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Abstract 

Adequate statistical power contributes to observing true relationships in a 

dataset. With a thoughtful power analysis, the adequate but not excessive 

sample could be detected. Therefore, this paper reviews the issue of what 

sample size and sample power the researcher should have in the EFA, CFA, 

and SEM study. Statistical power is the estimation of the sample size that is 

appropriate for an analysis. In any study, four parameters related to power 

analysis are Alpha, Beta, statistical power and Effect size. They are prerequi-

sites for a priori sample size determination. Scale development in general and 

Factor Analysis (EFA, CFA) and SEM are large sample size methods because 

sample affects precision and replicability of the results. However, the existing 

literature provides limited and sometimes conflicting guidance on this issue. 

Generally, for EFA the stronger the data, the smaller the sample can be for an 

accurate analysis. In CFA and SEM parameter estimates, chi-square tests and 

goodness of fit indices are equally sensitive to sample size. So the statistical 

power and precision of CFA/SEM parameter estimates are also influenced by 

sample size. In this work after reviewing existing sample power analysis rules 

along with more elaborated methods (like Monte Carlo simulation), we con-

clude with suggestions for small samples in factor analysis found in literature.  
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1. Introduction 

An adequate sample size or more precisely sample power is of primary concern 

when designing a study (Tabachnick & Fidell, 2013). Adequate statistical power 
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contributes to observing true relationships in the dataset (Wolf, Harrington, 

Clark, & Miller, 2013). Therefore, this paper considers the following question: 

what sample size should the researcher acquire in three different study designs? 

1) Exploratory Factor Analysis (EFA); 2) Confirmatory Factor Analysis (CFA); 

3) Structural Equation Modeling (SEM).  

Estimation of the power of a statistical analysis during the planning of the 

study is generally accepted as a good practice (Thomas, 1997; Schumacker & 

Lomax, 2015). During prospective power analysis, the researcher estimates the 

minimum required sample size to achieve the maximum level of statistical power 

for a hypothesized effect size under a specified statistical significance level 

(Wilcox, 2008 cited in Wang, Watts, Anderson, Little, 2013). Thus, the sample 

size has an impact on the precision of all statistical estimates, including those 

made in EFA (Thompson, 2004). Specifically, in EFA the replicability of a factor 

structure is partially dependent on the sample size of the initial analysis. As a 

rule, the factor pattern developed by a large-scale factor analysis is probably 

more stable than that based on a small sample size (DeVellis, 2017). The bottom 

line question is “How large is large enough?” (Kline, 2016) and there is no easy 

answer to it because like many other statistical procedures both the number of 

variables analyzed and the absolute number of subjects should be taken into ac-

count (DeVellis, 2017), in addition to other issues indicating if the data is 

“strong”. As a general rule, the stronger the data, the smaller the required sample 

to achieve adequate accuracy (Costello & Osborne, 2005). “Strong data” in factor 

analysis is indicated by high communalities, no cross-loadings, strong primary 

loadings per factor and also additional variables like the nature of the data, 

number of factors, number of items per factor (MacCallum, Widaman, Zhang, & 

Hong, 1999; Fabrigar et al., 1999; Costello & Osborne, 2005; DeVellis, 2017). In 

practice, these conditions are very difficult to be simultaneously true (Mulaik, 

1990; Widaman, 1993; Costello & Osborne, 2005). 

On the other hand, SEM is used most often to confirm a prior hypothesis, in 

contrast to the exploratory nature of factor analysis thus, planning is crucial for 

any SEM analysis (Tabachnick & Fidell, 2013), including CFA. SEM is also a 

large sample approach (Kline, 2016). It is generally accepted that problems may 

arise due to a small sample size. Some of them include—but they are not li-

mited—to estimation convergence failure, improper solutions (e.g., Heywood 

cases), inaccurate parameter estimates and model fit statistics (Wang & Wang, 

2012). Additionally, SEM flexibility allowing the examination of complex associ-

ations, multiple data types, model and/or group comparisons thus, developing 

general rules regarding sample size requirements are impractical (MacCallum et 

al., 1999; Wolf et al., 2013). In CFA, being a SEM category, sample size depends 

on a number of features like study design (e.g. cross-sectional vs. longitudinal); 

the number of relationships among indicators; indicator reliability, the data 

scaling (e.g., categorical versus continuous) and the estimator type (e.g., ML, 

robust ML etc.), the missing data level and pattern and model complexity 

(Brown, 2015). Thus, determining sample size is approximated by power analysis 
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(Brown, 2015; Kline, 2016; Byrne, 2012; Wang & Wang 2012).  

The research questions answered in the next sections are as follows: 1) What is 

power analysis? 2) Why does sample power need to be taken into account in 

factor analysis? 3) What power analysis methods exist in CFA and SEM frame-

work? 4) What can the researcher do when the sample size is small?  

2. Power Analysis Basics 

Statistical power is the estimation of the sample size that is appropriate for an 

analysis (Cohen, 1988, 1990, 1992). The statistical power of a study is the like-

lihood of detecting an actually present effect (Coolican, 2014). It could be com-

pared to the precision power of a microscope in the laboratory. If using a 

low-magnification microscope fine details are hard to detect. In a similar way in 

a study of low power, more fine effects could be missed out (Barker, Pistrang, & 

Elliott, 2016).  

In any study, there are four parameters related to power analysis as reviewed 

by Barker, Pistrang & Elliott (2016): 1) The size of the sample (N). 2) The proba-

bility of identifying a non-existing effect is called Alpha (α). This kind of error 

has termed Type I error (or false positive). In most psychological research, alpha 

is set by arbitrary convention at .05 (see also Wolf et al., 2013). 3) The probabili-

ty of not identifying an existing effect is called Beta (β). This is the Type II error 

(or false negative). The probability to identify an effect that really exists is calcu-

lated by subtracting beta from one (1 − β) and the result is defined as statistical 

power (Cohen, 1988). The desired level of statistical power is .80 (Cohen, 1988, 

1992) and a minimum is .50, i.e. a 50% probability to detect an existing effect. 4) 

Effect size is a measure of the strength of the examined relationship. Effect sizes 

are described as small, medium, and large and are different for each statistical 

test (Barker, et al., 2016). The statistical power is best considered during study 

planning to determine the appropriate sample size (Tabachnick & Fidell, 2013; 

Thomas, 1997; Wilcox, 2008). The four above estimates are prerequisite for a 

priori sample size determination (see Table 1). Omitting this step during the 

planning stage could potentially mean failure to detect a significant effect (Ta-

bachnick & Fidell, 2013). 

 

Table 1. Prerequisites for a priori sample size determination (Cohen, 1988). 

Parameter Level Error type Description 

Alpha .05 
Type I error or  

False positive 

The probability of identifying  

a non-existing effect 

Beta - 
Type II error  

or False negative 

The probability of not  

identifying an existing effect 

Statistical power 

(1 − β) 
min > .50 Ideally > .80 

The probability to identify  

an effect that really exists 

Effect size Small, Medium, or Large The strength of the examined relationship 
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A question emerging is “Then, why not obtaining huge sample power?” fol-

lowing the rule of thumb suggesting that the larger the sample, the better 

(Thompson, 2004: p. 24). Cohen (1990) noted that unduly large samples, beyond 

what is required to achieve statistical power are a waste of research effort, and 

could overstate unimportant effects (Barker et al., 2016). Thus, an equilibrium is 

sought between a too small sample size that could fail to uncover crucial effects 

and a too large sample adding extra cost and time to the study (Wang, Watts, 

Anderson, & Little, 2013; Nicolaou & Masoner, 2013). With a thoughtful power 

analysis, the adequate but not excessive sample could be detected (Du, Zhang, & 

Yuan, 2017). Instead, when the luxury of a large sample is available, a better re-

search strategy is suggested: to implement multiple smaller studies on different 

populations (Barker, et al., 2016).  

Finally, statistical power and sample size can be estimated with different me-

thodologies before data collection (See Table 2). This type of analysis is called a 

priori or prospective power analysis, whereas if this analysis is carried out after 

data collection is called post-hoc or retrospective (Wang et al., 2013). Figure 1 

contains common myths (fallacies) about sample power related to retrospective 

power analysis by Wang, Watts, Anderson, and Little (2013).  

 

Table 2. Statistical power and sample size estimation methodologies based on their time 

of implementation. 

Method Description Usage 

a priori or  

prospective 

Sample power is estimated  

before data collection 

estimating the minimum sample  

size required for a power level is the 

recommended course of action 

a posteriori or 

retrospective, 

Sample power is estimated after data  

collection. Also termed post hoc or observed 

A controversy field due to  

misuse in applied research 

 

 

Figure 1. Common myths related to retrospective power analysis as postulated by Wang, Watts, Anderson, and Little (2013). 

Note: This figure is based on a flow chart by Wang, Watts, Anderson, and Little (2013, page 738), NHST = Null Hypothesis Signi-

ficance Testing, CI = Confidence Interval, SN = Statistical Non-significance. 
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3. Sample Power Implications for Factor Analysis 

Like in inference statistics, in factor analysis too, it is considered a good practice 

to a priori determine the minimum sample size required to achieve an accepta-

ble level of statistical power for the factor structure under evaluation (Thomas, 

1997; Schumacker & Lomax, 2015; McQuitty, 2004; Singh et al., 2016). Scale de-

velopment in general and factor analysis in particular, are large sample size me-

thods (DeVellis, 2017; Costello & Osborne, 2005 to quote a few). This require-

ment becomes more crucial when SEM (more precisely CFA) is used as a valida-

tion method because SEM is also a large sample method (Kline, 2016; Brown, 

2015; Shumacker & Lomax, 2016; Wang et al., 2013; Wang & Wang, 2012). 

However, the existing literature as Brown (2015: p. 380) comments “provides lit-

tle guidance on this issue”. 

Generally, in Factor Analysis (FA) sample size is considered a top priority is-

sue (Comrey & Lee, 1992; Costello & Osborne, 2005; Gorsuch, 1983; Shumacker 

& Lomax, 2012) because FA is a method essentially based on correlation coeffi-

cients. Whether the coefficient is an adequate estimate of the population correla-

tion taps statistical inference and validity, i.e. the more stable the sample correla-

tions, the more valid the scores (Schumacker & Lomax, 2015; Finch, French, & 

Immekus, 2016; Tabachnick & Fidell, 2013). On the contrary, smaller samples 

potentially produce unstable correlation estimates, more prone to outliers (Finch 

et al., 2016).  

Additionally, besides validity, the sample size has also an impact on reliability 

because the more reliable the scale the lower the required sample size to achieve 

the desired statistical power for a specific test as DeVellis (2017) explains. De-

Vellis gives an illustrative example for his argument: for N = 50 if two scales 

have a reliability of .38 and they are correlated with r = .24 at a significance level 

of p < .10. If the reliability of the measure employed is increased at .90 the signi-

ficance level becomes p < .01. If reliability remains at .38, twice as many partici-

pants would be needed for the correlation to reach p < .01 level. Other parame-

ters affecting the sample size in FA is the number of factors and the number of 

items present (DeVellis, 2017). More details about how sample size can affect 

EFA and CFA research follow (and SEM more generally). 

3.1. EFA Sample Size Considerations 

Generally, in a large sample correlations estimates are regarded as more reliable 

than in a small sample. Other EFA parameters crucial for the sample size is the 

magnitude of population correlations and number of factors of the estimated 

solution. The strongest the correlations and the fewer the factors the smaller the 

required sample (Tabachnick & Fidell, 2013). Therefore, the sample size is by 

and large specified by the nature of the data (Fabrigar et al., 1999). The stronger 

the data, the smaller the sample can be for an accurate analysis and “strong data” 

within the EFA framework means high communalities and absence of cross- 

loadings and strong primary factor loading on the intended factor (Costello & 
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Osborne, 2005; Thompson, 2004). In empirical research, however, these condi-

tions are hard to find (Mulaik, 1990; as quoted by Costello & Osborne, 2005).  

In a similar vein, the Monte Carlo simulation work by Guadagnoli and Velicer 

(1988) suggested that the crucial parameter in EFA sample size is the degree of 

factor saturation by the measured variables. Guadagnoli and Velicer (1988) fo-

cused on the factor pattern stability as a function of the population pattern for: 

1) a range of sample sizes (for N = 50, 100, 150, 200, 300, 500, and 1000); 2) a 

range of measured variables (for p = 36 - 144); 3) a range of structure coeffi-

cients (for a = .40, .60, and .80); and 4) range of numbers of factors (for m = 3, 6, 

and 9) as reproduced by Dimitrov (2012). They proposed that factor replicability 

is more likely when: 1) factors have at least four measured variables with struc-

ture coefficients > |.6|, irrespectively of the size of the sample; 2) for N > 150 

factors are defined with 10 or more structure coefficients of about |.4| (and low 

p/m ratio), when 300 ≤ N ≤ 400 (Guadagnoli & Velicer, 1988: p. 274 quoted in 

Dimitrov, 2012). Additionally, replicability of the factor pattern was also 

achieved when: 4) a = .80 across all conditions (as reviewed by Dimitrov, 2012; 

Thompson, 2004). See also Figure 2 about EFA sample size basics. 

3.2. CFA and SEM Sample Size Considerations 

SEM is a method that is estimated based on covariances. Covariances, like cor-

relations, turn out to be unstable if assessed over small samples. Generally, the 

findings of Velicer and Fava (1998) see also Guadagnoli & Velicer, 1988) about 

the size of the factor loadings and the number of variables as a function of the 

sample size are important elements for obtaining a good CFA or SEM model as 

 

 

Figure 2. EFA indicators of strong data that potentially may require smaller sample size because the stronger the data the smaller 

the sample size (Costello & Osborne, 2005). 
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well. Moreover, parameter estimates, chi-square tests and general goodness of fit 

indices are equally sensitive to sample size. This means—with a risk of oversim-

plification—that as a rule models having robust parameter estimates and va-

riables with high reliability may require smaller samples in CFA and SEM too 

(Tabachnick & Fidell, 2013). SEM is a large-sample technique (Kline, 2016) for 

the reasons described next.  

First, the statistical power and precision of a CFA (and SEM in general) model 

parameter estimates are influenced by the sample size (Brown, 2015). During a 

CFA a hypothetical model is tested. When the data do not fit the hypothesized 

model, we modify the model to improve fit, generally based on modification in-

dices. This hypothesis testing involves statistical power considerations. However, 

in CFA, power is redefined as the ability to retain the null hypothesis and reject 

the alternative hypothesis. However, determining the sample power and/or sam-

ple size for a CFA analysis is more complicated in comparison to EFA because 

CFA models are based are theoretical models potentially having numerous pa-

rameter estimates dependent as a rule to each other adding up parameters af-

fecting latent variables (like covariances and standard errors) that become less 

accurate in small samples (Kline, 2016). 

Apart from that, CFA requires model comparison, even comparison of nested 

models in a single dataset. The power for this hypothesis testing depends on the 

true population model, the level of significance and degrees of freedom of the 

model as well as on the sample size which in turn requires determining an effect 

size and alpha level of significance. However, a sample size is determined given 

power, effect size, and alpha (Schumacker & Lomax, 2015). 

Moreover, particular fit indices “react” differently in small sample sizes along 

with model estimators, model complexity, multivariate normality assumption 

and variable independence (Fan & Sivo, 2007; Saris, Satorra, & van der Veld, 

2009 as cited in Byrne, 2012). The chi-square test is perhaps the most notorious-

ly sensitive fit measure to sample size (Kline, 2016; Finch, et al., 2016). In small 

sample sizes (<200) the chi-square may fail to reject an unfitting model while in 

a large sample may falsely reject an adequate model (Gatignon 2010; Singh et al., 

2016). This happens because the chi-square test equals (N − 1) Fmin and this 

value is significant when the model fit is inadequate and the sample size is large 

(as described in Byrne, 2012 and Jöreskog & Sörbom, 1993). However, large 

samples are crucial for models with accurate parameter estimates, especially 

when the assumption of normality is rejected (Byrne, 2012 also quoting Mac-

Callum et al., 1996). Therefore, the chi-square to the degrees of freedom ratio 

(chi-square/df) was introduced instead (Wheaton, Muthén, Alwin, & Summers, 

1977; Jöreskog & Sörbom, 1993) as Brown (2015) comments. However, the 

chi-square/df ratio is just as sensitive to sample size as chi-square (Brown, 2015; 

also quoting Wheaton, 1987). Nevertheless, current reporting ethics use it, so it 

would be an omission not to report it. However, it is usually reported along with 

other fit measures to minimize this oversensitivity to sample size.  

The Root-mean-square error of approximation (RMSEA; ε) is relatively in-
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sensitive to sample size (Brown, 2015). However, Hu and Bentler (1999) note 

that with a small sample size, RMSEA is oversensitive in rejecting true popula-

tion models (Byrne, 2012). Additionally, the width of RMSEA confidence inter-

vals is affected by sample size and model complexity (MacCallum et al., 1996; 

Brown, 2015; Byrne, 2012). For a small N and a large number of estimated pa-

rameters (a complex model), the confidence intervals will be wide (Byrne, 2012; 

Brown, 2015). On the other hand, for moderate Ns and low complexity models, 

obtaining a narrow confidence interval is more likely (MacCallum et al., 1996 

cited in Byrne, 2012). In a Monte Carlo study by Curran et al. (2002) was re-

ported that when N was >200 the RMSEA was accurate for models with mod-

erate misspecifications. MacCallum and Hong (1997) also propose that RMSEA 

is more efficient than the GFI and AGFI for power analysis (Loehlin & Beaujean, 

2017). Other fit indices are also affected by sample size. Specifically, TLI like 

RMSEA is prone to false model rejections when the sample size is not adequate 

(Hu & Bentler, 1999 cited in Brown, 2015). Finally, the CFit test is adversely af-

fected by small sample size like any other test of significance (Brown, 2015). 

Except for model fit indices sample size also has an impact on the model esti-

mated parameters, the method of estimation, the extent of harmless model 

misspecification, data normality (see also Table 3). Finally, the size of standar-

dized residuals is a function of the size of the sample (Brown, 2015). As a rule, 

larger samples are related to larger standardized residuals. This happens because 

 

Table 3. Factors affecting sample size requirements in SEM and CFA (Kline, 2016: p. 15). 

SEM and CFA 

Model Complexity or/and number of model parameters estimated 

Analyses in which all outcome variables are continuous 

Normally distributed data, and there are no 

Linear effects existing in data 

Existing interactions between data 

Estimation method 

The lower the reliability of the scores the higher the required sample size 

Is it a latent variable models or observed variable model? 

Less precise data requires larger samples 

Missing data require larger sample sizes 

CFA in particular 

Low number of indicators for the constructs of interest per factor requires larger samples 

Lower number of indicators per factor requires larger samples 

Indicators that covary highly with multiple factors require larger samples 

If the number of factors is high a larger sample is needed 

If covariances between factors are low a larger sample is needed 
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for the fitted residuals the size of their standard errors is frequently inversely as-

sociated to sample size. Thus, the interpretation of the standardized residuals 

should be made with the sample size in mind. Modification indices are equally 

affected by sample size, proposing parameter additions with an unsubstantial 

magnitude when the sample size is large. On the other hand, a small sample size 

(e.g. N = 100; Silvia & MacCallum, 1988) may cause specification searches sug-

gesting incorrect model revisions. Thus, as CFA is a large sample method, minor 

effects are sometimes falsely proposed to have statistical significance. When 

working with large samples, it is important, as Brown consults, to demonstrate 

that the parameter estimates have a substantively meaningful magnitude 

(Brown, 2015: p. 115).  

Additionally, with a small sample size, technical problems are more likely too. 

Inadmissible CFA solutions may include Heywood cases, i.e. negative variance 

estimates or estimated absolute correlations > 1.0. Experts warn that small sam-

ples (N < 100 - 150) and few indicators per factor (<3) are more prone to 

non-convergence or improper solutions (Kline, 2016 also quoting Marsh & Hau, 

1999). Generally, if the sample size is small more observed indicators per factor 

could alleviate its impact (Marsh et al., 1998; Marsh & Hau, 1999). Correspon-

dingly, if the sample is large could yield robust factors even with few indicators 

per factor. E.g. a CFA model with 6 - 12 indicator variables per factor could be 

specified with N = 50, while N > 100 would be necessary for a CFA model with 

3 - 4 indicators per factor (Boomsma, 1985; Marsh & Hau, 1999). Finally, a CFA 

model with 2 indicators per factor N > 400 would be necessary (Marsh & Hau, 

1999; Boomsma & Hoogland, 2001). Besides ML is notorious for non-convergence 

and small samples are a possible cause (Finch et al., 2016). However, Wang and 

Wang (2012) comment that a factor structure with a large number of indicators 

per factor, it is often difficult to be validated because numerous error terms will 

be possibly correlated.  

Finally, some aspects/categories in CFA potentially affected by sample size al-

so include: 1) Measurement invariance; 2) Item parceling. In measurement inva-

riance, researchers use the Δχ2 criterion to compare the fit of nested models (see 

Cheung & Rensvold, 2002). This criterion is equally sensitive to sample size to 

the chi-square (Byrne, 2012; Brown, 2015). Additionally, the effects of using item 

parcels can differentiate with sample size (Hau & Marsh, 2004). This sample size 

may be a crucial parameter when deciding whether to use item parceling or not 

(Byrne, 2012). Furthermore, the evaluation of CFA sample size must be made in 

regard to its suitability for ML estimation method because if ML is not possible 

alternative analytic approaches or estimators (e.g., robust ML) could be used 

(Brown, 2015). With these new robust estimators, the need for a large sample is 

less imperative (Raykov, 2012) because under certain conditions can handle as 

few as 60 participants (see Bentler & Yuan, 1999; Wolf et al., 2013; Chumney, 

2013) irrespectively of the normality assumption (Wang & Wang, 2012; Brown, 

2015; Kline, 2016). See also Figure 3. 
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Figure 3. CFA/SEM parameters influencing sample size and parameters affected by sam-

ple size. 

4. Sample Power Analysis Rules  

These traditional rules of thumb about sample size along are summarized next. 

4.1. Rules of Thumb 

Minimum sample sizes in absolute Ns were the first rules of thumb, suggesting 

that any N > 200 offers adequate statistical power for data analysis (Hoe, 2008; 

Singh et al., 2016). The same N is also proposed by Comrey (1988) as generally 

adequate for a measure having up to 40 items. A sample of 300 cases has also 

been suggested (Tabachnick & Fidell, 2013). Comrey and Lee (1992); and Com-

rey et al., 1973) graded a factor analysis sample of 50 as very poor, 100 as poor, 

200 as fair, 300 as good, 500 as very good, and 1000 as excellent (quoted also by 

Costello & Osborne, 2005; DeVellis, 2017; Williams et al., 2010 and others). Ac-

cording to Kline (2016) though it is difficult to set a minimum sample size in 

SEM studies a median sample based on study reviews is N = 200 (MacCallum & 

Austin, 2000). However, he adds that N = 200 may be too low for complex mod-

els with non-normal distributions with missing data. He also comments that Ns 

< 100, as a rule, generate untenable results. Finally, for a multi-group CFA, a 

general rule of thumb is 100 participants in each group (Kline, 2016; Wang & 

Wang, 2012). 

Over the years, rules of thumb (or so-called blue-chips, Nicolaou & Masoner, 

2013) proposed that the ratio of the number of people (N) to the number of 

measured variables (p) must be considered. Based on these assumptions, sample 

size should be greater than the number of variables i.e. N > p (Nunnally & 

Bernstein, 1994 as quoted in Dimitrov, 2012). The recommended N:p ratios be-

came progressively larger, ranging from 5 with a minimum N > 100 (Gorsuch, 

1983; cited in Dimitrov, 2012), to 10 (Nunnally & Bernstein, 1967; Everitt, 1975). 

A widely accepted ratio is 10 cases per indicator variable (Nunnally & Bernstein, 

1967 quoted by Wang & Wang, 2012). Tinsley and Tinsley (1987) suggested a 
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ratio of 5 to 10 participants per item for N = 300 noting that for N > 300 this ra-

tio can become progressively lower (as noted by Devellis, 2017). For scale devel-

opment, a general rule is that for a unidimensional scale constructed out of a 

20-items pool a N = 300 could be sufficient (DeVellis, 2017). Likewise, this ratio 

for “traditional multivariate statistics” can be 20 cases per measured variable 

(Shumacker & Lomax, 2016: p. 240) in line with a similar rule of thumb used in 

linear regression (Lomax & Hahs-Vaughn, 2013) but in SEM this can get as high 

as 100 - 500 or more subjects per study (Shumacker & Lomax, 2016: p. 240).  

Another variation of the N:p rule pertinent in CFA/SEM is the N:q rule, i.e. 

the number of cases (N) to the number of estimated parameters (q). This rule 

taps the model precision, i.e. the ability of the parameter estimates to approx-

imate true population values. Model precision is also a function of the bias of the 

parameter estimates and their standard errors (Brown, 2015). This ratio for CFA 

can range from 5 to 10 cases (Bentler & Chou, 1987; Bollen, 1989). If the data is 

highly kurtotic an N: q > 10 was proposed (Wang & Wang, 2012 quoting Hoog-

land & Boomsma, 1998). On the other hand, even for latent variable models with 

continuous outcomes and normal distribution using ML Jackson (2003) sug-

gested a sample-size to parameters ratio of 20:1 or at least 10:1. Results with 

lower ratios are progressively less trustworthy and the risk of technical problems 

looms larger (see more details on Kline, 2016).  

However, strict rules on sample size have mostly disappeared (Costello & Os-

borne, 2005). Instead, new rules based on a number of Monte Carlo simulation 

studies gradually emerged.  

4.2. Rules Based on Monte Carlo Simulation Studies 

Monte Carlo methods are mathematical methods using random sampling and 

computer simulation to solve problems (Wang & Wang, 2012) under different 

CFA/SEM conditions and different Ns is one of them i.e. statistical power 

(Brown, 2015).  

Findings suggest (see also Table 4) that SEM models could be safely evaluated 

with small samples (Hoyle, 1999; Hoyle & Kenny, 1999; Marsh & Hau, 1999), 

but generally N = 100 - 150 is set as a minimum sample size for SEM research 

(Anderson & Gerbing, 1988; Ding, Velicer, & Harlow, 1995) while others set this 

minimum to N = 200 (Hoogland & Boomsma, 1998; Boomsma & Hoogland, 

2001) as per Loehlin (2004). In a similar vein, Kelloway (2015) commented that 

Anderson and Gerbing (1984) also used a Monte Carlo simulation reaching to a 

similar conclusion, i.e. that small samples in CFA (N < 100), caused convergence 

failures and improper solutions in models with <2 indicators per latent variable. 

The use of 3 indicators per latent variable along with N > 200 led to almost zero 

convergence failures and no improper solutions. 

MacCallum, Widaman, Zhang, and Hong (1999) in a very influential study on 

sample size in factor analysis also suggested that 100 - 200 cases are adequate 

when: 1) multiple indicators define a factor; 2) marker variables have loadings > 

7 .80 and 3) communalities are about .5 (ideally > .6 or > .7 on average). Low  
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Table 4. Selected results from monte carlo simulation studies. 

Estimator 
Sample size 

Recommendation 
Studies recommending it 

ML with multivariate 

normal data (continuous) 

1) 100 

2) 200-400 

3) N:q = 5:1 

4) N:q = 10:1 

5) 30-460 

1) Anderson & Gerbing (1984) 

2) Jackson (2001) 

3) Tanaka (1987) 

4) Bentler & Chou (1987) 

5) Wolf et al. (2013) 

MLM ≥250 
Hu & Bentler (1999); 

Yu & Muthén (2002) 

Bootstrap with 

nonnormal continuous data 
≥200 - 1000 Nevitt & Hancock (2001) 

MLR with continuous nonnormal 

data with missing values 
>400 Yuan & Bentler (2000) 

Robust DWLS/ WLSMV with 

binary or ordinal data 
≥200 - 500 

Bandalos (2014) 

Forero, Maydeu-Olivares,  

& Gallardo-Pujol (2009) 

MLR for binary 

and ordinal variables 
≥200 - 500 Bandalos (2014) 

Note. This table is mainly based on a Table by Newsom (2018: p. 1). 

 

communalities, a small number of weakly determined factors with 3-4 indicators 

per factor increase the required sample to 300 cases and when all conditions are 

adverse, i.e. communalities are low, there are many weakly determined factors 

the cases required is 500 (Tabachnick & Fidell, 2013; Thompson, 2004; Dimi-

trov, 2012). In a nutshell, MacCallum et al. (1999) proved that model parameters 

including (but not limited) to communalities, and factor determinacy can affect 

the accuracy of the parameter estimates and model fit statistics as a function of 

sample size.  

Muthén and Muthén (2002) concluded that for a CFA model with three fac-

tors and five continuous indicators per factor to reach a power of .81 in rejecting 

the hypothesis that the factor correlation is zero, the required sample size was: 1) 

N = 150 for normal indicators with no missing values, 2) N = 175 for normal in-

dicators having missing values, 3) N = 265 for non-normal indicators and no 

missing values, and 4) N = 315 for non-normal indicators having missing values 

(Dimitrov, 2012).  

Regarding the impact of factor strength as demonstrated by the magnitude of 

regressive effects of a model on sample size, Wolf et al. (2013) in their Monte 

Carlo simulation study reported that both very weak and very strong effects may 

demand larger samples, and this effect is more evident in weak magnitude fac-

tors (Wolf et al., 2013). These findings (see also Figure 4) actually question both 

the “one size fits all” and the rules of thumb approach to CFA and SEM research, 

as noted by Wolf et al. (2013). On the other hand, Monte Carlo simulation stu-

dies results were questioned as having a limited generalizability (Brown, 2015). 

More model-based sample power methods of determining sample size and sam-

ple power are described next. 
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Figure 4. Factors that potentially increase and decrease sample size in CFA/SEM (Kline, 

20016; Nicolaou & Masoner, 2013). 

5. Sample Power Analysis Methods 

Instead of rules of thumb, sample size and power are suggested to be determined 

considering models, data and empirical context (Brown, 2015; Wang & Wang, 

2012). Generally speaking, the power in an inferential statistics test is the proba-

bility that one will reject the hypothesis tested if it is false. In CFA and SEM four 

things are required to determine the power of a test: 1) a model, 2) an alternative 

model to be compared to the first one, 3) the targeted level of significance, 4) the 

sample size N (Loehlin, 2004; Schumacker & Lomax, 2015). Based on these ele-

ments the methods described next calculated the adequate sample size in CFA 

and SEM models.  

5.1. The Critical N (CN) Statistic 

Hoelter (1983) introduced the Critical N (CN) statistic for the evaluation of SEM 

sample size, where CN ≥ 200 was considered adequate. Based on the model de-

grees of freedom a critical chi-square value is calculated. CN proposes the sam-

ple size at which the Fmin value rejects Ho (Schumacker & Lomax, 2015 also 

quoting Bollen & Liang, 1988; Bollen, 1989). After data collection and SEM 

model specification, we could estimate the post-hoc sample power with the 

non-centrality parameter (NCP or λ). Sample size N equals (NCP/Fmin) + g. 

Hence, we could a-priori obtain the Fmin value from our model, calculate the 

NCP for a given df, critical chi-square and power then calculate the sample size 

(N) using these values. McDonald and Marsh (1990) studied non-centrality and 

model-fit issue further by evaluating how nine fit indices perform with regards 

to non-centrality and sample size. For further details, refer to Schumacker and 

Lomax (2015) who are the source of this paragraph.  
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5.2. The MaCallum et al. (1996) Not-Close Fit Method 

MacCallum, Browne, and Sugawara (1996) suggested a different approach to 

testing model fit using power and the root-mean-square error of approximation 

(RMSEA; ε). They introduced the RMSEA confidence intervals, rather than a 

single point suggesting null and alternative RMSEA but researchers can also de-

fine their own. This approach evaluates power, given exact fit (Ho) where 

RMSEA is zero, close fit (Ho) where RMSEA ≤ .05 and not close fit (Ho where 

RMSEA ≥ .05. They also offered a SAS code for calculating power for a given 

sample size or sample size for a given power using RMSEA for an exact fit, for a 

close fit, and for not a close fit. They proposed that an RMSEA value of .05 - .08 

is satisfactory along with other fit measures, and a power of .768. Power is de-

fined as the probability of not rejecting the null hypothesis, therefore a close fit 

of the sample covariance matrix with the model-implied covariance matrix 

(Schumacker & Lomax, 2015; Loehlin & Beaujean, 2017).  

MacCallum, Lee, and Browne (2010) further elaborated on sample power in 

CFA and SEM. Hancock and French (2013) discussed the use of the 

non-centrality parameter (NCP; λ) and root-mean-square error of approxima-

tion (RMSEA; ε) when testing the null and alternative CFA/SEM models. See 

Schumacker & Lomax (2015) for more details. 

5.3. The Satora Sarris Method (1985)  

Satorra and Saris (1985) and Saris and Satorra (1993) introduced an alternative 

approach for evaluating a CFA/SEM model power (Schumacker & Lomax, 2015).  

The method is based on the idea that a moderately misspecified model fit test 

statistic follows a non-central chi-square distribution. The chi-square of the 

misspecified model approximates the non-centrality parameter (NCP or λ) of 

the non-central chi-square distribution. NCP is estimated as χ2 – dfmodel accord-

ing to the weighted least squares estimation. Once the NCP parameter is calcu-

lated, statistical power is obtained either from a table for non-central chi-square 

distribution for given degrees of freedom and a level (Saris & Stonkhorst, 1984) 

or calculated by statistical packages (Wang & Wang, 2012; Schumacker & Lo-

max, 2015). The application of the method to estimate statistical power and de-

rive sample size requires a sequence of five steps (Brown, 2015; Wang & Wang, 

2012).  

In an attempt to compare the Satorra and Saris method (1985) with the Mac-

Callum et al. method (1996), Lee, Cai, and MacCallum (2012) remarked that in 

the former misspecification of particular parameters and their magnitudes is re-

quired as an input. In the later, the misfit of the hypothesized model or fit dif-

ference is required. Thus, when data is not enough or parameter values are unre-

liable, e.g. on research inception, then the latter approach could be more appro-

priate demanding substantially fewer user data (Lee, Cai, & MacCallum, 2012). 

A drawback of this approach is that it must be repeated for every individual pa-

rameter for which an estimate of power is desired (Kline, 2016). See also Table 5 

for Method steps. 
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Table 5. Satorra and Saris (1985) method steps for calculating sample size. 

Step Description 

Step 1 
Model specification with hypothesized population parameter values and employ a  

null covariance matrix ((i.e., a matrix with 1s on the diagonal and 0 s off the diagonal) 

Step 2 

Check of accuracy. The H1 model is freely estimated with the fitted covariance  

matrix from step 1 as input. If the estimated parameters estimated match  

those in Step 1, then we can proceed to the next step. 

Step 3 

Specification of H0. Select a sample size and specify a misspecified model by restricting 

the targeted parameterto zero (or the value expected under the null hypothesis),  

and then run the model using the generated covariance matrix as data input. 

Step 4 
Use the model chi-square from Step 3 as an approximate NCP to compute statistical 

power of detecting the effect of interest at a given a level 

Step 5 

Repeat Steps 3 and 4 with various sample sizes and compute corresponding 

power values. The sample size corresponding to a power > 0.80 is an  

estimation of the required sample size. 

Note. Steps are from Wang & Wang (2012) and Brown (2015, p. 385). 

5.4. The Monte Carlo Approach 

Muthén and Muthén (2002) demonstrated how the CFA/SEM sample power can 

be a priori determined with Monte Carlo simulation (Loehlin & Beaujean, 2017).  

Monte Carlo simulation estimates the proportion of generated samples where 

the null hypothesis is correctly rejected (Bandalos & Leite, 2013; Kline, 2016). To 

estimate power and sample size for a model with Monte Carlo simulation a hy-

pothesized population value for each model parameter is defined based on theo-

retical or empirical findings. Then a large number of samples are randomly gen-

erated. The model is estimated in each of the generated samples (Wang & Wang, 

2012). Then the results of all samples are averaged (parameter values, standard 

errors, fit statistics). Based on these averaged results precision and power of the 

estimates are examined (i.e., the percentage of samples in which the parameter 

significantly differs from zero). Various sample sizes are examined to find out 

the required N to achieve parameter estimates with the desired power and preci-

sion. The analysis will proceed by examining larger sample sizes (and other seed 

values), to achieve stability once a suitable N has been identified. This is accom-

plished by changing the number of observations (Brown, 2015). The criteria 

suggested by Muthén and Muthén (2002) for sample size calculation is the fol-

lowing: 1) parameter and standard error bias < 10% for each model parameter; 

2) standard errors bias < 5% for parameters that the power analysis targets and 

3) coverage ranging from .91 to .98. The required sample size is specified when 

the power of salient model parameters is ≥.80 (Cohen, 1988; Brown, 2015; Di-

mitrov, 2012). The Monte Carlo simulators available can be programmed to re-

produce a specific amount of non-normality and missing data. Nonetheless, they 

do not handle joint skewness and kurtosis of the distribution, i.e. multivariate 

non-normality (Brown, 2015). 

5.5. Kim’s (2005) Method 

Kim (2005) has developed some equations to calculate sample size for a given 
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power based on model fit indices CFI, RMSEA, Steiger’s g, and MacDonald’s fit 

index (Wang & Wang, 2012). Kim (2005) studied how power and minimum 

sample size estimates differentiated in conjunction with the fit index, the ob-

served variables and the degrees of freedom of the model, and the covariance 

magnitude of variables. As Kim (2005) notes, a value of .95 for the CFI does not 

necessarily indicate the same misspecification as a value of .05 for the RMSEA 

(Kline, 2016). This happened because: 1) fit statistics tap different model fit as-

pects and 2) the values of fit statistics and degrees of freedom or types of model 

misspecification have limited correspondence (Kline, 2016 also referring Han-

cock & French, 2013). The resulting sample size emerging from the Kim’s (2005) 

method is and from the Preacher and Coffman’s (2006) web-based utility pro-

gram for MacCallum, Browne and Sugawara’s method (1996) is identical (Wang 

& Wang, 2012). 

Finally, bootstrapping (c.f., Bollen & Stine, 1992) is another technique that al-

so applicable to power analysis but in contrast to the rest of the methods its use-

fulness in determining the target N for a research is low because the generation 

of bootstrapped samples requires a large existing data set (Brown, 2015 referring 

to Jaccard & Wan, 1996). 

In conclusion, the generation and inspection of power curves as functions of 

sample size and other assumptions is useful for planning a study. Power curves 

illustrate graphically the power as a function of sample size for a model (see 

Kline, 2016: p. 292). Statistical power can be estimated at one of two different 

levels in CFA/SEM. The first is the parameter level i.e. the power to detect an in-

dividual effect (Kline, 2016). An alternative level is to assess minimum required 

sample sizes to reach power levels equal to or greater than the desired value as 

Kline (2016) comments. This option is available with Monte Carlo simulation. 

However, the model-based approaches to power analysis have been criticized as 

showing low generalizability because exact estimates of population values for 

each parameter in the model need to be specified by the researcher (Brown, 

2015). 

5.6. The Bayesian Approach on Testing the Null Hypothesis 

Traditional power analysis relies on testing the null hypothesis testing approach 

(Cohen, 1988). Nevertheless, there are alternative approaches like the Bayesian 

estimation approach (Wang et al., 2013). The Bayesian approach postulates that 

all new data is added to a sum of knowledge thus permitting the use of previous 

knowledge into probability determination process. In this framework hypotheses 

are studied by means of deductive methods using posterior probability rather 

than the comparison of the hypothesis examined to the null hypothesis (Barker 

et al., 2016). 

6. What to Do When Sample Is Not Large Enough 

Sometimes the sample size for a certain CFA/SEM model may not be adequate 
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for achieving desired power (e.g., 0.80). Nonetheless, this does not mean the re-

searcher is left without a choice. In a SEM study with a small sample standard 

errors are likely to be biased and generally, the quality of goodness of fit tests 

may be questionable. Yet, parameter estimates are essentially unbiased if the re-

searcher does not face non-convergence and improper solutions problems dur-

ing model estimation (Chen et al., 2001). And parameter estimates are a source 

of useful information that can be used as guessed population inputs in a Monte 

Carlo simulation study on power analysis (Wang & Wang, 2012).  

Additionally, Marsh and Hau (1999) offer the following guidelines for study-

ing CFA models with a small sample size: 1) the use of indicators with good 

psychometric properties and with standardized coefficients > .70 to limit the 

model susceptibility to Heywood cases (Wothke, 1993). 2) The use of equality 

constraints on the unstandardized coefficients of indicators that belong to the 

same factor based on the same score limits the possibility of an inadmissible so-

lution. This strategy is applicable to indicators having the same metric. 3) use 

item-parceling to analyses indicators (Kline, 2016). Also specifying models cau-

tiously and dropping estimation of extraneous parameters is also an option 

(Wang et al., 2013; also quoting Floyd & Widaman, 1995). 

7. Summary and Conclusions 

The answer to the question “is the sample size adequate?” is commonly ex-

pressed by many EFA, CFA, and SEM researchers because rules of thumb were 

the state of the art method for years (Wang et al., 2013; Nicolaou & Masoner, 

2013). Statistical power is calculated by subtracting the probability of Type II 

error from one. The standard limit of acceptability for statistical power is .80 i.e. 

80% likelihood of rejecting a false null hypothesis (thus Type II error probability 

is 20% (Cohen, 1988, 1992) as Brown (2015) put it.  

First, regarding EFA, literature suggested rules of thumb consisting either of 

minimum Ns in absolute numbers like 100 - 250 (Cattell, 1978; Gorsuch, 1983), 

300 (Tabachnick & Fidell, 2013) or 500 or more (Comrey & Lee, 1992) as re-

viewed by Dimitrov (2012). Another category of rules of thumb is ratios. In EFA 

the N:p ratio is used, i.e. of participants (N) to variables (p) set traditionally to 

5:1. However, studies suggest that strength of item loadings, uniformity of the 

communalities and number of items per factor (Guadagnoli & Velicer, 1988) or 

in two words “Strong data” (Costello & Osborne, 2005) are vital for the stability, 

reliability, and replicability of a factor solution (Wang et al., 2013).  

Second regarding CFA and SEM the guidelines of Velicer and Fava (1998) 

about the size of the factor loadings and the number of variables as a function of 

the sample size are pertinent in CFA/SEM too. In CFA and SEM, sample size 

depends on a number of features like study design (e.g. cross-sectional vs. longi-

tudinal); the number of relationships among indicators; indicator reliability, the 

data scaling (e.g., categorical versus continuous) and the estimator type (e.g., 

ML, robust ML etc.), the missing data level and pattern and model complexity 
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(Brown, 2015). Thus, determining sample size is approximated by power analy-

sis (Brown, 2015; Kline, 2016; Byrne, 2012; Wang & Wang 2012). Also, mini-

mum sample sizes are recommended to limit the non-convergence probability to 

have unbiased estimates or standard errors based on Monte Carlo simulations 

studies. Generally, CFA/SEM is a large-sample technique (Kline, 2016) but as a 

rule, models having robust parameter estimates and variables with high reliabil-

ity may require smaller samples (Tabachnick & Fidell, 2013). Additionally, the 

issue whether the sample size is adequate for achieving desired power for signi-

ficance tests, overall model fit, and likelihood ratio tests for specific mod-

el/research circumstances is a different aspect considered during power analysis 

(Hancock & French, 2013; Lee, Cai, & MacCallum, 2012). How Chi-square sta-

tistic, RMSEA, and other fit indices perform on different sample sizes levels is 

another parameter to consider (Hu & Bentler, 1999). Then there is sufficient 

power is crucial for individual parameter tests like factor loadings (Newsom, 

2018). A CFA/SEM rule of thumb is the ratio of cases to free parameters, or N:q 

is commonly used for minimum recommendations and 10:1 to 20:1 is a com-

monly suggested ratio (Schumacker & Lomax, 2015; Kline, 2016; Jackson, 2003). 

Anyhow, even suggestions based on simulation studies are only rough approxi-

mations, not equally applicable to all SEM studies. Simulation studies have the 

potential to study only a fraction of SEM research conditions at a time thus they 

are not easily generalized (Brown, 2015; Newsom, 2018). 
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