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Abstract. This paper introduces a practically important concept of non-smoothness where a dynamical system can be 
considered as smooth in a finite size subspace of global hyperspace. Ω. Global solution is generated by matching local 
solutions obtained by standard methods.  If the dynamical system is linear in all subspaces then only an implicit global analytical 
solution can be given as the times when non-smoothness occurs have to be determined first. This leads to the necessity of solving a 
set of nonlinear algebraic equations. To illustrate the non-smooth dynamical systems and the methodology of solving them, three 
mechanical engineering problems have been studied. Firstly the vibro-impact system in a form of moling device was modelled and 
anaysed in order to understand how the progression rates can be maximised. Periodic trajectories can be reconstructed as they go 
through three linear subspaces (no contact, contact with progression and contact with progression). In the second application 
frictional chatter occurring during metal cutting has been examined via numerical simulation method. The analysis has shown that 
the bifurcation analysis can be very useful to make an appropriate choice of the system parameters to avoid chatter. The last 
problem comes from rotordynamics, where nonlinear interaction between the rotor and the snubber ring are studied. The results 
obtained from the developed mathematical model confronted with the experiment have shown a good degree of correlation. 
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1. Introduction 
 
Most of real systems are nonlinear and their nonlinearities can be manifested in many different forms. One of the most 
common in mechanics is the non-smoothness. One may think of the noise of a squeaking chalk on a blackboard, or 
more pleasantly of a violin concert. Mechanical engineering examples include noise generation in railway brakes, 
impact print hammers, percussion drilling machines or chattering of machine tools. These effects are due to the non-
smooth characteristics such clearances, impacts, intermittent contacts, dry friction, or combinations of these effects.  

Non-smooth dynamical systems have been extensively studied for nearly three decades showing a huge 
complexity of dynamical responses even for a simple impact oscillator or Chua's circuit. The theory of discontinuous 
and non-smooth dynamical systems has been rapidly developing and now we are in much better position to understand 
those complexities occurring in the non-smooth vector fields and caused by generally discontinuous bifurcations. There 
are numerous practical applications, where the theoretical findings on nonlinear dynamics of non-smooth systems have 
been applied to verify the theory and optimize the engineering performance. However from mathematical point of view, 
problems with non-smooth characteristics are not easy to handle as the resulting models are dynamical systems whose 
right-hand side, are discontinuous, and therefore they require a special mathematical treatment and robust numerical 
algorithms to produce reliable solutions. Practically, a combination of numerical, analytical and semi-analytical 
methods is used to solve and analyse such systems and this particular aspect will be explored in the lecture. 

The main aim of the paper is to outline a general methodology for solving of non-smooth dynamical systems, and 
to apply it to practical problems. The methodology will be illustrated and examined through three case studies. Firstly 
periodic responses of a drifting vibro-impact system with will be investigated through a novel semi-analytical method, 
developed by Pavlovskaia and Wiercigroch (2003a), which allows to determine the favourable operating conditions. 
The model accounts for visco-elastic impacts and is capable to mimic dynamics of a bounded progressive motion (a 
drift). Then the frictional chatter in orthogonal metal cutting will be modelled and analysed using numerical and 
analytical methods (see Wiercigroch and Krivtsov, 2001). In this paper an extensive nonlinear dynamic analysis has 
been performed giving some new light on the frictional chatter occurrence, i.e. that the discontinuous character of the 
friction force is essential for the chatter generation. Finally, the dynamic responses of a Jeffcott rotor system with 
bearing clearances will be examined (see Karpenko et al., 2002a and Pavlovskaia et al., 2004).  
 
 
2. Non-smooth dynamical systems 
 
In many engineering applications, characteristics of the system can be either discontinuous or non-smooth. As well-
known examples, one may point an oscillator with clearance analysed in (Peterka & Vacik, 1992), piecewise linear 
oscillators (Shaw & Holmes, 1983; Wiercigroch et al., 1998, Pavlovskaia et al., 2001), Jeffcott rotor with bearing 
clearances (Gonsalves et al, 1995, Karpenko et al., 2002a, Pavlovskaia et al., 2004), systems with Coulomb friction 



(Feeny, 1992; Wiercigroch, 1994) and metal cutting processes (Grabec, 1988, Wiercigroch,1997). General methodology 
of describing and solving non-smooth dynamical system can be found in (Wiercigroch & de Kraker, 2000). It includes 
modelling of non-smooth systems by discontinuous functions and modelling of discontinuities by smooth functions. In 
the latter case extra care is required as smoothing discontinuities can produce a ghost solution. The first approach 
considers first a dynamical system, which is continuous in global hyperspace Ω, and in autonomous form can be 
described as  
 
      ( ),=x f x p& ,                                    (1) 
 
where x = [x1, x2, …, xn]T is the state space vector, p = [p1, p2, …, pm]T  is a vector of the system parameters, and f = [f1, 
f2, …, fn]T is the vector function which is dependent upon the process being modelled. Then we assume that the 
dynamical system (1) is continuous but only in N subspaces Xi of the global hyperspace Ω (see Figure 1), therefore, the 
right hand side of equation (1) will be piecewise smooth. For each subspace Xi when x ∈ Xi  the right hand side of 
equation (1) will be different function equal to fi (x, p) where i∈ [1, ...N]. 
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Figure 1. Trajectory of a non-smooth dynamical system 
 
 
3. Vibro-impact systems 
 
Vibro-impact systems are inherently nonlinear and have been widely used in civil and mechanical engineering 
applications. One may give examples of ground moling machines, percussive drilling, ultrasonic machining and 
mechanical processing (cold and hot forging). In the past all these machines and processes have been designed based on 
linear dynamic analysis. 

Imagine, for example, a vibro-impact system driving a pile into the ground. During its operation the driving module 
moves downwards, and its motion can be viewed as a sum of a progressive motion and bounded oscillations. The 
simplest physical model exhibiting such behaviour is comprised of a mass loaded by a force having static and harmonic 
components, and a dry friction slider. This model was introduced and preliminary analysed in Krivtsov & Wiercigroch 
(1999, 2000). Despite its simple structure, a very complex dynamics was revealed. The main result from that work was 
a finding that the best progression occurs when the system responds periodically. A more realistic model including 
visco-elastic properties of the ground and its optimal periodic regimes were studied in Pavlovskaia & Wiercigroch et al. 
(2001, 2003a, 2004). 
 
3.1. Modelling of vibro-impact moling 
 
As a first approximation a vibro-impact moling system may be represented as an oscillating mass with a frictional 
visco-elastic slider, as shown in Fig. 2a. The frictional visco-elastic slider models well the hysteretic soil resistance 
depicted in Fig. 2b. This model allows to mimic the separation between the mole head and the front face of the hole. 

A mass m is driven by an external force f containing static b and dynamic a cos(ωτ + ϕ) components. The 
weightless slider has a linear visco-elastic pair of stiffness k and damping c. As has been reported in Pavlovskaia et al. 
(2001) the slider drifts in stick-slip phases where the relative oscillations between the mass and the slider are bounded 
ranging from periodic to chaotic motion. Similarly to the stick-slip phenomenon, the progressive motion of the mass 
occurs when the force acting on the slider exceeds the threshold of the dry friction force d, x, z, v represent the absolute 
displacements of the mass, slider top and slider bottom, respectively. It is assumed that the model operates in a 



 

 

horizontal plane, or the gravitational force is compensated.  At the initial moment τ = 0 there is a distance between the 
mass and the slider top called gap, g. 
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Figure 2. (a) Physical model of drifting vibro-impact system, (b) model of soil 

 
The considered system operates at the time in one of the following modes: No contact, Contact without progression, 
and Contact with progression. A detailed consideration of these modes and dimensional form of the equations of 
motion can be found in Pavlovskaia et al. (2001). The equations of motion covering all modes can be written using 
Heaviside step functions Hi in the following form: 
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3.2. Nonlinear dynamic analysis 
 
The basic function of the investigated system is to penetrate through soil. Despite the fact that the considered model has 
only two degrees-of-freedom, its dynamics is very complex. Since displacements of the system elements are moving 
from the origin, the mass velocity has been used to view the structural changes in the system responses due to the fact 
that it is bounded. The control parameter in form of static force, b proved to be very useful for determining the regions 
of the best progression. 
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Figure 3. (a) Four phases of a periodic progressive motion, (b) comparison of the numerical simulation with the 

semi-analytical method (thick solid line) 

(a) (b)



The construction of the bifurcation diagrams has brought some practical insight regarding progression rates. Since 
the system drifts towards larger displacements, v, one way to monitor progression rate is to calculate displacement in 
a finite time, which in our computations was equal to 50 periods of external loading. As has been reported in 
(Pavlovskaia et al., 2001), the maximum penetration rate coincides with the point where periodic regime becomes 
aperiodic. This information has been used to develop a semi-analytical algorithm for determining this point, and it 
can be found in Pavlovskaia & Wiercigroch (2003). The method constructs a periodic response assuming the global 
solution is comprised of a sequence of distinct phases for which local analytical solutions are known explicitly. A 
solution may consist of the following sequential phases (see Figure 3a): (I) contact with progression, (II) contact 
without progression, (III) no contact and (IV) contact without progression. Progressions per period were calculated 
from the numerical simulation of the system dynamics and then compared with the results from the devised semi-
analytical method (thick solid line in Figure 3b). As can be seen from Figure 3b, a very good correlation between 
two methods was obtained. 
 

 
4. Vibrations in metal cutting  
 
Despite the continuing effort in the field, and generation of new theories, there is no consistent explanation for the 
existence of chatter. The fundamental reason behind it is the complexity of the chip-formation process, where the 
following strongly nonlinear phenomena are interrelated and dependent: temperature-dependent plasticity; temperature- 
and velocity-dependent friction; nonlinear stiffness of machine tools; regenerative effects; and intermittency of the 
cutting process. There are two different types of chatter: primary and secondary. Primary chatter is caused mainly by 
the variable shear stresses in the primary and secondary plastic deformation zones, and the frictional effects of the chip 
acting on the rake surface due to the relative motion between the workpiece and tool. Secondary chatter is 
predominantly result of the regenerative effects, where the workpiece geometry from the previous pass influences the 
dynamics of the next pass. 

The most influential work on the dynamics of machine tools and cutting processes was conducted in the mid forties 
by Merchant (1945), and later by Russians.  The studies carried out by Zorev (1956) and Kudinov (1963) are good 
examples of those investigations, where the dynamics characteristics of the cutting process play a key role in process 
stability.  Contrary to this approach, there is a significant body of research assuming that the machine-tool structure is 
responsible for the dynamic instabilities (e.g. Tlusty, 1986). Recent investigations into nonlinear dynamics have shown 
an existence and importance of chaotic motion occurring in machining.  The models by Grabec (1988), Wiercigroch 
(1997) and Wiercigroch & Krivtsov (2001) have shown evidence of chaotic vibrations, which are mainly due to the 
nonlinearity of the dry friction and then intermittent contact between the cutting tool and the workpiece. 
 
4.1. Frictional chatter  
 
The instantaneous separation of the cutting tool from the workpiece, namely an intermittent cutting process, has a great 
influence on the system dynamics.  Therefore, out model of the machine tool – cutting process (MT-CP) system should 
take into account the feedback control loop through the cutting force and also the discontinuity of the process.  To 
concentrate on the nonlinear dynamics issues, a simple but realistic model of the MT-CP system will be considered.  
The elastic, dissipative and inertial properties of the machine-tool structure, tool and the workpiece are represented by a 
planar oscillator, which is excited by the cutting-force components fx and fy (see Figure 4a).  It is assumed that the 
relationship between the cutting forces and the chip geometry, namely the cutting-process characteristics, is captured by 
orthogonal cutting, where the cutting edge is parallel to the workpiece and normal to the cutting direction, as depicted in 
Figure 4b.  
 
Since fx and are mutually related, one can be expressed by the other.  This approach was adopted from Hastings et al. 
(1980), where the cutting forces for a wide class of technical materials are described by the following expressions, 
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Figure 4.MT-CP system; (a) physical model, (b) chip geometry, (c) former form of fx , (d) new form of fx as a function 

of the relative velocity vr. 
 
The cutting process starts with an initial depth of cut, h0, where a layer is taken from the workpiece with the constant 
velocity, v0. Throughout the process it is assumed that the cutting parameters, such as c1…, c4 and q0 are fixed. The 
nonlinear relationship between the cutting force, fx, and chip velocity is graphically presented in Figure 4c where, for vr 
< 0, the excitation force is equal to zero. In reality, this force never disappears completely as there is always a 
considerable friction force due to the compression force in the vertical spring.  To make this approach more realistic, a 
dry friction force acting in x-direction for the vr < 0 cases needs to be added. On the other hand, equation (6) should still 
be valid to predict the total force, fx for the vr ≥ 0 cases. A modified formula, which satisfies the conditions listed above, 
is written below and presented graphically in Figure 4d 
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where µ0 is the static friction coefficient. 
 
Dynamics of the analysed system can be described by a set of two second-order differential equations, which is 
presented in a non-dimensional form, 
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As the analysed system is nonlinear and can exhibit a broad range of responses, it is essential to provide a high-
accuracy integration routine.  Each time a discontinuity occurs, the precise value of the time has to be calculated in 
order to provide the correct initial conditions for the next integration step.  A standard zero-finder algorithm cannot 
effectively be applied in this case, therefore the computations were conducted using the method specifically developed 
for this problem, (see Wiercigroch, 1997).  For a given set of parameters and initial conditions, the numerical 
integration is carried out using the fourth-order Runge-Kutta procedure with a fixed time-step, ∆τ = 0.001, until a 
discontinuity is detected.  Then, based on the type of discontinuity recognized, the precise time value is calculated, 
either by an inverse interpolation or a bisection routine. 

The investigated system is described by a 12-parameter vector, however, for the purpose of this analysis, a two-
parameter vector, p = [ξ, q0]T, was chosen, where ξx = ξy = ξ.  The results presented here were obtained by fixing the 
values of the following parameters, i.e. µ0 = 0.1, c1 = 0.3, c2 = 0.7, c3 = 1.5, c4 = 1.2, h0 = 0.5, R0 = 2.2 and v0 = 0.5.  
Figure 5 show an influence of the cutting forces modules, q0, on the system dynamics in the x- and y-direction 
respectively. For the stiffness ration, α, equal to 0.25, and q0 up to 1.6, the system behaves in a irregular manner.  By 
increasing the value of q0 above 1.6, the periodicity is regained. Further careful investigations of the above-mentioned 
region of q0 demonstrate an interesting scenario of a transition between different types of motion with an increase of the 
branching-parameter value.  The systems responses are irregular for lower values of q0 , however, irregularities are 
more pronounced for the y-direction.  If the value of the branching parameter is between 0.36 and 0.43, the system 
experiences period 3.  After the first periodic region, a catastrophic transition to a chaotic motion is observed, which 
lasts until q0 ≈ 1.0.  Then the system approaches gradually stable oscillations, with period 1 passing through narrow 
windows of irregular motion.   
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Figure 5 Bifurcation diagrams x= f(q0); (a) α = 0.25. (b) α = 1. (c) α = 4. (d) α = 16 
 

Summarizing, for α - 0.25, the system dynamics undergoes vast changes.  Setting up the stiffness ratio, α, to 1 and 
16, the behaviour is completely different (see Figures 5b, d).  For almost the entire range of the cutting-force modulus, 
the system oscillates either periodically or almost periodically, excluding the lower values of q0, where some transient 
irregular motion occurs.  The bifurcation diagrams constructed for α= 4 show another example for an unusual 
behaviour, that is, unidirectional bifurcation.  The system bifurcates in the x-direction and is stable in the y-direction, for 
q0 between 0.24 and 0.54, despite the fact that the equations of motion are coupled.  There is also a shift of the critical 
point for the x- and y-directions.  For the x-direction, the system starts with two bifurcation periods of the doubling type, 
and then vibrates chaotically.  For the y-direction, the system, after crossing the critical value, oscillates with period 4, 
and then becomes chaotic.  The bifurcation diagrams depicted in Fig. 6 show that, for α = 0.25 and α = 1.0, the system, 
after regaining periodicity, decreases its vibration amplitude with an increase of the cutting force.  This fact can be used 
in the design of the machine tools and control of the cutting processes.  For α = 16, the system responses are consistent 
with a traditional understanding of the MT-CP interactions, i.e. higher amplitudes are generated by larger cutting forces.  
Assuming the same mathematical model of the MT-CP system as in the previous section, the cutting forces fx and fy  
 
 
 



 

 

5.     Nonlinear oscillations of Jeffcott rotor with snubber ring 
 
In rotor systems non-smoothness may appear due to bearing clearances. This may result in piecewise stiffness 
characteristics, which can consequently lead to nonlinear behaviour including chaotic motion. The existence of this 
characteristic implies that there is intermittent contact between the components of the rotor system, which is critical to 
predict and control their complex behaviour.  

Rotor systems with bearing clearances have been studied in the past, where the investigations concentrated primarily 
on the Jeffcott rotors. In particular, Choy and Padovan (1987), Muszynska and Goldman (1995), Childs (1998) and Chu 
and Zhang (1998) paid attention to rub interactions in rotating machinery. Ehrich (1992) investigated spontaneous 
sidebanding, while Ganesan (1996) looked at the stability analysis. Numerical investigation of the model of the Jeffcott 
rotor with a snubber ring by Karpenko et al. (2002b) has shown the existence of multiple attractors and fractal basins of 
attraction. Influence of the preloading and viscous damping of the snubber ring was investigated in Karpenko et al. 
(2003b) where it was shown how the preloading of the snubber ring could stabilize the dynamic responses.  
 
5.1. Mathematical model 
 
The rotor system (see Karpenko, 2003) is modelled as a two-degrees-of-freedom piecewise nonlinear planar oscillator, 
where the rotor makes intermittent contact with the preloaded snubber ring. The physical model and the geometrical 
description of the model are given in Fig. 6. The excitation of the rotor is provided by an out-of-balance rotating mass 
producing the loading force f0 = mρω2. Here Or and Os denote the current positions of the rotor and the snubber ring 
respectively. Fig. 6(a) presents the situation when the initial and current positions of the snubber ring coincide. The 
eccentricity vector ε = (εx,  εy) determines the initial position of the rotor Or,0  relative to the initial position of the outer 
ring. The radius vectors Rr and Rs  show the current positions of the rotor and the snubber ring. D is the distance 
between the centres of the rotor and the snubber ring. R is the radial displacement of the rotor. For the “no contact” 
situation the distance between the centres of the rotor and the snubber ring is equal to the radial displacement of the 
rotor D = R.  
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Figure 6 (a) Physical model of the Jeffcott rotor with bearing clearances, (b) adopted co-ordinate system 
 
When rotor moves inside the stator without any interaction with the ring the equations of motion for the rotor and the 
snubber ring are as follows 
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When the rotor is in contact with the snubber ring there are four unique regimes (see Pavlovskaia et al., 2004), for 
which the stiffness of the snubber ring for x and y directions differs.  Equations of motion can be written as  
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In equations (8) and (9), ξ1 and ξ2  denote the viscous damping ratios of the rotor and the snubber ring, where fs,x and fs,y 
are the restoring forces in the snubber ring in x and y direction respectively. The constraints between the rotor and the 
snubber ring co-ordinates were developed in (Pavlovskaia, 2004). Equations of motion (8) and (9) have been derived 
using the following series of assumptions. Firstly dry friction between the ring and rotor has been neglected. Secondly it 
was assumed that the snubber ring itself is massless, because it is manufactured from aluminum and highly preloaded 
by compression springs. Thirdly gyroscopic forces are not taken into consideration since no angular motion occurs. 
 
5.2. Experimental Verification  
 
In this section sample of extensive experimental studies in Karpenko (2003) conducted to verify the mathematical 
model of Jeffcott rotor system with a snubber ring developed at the University of Aberdeen is presented.  

For the bifurcation diagram presented in Figure 7 a comparison of the theoretical (Figure 7a) and experimental 
(Figure 7b) responses shows a number of similarities. In both figures for the low magnitude of the forcing frequency 
period one motion is observed for f ∈ (7,13.6)Hz  and at f ∈ (16.2, 17.7)Hz followed by chaotic regimes for f ∈ (13.6, 
16.2)Hz  and  f ∈ (17.7, 22.8)Hz  respectively. In the theoretical and experimental diagrams the width of both periodic 
and chaotic regimes are the same. After the flip bifurcation at f ≈ 22.8Hz  the theoretical response becomes periodic up 
to the end of the diagram. In the experimental bifurcation diagram in Figure 7b for f ∈ (25.6, 32)Hz some kind of quasi-
periodic regime was obtained. In both diagrams two cross-sections were examined in the form of Poincaré maps. It is 
also seen that the theoretical and experimental attractors are similar in shape. However, despite of the shape similarity, 
there are some differences in the amplitudes of displacements and velocities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 7.  Bifurcation diagrams for the forcing frequency; (a) theoretical, (b) experimental 
 
 
6. Conclusions  
 
This paper introduces a practically important concept of non-smoothness where a dynamical system can be considered 
as smooth in a finite size subspace of global hyperspace. Global solution is generated by matching local solutions 
obtained by standard methods.  If the dynamical system is linear in all subspaces then only an implicit global analytical 
solution can be given as the times when non-smoothness occurs have to be determined first. This leads to the necessity 
of solving a set of nonlinear algebraic equations. To illustrate the non-smooth dynamical systems and the methodology 
of solving them, three mechanical engineering problems have been studied.  

f, Hz 



 

 

Firstly the vibro-impact system in a form of moling device was modelled and anaysed in order to understand how 
the progression rates can be maximised. Periodic trajectories can be reconstructed as they goes through three linear 
subspaces (no contact, contact with progression and contact with progression). It was shown that the considered model 
reflects well the dynamics of the vibro-impact system and also the soil resistance curves. A typical nonlinear dynamic 
analysis has revealed complex behaviour ranging from periodic to chaotic motion. Bifurcation diagrams were 
constructed using variation of the mass velocity as the displacement has a drift. It was found out that the maximum 
progression is achieved when system responds periodically with the period of external excitation. 

In the second application frictional chatter occurring during orthogonal metal cutting has been examined via 
numerical simulation method. The physical models consider a dry friction force acting on the cutting edge. The system 
demonstrates complex dynamic behaviour, which is manifested by the existence of periodic, quasi-periodic, 
subharmonic and chaotic motion. It was found that some of the bifurcation diagrams couldn’t be classified into standard 
routes to chaos, however; crisis type transition to chaos is dominating. The analysis has shown that the bifurcation 
analysis can be very useful to make an appropriate choice of the system parameters to avoid chatter.  

The last problem comes from rotordynamics, where nonlinear interactions between the rotor and the snubber ring 
are studied. The mathematical model neglects the frictional and gyroscopic forces, and concentrates on the dynamic 
responses caused by interactions between a whirling rotor and a massless snubber ring, which has much higher stiffness 
than the rotor. The mathematical model has been solved using both the approximate analytical method and numerical by 
a direct integration of the equations of motion. By employing various techniques such as construction of bifurcation 
diagrams and Poincaré maps, comparisons are made between the results obtained from the experiment and the theory. 
The results obtained showed that a wide variety of motion was exhibited by this system ranging from periodic to 
chaotic. A good correlation between experimental and theoretical results has been obtained. It was shown that the 
experiment has confirmed the basic bifurcation scenarios predicted theoretically. 
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