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ABSTRACT This paper places the key issues and implications of the new ‘introductory’ book on

spatial econometrics by James LeSage & Kelley Pace (2009) in a broader perspective: the argument in

favour of the spatial Durbin model, the use of indirect effects as a more valid basis for testing whether

spatial spillovers are significant, the use of Bayesian posterior model probabilities to determine which

spatial weights matrix best describes the data, and the book’s contribution to the literature on spatio-

temporal models. The main conclusion is that the state of the art of applied spatial econometrics has

taken a step change with the publication of this book.

Relever le niveau de l’économetrie spatial appliquée

RÉSUMÉ La présente communication place les principales questions et implications du nouvel ouvrage

d’introduction sur l’économétries spatiale de James LeSage & Kelley Pace (2009) dans un contexte

plus général: l’argument favorisant le modèle spatial de Durbin, l’emploi d’effets indirects comme base

plus valable pour évaluer l’aspect significatif des déversements spatiaux, l’emploi des probabilités d’un

modèle baysien postérieur pour évaluer laquelle des matrices de poids spatiaux décrit le mieux les

donnes, et la contribution de l’ouvrage la documentation sur les modèles spatio-temporels. La principale

conclusion est qu’avec la publication de cet ouvrage, l’état de l’art de l’économétries spatiale applique a

effectué un grand pas en avant.

Alzar el nivel de la econometrı́a espacial aplicada

RÉSUMÉ Este trabajo plantea las cuestiones e implicaciones clave del nuevo libro introductorio sobre

económetra espacial de James LeSage & Kelley Pace (2009) dentro de una perspectiva más amplia: el

argumento a favor del modelo espacial Durbin, el uso de efectos indirectos como una base más válida

para poner a prueba si los desbordamientos espaciales son significativos, el uso de probabilidades

posteriores bayesianas para descubrir que matriz de pesos espaciales describe mejor los datos, y la

contribución del libro a la bibliógrafa sobre modelos espaciotemporales. La principal conclusión es que la

econometrı́a espacial aplicada más avanzada ha experimentado un cambio radical con la publicación de

este libro.
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1. Introduction

The year 2007 marks a sea change in spatial econometricians’ way of thinking.
Prior to this they were interested mainly in models containing one type of spatial
interaction effect: the spatial lag model and the spatial error model. The first model
contains a spatially lagged dependent variable, while the second model incorporates
a spatial autoregressive process in the error term. The seminal book by Anselin
(1988) and the testing procedure for a spatial error or a spatial lag model based on
robust Lagrange multiplier tests developed by Anselin et al. (1996) may be
considered as the main pillars behind this way of thinking. After 2007 the interest in
models containing more than one spatial interaction effect increased. In his keynote
speech at the first World Conference of the Spatial Econometrics Association in
2007, Harry Kelejian advocated models that include both a spatially lagged
dependent variable and a spatially autocorrelated error term (based on Kelejian &
Prucha, 1998 and related work), while James LeSage, in his presidential address at
the 54th North American Meeting of the Regional Science Association Interna-
tional in 2007, advocated models that include both a spatially lagged dependent
variable and spatially lagged explanatory variables. In analogy to Durbin (1960)
for the time series case, Anselin (1988) labelled the latter model the spatial
Durbin model.

The argument in favour of the spatial Durbin model is now laid down in a
new ‘introductory’ book on spatial econometrics by James LeSage & Kelley Pace
(2009), and may be considered a landmark in raising the bar in the field of
applied spatial econometrics. One strength of the spatial Durbin model is that it
produces unbiased coefficient estimates also if the true data-generation process is a
spatial lag or a spatial error model. Another strength is that it does not impose
prior restrictions on the magnitude of potential spatial spillover effects. In contrast
to other spatial regression specifications, these spillover effects can be global or
local and be different for different explanatory variables. These and other
important issues put forward in LeSage & Pace’s book (hereinafter with page
numbers shown in parentheses) will be summarized in this paper. This paper,
however, is more than just a book review. In each of the following sections,
I will first give my own view of the state of the art of one theme in
applied spatial econometrics, and then I will discuss the contribution of LeSage &
Pace’s book.
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2. A Taxonomy of Linear Spatial Dependence Models for Cross-section
Data

To give a full explanation of the claim that the spatial Durbin model produces
unbiased coefficient estimates, also if the true data-generation process is a spatial lag
or a spatial error model, I first consider a taxonomy of linear spatial dependence
models for cross-section data.

The standard approach in most empirical work is to start with a non-spatial
linear regression model and then to test whether or not the model needs to be
extended with spatial interaction effects. This approach is known as the specific-to-
general approach. The non-spatial linear regression model takes the form

Y �aiN �Xb�o; (1)

where Y denotes an N�1 vector consisting of one observation on the
dependent variable for every unit in the sample (i�1, . . ., N), iN is an N�1
vector of ones associated with the constant term parameter a, X denotes an
N�K matrix of exogenous explanatory variables, with the associated parameters
b contained in a K�1 vector, and o� (o1; :::; oN )T is a vector of disturbance
terms,1 where oi are independently and identically distributed error terms for all i
with zero mean and variance s2. Since the linear regression model is commonly
estimated by ordinary least squares (OLS), it is often labelled the OLS model.
Furthermore, even though the OLS model in most studies focusing on spatial
interaction effects is rejected in favour of a more general model, its results often
serve as a benchmark.

The opposite approach is to start with a more general model containing, nested
within it as special cases, a series of simpler models that ideally should represent all
the alternative economic hypotheses requiring consideration. Manski (1993) points
out that three different types of interaction effects may explain why an observation
associated with a specific location may be dependent on observations at other
locations: (i) endogenous interaction effects, where the decision of a spatial unit (or
its economic decision makers) to behave in some way depends on the decision
taken by other spatial units; (ii) exogenous interaction effects, where the decision of
a spatial unit to behave in some way depends on independent explanatory variables
of the decision taken by other spatial units*if the number of independent
explanatory variables in a linear regression model is K, then the number of
exogenous interaction effects is also K, provided that the intercept is considered as a
separate variable; and (iii) correlated effects, where similar unobserved environ-
mental characteristics result in similar behaviour.

The Manski model takes the form

Y �rWY �aiN �Xb�WXu�u; (2a)

u�lWu�o; (2b)

where the variable WY denotes the endogenous interaction effects among the
dependent variables, WX the exogenous interaction effects among the independent
variables, and Wu the interaction effects among the disturbance terms of the
different spatial units. r is called the spatial autoregressive coefficient, l the spatial
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autocorrelation coefficient, while u, just as for b, represents a K�1 vector of fixed
but unknown parameters.

W is an N�N matrix describing the spatial arrangement of the spatial units in
the sample. Lee (2004) shows that W should be a non-negative matrix of known
constants. The diagonal elements are set to zero by assumption, since no spatial unit
can be viewed as its own neighbour. The matrices I � rW and I � lW should be
non-singular, where I represents the identity matrix of order N. For a symmetric
W, this condition is satisfied as long as r and l are in the interior of (1/vmin,
1/vmax), where vmin denotes the smallest (i.e. most negative) and vmax the largest
real characteristic root of W. If W is row normalized subsequently, the latter
interval takes the form (1/vmin, 1), since the largest characteristic root of W equals
unity in this situation. If W is an asymmetric matrix before it is row normalized, it
may have complex characteristic roots. LeSage & Pace (pp. 88�89) demonstrate
that in that case r and l are restricted to the interval (1/rmin, 1), where rmin equals
the most negative purely real characteristic root of W after this matrix is row
normalized. Finally, one of the following two conditions should be satisfied: (a) the
row and column sums of the matrices W, (I � rW)�1 and (I � lW)�1 before W is
row normalized should be uniformly bounded in absolute value as N goes to
infinity, or (b) the row and column sums of W before W is row normalized should
not diverge to infinity at a rate equal to or faster than the rate of the sample size N.
Condition (a) originates from Kelejian & Prucha (1998, 1999), and condition (b)
from Lee (2004). Both conditions limit the cross-sectional correlation to a
manageable degree, i.e. the correlation between two spatial units should converge
to zero as the distance separating them increases to infinity.

When the spatial weights matrix is a binary contiguity matrix, (a) is satisfied.
Normally, no spatial unit is assumed to be a neighbour to more than a given
number, say q, of other units. By contrast, when the spatial weights matrix is an
inverse distance matrix, (a) may not be satisfied. Consider an infinite number of
spatial units that are arranged linearly. The distance of each spatial unit to its first
left- and right-hand neighbour is d; to its second left- and right-hand neighbour,
the distance is 2d; and so on. When W is an inverse distance matrix and the off-
diagonal elements of W are of the form 1/dij, where dij is the distance between two
spatial units i and j, each row sum is 2� (1=d�1=2d�1=3d� . . .); representing a
series that is not finite. This is perhaps the reason why some empirical applications
introduce a cut-off point d+ such that wij�0 if dij�d+. However, since the ratio
2�(1=d �1=2d�1=3d� . . .)=N 00 as N goes to infinity, condition (b) is satisfied,
which implies that an inverse distance matrix without a cut-off point does not
necessarily have to be excluded in an empirical study for reasons of consistency.

The opposite situation occurs when all cross-sectional units are assumed to be
neighbours of each other and are given equal weights. In that case all off-diagonal
elements of the spatial weights matrix are wij�1. Since the row and column sums are
N � 1, these sums diverge to infinity as N goes to infinity. In contrast to the previous
case, however, (N � 1)/N01 instead of 0 as N goes to infinity. This implies that a
spatial weights matrix that has equal weights and that is row normalized subsequently,
wij�1/(N�1), must be excluded for reasons of consistency.

Figure 1 summarizes a family of eight linear spatial econometric models, among
which are the non-spatial model in (1) on the right-hand side and the Manski
model in (2) on the left-hand side. Each model to the right of the Manski model
can be obtained from that model by imposing restrictions on one or more of its
parameters. The kinds of restrictions are reported alongside the arrows in Figure 1.
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Figure 1. The relationships between different spatial dependence models for cross-section data.
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Some of the models recorded in Figure 1 are well known and frequently used
in applied research, while other models are not. LeSage & Pace (p. 32) denote the
model with a spatially lagged dependent variable (WY) and a spatially
autocorrelated error term (Wo) by the term SAC, though without pointing out
what this acronym is standing for. Since Kelejian & Prucha (1998) have been the
main advocates of this model, it is therefore renamed the Kelejian�Prucha model
in this paper. The model with a spatially lagged dependent variable (WY) and
spatially lagged independent variables (WX) has been introduced by Anselin
(1988) and is labelled the spatial Durbin model. A model with spatially lagged
independent variables (WX) and a spatially autocorrelated error term has hardly
been used in the literature. LeSage & Pace (pp. 41�42) label it the spatial Durbin
error model.

Figure 1 seems to indicate that the best strategy to test for spatial interaction
effects is to start with the most general model, i.e. the model that includes a spatially
lagged dependent variable, spatially lagged independent variables, and a spatially
autocorrelated error term simultaneously. However, as Manski (1993) notes, at least
one of the K�2 interaction effects must be excluded, because otherwise the
parameters are unidentified. To verify this, I carried out a simple Monte Carlo
experiment generating Y by (2a) and (2b), one X variable drawn from a uniform
distribution on the interval [�1,1], r�a�b�u�l�0:25; s2�0.01, N�60,
and a spatial weights matrix W corresponding to the corners of the seams in a soccer
ball (in Matlab known as the Bucky Ball). Based on 1,000 repetitions, I found biases
in the parameter estimates of the endogenous and exogenous interaction effects
(r and u, respectively) that may be as great as 0.0423 and, related to that, standard
deviations that may be as great as 0.2677. These results corroborate Manski’s (1993,
p. 534) finding that there are no technical obstacles to estimating a model with
interaction effects among the dependent variable, the independent variables and the
disturbance terms, but that the parameter estimates cannot be interpreted in a
meaningful way since the endogenous and exogenous effects cannot be
distinguished from each other.

Following LeSage & Pace (pp. 155�158), the best option in such circumstances
is to exclude the spatially autocorrelated error term.2 The cost of ignoring spatial
dependence in the dependent variable and/or in the independent variables is
relatively high since the econometrics literature has pointed out that if one or more
relevant explanatory variable are omitted from a regression equation, the estimator
of the coefficients for the remaining variables is biased and inconsistent (Greene,
2005, pp. 133�134). In contrast, ignoring spatial dependence in the disturbances, if
present, will only cause a loss of efficiency. Furthermore, the spatial Durbin model
produces unbiased coefficient estimates also if the true data-generation process is
any of the other spatial regression specifications recorded in Figure 1, except for the
Manski model. By contrast, if the Kelejian�Prucha model is taken as the point of
departure, it will suffer from omitted variables bias if the true data-generation
process is a spatial Durbin or a spatial Durbin error model. Similarly, if the spatial
Durbin error model is taken as the point of departure, it will suffer from omitted
variables bias if the true data-generation process is a spatial lag, Kelejian�Prucha or
spatial Durbin model.

A concomitant advantage of the spatial Durbin model is that it produces correct
standard errors or t-values of the coefficient estimates also if the true data-
generating process is a spatial error model. This is because the spatial error model is
a special case of the spatial Durbin model (see Figure 1), as a result of which error
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dependence is correctly taken into account in its variance�covariance matrix.
Whether inference regarding dispersion of the explanatory variables is also correct if
the true data-generating process is a Kelejian�Prucha or spatial Durbin error model
is an issue that, according to LeSage & Pace, needs further exploration (p. 158).
This is because neither of these models is a special case of the others (see Figure 1),
indicating that the implicit specification of spatial error dependence in the spatial
Durbin model is different from that in the other two models.

3. Methods of Estimation

Three methods have been developed in the literature to estimate models that
include spatial interaction effects. One is based on maximum likelihood (ML), one
on instrumental variables or generalized method of moments (IV/GMM), and one
on the Bayesian Markov Chain Monte Carlo (MCMC) approach. One important
limitation of LeSage & Pace’s book is that it discusses the ML method (Ch. 3) and
the Bayesian method (Ch. 5) extensively, but does not pay any attention to the IV/
GMM method.

One advantage of IV/GMM estimators is that they do not rely on the
assumption of normality of the disturbances. One disadvantage is the possibility of
ending up with a coefficient estimate for r or for l outside its parameter space.
Whereas these coefficients are restricted to the interval (1/rmin, 1) by the Jacobian
term in the log-likelihood function of ML estimators or in the conditional
distribution of the spatial parameter of Bayesian estimators, they are unrestricted
using IV/GMM since these estimators ignore the Jacobian term.

One of the reasons for developing IV/GMM estimators was as a response to
perceived computational difficulties (Kelejian & Prucha, 1998, 1999). Estimation of
spatial econometric models involves the manipulation of N�N matrices, such as
matrix multiplication, matrix inversion, the computation of characteristic roots
and/or Cholesky decomposition. These manipulations may be computationally
intensive and/or may require significant amounts of memory if N is large. Since
IV/GMM estimators ignore the Jacobian term, many of these problems could be
avoided. In Chapter 4 of their book, however, LeSage & Pace produce conclusive
evidence that these computational difficulties have become a thing of the past, as is
the case for ML and Bayesian estimators.

In spite of this, Fingleton & Le Gallo (2007, 2008) show that IV/GMM
estimators are extremely useful in those cases where linear spatial dependence
models contain one or more endogenous explanatory variables (other than the
spatially lagged dependent variable) that need to be instrumented. In applied
econometrics work, the presence of endogenous variables on the right-hand side is
a common occurrence, as endogeneity may be the result of measurement errors on
explanatory variables, of omitted variables correlated with included explanatory
variables or of the existence of an unknown set of simultaneous structural
equations. ML or Bayesian estimators of models with a spatial lag (i.e. the spatial
lag model and the spatial Durbin model) and additional endogenous variables do
not feature in the spatial econometrics literature and would be difficult, if not
impossible, to derive. The same applies to models with a spatial error process (i.e.
the spatial error model and the spatial Durbin error model). By contrast, models
including a spatial lag and additional endogenous variables can be straightforwardly
estimated by two-stage least squares (2SLS). To instrument the spatially lagged
dependent variable, Kelejian et al. (2004) suggest [/Xt WXt . . . W gXt]; where g is a
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pre-selected constant.3 Typically, one would take g�1 or g�2, dependent on the
number of regressors and the type of model. For example, in the case of the spatial
Durbin model g should be greater than one, since this model already contains
the variables X and WX on the right-hand side. If one or more of the explana-
tory variables are endogenous, the set of instruments must be limited to
[/Xex

t WXex
t . . . W dXex

t ]; where ‘ex’ denotes the X variables that are exogenous.
Another difference is that this set may also be used to instrument the additional
endogenous explanatory variables. A similar type of extension applies to Kelejian &
Prucha’s (1999) GMM estimator for models including a spatial error process
together with endogenous explanatory variables (Fingleton & Le Gallo, 2007). In
addition, Fingleton & Le Gallo (2008) consider a mixed 2SLS/GMM estimator of
the Kelejian�Prucha model extended to include endogenous explanatory variables.

4. Model Comparison

Many practitioners are in two minds about whether to apply the general-to-specific
or the specific-to-general approach. This is understandable. Whereas LeSage &
Pace argue that the spatial Durbin model is the best point of departure, Florax et al.
(2003) have found that the expansion of a linear regression equation with spatially
lagged variables, conditional on the results of misspecification tests, outperforms
the general-to-specific approach for finding the true data-generation process.4

I therefore propose the following test procedure to find out which model is the
most likely candidate to explain the data.5

First estimate the OLS model and test whether the spatial lag model or the
spatial error model is more appropriate to describe the data. For this purpose, one
may use the classic LM-tests proposed by Anselin (1988), and the robust LM-tests
proposed by Anselin et al. (1996).6 Both the classic and the robust tests are based on
the residuals of the OLS model and follow a chi-squared distribution with one
degree of freedom.

If the OLS model is rejected in favour of the spatial lag, the spatial error model
or in favour of both models, then the spatial Durbin model should be estimated. If
these models are estimated by maximum likelihood, a likelihood ratio (LR) test can
subsequently be used to test the hypotheses H0: u�0 and H0: u�rb�0. The first
hypothesis examines whether the spatial Durbin can be simplified to the spatial lag
model, and the second hypothesis whether it can be simplified to the spatial error
model (see Figure 1). Both tests follow a chi-squared distribution with K degrees of
freedom.

If both hypotheses H0: u�0 and H0: u�rb�0 are rejected, then the spatial
Durbin best describes the data. Conversely, if the first hypothesis cannot be
rejected, then the spatial lag model best describes the data, provided that the
(robust) LM tests also pointed to the spatial lag model. Similarly, if the second
hypothesis cannot be rejected, then the spatial error model best describes the data,
provided that the (robust) LM tests also pointed to the spatial error model. If one of
these conditions is not satisfied, i.e. if the (robust) LM tests point to a model other
than the LR tests, then the spatial Durbin model should be adopted. This is because
this model generalizes both the spatial lag and the spatial error model (see Figure 1).

If the OLS model is estimated and not rejected in favour of both the spatial lag
and the spatial error model,7 the OLS model should be re-estimated including
spatially lagged independent variables (WX) or a particular selection of these K
variables to be able to test the hypothesis H0: u�0. If this hypothesis cannot also be
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rejected, then it may be concluded that the OLS model best describes the data. In
that case there is no empirical evidence in favour of any type of spatial interaction
effect. By contrast, when this hypothesis must be rejected, the spatial Durbin model
should be estimated to be able to test the additional hypothesis H0: r�0. If the
latter hypothesis is also rejected, then the spatial Durbin model best describes the
data. If it is not, it may be concluded that a model with spatially lagged independent
variables only suffices.

5. Selection of the Spatial Weights Matrix

One major weakness of spatial econometric models is that the spatial weights matrix
W cannot be estimated but needs to be specified in advance and that economic
theory underlying spatial econometric applications often has little to say about the
specification of W (Leenders, 2002). For this reason, it has become common
practice to investigate whether the results are robust to the specification of W.
A recent influential paper by Ertur & Koch (2007) is illustrative of this approach. By
including spatial dependence structures in theoretical economic relationships
explaining economic growth per capita, they end up with an empirical model
that takes the form of a spatial Durbin model. However, since the theoretical model
offers no guidance as to how to specify the spatial weights matrix, they consider
two alternatives: one matrix whose non-diagonal elements are measured by 1/d2,
where d reflects the distance between two units, and another matrix whose
elements are measured by e�2d. Since many other specifications have been
considered in the spatial econometrics literature, among which are a binary
contiguity matrix, an inverse distance matrix with or without a cut-off point, a
q nearest-neighbour matrix (where q is a positive integer, such as 5 or 10), a
question that recurs is how the selection procedure of the spatial weights matrix
might be improved.

A recent Monte-Carlo study by Stakhovych & Bijmolt (2009) demonstrates
that a weights matrix selection procedure that is based on ‘goodness-of-fit’ criteria
increases the probability of finding the true specification. The most widely used
criterion is the log-likelihood function value. If a spatial interaction model is
estimated based on S different spatial weights matrices and the log-likelihood
function value of every model is estimated, one may select the spatial weights
matrix exhibiting the highest log-likelihood function value. Harris & Kravtsova
(2009) criticize this approach, because it would only find a local maximum among
the competing models and not necessarily a correctly specified W (unless it is
unknowingly included in the set of competing models considered). However, the
Monte Carlo results found by Stakhovych & Bijmolt (2009) partly refute this
critique. Although there is a serious probability of selecting the wrong spatial
weights matrix if spatial dependence is weak, the consequences of this poor choice
are limited because the coefficient estimates are quite close to the true ones.
Conversely, although the wrong choice of a spatial weights matrix can distort the
coefficient estimates severely, the probability that this really happens is small if
spatial dependence is strong.

One of the merits of LeSage & Pace’s book is that they offer another criterion
to select models, namely the Bayesian posterior model probability. Whereas tests
for significant differences between log-likelihood function values, such as the LR-
test, can formally not be used if models are non-nested (i.e. based on different
spatial weights matrices), Bayesian posterior model probabilities do not require
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nested models to carry out these comparisons (p. 162). The basic idea is to set prior
probabilities equal to 1/S, making each model equally likely a priori, to estimate
each model by Bayesian methods, and then to compute posterior probabilities
based on the data and the estimation results of this set of S models. Although the
mathematics of this approach might deter potential users (Chs 5 and 6), my
experience with this approach is positive. First, posterior model probabilities may
differ widely even if the estimation results appear to be quite robust to different
specifications of the spatial weights matrix. In a study I did on cross-country
differences in governance (Seldadyo et al., 2010), the posterior model probability of
a 10 nearest-neighbour matrix appeared to be more than six times as large as that of
an inverse distance matrix, more than three times as large as that of a five nearest-
neighbour matrix, and more than twice as large as an inverse distance matrix with a
cut-off point. Second, since Matlab routines applying Bayesian methods to the
spatial lag, spatial error and spatial Durbin models are made downloadable for free
on LeSage’s website (www.spatial-econometrics.com), these kinds of comparisons
can be carried out relatively easily. Furthermore, since LeSage also provides Matlab
routines applying the Bayesian method to the spatial lag, spatial error and spatial
Durbin models of limited dependent variables, similar types of selection procedures
as discussed in this and the previous sections can be used for empirical problems
requiring a probit or tobit approach (Ch. 10).

Another approach to capture spatial interaction effects is to extend the linear
regression model by a finite number of unobserved factors that affect all units
(Pesaran, 2006). Factor models are potentially powerful in that they do not require
strong and unverifiable assumptions on the nature of spatial dependence. On the
other hand, common factors only model interaction effects among the error terms
and, often, these factors are difficult to interpret. Nevertheless, a careful elaboration
of the relative merits of the multifactor approach, for example, in combination with
the spatial Durbin model is an interesting topic for further research.

6. Direct, Indirect and Spatial Spillover Effects

Many empirical studies use point estimates of one or more spatial regression model
specifications to test the hypothesis as to whether or not spatial spillovers exist. One
of the key contributions of LeSage & Pace’s book (p. 74) is the observation that this
may lead to erroneous conclusions, and that a partial derivative interpretation of the
impact from changes to the variables of different model specifications represents a
more valid basis for testing this hypothesis. To illustrate this, they give an example
of a spatially lagged independent variable WX whose coefficient is negative and
insignificant (table 3.3), while its spatial spillover effect is positive and significant
(table 3.4).

If the spatial Durbin model is taken as the point of departure and rewritten as

Y � (I�rW )�1aiN � (I�rW )�1(Xb�WXu)� (I�rW )�1o; (3)

the matrix of partial derivatives of Y with respect to the kth explanatory variable of
X in unit 1 up to unit N (say xik for i�1, . . ., N, respectively) is relatively easy to
obtain:

18 J. P. Elhorst
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@Y

@x1k

:
@Y

@xNk

" #
�

@y1

@x1k

:
@y1

@xNk

: : :

@yN

@x1k

:
@yN

@xNk

2
666664

3
777775

� (I�rW )�1

bk w12uk : w1Nuk

w21uk bk : w2Nuk

: : : :
wN1uk wN2uk : bk

2
664

3
775; (4)

where wij is the (i, j)th element of W. However, it is the unfamiliarity with or the
complexity of this expression that troubles many practitioners. To provide a better
understanding of the properties of the partial derivatives, I will give the simplest
example possible without loss of generality, and use this example to explain LeSage
& Pace’s claim step by step.

6.1. Properties of Partial Derivatives

Suppose we have three spatial units that are arranged linearly: unit 1 is a neighbour
of unit 2, unit 2 is a neighbour of both units 1 and 3, and unit 3 is a neighbour of
unit 2.8 Then the row-normalized spatial weights matrix W and the spatial
multiplier matrix (I�rW)�1 are9

W �
0 1 0

w21 0 w23

0 1 0

2
4

3
5 and (I�rW )�1

�
1

1 � r2

1�w23r
2 r r2w23

rw21 1 rw23

r2w21 r 1�w21r
2

2
4

3
5; (5)

where w12�w32�1 since units 1 and 3 have only one neighbour, and w21�w23�
1 (w21 and w23 might be different). Substituting the second matrix of (5) into (4),
the impact of a change in successively units 1, 2 and 3 of variable xk on units 1, 2
and 3 of the dependent variable turns out to be

@Y

@x1k

@Y

@x2k

@Y

@x3k

" #
�

1

1 � r2

(1�w23r
2)bk� (w21r)uk rbk�uk (w23r

2)bk� (rw23)uk

(w21r)bk�w21uk bk�ruk (w23r)bk�w23uk

(w21r
2)bk� (w21r)uk rbk�uk (1�w21r

2)bk� (w23r)uk

2
4

3
5:
(6)

The results obtained in (5) and (6) illustrate that the partial derivatives of Y with
respect to the kth explanatory variable in the spatial Durbin model in (4) have three
important properties. First, if a particular explanatory variable in a particular unit
changes, not only will the dependent variable in that unit itself change but also the
dependent variables in other units. The first is called a direct effect and the second an
indirect effect. Note that every diagonal element of the matrix of partial derivatives
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represents a direct effect, and that every non-diagonal element represents
an indirect effect. Consequently, indirect effects do not occur if both r�0 and
uk�0, since all non-diagonal elements will then be zero [see (4) and (6)].

Second, direct and indirect effects are different for different units in the sample.
Direct effects are different because the diagonal elements of the matrix (I � rW)�1

are different for different units, provided that r"0 [see the diagonal elements of (5)
and (6)]. Indirect effects are different because both the non-diagonal elements of
the matrix (I � rW)�1 and of the matrix W are different for different units, provided
that r"0 and/or uk"0 [see the non-diagonal elements of (5) and (6)].

Third, indirect effects that occur if uk"0 are known as local effects, as opposed
to indirect effects that occur if r"0 and that are known as global effects. Local effects
got their name because they arise only from a unit’s neighbourhood set; if the
element wij of the spatial weights matrix is non-zero (zero), then the effect of xjk on
yi is also non-zero (zero). Global effects got their name because they also arise from
units that do not belong to a unit’s neighbourhood set. This follows from the fact
that the matrix (I�rW)�1, in contrast to W, does not contain zero elements
(provided that r"0) [see W and (I � rW)�1 in (5)].

6.2. Implications for Reporting Direct and Indirect Effects

Since both the direct and indirect effects are different for different units in the
sample, the presentation of these effects is a problem. If we have N spatial units
and K explanatory variables, we obtain K different N�N matrices of direct and
indirect effects. Even for small values of N and K, it may already be rather difficult
to report these results compactly. To improve the surveyability of the estimation
results of spatial regression model specifications, LeSage & Pace therefore propose
to report one direct effect measured by the average of the diagonal elements of the
matrix on the right-hand side of (4), and one indirect effect measured by the
average of either the row sums or the column sums of the non-diagonal elements
of that matrix. The average row effect quantifies the impact on a particular
element of the dependent variable as a result of a unit change in all elements of an
exogenous variable, while the average column effect quantifies the impact of
changing a particular element of an exogenous variable on the dependent variable
of all other units. However, since the numerical magnitudes of these two
calculations of the indirect effect are the same, it does not matter which one is
used (pp. 33�42).

Table 1 reports the direct and indirect effects of the models that have been
recorded in Figure 1 for the example with N�3 and the spatial weights matrix
in (5). In the case of the spatial Durbin model [using (6)], we obtain a direct effect of

(3 � r2)

3(1 � r2)
bk�

2r

3(1 � r2)
uk

and an indirect effect of

3r� r2

3(1 � r2)
bk�

3 � r

3(1 � r2)
uk:

Unfortunately, since every empirical application will have its own unique number of
observations (N) and spatial weights matrix (W), these formulae cannot be
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generalized. Nevertheless, the results in Table 1 do illustrate that the direct and
indirect effects of different model specifications have the general properties as
described below.

6.3. Properties of the Proposed Direct and Indirect Effects

If the OLS model is adopted, the direct effect of an explanatory variable is equal
to the coefficient estimate of that variable (bk), while its indirect effect is zero by
construction. If the OLS model is augmented with a spatially autocorrelated error
term, the direct and the indirect effects remain the same. This is because the
spatial autoregressive model for the disturbances does not come into play when
considering the partial derivative of the dependent variable with respect to
changes in the explanatory variables [see (3) and (4)]. These properties also hold
for the extension of the spatial lag model and of the spatial Durbin model with
spatial autocorrelation, i.e. the Kelejian�Prucha and the Manski models,
respectively.

If the spatial Durbin error model is adopted, the direct effect of an explanatory
variable is equal to the coefficient estimate of that variable (bk), while its indirect
effect is equal to the coefficient estimate of its spatial lagged value (uk). This means
that the interpretation of the coefficients of the OLS model, the spatial error model
and the spatial Durbin error model is straightforward and that a comparison of these
coefficients is valid.

The interpretation of the coefficients gets complicated when moving to one of
the other models. If the direct effect and the indirect effect of the spatial lag model
(as well as the Kelejian�Prucha model) are compared with those of the OLS model,
two notable differences can be observed. First, whereas the direct effect of the kth
explanatory variable in the OLS model is bk, the direct effect in the spatial
lag model is bk pre-multiplied with a number that will be greater than or equal
to unity. Table 1 shows that this number in the example amounts to
(3�r2)=3(1�r2): Second, whereas the indirect effect in the OLS model is
zero by construction, it is non-zero in the spatial lag model.

The property that the number with which bk is pre-multiplied when
calculating the direct effect is greater than or equal to unity is due to the spatial
multiplier matrix (I�rW)�1 that can be decomposed as follows (pp. 40�41):

(I�rW )�1�
	X�

q�0

rqW q

�
�I�rW �r2W 2� . . . (7)

Table 1. Direct and indirect effects of different model specifications

Type of model Direct effect Indirect effect

Spatial Durbin model/ /
(3�r2)

3(1�r2)
bk�

2r
3(1�r2)

uk /
3r�r2

3(1�r2)
bk�

3�r
3(1�r2)

uk

Manski model

Spatial lag model/ /
(3�r2)

3(1�r2)
bk /

3r�r2

3(1�r2)
bk

Kelejian�Prucha model

Spatial Durbin error model bk uk

OLS model/ bk 0

Spatial error model

Note: N�3, W as in (4).
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Since the non-diagonal elements of the first matrix term on the right-hand side (the
identity matrix I) are zero, this term represents a direct effect of a change in X only.
Conversely, since the diagonal elements of the second matrix term on the right-
hand side (rW) were assumed to be zero (see Section 2), this term represents an
indirect effect of a change in X only. Furthermore, since W is taken to the power 1
here, this indirect effect is limited to first-order neighbours only, i.e. the units that
belong to the neighbourhood set of every spatial unit. All other terms on the right-
hand side represent second- and higher-order direct and indirect effects. Higher-
order direct effects arise as a result of feedback effects, i.e. impacts passing through
neighbouring units and back to the unit itself (e.g. 10201 and 102030201).
It is these feedback effects that are responsible for the fact that the overall direct
effect eventually increases.10

One important limitation of the spatial lag model is that the ratio between the
indirect and the direct effect of a particular explanatory variable is independent of
bk. Table 1 illustrates that bk in the numerator and bk in the denominator of this
ratio cancel each other out:

(3 � r2)

3(1 � r2)
bk= 3r� r2

3(1 � r2)
bk�

3 � r2

3r� r2
:

This property implies that the ratio between the indirect and direct effects in the
spatial lag model is the same for every explanatory variable, and that its magnitude
depends on the spatial autoregressive parameter r and the specification of the spatial
weights matrix W only. In many empirical applications, this is not very likely.

Finally, if the spatial Durbin model is adopted, both the direct effect and the
indirect effect of a particular explanatory variable will also depend on the coefficient
estimate uk of the spatially lagged value of that variable (see Table 1). The result is
that no prior restrictions are imposed on the magnitude of both the direct and
indirect effects and thus that the ratio between the indirect and the direct effect may
be different for different explanatory variables. As a result of this property, the
spatial Durbin is a more attractive point of departure in an empirical study than
other spatial regression specifications.

6.4. Testing for Spatial Spillovers

The estimated indirect effects of the independent explanatory variables should
eventually be used to test the hypothesis as to whether or not spatial spillovers exist,
rather than the coefficient estimate of the spatially lagged dependent variable and/or
the coefficient estimates of the spatially lagged independent variables. However,
one difficulty is that it cannot be seen from the coefficient estimates and the
corresponding standard errors or t-values (derived from the variance�covariance
matrix) whether the indirect effects in the spatial Durbin model are significant
(note: the same applies to the spatial lag model). This is because the indirect effects
are composed of different coefficient estimates according to complex mathematical
formulae and the dispersion of these indirect effects depends on the dispersion of all
coefficient estimates involved (see Table 1). For example, if the coefficients r, bk

and uk in the spatial Durbin model happen to be significant, this does not
automatically mean that the indirect effect of the kth explanatory variable is also
significant. Conversely, if one or two of these coefficients are insignificant, the
indirect effect may still be significant.
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One possible way to calculate the dispersion of the direct and indirect effects is
to apply formulae for the sum, the difference, the product and the quotient of
random variables (see, among others, Mood et al., 1974, pp. 178�181). However,
owing to the complexity of the matrix of partial derivatives [see (6)] and because
every empirical application will have its own unique number of observations (N)
and spatial weights matrix (W), it is almost impossible to derive one general
approach that can be applied under all circumstances. In order to draw inferences
regarding the statistical significance of the direct and indirect effects, LeSage & Pace
(p. 39) therefore suggest simulating the distribution of the direct and indirect effects
using the variance�covariance matrix implied by the maximum likelihood
estimates.

Elhorst & Fréret (2009) show that the variance�covariance matrix of the
parameter estimates of the spatial Durbin model, a matrix that is not reported in
LeSage & Pace’s book, takes the form:

Var(r̂; â; b̂; û; ŝ2)

�

trace(W̃W̃ �W̃ TW̃ )�
1

ŝ2
ĝX̃TW̃ TW̃ X̃ ĝ : :

X̃TW̃ X̃ ĝ
1

ŝ2
X̃T X̃ :

1

ŝ2
trace(W̃ ) 0

N

2ŝ4

2
666666664

3
777777775

�1

; (8)

where W̃ �W (I� r̂W )�1; X̃ � [iN X WX] and ĝ� [â b̂T ûT ]T to
simplify notation. Since this matrix is symmetric the upper diagonal elements
are not shown.

Using the Matlab routine ‘sar’ posted on LeSage’s website (www.spatial-
econometrics.com), one particular parameter combination drawn from this
variance�covariance matrix (indexed by d ) can be obtained by:

[rd ad bT
d uT

d s2
d
]T �P Tq� [r̂ â b̂T ûT ŝ2]T ; (9)

where P denotes the upper-triangular Cholesky decomposition of Var(r̂; â; b̂; û; ŝ2)
and q is a vector of length 3�2K (the number of parameters that have been
estimated) containing random values drawn from a normal distribution with mean
zero and standard deviation one. If D parameter combinations are drawn like this
and the (in)direct effect of a particular explanatory variable is determined for every
parameter combination, the overall (in)direct effect can be approximated by
computing the mean value over these D draws and its significance level (t-value) by
dividing this mean by the corresponding standard deviation. If mkd denotes the
indirect effect of the kth explanatory variable of draw d,11 the overall indirect effect
over all draws and the corresponding t-value will be:

m̄k (ind: eff : kth var:)�
1

D

XD

d�1

mkd; (10a)
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t-value (of ind: eff : kth var:)�m̄k=
�

1

D � 1

XD

d�1

(mkd� m̄k)
2



: (10b)

Given the t-value of this indirect effect, one can finally test whether the kth variable
causes spatial spillover effects.

7. Spatio-temporal Models

Figure 1 uncovered the relationships between eight different spatial dependence
models for cross-section data. A similar type of scheme for space-time data has been
reported in Elhorst (2001), with as the most general model a first-order
autoregressive distributed lag model in both space and time:

Yt �tYt�1�rWYt�hWYt�1�Xtb�WXtu�Xt�18�WXt�1f�ot: (11)

In this specification Yt denotes an N�1 vector consisting of one observation
on the dependent variable for every unit in the sample (i�1, . . ., N), and Xt

an N�K matrix of exogenous explanatory variables, both measured at different
points in time. The model in (11) subsumes several simpler econometric
models, among which is the spatial Durbin model (/t�h�8�f�0):
However, just as with the Manski model discussed in Section 2, it suffers
from an identification problem (see Anselin et al., 2008). This raises the
question as to which spatio-temporal models are feasible. Up to now, at least
two interesting candidates have been proposed in the literature, including one
by LeSage & Pace (Ch. 7). The names of these models are taken from Anselin
et al. (2008).

The first candidate is the time-space dynamic model

Yt �tYt�1�rWYt�hWYt�1�Xtb�ot; (12)

whose properties have been analysed by Yu et al. (2008).12 By continuous
substitution of Yt-1 up to Yt�(T�1) into this equation and rearranging terms, (12)
can be rewritten as:

Yt � (I�rW )�T (tI�hW )TYt�T �
XT

p�1

(I�rW )�p(tI�hW )p�1

� (Xt�(p�1)b�ot�(p�1)): (13)

Anselin et al. (2008) criticize this model because it might still create identification
problems. The difficulty is that two global spatial multiplier matrices are at work at
the same time, (I�rW )�p and (tI�hW )p�1; rather than one process that
produces global spatial spillover effects and another one that produces local spatial
spillover effects. Anselin et al. (2008) therefore suggest setting h�0 (the model so
obtained is labelled the time-space simultaneous model). In his keynote speech at
the third World Conference of the Spatial Econometrics Association in 2009, James
LeSage suggested h��tr: This restriction has the effect that all higher-order
terms of the two spatial multiplier matrices cancel each other out, except for the
factor t, as a result of which (13) simplifies to:
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Yt �tTYt�T �
XT

p�1

tp�1(I�rW )�1(Xt�(p�1)b�ot�(p�1)): (14)

Using (7), (14) can be rewritten as:

Yt �tTYt�T �
XT

p�1

�
tp�1

�X�
q�0

rqW q(Xt�(p�1)b�ot�(p�1))


�
: (15)

This equation shows that the impact of a change in one of the explanatory variables
gradually diminishes over both space and time, provided that jtjB1 � r if r]0
and jtjB1 � rrmin if rB0 (see Elhorst, 2008). Furthermore, both effects can be
separated from each other mathematically. The impact of a change in one of the
explanatory variables over space falls by the factor rW for every higher-order
neighbour, and over time by the factor t for every next time period. It is these
kinds of schemes that might be used to uncover short-term and long-term direct
effects, as well as short-term and long-term indirect effects. Furthermore, these
kinds of schemes will further contribute to a better understanding (e.g. Groote
et al., 2009) and thus to the popularity of spatio-temporal models.

Since (15) does not contain local spillover effects, the original model in (12)
may be extended to include spatially lagged independent variables WXtu, provided
that this model is estimated under the condition h��tr to avoid identification
problems. In doing so, this spatio-temporal model can be used, just as with the
spatial Durbin model for cross-sectional data, to estimate both global and local
spatial spillover effects without imposing prior restrictions on the magnitude of
these effects.

The second candidate is the time-space recursive model

Yt �tYt�1�hWYt�1�Xtb�WXtu�ot; (16)

introduced by LeSage & Pace (pp. 190�191). By continuous substitution and
rearranging terms, this model can be rewritten as:

Yt � (tI�hW )TYt�T �
XT�1

p�0

(tI�hW )p(Xt�pb�WXt�pu�ot�p): (17)

This equation shows that Yt depends not only on present but also on past values of Xt

and WXt. This is exactly the reason why the extension of (16) with Xt�1 and WXt�1

would create identification problems. If the stationarity conditions are satisfied,13 the
impact of the matrix (tI�hW )p diminishes over both space and time. To determine
the extent of this, the matrix of partial derivatives with respect to the kth explanatory
for every spatial unit may again be contemplated. One difference between this and
the earlier spatio-temporal model is that the decomposition of the matrix (tI�hW )p

is more complex. If t is non-zero, we have:

(tI�hW )p�tp(I�h

t
W )p

�tp[I�p h

t
W � p( p�1)

2!
(h
t
W )2� p( p�1)( p�2)

3!
(h
t
W )3� . . .]: (18)

This equation shows that the impact of a change in one of the explanatory variables
over time falls by the factor t for every next time period, and that the impact over
space falls by the factor
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p�1

O
�1

�
h
t
W

for every higher-order neighbour, where O denotes the order number of that
neighbour (e.g. when moving from first- to second-order neighbours, O�2).
Therefore, this spatio-temporal model can, just as the spatial Durbin for cross-
sectional data and the earlier spatio-temporal model, be used to estimate both global
and local spatial spillover effects without imposing prior restrictions on the
magnitude of these effects.

8. Conclusions

The overall conclusion of this paper is that the state of the art of applied spatial
econometrics has taken a step change with the publication of LeSage & Pace’s
book. One can no longer restrict oneself to the spatial lag and/or the spatial error
model, or to simply interpreting their point estimates and testing whether these
point estimates are robust to different specifications of the spatial weights matrix.
A state-of-the-art application of spatial econometrics should also consider the spatial
Durbin model, and interpret its direct and indirect effects, unless statistical tests
show that simpler models suffice. There are two major reasons why the spatial
Durbin model cannot be ignored. First, it is the only means of producing unbiased
coefficient estimates, even if the true data-generation process is a spatial lag, spatial
error, Kelejian�Prucha or spatial Durbin error model. Second, it produces both
global and local spillover effects and, related to that, it does not impose prior
restrictions on the magnitude of these effects.

The conclusion from the short overview of spatio-temporal models is that
models with similar types of properties are also available for space-time data. An
application and a comparison of these spatio-temporal models are the topic of
further research.

One important limitation of LeSage & Pace’s book is that it does not pay
attention to instrumental variables or generalized method of moments (IV/GMM)
techniques. Whereas IV/GMM estimators can easily handle linear spatial
dependence models containing one or more endogenous explanatory variables
(other than the spatially lagged dependent variable), single equation maximum
likelihood and Bayesian estimators cannot.

Notes

1. The superscript T denotes the transpose of a vector or matrix.

2. Lee (2007) has found that a Manski type of model is not beyond the bounds of possibility, provided that one is

willing to accept that the interaction effects among the error terms have a different spatial weights matrix than

the interaction effects among the dependent variable and among the independent variables. Lee considers G

groups, each consisting of Ng cross-sectional units, and assumes that the elements of the spatial weights matrix

measuring the endogenous and exogenous interaction effects are wij�1/(Ng � 1) if units i and j belong to the

same group (except if i�j ), and zero otherwise. To account for correlated errors among the members of each

group, Lee considers group fixed effects. Mathematically, these group fixed effects can be represented by a

spatial weights matrix whose elements are all equal to wij�1/Ng if units i and j belong to the same group,

including the diagonal elements (i.e. if i�j ), and zero otherwise. Starting with these spatial weights matrices,

Lee proves that the parameters are identified either if both N and Ng tend to infinity, with at least two units in

each group, or if the number of units in each group does not tend to infinity faster than or equal to the number

of groups.
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3. Lee (2003) introduces the optimal instrument 2SLS estimator, but Kelejian et al. (2004) show that the 2SLS

estimator based on this set of instruments has quite similar small-sample properties.

4. One objection to this study is that the null rejection frequencies have not been standardized (Hendry, 2006).

Another objection is that the model that has been used in Florax et al. (2003) as a point of departure did not

include spatially lagged independent variables.

5. Based partly on Elhorst & Fréret (2009) and Seldadyo et al. (2010).

6. The latter tests are called robust because the existence of one type of spatial dependence does not bias the test

for the other type of spatial dependence.

7. If the (robust) LM tests reject these extensions of the OLS model, it is still useful to estimate the spatial lag and

the spatial error model. In case the spatial autoregressive coefficient r and/or the spatial autocorrelation

coefficient l turns out to be significant, we may again conclude that the OLS model must be rejected in favour

of the spatial lag, the spatial error model or in favour of both models, and continue estimating the spatial

Durbin model.

8. In order to obtain an asymmetric spatial weights matrix W, unit 1 is not assumed to be a neighbour of unit 3. If

these units were also assumed to be neighbours, we would have a symmetric matrix which is not general

enough.

9. I abstract here from the problem that a cross-sectional model with an intercept, WY, X and WX variables

cannot be estimated on the basis of N�3 observations.

10. This also holds if the spatial autoregressive parameter is negative. The first term that produces feedback effects

is r2W2. This term will always be positive. The second term is r3W3. Since r is restricted to the interval

(1/rmin, 1) and the non-negative elements of W after row normalization are smaller than or equal to 1,

the diagonal elements of r3W3 are smaller in absolute value than those of r2W2. Since the series r2W2�
r3W3�r4W4� . . . alternates in sign if r is negative, the sum of the diagonal elements of the matrix

represented by this series will always be positive.

11. For example, the indirect effect of the kth variable in the spatial Durbin model of draw d that is used for

illustration purposes in Table 1 would be equal to

mkd�
3rd�r2

d

3(1�r2
d
)
(bk)d�

3�rd

3(1�r2
d
)
(uk)d :

12. They also include spatial fixed effects.

13. jtjB1 � h if h]0 and jtjB1 � hrmin if hB0.
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