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Preface

Spatial statistical analysis has never been in the mainstream of
statistical theory. However, there is a growing interest both for
epidemiologic studies, and in analyzing disease processes.

The above is a quote one of us (L.A.W.) received on a grant review in 1997,
and it outlines succinctly our motivation for this book. Topics in spatial statistics
are usually offered only as special-topic elective courses, if they are offered at
all. However, there is growing interest in statistical methods for the analysis of
spatially referenced data in a wide variety of fields, including the analysis of public
health data. Yet, there are few introductory, application-oriented texts on spatial
statistics. For practicing public health researchers with a general background in
applied statistics seeking to learn about spatial data analysis and how it might play
a role in their work, there are few places to turn.

Our goal is to provide a text that moves from a basic understanding of multiple
linear regression (including matrix notation) to an application-oriented introduction
to statistical methods used to analyze spatially referenced health data. This book
is less an effort to push the methodological frontier than an effort to gather and
consolidate spatial statistical ideas developed in a broad variety of areas and dis-
cuss them in the context of routinely occurring spatial questions in public health. A
complication in this effort is the wide variety of backgrounds among this interest
group: epidemiologists, biostatisticians, medical geographers, human geographers,
social scientists, environmental scientists, ecologists, political scientists, and public
health practitioners (among others). In an effort to provide some common back-
ground, in Chapters 1 to 3 we provide an overview of spatial issues in public
health, an introduction to typical (nonspatial) analytic methods in epidemiology
(for geographers who may not have encountered them previously), and an intro-
duction to basic issues in geography, geodesy, and cartography (for statisticians
and epidemiologists who may not have encountered them previously). In Chapter
4 we merge ideas of geography and statistics through exploration of the methods,
challenges, and approaches associated with mapping disease data. In Chapter 5
we provide an introduction to statistical methods for the analysis of spatial point
patterns, and in Chapters 6 and 7 we extend these to the particular issue of identi-
fying disease clusters, which is often of interest in public health. In Chapter 8 we
explore statistical methods for mapping environmental exposures and provide an

XV



Xvi PREFACE

introduction to the field of geostatistics. Finally, in Chapter 9 we outline modeling
methods used to link spatially referenced exposure and disease data.

Throughout, we provide “data breaks” or brief applications designed to illustrate
the use (and in some cases, misuse) of the methods described in the text. Some
sequences of data breaks follow the same data set, providing bits and pieces of
a broader analysis to illustrate the steps along the way, or simply to contrast the
different sorts of insights provided by different methods. In general, we collect
methods and ideas around central questions of inquiry, then explore the particular
manner in which each method addresses the question at hand. We also include
several case studies, wherein we provide a start-to-finish look at a particular data
set and address the components of analysis illustrated through the data breaks in a
new (and often more involved) setting.

Finally, since spatial statistics is often out of the mainstream of statistical theory,
it is often also out of the mainstream of statistical software. Most of the analy-
ses in this book utilized routines in SAS (Littell et al. 1996), the S+SpatialStats
module for S-plus (Kaluzny et al. 1998), and various libraries in the freely avail-
able R (Thaka and Gentleman 1996) language. For particular applications, we
made use of the freely available software packages WinBUGS (Spiegelhalter et al.
1999), SaTScan (Kulldorff and International Management Services, Inc. 2002), and
DMAP (Rushton and Lolonis 1996), and used the geographic information system
(GIS) packages ArcGIS and ArcView (Environmental Systems Research Institute
1999, including the spatial autocorrelation scripts for ArcView by Lee and Wong
2001). Regarding Internet addresses, we decided to provide references and detailed
descriptions of particular data sets and software packages since links often shift and
go out of date. However, we do post related links, the tabulated data sets, and most
of our R and SAS codes relating to the data breaks on the book’s Web site, linked
from www.wiley.com. This code should allow readers to duplicate (and hopefully
expand!) many of the analyses appearing throughout the book, and perhaps provide
a launching point for the analyses of their own data.

L. A. WALLER
C. A. GoTwAY CRAWFORD

Atlanta, Georgia
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CHAPTER1

Introduction

Time, space, and causality are only metaphors of knowledge,
with which we explain things to ourselves.
Friedrich Nietzsche (1844—-1900)

It is part of human nature to try to discover patterns from a seemingly arbitrary set
of events. We are taught from an early age to “connect the dots,” learning that if we
connect the right dots in the right way, a meaningful picture will emerge. People
around the world look to the night sky and create patterns among the stars. These
patterns allow navigation and provide a setting for a rich variety of mythologies
and world views. In scientific studies, formalized methods for “connecting the dots”
provide powerful tools for identifying associations and patterns between outcomes
and their putative causes. In public health, identification and quantification of pat-
terns in disease occurrence provide the first steps toward increased understanding
and possibly, control of that particular disease.

As a component of the pattern observed, the location where an event happens
may provide some indication as to why that particular event occurs. Spatial statis-
tical methods offer a means for us to use such locational information to detect and
quantify patterns in public health data and to investigate the degree of association
between potential risk factors and disease. In the nine chapters of this book, we
review, define, discuss, and apply a wide variety of statistical tools to investigate
spatial patterns among data relating to public health.

1.1 WHY SPATIAL DATA IN PUBLIC HEALTH?

The literature uses the phrases geographical epidemiology, spatial epidemiology,
and medical geography to describe a dynamic body of theory and analytic methods
concerned with the study of spatial patterns of disease incidence and mortality.
Interest in spatial epidemiology began with the recognition of maps as useful tools
for illuminating potential “causes” of disease.

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright © 2004 John Wiley & Sons, Inc.



2 INTRODUCTION

Dr. John Snow’s study of London’s cholera epidemic in 1854 provides one of
the most famous examples of spatial epidemiology. Snow believed that cholera
was transmitted through drinking water, but at the time, this theory was met
with extreme skepticism (Snow 1855; Frerichs 2000). Although the cholera deaths
appeared to be clustered around the Broad Street public water pump, Snow could
not find any evidence of contamination at that particular pump. His contemporary
critics noted that people tended to live close to public drinking water supplies,
so the clustering observed could simply have been due to the population distribu-
tion: outbreaks occur where people are. However, by considering a few carefully
selected controls (i.e., people nearby that did not have cholera) and by interviewing
surviving members of almost every household experiencing a cholera death, Snow
eventually gathered support for his theory. Brody et al. (2000) provide a detailed
history of the role of maps (by Snow and others) in the investigation of the 1854
outbreak.

Other early examples of spatial epidemiology include the study of rickets made
by Palm (1890), who used maps to delineate the geographical distribution of rickets.
Palm observed the greatest incidence in industrial urban areas that had a cold and
wet climate. Today we know that rickets is caused by a vitamin D deficiency,
which in turn can be caused by a lack of ultraviolet radiation. In a related but more
recent study, Blum (1948) surmised sunlight as a causal factor for skin cancer,
again based primarily on the geographical distribution of disease cases observed.

Clearly, where people live can be of great importance in identifying patterns of
disease. However, spatial analyses in public health need not pertain solely to geo-
graphical distributions of disease. The spatial distributions of the sociodemographic
structure, occupational patterns, and environmental exposures of a population are
also of particular interest.

1.2 WHY STATISTICAL METHODS FOR SPATIAL DATA?

Although best known among spatial analysts for the Broad Street maps, it was
Dr. Snow’s careful case definition and analysis of cholera deaths in a wider area
of London that placed him among the founders of epidemiology rather than from
his maps per se (Lilienfeld and Stolley 1984, pp. 28-29; Hertz-Picciotto 1998,
pp. 563-564; Rothman and Greenland 1998, p. 73). Central to this analysis was
Snow’s “natural experiment,” wherein he categorized cholera deaths by two water
companies, one drawing water upstream from London (and its sewage), the other
downstream. The water company service was so intermingled that “in many cases
a single house has a supply different from that on either side” (Snow 1936, p. 75).
Thus, in addition to maps, study design and simple statistics were important tools
in Snow’s analysis.

The analysis of spatial public health data involves more than just maps and visual
inference. Medical science provides insight into some specific causes of disease
(e.g., biological mechanisms of transmission and identification of infectious agents);
however, much remains unknown. Furthermore, not all persons experiencing a
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suspected causal exposure contract the disease. As a result, the analysis of public
health data often builds from the statistical notion of each person having a risk or
probability of contracting a disease. The analytic goal involves identification and
quantification of any exposures, behaviors, and characteristics that may modify
a person’s risk. The central role of probabilities motivates the use of statistical
methods to analyze public health data and the use of spatial statistical methods to (1)
evaluate differences in rates observed from different geographic areas, (2) separate
pattern from noise, (3) identify disease “clusters,” and (4) assess the significance
of potential exposures. These methods also allow us to quantify wuncertainty in
our estimates, predictions, and maps and provide the foundations for statistical
inference with spatial data. Some spatial statistical methods are adaptations of
familiar nonspatial methods (e.g., regression). However, other methods will most
likely be new as we learn how to visualize spatial data, make meaningful maps,
and detect spatial patterns.

Applying statistical methods in a spatial setting raises several challenges. Geog-
rapher and statistician Waldo Tobler summarized a key component affecting any
analysis of spatially referenced data through his widely quoted and paraphrased
first law of geography: “Everything is related to everything else, but near things
are more related than far things” (Tobler 1970). This law succinctly defines the sta-
tistical notion of (positive) spatial autocorrelation, in which pairs of observations
taken nearby are more alike than those taken farther apart. Weakening the usual
assumption of independent observations in statistical analysis has far-reaching con-
sequences. First, with independent observations, any spatial patterns are the result
of a spatial trend in the probabilistic expected values of each observation. By
allowing spatial correlation between observations, observed spatial similarity in
observations may be due to a spatial trend, spatial autocorrelation, or both. Sec-
ond, a set of correlated observations contains less statistical information than the
same number of independent observations. Cressie (1993, pp. 14—15) provides an
example of the reduction in effective sample size induced by increasing spatial
autocorrelation. The result is a reduction in statistical precision in estimation and
prediction from a given sample size of correlated data compared to what we would
see in the same sample size of independent observations (e.g., confidence intervals
based on independent observations are too narrow to reflect the appropriate uncer-
tainty associated with positively correlated data). Ultimately, all statistical methods
for spatial data have to take the spatial arrangement, and the resulting correlations,
of the observations into consideration in order to provide accurate, meaningful
conclusions.

1.3 INTERSECTION OF THREE FIELDS OF STUDY

We focus this book on statistical methods and assume that our readers have a
familiarity with basic probabilistic concepts (e.g., expectation, variance, covariance,
and distributions) and with statistical methods such as linear and logistic regression
(including multivariate regression). Most of the methods presented in the book
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Table 1.1 Representative List of Journals That Regularly Contain Articles on
Spatial Statistical Methods Useful in the Analysis of Public Health Data

Field of Study Journals
Statistics/Biostatistics Applied Statistics

Biometrics

Biometrika

Environmetrics

Journal of the American Statistical Association
Journal of the Royal Statistical Society, Series A
Journal of the Royal Statistical Society, Series B
Statistics in Medicine

Statistical Methods in Medical Research

Epidemiology American Journal of Epidemiology
Epidemiology
International Journal of Epidemiology
Journal of Epidemiology and Community Health

Geography/Geology Annals of the Association of American Geographers
Environment and Planning A
Health and Place
International Journal of Geographic Information Science
Journal of Geographical Systems
Mathematical Geology
Social Science and Medicine

build from these concepts and extend them as needed to address non-Gaussian
distributions, transformations, and correlation assumptions.

Even though our focus is on statistical methods, we recognize that the analysis
of spatially referenced public health data involves the intersection of at least three
traditionally separate academic disciplines: statistics, epidemiology, and geography.
Each field offers key insights into the spatial analysis of public health data, and
as a result, the literature spans a wide variety of journals within each subject area.
Table 1.1 lists several journals that regularly contain articles relating to the spatial
analysis of health data.

Although by no means exhaustive, the journals listed in Table 1.1 provide a
convenient entry point to the relevant literature. In our experience, journal articles
tend to reference within a subject area more often than between subject areas, so
searches across disciplines will probably reveal a wider variety of related articles
than searches conducted on journals within a single discipline.

At times, the relationship between statistics and the fields of both epidemiol-
ogy and geography is less than cordial. Often, a backlash occurs when statisticians
attempt to transfer a family of methods wholesale into a new area of applica-
tion without input from the subject-matter experts regarding the appropriateness
of assumptions, the availability of requisite data, and even the basic questions of
interest. We refer readers interested in such debates to Bennett and Haining (1985),
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Openshaw (1990), and Rothman and Greenland (1998, Chapters 2 and 12). As
always, there are two sides to the story. An equal amount of criticism also occurs
when epidemiologists and geographers use and extend statistical methods without
fully appreciating the assumptions behind them or the theoretical foundations on
which their validity is based. Often, this just results in inefficiency (and underuti-
lized and annoyed statisticians!) but there are times when it also produces strange
inconsistencies in analytical results and erroneous or unsubstantiated conclusions.
As applied spatial statisticians, we appreciate both sides and attempt to walk a
fine line between emphasizing important assumptions and theoretical results and
focusing on practical applications and meaningful research questions of interest.

1.4 ORGANIZATION OF THE BOOK

Many spatial statistics books (e.g., Upton and Fingleton 1985; Cressie 1993; Bailey
and Gatrell 1995) organize methods based on the type of spatial data available.
Thus, they tend to have chapters devoted to the analysis of spatially continuous
data (e.g., elevation and temperature, where we can potentially observe a point
anywhere on Earth), chapters devoted to statistical methods for analyzing random
locations of events (e.g., disease cases), and chapters devoted to the analysis of
lattice data, a term used for data that are spatially discrete (e.g., county-specific
mortality rates, population data).

Although the data type does determine the applicable methods, our focus on
health data suggests an alternative organization. Due to the variety of disciplines
interested in the spatial analysis of public health data, we organize our chapters
based on particular questions of interest. In order to provide some common ground
for readers from different fields of study, we begin with brief introductions to
epidemiologic phrases and concepts, components and sources of spatial data, and
mapping and cartography. As statisticians, we focus on reviews of statistical meth-
ods, taking care to provide ongoing illustrations of underlying concepts through
data breaks (brief applications of methods to common data sets within the chapters
outlining methodologies). We organize the methods in Chapters 2-9 based on the
underlying questions of interest:

e Chapter 2: introduction to public health concepts and basic analytic tools
(What are the key elements of epidemiologic analysis?)

e Chapter 3: background on spatial data, basic cartographic issues, and geo-
graphic information systems (What are the sources and components of spatial
data, and how are these managed?)

e Chapter 4: visualization of spatial data and introductory mapping concepts
(How do we map data effectively to explore patterns and communicate results?)

e Chapter 5: introduction to the underlying mathematics for spatial point pat-
terns (How do we describe patterns mathematically in spatially random
events?)
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e Chapter 6: methods for assessing unusual spatial clustering of disease in point
data (How do we tests for clusters in collections of point locations for disease
cases?)

e Chapter 7: methods for assessing spatial clustering in regional count data
(How do we test for clusters in counts of disease cases from geographically
defined areas?)

o Chapter 8: methods for exposure assessment and the analysis of environ-
mental data (How do we spatially interpolate measurements taken at given
locations to predict measurements at nonmeasured locations?)

e Chapter 9: methods for regression modeling using spatially referenced data
(How do we quantify associations between spatially referenced health out-
comes and exposures?)

Collectively, we hope these questions and the methodology described and illus-
trated in each chapter will provide the reader with a good introduction to applied
spatial analysis of public health data.



CHAPTER?2

Analyzing Public Health Data

Disease generally begins that equality which death completes.
Samuel Johnson (London, September 1, 1750),
quoted in the Columbia Encyclopedia

Any important disease whose causality is murky, and for which
treatment is ineffectual, tends to be awash in significance.
Susan Sontag, [llness as Metaphor, 1979, Vintage Books, Ch. 8

The results of studies of health and related risk factors permeate the public health
literature and the popular press. We often read of associations between particular
diseases (e.g., cancers, asthma) and various “exposures” ranging from levels of
various environmental pollutants, to lifestyle factors such as diet, to the socioeco-
nomic status of persons at risk. Although some studies involve carefully controlled
experiments with random assignment of exposures to individuals, many involve
observational data, where we observe disease outcomes and exposures among a
subset of the population and want to draw inferences based on the patterns observed.

The analysis of public health data typically involves the concepts and tools of
epidemiology, defined by MacMahon and Pugh (1970) as the study of the distribu-
tion and determinants of disease frequency. In this chapter we provide a brief review
of assumptions and features of public health data, provide an outline of the basic
toolbox for epidemiological analysis, and indicate several inferential challenges
involved in the statistical analysis of such data.

2.1 OBSERVATIONAL VS. EXPERIMENTAL DATA

In most cases, epidemiological analyses are based on observations of disease occur-
rence in a population of people “at risk.” Typically, we want to relate occurrence
patterns between collections of people experiencing different levels of exposure to
some factor having a putative impact on a person’s risk of disease. Such observa-
tional studies differ in several important ways from experimental studies common
in other fields of scientific inquiry. First, experimental studies attempt to control all
factors that may modify the association under study, while observational studies
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cannot. Second, most experimental studies randomize assignment of the factors of
interest to experimental units to minimize the impact of any noncontrolled concomi-
tant variables that may affect the relationship under study. Observational studies
step in where experimental studies are infeasible due to expense or ethical con-
cerns. For example, studying a very rare disease experimentally often involves huge
recruitment costs; withholding a treatment with measurable impact often violates
ethical research standards. Whereas controlled randomization of assignment of a
potential treatment within the confines of a clinical trial may be a justifiable use of
human experimentation, random assignment of exposure to a suspected carcinogen
for the purposes of determining toxicity is not.

The presence of controlled environments and randomization in experimental
studies aims to focus interpretation on a particular association while limiting the
impact of alternative causes and explanations. Observational studies require more
care in analysis and interpretation, since controlled environments and randomization
often are not possible. Consequently, observational studies involve potential for a
wide variety of misinterpretation. The nature of observational studies, particularly
of epidemiological studies in the investigation of determinants of disease, provides
a framework for interpretation for most spatial analyses of public health data.
Central to this framework is the quantification of patterns in the frequency of
disease occurrence among members of the population under observation.

2.2 RISK AND RATES

The study of disease in a population begins by addressing the occurrence of a
particular outcome in a particular population over a particular time. A common
goal of an epidemiological study is to determine associations between patterns of
disease occurrence and patterns of exposure to hypothesized risk factors. Due to
the central nature of disease occurrence summaries in epidemiology, the related
literature contains very specific nomenclature for such summaries. We outline the
basic ideas here, referring interested readers to epidemiology texts such as Selvin
(1991, Chapter 1) or Rothman and Greenland (1998, Chapter 3) and the references
therein for more detailed discussion.

2.2.1 Incidence and Prevalence

The first distinction contrasts disease incidence and disease prevalence. Incidence
refers to the occurrence of new cases within a specified time frame and provides a
view of onset within a relatively narrow window of time. Prevalence refers to the
total number of existing cases over a specific time frame and provides a summary
of the current burden of the disease under study within the population. For a given
disease, incidence and prevalence differ when diseased individuals survive for long
periods of time, so that prevalent cases include people who recently contracted the
disease (incident cases) and people who contracted the disease some time ago. For
diseases with a high likelihood of subsequent mortality in a relatively short time
span, incidence and prevalence will be similar. Most epidemiological applications
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favor incidence over prevalence as an outcome in order to assess factors influencing
disease onset, since both onset and duration influence prevalence. However, in cases
where onset is difficult to ascertain (e.g., congenital malformations, infection with
HIV), researchers may use prevalence coupled with assumptions regarding disease
duration as a surrogate for incidence (Rothman and Greenland 1998, pp. 44—45).

2.2.2 Risk

The risk of contracting a disease represents the probability of a person contract-
ing the disease within a specified period. We stress that in this context, risk is
an attribute of a person, determined and modified by characteristics such as age,
gender, occupation, and diet, among other risk factors. Risk is an unobserved and
dynamic quantity that we, the researchers, wish to estimate. A primary goal of an
epidemiological study is to summarize the level of risk of a particular disease in a
particular population at a particular time. Associated with this goal is that of iden-
tifying factors influencing risk, and quantifying their impact, through observation
of disease occurrence within a study population. The statistical question becomes
one of estimating risk and related interpretable quantities from observations taken
across this study population.

2.2.3 Estimating Risk: Rates and Proportions

In general use the term rate defines the number of occurrences of some defined
event per unit time. However, application to disease incidence raises some compli-
cations, and the epidemiologic literature is quite specific in definitions of disease
rates (Elandt-Johnson 1975; Rothman and Greenland 1998, pp. 31-37). Unfortu-
nately, the literature on spatial data analysis applied to health data is not similarly
specific, resulting in some potential for misunderstanding and misinterpretation.
Although we review relevant issues here, our use of the term disease rate in this
book falls somewhere between the strict epidemiologic definition(s), and the general
use in the spatial epidemiological literature, for reasons outlined below.

In an observational setting, subjects under study may not be at risk for identical
times. People move from the study area, are lost to follow-up, or die of causes
unrelated to the disease under study. As a result, the epidemiological definition
of incidence rate is the number of incident (new) cases observed in the study
population during the study period divided by the sum of each person’s observation
time. We often refer to the denominator as a measure of person-time, reflecting the
summation of times over the persons under observation. Rothman and Greenland
(1998, p. 31) note that person-time differs from calendar time in that person-time
reflects time summed over several people during the same calendar time rather
than a sequential observation of people. In epidemiological studies of chronic,
nonrecurring diseases, a person’s contribution to person-time ends at onset, since
at that point, the person is no longer among the population of people at risk for
contracting the disease.

Under the person-time definition, a disease rate is not an estimate of disease
risk. In fact, the person-time rate is expressed in inverse time units (often written
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as “cases/person-year”) and, technically, has no upper limit. Although a population
of 100 persons can only experience 100 cases of a nonrecurring disease, these cases
could happen within any person-time period (e.g., 10, 100, or 10,000 person-years),
affecting the magnitude of the incidence rate.

In contrast to the precise epidemiological use of rate, the spatial epidemiology
literature (including journals in statistics, biostatistics, and geography) tends to use
disease rate to refer to the number of incident cases expected per person rather than
per unit of person-time. That is, this use of disease rate refers to the total number
of cases observed divided by the total number of people at risk, both within a fixed
time interval. Technically, this usage corresponds to a incidence proportion rather
than a rate, but is very common because this incidence proportion is a population-
based estimate of (average) individual risk within the study population. We note
that the time interval provides critical context to interpretation of an incidence
proportion, as we expect very different values from data collected over a single
year and that collected over a decade (since the numerator of the ratio increases
each year but the number at risk is fairly stable and often assumed constant).

The primary differences between the incidence proportion and the incidence
rate lie in assumptions regarding each person’s contribution to the denominator
of the ratio under consideration. In a closed population (no people added to or
removed from the at-risk population during the study period) where all subjects
contribute the same observation time, the incidence proportion would be equal to
the incidence rate multiplied by the length of the (common) observation time for
each person. Some difference between the two quantities always remains since
a person stops contributing person-time to the denominator of the incidence rate
the moment that person contracts the disease. However, this difference between
the incidence rate and incidence proportion diminishes with rare diseases in the
population at risk and/or short observation time per person (i.e., with less loss of
observed person-time per diseased person). This feature represents one of several
instances outlined in this chapter where the assumption of a rare disease (disease
with low individual risk) provides convenient numerical approximations. (See the
exercises at the end of this chapter to assess the impact of the precise rarity of a
disease on the performance of some approximations.)

For the remainder of the book we take care to clarify our use of the term disease
rate in any given instance. In most cases we follow the spatial literature in using the
term to refer to incidence proportion and appeal to an assumption of a rare disease
to justify this use for most of our examples. However, applications of the spatial
statistical techniques outlined in subsequent chapters to more common diseases
require a more careful wording and interpretation of results.

2.2.4 Relative and Attributable Risks

Incidence proportions provide an estimate of the average disease risk experienced
by members of a study population. Often, analytic interest centers around com-
paring risks between individuals with and without a certain exposure. We define



