finally, some systems are able
to deal with morphological generation within a single framework, whereas others
are inherently non-reversible. In Section 6 we present a detailed review of extant
approaches and contrast them with ours.

Our tools cover the inflectional morphology of English nouns and verbs, handling
the productive English suffix s for the plural form of nouns and the third person
singular present tense of verbs, and ed for the past tense, en for the past participle,
and ing for the present participle forms of verbs.?

By default, the input to the analyser is assumed to be tagged, using PoS labels
that follow the same pattern as the Lancaster CLAWS tag sets (Garside, Leech, &
Sampson, 1987; Burnard, 1995)—with verb tags starting with V etc. The analyser
returns the lemma of the word form, a specification of the inflectional type, and the
PoS label.? Similarly, the input to the generator is a lemma, an inflectional type, and
a PoS label. When processing languages with richer inflectional morphology than
English, performing morphological analysis before PoS determination may be more
appropriate. However, in expecting tagged input, the analyser conforms to current
established practice in large-scale, applied processing of English text (e.g. Baldwin
et al., 1995; Gaizauskas, Wakao, Humphreys, Cunningham, & Wilks, 1995), in which
a PoS tagger incorporating a large full-form lexicon (often acquired from large
training corpora) and unknown word guesser is applied first, with morphological
analysis carried out in a subsequent phase.

2.1 Morphological analysis using Flex

The morphological analyser is implemented in Flex. Flex is conventionally used
for constructing ‘scanners’: programs that recognise lexical patterns in textual in-
put (Levine et al., 1992). A Flex description—the high-level description of a scanner
that Flex takes as input—consists of a set of ‘rules’: pairs of regular expression pat-
terns (which Flex compiles into deterministic finite-state automata (Aho, Sethi, &
Ullman, 1986)) and actions consisting of arbitrary C code. Flex creates as output
a C program which at run-time scans a text looking for occurrences of the regular
expressions. Whenever it finds one, it executes the corresponding C code. Flex is
part of the Berkeley Unix distribution, and as a result Flex programs are highly
portable. The standard version of Flex works with all of the ISO-8559 character
sets; Unicode support is also available.

The analyser comprises: (1) a set of of approximately 1,400 Flex rules which
express morphological generalisations together with a list of exceptions for specific
words; and (2) around 350 lines of C/Flex code which, among other things, defines
the functions called in the actions specified in those rules. The input is expected to
be a sequence of tokens of the form wordform_label, where wordform specifies the

2 At present, we do not cover comparative and superlative forms of adjectives since their
productivity is much less predictable.

3 The morphological analyser should therefore be distinguished from a stemmer (e.g.
Porter, 1980), which heuristically truncates word forms.

4 G. Minnen, J. Carroll and D. Pearce

word form to be analysed, and label specifies its PoS label, the symbol _ being a
delimiter. Input that is not of this form is copied through to the output unchanged.
Example (1) illustrates a Flex rule that captures a morphological generalisation.*

(1) {A}+{C}"ied" {return(lemma(3,"y","ed"));}

The left-hand side of the rule is a regular expression. {A} stands for exactly one
occurrence of an element of the (predefined) character set A, and {A}+, a sequence
of one or more As. We assume here that A abbreviates the (upper and lower case)
letters of the alphabet, and C the consonants. Double quotes indicate literal char-
acter symbols. The right-hand side of the rule gives the code to be executed when
an input string matches the regular expression. When the rule matches the input
carried, for example, the function lemma (defined elsewhere in the analyser) is called
to determine the word form corresponding to the input: in this case the function
removes the last three characters of the word form, and then attaches the character
y, the delimiter +, and the inflection type ed; the output is therefore carry+ed.

Of course not all past tense/participle verb forms ending in éed are analysed
correctly by the simple rule in (1) since English contains many irregularities and
subregularities. These are dealt with using additional, more specific, rules. The
order in which these rules are applied to the input follows exactly the order in
which the rules appear in the Flex description. This makes for a very simple and
perspicuous way to express generalizations and exceptions. For instance, the rule
in (2) analyses the verb boogied as boogie+ed rather than the incorrect *boogy+ed
which would follow from the application of the more general rule in (1).

(2) "boogied" {return(lemma(1,"","ed"));}

The organisation into generalisations and exceptions as described in this section
can save time and effort in system development. Dealing with a new item of vo-
cabulary does not necessarily require that the analyser source be modified; if the
word has regular morphology then no change is needed, otherwise a single new rule
implementing the irregularity must be added. This can lead to a considerable saving
in development time. Moreover, words that have not previously been encountered
are very often handled correctly by the rules expressing generalisations.

2.2 Processing options

The morphological analyser supports various Unix command line options to give
the user more flexibility. One option indicates that no PoS labels are present in
the input; although this can be useful when no tagger is available, it seriously
compromises accuracy. Another option controls whether PoS labels in the input are
copied through to the output. In addition, for development purposes, there is an

* The rules used in the examples throughout the remainder of the article have been
simplified slightly for reasons of exposition. In particular, the treatment of the delimiter
symbol _ and the PoS label is ignored.

Applied morphological processing of English 5

Original sentence:

But_CJC he PNP was_VBD also_AV0 drawn_VVN to_PRP the AT0 Jews_NN2
whom _PNQ he_ PNP met_VVD in PRP their DPS Polish_AJ0 villages NN2 ,_
victims_NN2 of PRF persecution NN1 and_CJC war_NN1 ,_, &bquo_“ old_AJ0
Jews_NN2 with PRP prophets_.NN2 &equo_” beards_ZNN2 and_CJC
passionate_AJO rags NN2 ,_, to_PRP their DPS ruined_AJ0 ghettoes NN2
and_CJC synagogues_NN2 ._.

Analysed sentence:

But_CJC he PNP be+ed_VBD also_AV0 draw+en_VVN to_PRP the_AT0
Jew+s_NN2 whom_PNQ he_PNP meet+ed_VVD in_PRP their_DPS Polish_AJ0
village+s_NN2 |_ victim+s_NN2 of PRF persecution_ NN1 and_CJC war_NN1 ,_|
&bquo_“ 0ld_AJO0 Jew+s_NN2 with_ PRP prophet+s NN2 &equo” beard+s_NN2
and_CJC passionate_AJ0 rag+s_ NN2 ,_, to_.PRP their_DPS ruined_AJ0
ghetto+s_NN2 and_CJC synagogue+s_NN2 ._.

Fig. 1. An example of morphological analysis.

interactive mode that allows the user to provide input via the command line rather
than a file.
Figure 1 gives an example of morphological analysis of a sentence from the BNC.

2.3 Incorporated data

The original GATE morphological analyser (Cunningham et al., 1996) included
exception lists taken from the WordNet 1.5 lexical database (Fellbaum, 1998),
containing 5,254 verbs and 5,973 nouns. Of these exceptions, around 75% were
covered by a set of approximately fifty regular expression rules.’ In addition to
the WordNet data, we have semi-automatically acquired new rules for irregular
and subregular words from the following corpora and machine readable dictionar-
ies: the LOB corpus (Garside et al., 1987), the University of Pennsylvania Tree-
bank (Marcus, Santorini, & Marcinkiewicz, 1993), the SUSANNE corpus (Sampson,
1995), the Lancaster/IBM Spoken English Corpus (Knowles, Williams, & Taylor,
1996), the Oxford Psycholinguistic Database (Quinlan, 1992), and the ‘Computer-
Usable’ OALDCE from the Oxford Text Archive (Mitton, 1992). We have inten-
tionally avoided using proprietary data—for example from commercially published
dictionaries—to keep the tools free of restrictive licensing conditions.

3 Morphological generation

Most approaches to natural language generation (NLG) ignore morphological vari-
ation during word choice and application of grammatical constraints, postponing
the computation of the actual output word forms to a final stage, sometimes termed

5 WordNet entries including the _ character, entries with alternative forms, and obvious
errors were all removed, leaving around 19% of the original WordNet exceptions.

6 G. Minnen, J. Carroll and D. Pearce

‘linearisation’. An important advantage of this setup is that the preceding syntac-
tic/lexical realisation component does not have to consider all possible word forms
corresponding to each lemma (Shieber, van Noord, Moore, & Pereira, 1990). For
development and maintenance reasons it is also advantageous for morphological
generation to be a postprocessing component that is separate from the rest of the
NLG system. Moreover, such a generator can be used on its own in other types of
applications that produce natural language but do not contain a standard realisa-
tion component, such as text simplification (see section 5).

The Flex description of the morphological generator is derived automatically from
the analyser through a compilation process which is computationally very cheap
(taking just a few seconds). A benefit of this arrangement is that after modifications
to the analyser, the generator can be updated automatically and will reflect the
modifications without any further manual effort. Just like the analyser, it supports
various command line options and an interactive mode.

The input to the generator is expected to be a sequence of tokens of the form
lemma+inflection_label, where lemma specifies the lemma of the word form to be
generated, inflection specifies the type of inflection (i.e. s, ed, en or ing), and label
specifies the PoS of the word form; the symbols + and _ are delimiters.

3.1 Deriving the generator

The compilation process ‘inverts’ each analyser regular expression pattern / action
pair to derive the generator. It does this by simulating the effect of the analyser
action on the pattern; this produces the new generator pattern. The new action
consists of a call to a function that removes the last n characters from the input,
where n is the number of characters the analyser action adds, and then appends
the characters that were removed by the analyser action. So, for example, (3) shows
the compilation process applied to the rule in (1).

(3) {a}+{C}"ieq" {return(lemma(3,"y","ed"));} (analyser)
1
{A}+{C}"y+ed" {return(glemma(4,"ied"));} (g9enerator)

In addition to the processing of individual rules, the compiler concatenates to the
generator description the required C/Flex declarations and definitions of the gen-
erator actions.

More formally, given the analyser action lemma(m,s;,s2), the corresponding
generator action is glemma(n,s3), where n is the sum of length(s1) and length(ss)
plus 1 (for the + delimiter), and s3 is the last m characters of the analyser pattern.
Thus for the rule analysing the irregular plural crises of the noun crisis in (4), we
have m = 2, sy = "is", and s, = "s".

(4) "crises" {return(lemma(2,"is","s"));}
The compilation process produces the generator rule in (5), in which the call to

glemma deletes the last n = 4 characters of the input string (i.e. "is+s"), and then
appends s3 = "es" (the last m characters of the analyser pattern).

Applied morphological processing of English 7

(5) "crisis+s" {return(glemma(4,"es"));}

3.2 Inflectional preferences

Flex does not require the rules constituting a scanner to be mutually exclusive.
Thus, for morphological generation, the description can encode the inflectional
morphology of lemmas that have more than one possible inflected form given a
particular PoS label and inflectional type. An example of this is the multiple inflec-
tions of the noun cactus, which has not only the Latinate plural form cacti but also
the Anglicised plural form cactuses. In addition, inflections of some words differ
according to dialect. For example, the past participle form of the verb to bear is
borne in British English, whereas in American English the preferred word form is
born.

In cases where there is more than one possible inflection for a particular input
lemma, the order of the rules in the description determines the word form output.
For example, with the noun cactus, a preference for generating cacti is expressed
by having the corresponding rule precede the one generating cactuses.

In Flex, rule choice based on ordering is overridden if the the second or subsequent
match covers a longer segment of the input: in that case the longest match heuristic
applies (Levine et al., 1992). This cannot happen in the case of the generator,
though, since the input is matched and processed word-by-word. However, it should
be noted that the generator will always choose between multiple inflections: there
is no way for it to execute all relevant actions and output all possible word forms
for a particular input.®

A related issue concerns the treatment of past tense and past participle forms that
are identical. In such cases, we decided the analyser should output the lemma plus
(only) the suffix +ed. However, the generator must be able to accept the +en suffix
specification for these words, so for each lemma concerned we include a special
comment in the analyser source telling the compilation program that builds the
generator to allow +en as well as +ed.

3.3 Consonant doubling

Another issue that poses problems for morphological generation is the phenomenon
of consonant doubling. This occurs mainly in British English, and involves the
doubling of the final consonant of a verb lemma in the participle and past tense
forms. For example, the past tense/participle inflection of the verb travel is travelled
in British English, where the final consonant of the lemma is doubled before the
suffix is attached. In American English the corresponding form is usually traveled.

6 In the implementation, rules corresponding to dispreferred word forms are actually
created in a commented out form by the analyser-to-generator compilation process, to
avoid Flex warnings saying that the rule patterns cannot be matched. We indicate this
to the compilation program via a special comment on each such rule in the analyser
source.

8 G. Minnen, J. Carroll and D. Pearce

Consonant doubling is triggered on the basis of both orthographic and phonological
information: when a word ends in one vowel followed by one consonant and the
last part of the word is stressed, the consonant is usually doubled (Procter, 1995).
However, there are exceptions to this, and in any case the input to the morphological
generator does not contain information about stress.

Consider the Flex rule in (6).

(6) {A}+"t+ed V" {return(glemma("t","ed"));}

Given the input submit+ed_V this rule correctly generates submitted by adding ¢
and then ed to the lemma submit. However, the verb to exhibit does not undergo
consonant doubling so this rule would generate, incorrectly, the word form ezhibit-
ted.

In order to ensure that the correct inflection of a verb is generated, the morpho-
logical generator uses a list of around 1,100 lemmas that allow consonant doubling
which we have extracted automatically from the BNC. The list is checked before
inflecting a verb. We found that there are many more verbs that do not allow con-
sonant doubling, so listing the verbs that do is the most economical solution. An
added benefit is that if a lemma does allow consonant doubling but is not present in
the list then the word form generated will still be correct with respect to American
English.

4 Evaluation

In order to evaluate the accuracy of both tools, we extracted from the CELEX
lexical database of English (version 2.5) all inflected noun and verb word forms, i.e.
past tense, past and present participle, and third person singular present tense in-
flections of verbs, and all plural nouns. After excluding multi-word entries (phrasal
verbs, etc.) we ended up with 38,882 word forms (out of the total of 160,595 entries
in CELEX). We input each of these word forms to the analyser and compared the
output with the lemmatisation provided by CELEX. This revealed 895 mistakes ap-
parently made by the analyser. In a number of cases the CELEX analysis was wrong
in that it disagreed with the entry for the word in the Cambridge International Dic-
tionary of English (Procter, 1995). We ignored these mistakes. Of the remaining
mistakes a total of 396 concerned word forms that do not occur anywhere in the
100M words of the BNC; we categorised these as irrelevant for practical applica-
tions and so discarded them. Thus the type accuracy of the morphological analyser
with respect to CELEX was 99.0%. The token accuracy was 99.7% with respect to
the 14,825,661 relevant tokens in the BNC. Errors made by the analyser consisted
mainly of cases where a rule was applied that was too general. For example, the
third person singular present tense inflection of verbs like dispense, incense, and
license were incorrectly analysed as having a lemma ending in s, as in dispens+s.
We used the same methodology to evaluate the morphological generator, except
that this time the input was the correct analyses and we compared the output to
the corresponding word forms. Numerically, the results were similar: the generator
made 979 mistakes, of which 346 concerned word forms not occurring in the BNC.

Applied morphological processing of English 9

Table 1. Accuracy and speed of the analyser and generator.

type token inflections throughput

accuracy accuracy (words/sec) (words/sec)

Analyser 99-94% 99-93% 174K 240K
Generator 99-96% 99-98% 148K 218K

After discarding these, the morphological generator had 98.4% type accuracy with
respect to CELEX, and 99.4% token accuracy with respect to the BNC.

In the course of the evaluation we noticed that CELEX is inconsistent with re-
spect to word forms exhibiting consonant doubling. In the main, it contains (British
English) consonant doubled forms. However, for 129 lemmas in CELEX, the BNC
contains consonant doubled forms and CELEX does not. For example, the BNC
contains the form programming but CELEX does not. The form programing does
occur in CELEX but not in the BNC. If these cases—which make up more than
20% by type of the remaining mistakes made by the generator—are taken into ac-
count then the accuracy results improve: the type accuracy goes up to 98.7% and
the token accuracy to 99.5%.

After this evaluation we collected up the errors and we have now fixed almost
all of them. The error rate of the analyser and generator is now in the range four
to six errors per ten thousand verb/noun types, and between two and seven errors
per ten thousand tokens; Table 1 summarises the current accuracy figures. We
have also tested the processing speed of the tools. Despite their wide coverage the
morphological analyser and generator are very fast: they analyse/generate inflected
verbs and nouns at a rate of more than 140K per second (as measured on a Sun
Ultra 10 360MHz workstation). When applied to ordinary running text both rates
are in excess of 210K words per second (Table 1). The executable files are relatively
compact, each being approximately 700Kbytes in size.

5 The morphological analyser and generator in applied systems

Both morphological tools are packaged up as separate, individual modules, with the
intention that they be treated by application systems as ‘black boxes’. There are
a number of advantages in localising morphological processing in this way. For the
tool developer, a benefit is that since there are no competing claims on the represen-
tation framework from other types of linguistic and non-linguistic knowledge, the
developer is free to express morphological information in a perspicuous and elegant
manner. For the application developer, such a setup facilitates more systematic and
reliable updating. From a software engineering perspective, modularisation reduces
system development costs and increases system reliability. Moreover, as standalone,
independent modules, the morphological tools are more easily shareable between
different NLP applications, and integrated into new ones.

The tools are being used in a number of practical applications by various groups

10 G. Minnen, J. Carroll and D. Pearce

in the UK. The morphological analyser has been used to group together inflectional
variants of verbs and the heads of their complements for unsupervised learning of
verb subcategorisation (Briscoe & Carroll, 1997), selectional preferences (McCarthy,
1997), and diathesis alternations (McCarthy & Korhonen, 1998). The analyser was
used to create the frequency lists for the sampling frame for the SENSEVAL-1
exercise (Kilgarriff, 1998). It forms part of a prototype word sense disambiguation
system (Carroll & McCarthy, 2000), and is being used in research into methods
for the semantic interpretation of complex nominals in medical domains (Grover
& Lascarides, 2001). Other, commercial applications are in corpus processing for
dictionary publishing, in particular as part of the creation of ‘word sketches’ for
lexicographers (Kilgarriff & Rundell, 1999), and in product marketing, producing
lemma frequency data from large corpora to inform the selection of new brand
names. An earlier version of the analyser is used in the LaSIE system (Gaizauskas
et al., 1995) for robust lemmatisation in information extraction tasks.

These applications have run the tools using a variety of methods. The tools have
been invoked as standalone programs, run within an XML processing pipeline and as
a module in a TIPSTER-style document processing architecture (inside appropriate
‘wrapper’ programs), and called (with piped input and output) from Perl and Lisp
programs.

The analyser and the generator are also being used by students on NLP courses
at a number of universities in Europe.

5.1 Case study: text simplification

In addition to the uses outlined above, the morphological analyser and generator
both form part of a prototype system for automatic simplification of English news-
paper text (Carroll et al., 1999). The goal is to help people with aphasia (a language
impairment typically occurring as a result of a stroke or head injury) to better un-
derstand news stories published in their local newspaper. The system comprises
two main components: an analysis module which downloads the source newspaper
texts from the World Wide Web and computes syntactic analyses for the sentences
in them, and a simplification module which operates on the output of the analyser
to improve the comprehensibility of the text. Syntactic simplification (Canning &
Tait, 1999) transforms the syntax trees produced in the analysis phase, for example
converting sentences in the passive voice to active, and splitting long sentences at
appropriate points. A subsequent lexical simplification stage (Devlin & Tait, 1998)
replaces difficult or rare content words with more common synonyms.

The analysis component uses the morphological analyser to enable the base forms
of words to be passed through the system; this eases the task of the simplification
module as it does not need to consider all possible inflections of the lemmas in the
text. The final processing stage in the system is therefore morphological generation,
using the generator described in the previous section. This is illustrated in figure 2.

Applied morphological processing of English 11

PoS Tagger

morphological

ANALYSER analyser

parser

analysed
newspaper text

syntactic
simplifier

COMPILATION
lexical PROCESS
SIMPLIFIER simplifier

morphological
generator

simplified
newspaper text

Fig. 2. Text simplification system architecture.

OUTPUT:

5.1.1 Morphological processing

We have tested the components of the simplification system on a corpus of a thou-
sand news stories downloaded from the Sunderland Echo (a local daily newspaper
in North-East England). In our testing we found that newly encountered vocabu-
lary only rarely necessitates modification of the analyser/generator source; if the
word has regular morphology then it is handled by the rules expressing generalisa-
tions. Also, a side-effect of the fact that the generator is derived from the analyser
is that the two modules have exactly the same coverage and are guaranteed to stay
in step with each other. This is important in the context of an applied system. The
accuracy of the generator is quite sufficient for this application; our experience is
that typographical mistakes in the original newspaper text are much more common
than errors in morphological processing.

12 G. Minnen, J. Carroll and D. Pearce

5.1.2 Orthographic processing

Some orthographic phenomena span more than one word. Such phenomena cannot
be dealt with as part of morphological generation since this works strictly on indi-
vidual words. We have therefore implemented a final orthographic postprocessing
stage. Consider the sentence:”

(7) *Brian Cookman is the attraction at the King ’s Arms on Saturday night
and he will be back on Sunday night for a acoustic jam session.

This is incorrect orthographically because the determiner in the final noun phrase
should be an, as in an acoustic jam session. In fact an must be used if the fol-
lowing word starts with a vowel sound, and e otherwise. We achieve this, again
using a filter implemented in Flex, with a set of general rules keying off the next
word’s first letter (having skipped any intervening sentence-internal punctuation),
together with a list of exceptions (for example, heir, unanimous) collected using
the pronunciation information in the ‘Computer-Usable’ OALDCE, supplemented
by further cases (for example, unidimensional) found in the BNC. In the case of
abbreviations or acronyms (recognised by the occurrence of non-word-initial cap-
ital letters and trailing full-stops) we key off the pronunciation of the first letter
considered in isolation.

Similarly, the orthography of the genitive marker cannot be determined without
taking context into account, since it depends on the identity of the last letter of
the preceding word. In the sentence in (7) we need only eliminate the space before
the genitive marking, obtaining King’s Arms. But, following the newspaper style
guide, if the preceding word ends in s or z we have to ‘reduce’ the marker as in, for
example, Stacey Edwards’ skilful fingers.

The generation of contractions presents more of a problem. For example, changing
he will to he’ll would make (7) more idiomatic. But there are cases where this
type of contraction is not permissible. Since these cases seem to be dependent on
syntactic context (see section 6 below), and we have syntactic structure from the
analysis phase, we are in a good position to make the correct choice. However, we
have not yet tackled this issue and currently take the conservative approach of not
contracting in any circumstances.

6 Discussion

We are following a well-established line of work using finite-state techniques for
lexical and shallow syntactic NLP tasks (e.g. Karttunen, Chanod, Grefenstette, &
Schiller, 1996). Lexical transducers have been used extensively for morphological
analysis, and in theory a finite-state transducer implementing an analyser can be
reversed to produce a generator. However, we are not aware of published research
on finite-state morphological generators that: (1) establishes whether in practice

7 This sentence is taken from the news story “The demise of Sunderland’s Vaux Breweries
is giving local musicians a case of the blues” published in the Sunderland Echo on 26
August 1999.

Applied morphological processing of English 13

they perform with similar efficiency to morphological analysers; (2) quantifies their
type/token accuracy with respect to an independent, extensive ‘gold standard’; or
(3) discusses the issues involved when integrating them into larger, applied systems.
Furthermore, although a number of finite-state compilation toolkits (e.g. Karttunen,
1994) are publicly available or can be licensed on reasonable terms for research
use, associated wide-coverage linguistic descriptions—for example English morpho-
logical lexicons—are usually commercial products targeted at technology provider
companies and are therefore beyond the reach of most of the NLP research com-
munity.

The work reported here is also related to work on lexicon representation and
morphological processing using the DATR, representation language (Cahill, 1993;
Evans & Gazdar, 1996). However, we adopt less of a theoretical and more of an
engineering perspective, focusing on morphological processing in the context of
wide-coverage practical NLP applications. There are also parallels to research in
the two-level morphology framework (Koskenniemi, 1983), although in contrast
to our approach this framework has required exhaustive lexica and hand-crafted
morphological (unification) grammars in addition to orthographic descriptions (van
Noord, 1991; Ritchie, Russell, Black, & Pulman, 1992). The SRI Core Language
Engine (Alshawi, 1992) uses a set of declarative segmentation rules which are similar
in content to our rules and are used in reverse to generate word forms. The SRI
system, however, is not publicly available, again requires an exhaustive stem lexicon,
and the rules are not compiled into an efficiently executable finite-state machine
but are only interpreted.

The work that is perhaps the most similar in spirit to ours is that of the LADL
group at the University of Paris 7, in their compilation of large lexicons of inflected
word forms into finite-state transducers (Mohri, 1996). The resulting analysers run
at a comparable speed to our tools and the (compacted) executables are of similar
size. However, a full-form lexicon is unwieldy and inconvenient to update, and a
system derived from it cannot cope gracefully with unknown words because it does
not contain generalisations about regular or subregular morphological behaviour.
Also, the LADL data is not freely available.

The only other large-scale freely available morphological processing system of
which we are aware (Karp, Schabes, Zaidel, & Engedi, 1992) comprises a morpho-
logical analyser, but not a generator. The system uses an exhaustive lexicon and
so again cannot deal with words not listed in the lexicon. However, the system can
accurately analyse text that has not been pre-tagged with PoS labels, whereas our
analysis tool cannot. It also has the advantage of being able to provide more than
a single analysis for homographs such as the verb lay (which can be either the base
form of to lay or the past tense of to lie). On the other hand, Karp et al.’s system
stores its lexical data in a disk-based hash table so disk seek times would limit the
maximum rate of processing to only around 2K words per second.

Turning to morphological generation, the morphological components of current
widely-used NL realisers (or tactical generation systems) tend to consist of hard-
wired procedural code that is tightly bound to the workings of the rest of the
system. For instance, the Nigel grammar (Matthiessen, 1984) contains Lisp code

14 G. Minnen, J. Carroll and D. Pearce

that classifies verb, noun and adjective endings, and these classes are picked up
by further code inside the KPML system (Bateman, 2000) itself which performs
inflectional generation by stripping off variable length trailing strings and concate-
nating suffixes. All morphologically subregular forms must be entered explicitly in
the lexicon, as well as irregular ones. The situation is similar in FUF/SURGE,
morphological generation in the SURGE grammar (Elhadad & Robin, 1996) being
performed by procedures which inspect lemma endings, strip off trailing strings
when appropriate, and concatenate suffixes.

In current NLG systems, orthographic information is distributed throughout the
lexicon and is applied via the grammar or by hard-wired code. This makes ortho-
graphic processing difficult to decouple from the rest of the system, compromising
maintainability and ease of reuse. For example, in SURGE, a marker for a/an us-
age can be added to a lexical entry to indicate that the word’s initial sound is
consonant- or vowel-like and is contrary to what its orthography would suggest.
The appropriate indefinite article is inserted by procedures associated with the
grammar. In DRAFTER-2 (Power, Scott, & Evans, 1998), an a/an feature can be
associated with a lexical entry, and its value is propagated up to the noun phrase
level through leftmost rule daughters in the grammar (Power, personal communica-
tion). Both of these systems interleave orthographic processing with other processes
in realisation. In addition, neither has a mechanism for stating exceptions for whole
subclasses of words, for example those starting us followed by a vowel—such as use
and usual—which must be preceded by a.

We are not aware of any literature describing (practical) NLG systems that gener-
ate contractions. However, interesting linguistic research in this direction is reported
by Pullum and Zwicky (1997). This work investigates the underlying syntactic struc-
ture of sentences that block auxiliary reductions, for example those with VP ellipsis
as in (8).

(8) *She’s usually home when he’s.

7 Conclusions

We have described two tools for fast and accurate processing of English inflectional
morphology. The main features of these tools are:

wide coverage and high accuracy They incorporate data from several large
corpora and machine readable dictionaries. An evaluation has shown the error
rate to be very low.

robustness The tools do not contain an explicit lexicon or word-list, but instead
comprise a set of morphological generalisations together with a list of excep-
tions for specific (irregular) words. Unknown words are very often handled
correctly by the generalisations.

maintainability and ease of use The organisation into generalisations and
exceptions can save development time since addition of new vocabulary that
has regular morphology does not require any changes to be made. The tools

Applied morphological processing of English 15

are packaged up as Unix filters, and have been integrated into applications
using a number of different methods.

speed and portability The tools are based on efficient finite-state techniques,
and implemented using the widely available Flex utility.

freely available The morphological processing tools and orthographic post-
processor are free for academic or industrial research use; the sources (and
pre-built binaries for the Solaris operating system) can be downloaded via
<http://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html>.

We are currently working on extending the tools to cover comparative and su-
perlative forms of adjectives. In the future we intend to investigate the use of
phonological information in machine readable dictionaries for a more principled
solution to the consonant doubling problem. We also plan to further increase the
flexibility of the generator by including an option that allows the user to choose
whether it has a preference for generating British or American English spelling.

Acknowledgements

This work was funded by UK EPSRC project GR/L53175 ‘PSET: Practical Sim-
plification of English Text’, and by an EPSRC Advanced Fellowship to the second
author. The original version of the morphological analyser was developed by Kevin
Humphreys and kindly made available to us by the University of Sheffield GATE
project. Chris Brew, Bill Fisher, Dale Gerdemann, Gerald Gazdar, Adam Kilgarriff,
Diana McCarthy, and Ehud Reiter have either suggested or contributed improve-
ments to the analyser/generator.

References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers: principles, techniques and
tools. Reading, MA: Addison-Wesley.

Alshawi, H. (Ed.). (1992). The Core Language Engine. Cambridge, MA: MIT
Press.

Baayen, H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lezical database
(CD-ROM). University of Pennsylvania, Philadelphia, PA: Linguistic Data
Consortium.

Baldwin, B., Reynar, J., Collins, M., Eisner, J., Ratnaparkhi, A., Rosenzweig, J.,
Sarkar, A., & Srinivas, B. (1995). University of Pennsylvania: description
of the University of Pennsylvania system used for MUC-6. In Proceedings of
the Sizth Message Understanding Conference. San Francisco, CA: Morgan
Kaufmann.

Bateman, J. (2000). KPML (version 8.1) March 2000. University of Bre-
men, Germany. (<http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/
README.html>)

Briscoe, E., & Carroll, J. (1997). Automatic extraction of subcategorization from
corpora. In Proceedings of the Fifth ACL Conference on Applied Natural
Language Processing (pp. 356-363). Washington, DC.

16 G. Minnen, J. Carroll and D. Pearce

Burnard, L. (1995). Users reference guide for the British National Corpus (Tech.
Rep.). Oxford University Computing Services, UK.

Cahill, L. (1993). Morphonology in the lexicon. In Proceedings of the Sizth Confer-
ence of the Furopean Chapter of the Association for Computational Linguis-
tics (pp- 87-96). Utrecht, The Netherlands.

Canning, Y., & Tait, J. (1999). Syntactic simplification of newspaper text for
aphasic readers. In Proceedings of the ACM SIGIR Workshop on Customised
Information Delivery. Berkeley, CA.

Carroll, J., & McCarthy, D. (2000). Word sense disambiguation using automatically
acquired verbal preferences. Computers and the Humanities, 34(1-2), 109—
114.

Carroll, J., Minnen, G., Pearce, D., Canning, Y., Devlin, S., & Tait, J. (1999).
Simplifying English text for language impaired readers. In Proceedings of the
Ninth Conference of the European Chapter of the Association for Computa-
tional Linguistics (pp- 269-270). Bergen, Norway.

Cunningham, H., Wilks, Y., & Gaizauskas, R. (1996). GATE — a general ar-
chitecture for text engineering. In Proceedings of the 16th Conference on
Computational Linguistics (pp. 1057-1060). Copenhagen, Denmark.

Devlin, S., & Tait, J. (1998). The use of a psycholinguistic database in the simplifi-
cation of text for aphasic readers. In J. Nerbonne (Ed.), Linguistic Databases
(pp. 161-173). Stanford, CA: CSLI Publications.

Elhadad, M., & Robin, J. (1996). An overview of SURGE: a reusable comprehensive
syntactic realization component (Tech. Rep. No. 96-03). Dept of Mathematics
and Computer Science, Ben Gurion University, Israel.

Evans, R., & Gazdar, G. (1996). DATR: a language for lexical knowledge repre-
sentation. Computational Linguistics, 22(2), 167-216.

Fellbaum, C. (Ed.). (1998). WordNet: an electronic lexical database. Cambridge,
MA: MIT Press.

Gaizauskas, R., Wakao, T., Humphreys, K., Cunningham, H., & Wilks, Y. (1995).
University of Sheffield: description of the LaSIE system as used for MUC-6. In
Proceedings of the Sixth Message Understanding Conference. San Francisco,
CA: Morgan Kaufmann.

Garside, R., Leech, G., & Sampson, G. (1987). The computational analysis of
English: o corpus-based approach. London, UK: Longman.

Grover, C., & Lascarides, A. (2001). XML-based data preparation for robust deep
parsing. In Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics. Toulouse, France.

Karp, D., Schabes, Y., Zaidel, M., & Engedi, D. (1992). A freely available wide
coverage morphological analyser for English. In Proceedings of the 14th In-
ternational Conference on Computational Linguistics (pp. 950-955). Nantes,
France.

Karttunen, L. (1994). Constructing lexical transducers. In Proceedings of the
15th International Conference on Computational Linguistics (pp. 406-411).
Kyoto, Japan.

Karttunen, L., Chanod, J.-P., Grefenstette, G., & Schiller, A. (1996). Regular

Applied morphological processing of English 17

expressions for language engineering. Natural Language Engineering, 2(4),
305-329.

Kilgarriff, A. (1998). Gold standard datasets for evaluating word sense disambigua-
tion programs. Computer Speech and Language, 12(4), 453-472.

Kilgarriff, A., & Rundell, M. (1999). Lezicography for computationalists. Tutorial
given at the 37th Annual Meeting of the Association for Computational Lin-
guistics. College Park, MD. (<http://www.itri.bton.ac.uk/~ Adam Kilgarrift/
wordsketches.html>)

Knowles, G., Williams, B., & Taylor, L. (Eds.). (1996). A corpus of formal British
English speech. The Lancaster/IBM Spoken-English Corpus. London, UK:
Longman.

Koskenniemi, K. (1983). Two-level model for morphological analysis. In Proceedings
of the Fighth International Joint Conference on Artificial Intelligence (pp.
683-685). Karlsruhe, Germany.

Levine, J., Mason, T., & Brown, D. (1992). Lez & Yacc (Second ed.). Sebastopol,
CA: O’Reilly & Associates.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large an-
notated corpus of English: the Penn Treebank. Computational Linguistics,
19(2), 313-330.

Matthiessen, C. (1984). Systemic Grammar in computation: the Nigel case. In Pro-
ceedings of the First Conference of the European Chapter of the Association
for Computational Linguistics (pp. 155-164). Pisa, Italy.

McCarthy, D. (1997). Word sense disambiguation for acquisition of selectional
preferences. In Proceedings of the ACL/EACL’97 Workshop on Automatic
Information Extraction and Building of Lexical Semantic Resources for NLP
Applications (pp. 52-61). Madrid, Spain.

McCarthy, D., & Korhonen, A. (1998). Detecting verbal participation in diathesis
alternations. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics (pp- 1493-1495). Montreal, Canada.

Minnen, G., Carroll, J., & Pearce, D. (2000). Robust, applied morphological gen-
eration. In Proceedings of the First International Conference on Natural Lan-
guage Generation (pp. 201-208). Mitzpe Ramon, Israel.

Mitton, R. (1992). A description of a computer-usable dictionary file based on the
Ozford Advanced Learner’s Dictionary of Current English. (<ftp://ota.ox.
ac.uk/pub/ota/public/dicts/710/text710.doc>)

Mohri, M. (1996). On some applications of finite-state automata theory to natural
language processing. Natural Language Engineering, 2(1), 61-80.

Porter, M. (1980). An algorithm for suffix stripping. Program, 14, 130-137.

Power, R., Scott, D., & Evans, R. (1998). What You See Is What You Meant:
direct knowledge editing with natural language feedback. In Proceedings of the
13th Biennial European Conference on Artificial Intelligence (pp. 677—681).
Brighton, UK.

Procter, P. (1995). Cambridge International Dictionary of English. Cambridge,
UK: Cambridge University Press.

Pullum, G., & Zwicky, A. (1997). Licensing of prosodic features by syntactic rules:

18 G. Minnen, J. Carroll and D. Pearce

the key to auxiliary reduction. (Presented at the Annual Meeting of the
Linguistic Society of America, Chicago, IL. <http://ling.ucsc.edu/ pullum/
locker /1sal997abstr.html>)

Quinlan, P. (1992). The Oxford Psycholinguistic Database. Oxford, UK: Oxford
University Press.

Ritchie, G., Russell, G., Black, A., & Pulman, S. (1992). Computational morphology:
practical mechanisms for the English lexicon. Cambridge, MA: MIT Press.

Sampson, G. (1995). English for the computer. Oxford, UK: Oxford University
Press.

Shieber, S., van Noord, G., Moore, R., & Pereira, F. (1990). Semantic head-driven
generation. Computational Linguistics, 16(1), 7-17.

van Noord, G. (1991). Morphology in MiMo2. Manuscript, University of Utrecht,
The Netherlands.

