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Chapter 5

Stochastic Calculus for

General Markov SDEs:

Space-Time Poisson,

State-Dependent Noise

and Multi-Dimensions

Not everything that counts can be counted,
and not everything that can be counted counts.
—Albert Einstein (1879-1955).

The only reason time is so that everything does not happen
at once
—Albert Einstein (1879-1955),
http://en.wikiquote.org/wiki/Time .

Time is what prevents everything from happening at once.
Space is what prevents everything from happening to me.
—attributed to John Archibald Wheeler (1911–),
http://en.wikiquote.org/wiki/Time .

What about stochastic effects?
—Don Ludwig, University of British Columbia, printed on
his tee-shirt to save having to ask it at each seminar.

We are born by accident into a purely random universe.
Our lives are determined by entirely fortuitous combinations
of genes. Whatever happens happens by chance. The
concepts of cause and effect are fallacies. There is only
seeming causes leading to apparent effects. Since nothing
truly follows from anything else, we swim each day through
seas of chaos, and nothing is predictable, not even the events
of the very next instant.

Do you believe that?

If you do, I pity you, because yours must be a bleak and
terrifying and comfortless life.
—Robert Silverberg in The Stochastic Man, 1975.
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132 Chapter 5. Stochastic Calculus for General Markov SDEs

This chapter completes the generalization of Markov noise in continuous time
for this book, by including space-time Poisson noise, state-dependent SDEs and
multi-dimensional SDEs.

5.1 Space-Time Poisson Process

Space-time Poisson processes are also called general compound Poisson processes,
marked Poisson point processes and Poisson noise with randomly distributed jump-
amplitudes conditioned on a Poisson jump in time. The marks denote the underlying
stochastic process for the Poisson jump-amplitude or the space component of the
space-time Poisson process, whereas the jump-amplitudes of the simple Poisson
process are deterministic or fixed with unit magnitude. The space-time Poisson
process is a generalization of the Poisson process. The space-time Poisson process
formulation helps in understanding the mechanism for applying it to more general
jump applications and generalization of the chain rules of stochastic calculus.

Properties 5.1.

• Space-Time Poisson Differential Process: The basic space-time or mark-
time Poisson differential process denoted as

dΠ(t) =

∫

Q

h(t, q)P(dt,dq) (5.1)

on the Poisson mark space Q can be defined using the Poisson random
measure P(dt,dq), which is shorthand measure notation for the measure-set
equivalence P(dt,dq) = P((t, t + dt], (q, q + dq]). The jump-amplitude h(t, q)
is assumed to be continuous and bounded in its arguments.

• Poisson mark Q: The space Poisson mark Q is the underlying IID ran-
dom variable for the mark-dependent jump-amplitude coefficient denoted by
h(t, Q)=1, i.e., the space part of the space-time Poisson process. The realized
variable Q = q is used in expectations or conditional expectations, as well as
in definition of the type (5.1).

• Time-integrated, Space-Time Poisson Process:

Π(t) =

∫ t

0

∫

Q

h(t, q)P(dt,dq)dt . (5.2)

• Unit Jumps: However, if the jumps have unit amplitudes, h(t, Q) ≡ 1, then
the space time process in (5.1) must be the same result as the simple differential
Poisson process dP (t; Q) modified with a mark parameter argument to allow
for generating mark realizations, and we must have the equivalence,

∫

Q

P(dt,dq) ≡ dP (t; Q) , (5.3)
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5.1. Space-Time Poisson Process 133

giving the jump number count on (t, t + dt]. Integrating both sides of (5.3) on
[0, t], gives the jump-count up to time t,

∫ t

0

∫

Q

P(dt,dq) =

∫ t

0

dP (s; Q) = P (t; Q) . (5.4)

Further, in terms of Poisson random measure P(dt, {1}) on the fixed set
Q = {1}, purely the number of jumps in (t, t + dt] is obtained,

∫

Q

P(dt,dq) = P(dt, {1}) = P (dt) = dP (t; 1) ≡ dP (t)

and the marks are irrelevant.

• Purely, Time-Dependent Jumps: If h(t, Q) = h1(t), then

∫

Q

h1(t)P(dt,dq) ≡ h1(t)dP (t; Q) . (5.5)

• Compound Poisson Process Form: An alternate form of the space-time
Poisson process (5.2), that many may find more comprehensible, is the marked
generalization of the simple Poisson process P (t; Q), with IID random
mark generation, that is the counting sum called the compound Poisson
process or marked point process,

Π(t) =

P (t;Q)∑

k=1

h(T−
k , Qk) , (5.6)

where h(T−
k , Qk) is the kth jump-amplitude, T−

k is the pre-jump value of the
kth random jump-time, Qk is the corresponding random jump-amplitude mark
realization and for the special case that P (t; Q) is zero the following reverse-
sum convention is used,

0∑

k=1

h(T−
k , Qk) ≡ 0 , (5.7)

for any h. The corresponding differential process has the expectation,

E[dP (t; Q)] = λ(t)dt,

although it is possible that the jump-rate is mark-dependent (see [223], for
example) so that

E[dP (t; Q)] = EQ[λ(t; Q)]dt.

However, it will be assumed here that the jump-rate is mark-independent to
avoid complexities with iterated expectations later.
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134 Chapter 5. Stochastic Calculus for General Markov SDEs

• Zero-One Law Compound Poisson Differential Process Form: Given
the Poisson compound process form in (5.6), then the corresponding zero-one
jump law for the compound Poisson differential process is

dΠ(t) = h(t, Q)dP (t; Q) , (5.8)

such that the jump in Π(t) at t = Tk is given by

[Π](Tk) ≡ Π(T +
k ) − Π(T−

k ) = h(T−
k , Qk) . (5.9)

For consistency with the Poisson random measure and compound Poisson pro-
cess forms, it is necessary that

∫ t

0

h(s, Q)dP (s; Q) =

∫ t

0

∫

Q

h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk) ,

so ∫ t

0

dP (s; Q) =

∫ t

0

∫

Q

P(ds,dq) = P (t; Q)

and

dP (t; Q) =

∫

Q

P(dt,dq).

Note that the selection of the random marks depends on the existence of the
Poisson jumps and the mechanism is embedded in dP (t; Q), in the formulation
of this book.

• In the Poisson random measure notation P(dt,dq), the arguments dt

and dq are semi-closed subintervals when these arguments are expanded

P(dt,dq) = P((t, t + dt], (q, q + dq])

and these subintervals are closed on the left and open on the right due to the
definition of the increment, leaving no overlap between differential increments
and correspondings to the simple Poisson right continuity property that

∆P (t; Q) → P (t+; Q) − P (t; Q) as ∆t → 0+

so we can write ∆P (t; Q) = P ((t, t + ∆t]; Q) and dP (t; Q) = P ((t, t + dt]; Q).
When tn = t and ti+1 = ti + ∆ti, the covering set of intervals is {[ti, ti +
∆ti) for i = 0 : n} plus t. If the marks Q are continuously distributed then
closed subintervals can also be used in q argument. For the one-dimensional
mark space Q, Q can be a finite interval such as Q = [a, b] or an infinite
interval such as Q = (−∞, +∞). Also, these subintervals are convenient in
partitioning continuous intervals since they avoid overlap at the nodes.

• P has independent increments on non-overlapping intervals in time t and
marks q, i.e., Pi,k = P((ti, ti + ∆ti], (qk, qk + ∆qk]) is independent of Pj,ℓ =
P((tj , tj + ∆tj ], (qℓ, qℓ + ∆qℓ]), provided that the time interval (tj , tj + ∆tj ]
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5.1. Space-Time Poisson Process 135

has no overlap with (ti, ti + ∆ti] and the mark interval (qk, qk + ∆qk] has no
overlap with (qℓ, qℓ + ∆qℓ]. Recall that ∆P (ti; Q) ≡ P (ti + ∆ti; Q) − P (ti; Q)
is associated with the time interval (ti, ti + ∆tj ], open on the left since the
process P (ti; Q) has been subtracted to form the increment.

• The expectation of P(dt,dq) is

E[P(dt,dq)] = ΦQ(dq)λ(t)dt
gen
= φQ(q)dqλ(t)dt , (5.10)

where, in detail,

ΦQ(dq) = ΦQ((q, q + dq]) = ΦQ(q + dq) − ΦQ(q)

= Prob[Q ≤ q + dq] − Prob[Q ≤ q] = Prob[q < Q ≤ q + dq]
gen
= φQ(q)dq

is the probability distribution measure of the Poisson amplitude mark in mea-
sure-theoretic notation corresponding to the mark distribution function ΦQ(q)
and where dq is short hand for the arguments (q, q + dq], just as the dt in
P(dt,dq) is short hand for (t, t+dt]. The corresponding mark density will be
equal to φQ(q) if Q is continuously distributed with continuously distributed

distribution function and also if equal in the generalized sense (symbol
gen
= ), for

instance, if Q is discretely distributed. Generalized densities will be assumed
for almost all distributions encountered in applications. It is also assumed
that ΦQ is a proper distribution,

∫

Q

ΦQ(dq) =

∫

Q

φQ(q)dq = 1 .

• Poisson random measure P(∆ti,∆qj) is Poisson distributed, i.e.,

Prob[P(∆ti,∆qj) = k] = e−Pi,j
(
Pi,j

)k
/k! , (5.11)

where

P i,j = E[P(∆ti,∆qj)] = ΦQ(∆qj)

∫

∆ti

λ(t)dt = ΦQ(∆qj)Λ(∆ti) ,

for sets ∆ti ≡ [ti, ti + ∆ti) in time and ∆qj ≡ [qj , qj + ∆qj) in marks.

Thus, as ∆ti and ∆qj approach 0+, then they can be replaced by dt and dq,
respectively, so

Prob[P(dt,dq) = k] = e−P
(
P
)k

/k! , (5.12)

where
P = E[P(dt,dq)] = φQ(q)dqλ(t)dt ,

so by the zero-one jump law,

Prob[P(dt,dq) = k]
dt
=
zol

(1 − P)δk,0 + Pδk,1 .
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136 Chapter 5. Stochastic Calculus for General Markov SDEs

• The expectation of dP (t; Q) =
∫
Q
P(dt,dq) is

E

[∫

Q

P(dt,dq)

]
= λ(t)dt

∫

Q

φQ(q)dq = λ(t)dt = E[dP (t; Q)] , (5.13)

corresponding to the earlier Poisson equivalence (5.3) and using the above
proper distribution property. Similarly,

E

[∫ t

0

∫

Q

P(ds,dq)

]
= E[P (t; Q)] =

∫ t

0

λ(s)ds = Λ(t).

• The variance of
∫
Q
P(dt,dq) ≡ dP (t; Q) is by definition

Var

[∫

Q

P(dt,dq)

]
= Var[dP (t; Q)] = λ(t)dt. (5.14)

Since

Var

[∫

Q

P(dt,dq)

]
=

∫

Q

∫

Q

Cov[P(dt,dq1),P(dt,dq2)] ,

then

Cov[P(dt,dq1),P(dt,dq2)]
gen
= λ(t)dtφQ(q1)δ(q1 − q2)dq1dq2 , (5.15)

analogous to (1.48) for Cov[dP (s1), dP (s2)]. Similarly, since

Var

[∫ t+∆t

t

∫

Q

P(ds,dq)

]
= Var[∆P (t; Q)] = ∆Λ(t)

and

Var

[∫ t+∆t

t

∫

Q

P(ds,dq)

]
=

∫ t+∆t

t

∫ t+∆t

t

∫

Q

∫

Q

Cov[P(ds1,dq1),P(ds2,dq2)] ,

then

Cov[P(ds1,dq1),P(ds2,dq2)]
gen
= λ(s1)δ(s2 − s1)ds1ds2

·φQ(q1)δ(q1 − q2)dq1dq2 , (5.16)

embodying the independent increment properties in both time and mark argu-
ments of the space-time or mark-time Poisson process in differential form.

• It is assumed that jump-amplitude function h has finite second order mo-
ments, i.e.,

∫

Q

|h(t, q)|2φQ(q)dq < ∞ , (5.17)

for all t ≥ 0, and in particular,
∫ t

0

∫

Q

|h(s, q)|2φQ(q)dqλ(s)ds < ∞ . (5.18)
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5.1. Space-Time Poisson Process 137

• From Theorem 3.12 (p. 72) and Eq. (3.12), a generalization of the standard
compound Poisson process is obtained,

∫ t

0

∫

Q

h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk) , (5.19)

i.e., the jump-amplitude counting version of the space-time integral, where
Tk is the kth jump-time of a Poisson process P (t; Q) and provided comparable
assumptions are satisfied. This is also consistent for the infinitesimal counting
sum form in (5.6) and the convention (5.7) applies for (5.19). This form is
a special case of the filtered compound Poisson process considered in Snyder
and Miller [252, Chapter 5]. The form (5.19) is somewhat awkward due to
the presence of three random variables, P (t; Q), Tk and Qk, requiring multiple
iterated expectations.

• For compound Poisson process with time-independent
jump-amplitude, h(t, q) = h2(q) (the simplest case being h(t, q) = q), then

Π2(t) =

∫ t

0

∫

Q

h2(q)P(ds,dq) =

∫

Q

h2(q)P([0, t),dq) =

P (t;Q)∑

k=1

h2(Qk), (5.20)

where the sum is zero when P (t; Q) = 0, the jump-amplitudes h2(Qk) form
a set of IID random variables independent of the jump-times of the Poisson
process P (t; Q), see [55] and Snyder and Miller [252, Chapter 4]. The mean
can be computed by double iterated expectations, since the jump-rate is mark-
independent,

E[Π2(t)] = EP (t;Q)




P (t;Q)∑

k=1

EQ[h2(Qk)|P (t; Q)]




= EP (t;Q) [P (t; Q)EQ[h2(Q)]] = EQ[h2(Q)]Λ(t) ,

where the IID property and more have been used, e.g., Λ(t) =
∫ t

0
λ(s)ds.
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138 Chapter 5. Stochastic Calculus for General Markov SDEs

Similarly, the variance is calculated, letting h2 ≡ EQ[h2(Q)],

Var[Π2(t)] = E

2

4

0

@

P (t;Q)
X

k=1

h2(Qk) − h2Λ(t)

1

A

23

5

= E

2

4

0

@

P (t;Q)
X

k=1

`

h2(Qk) − h2

´

+ h2(P (t;Q) − Λ(t))

1

A

23

5

= EP (t;Q)

2

4

P (t;Q)
X

k1=1

P (t;Q)
X

k2=1

EQ

ˆ`

h2(Qk1
) − h2

´ `

h2(Qk2
) − h2

´˜

+2h2(P (t;Q) − Λ(t))

P (t;Q)
X

k=1

EQ

ˆ

h2(Qk) − h2

˜

+ h
2
2(P (t;Q) − Λ(t))2

3

5

= EP (t;Q)

ˆ

P (t; Q)VarQ[h2(Q)] + 2h2(P (t;Q) − Λ(t))P (t;Q) · 0

+h
2
2(P (t;Q) − Λ(t))2

i

=
“

VarQ[h2(Q)] + h
2
2

”

Λ(t) = EQ

ˆ

h
2
2(Q)

˜

Λ(t) ,

using the IID property, separation into mean-zero forms and the variance-
expectation identity (B.188).

• For compound Poisson process with both time- and mark-dependence,
h(t, q) and λ(t; q), then

Π(t) =

∫ t

0

∫

Q

h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk), (5.21)

however, the iterated expectations technique is not too useful for the compound
Poisson form, due to the additional dependence introduced by the jump-time,
Tk and the jump-rate λ(t; q), but the Poisson random measure form is more
flexible,

E[Π(t)] = E

[∫ t

0

∫

Q

h(s, q)P(ds,dq)

]
=

∫ t

0

∫

Q

λ(s, q)h(s, q)φQ(q)dq ds

=

∫ t

0

EQ[λ(s, Q)h(s, Q)]ds.

• Consider the generalization of mean square limits to include mark space
integrals. For ease of integration in mean square limits, let the mean-zero
Poisson random measure be denoted by

P̃(dt,dq) ≡ P(dt,dq) − E[P(dt,dq)] = P(dt,dq) − φQ(q)dqλ(t)dt (5.22)

and corresponding space-time integral be

Ĩ ≡

∫

Q

h(t, q)P̃(dt,dq) . (5.23)
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5.1. Space-Time Poisson Process 139

Let Tn = {ti|ti+1 = ti + ∆ti for i = 0 : n, t0 = 0, tn+1 = t, maxi[∆ti] →
0 as n → +∞} be a proper partition of [0, t). Let Qm = {∆Qj for j = 1 :
m| ∪m

j=1 ∆Qj = Q} be a proper partition of the mark space Q, noting that the
subsets ∆Qj are disjoint is implicit. Let h(t, q) be a continuous function in
time and marks. Let the corresponding partially discrete approximation

Ĩm,n ≡

n∑

i=0

m∑

j=1

h(ti, q
∗
j )

∫

Qj

P̃([ti, ti + ∆T ), dqj) , (5.24)

for some q∗j ∈ ∆Qj. Note that if Q is a finite interval [a, b], then Qj =
[qj , qj + ∆q] using even spacing with q1 = a, qm+1 = b and ∆q = (b − a)/m.

Then Ĩm,n converges in the mean square limit to Ĩ if

E[(Ĩ − Ĩm,n)2] → 0 , (5.25)

as m and n → +∞.

For more advanced and abstract treatments of Poisson random measure, see
Gihman and Skorohod [94, Part 2, Chapter 2], Snyder and Miller [252, Chapter 4
and 5], Cont and Tankov [59], Øksendal and Sulem [223] or the applied to abstract
bridge Chapter 12.

Theorem 5.2. Basic infinitesimal moments of the space-time Poisson
process:

E[dΠ(t)] = λ(t)dt

∫

Q

h(t, q)φQ(q)dq ≡ λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t) (5.26)

and

Var[dΠ(t)] = λ(t)dt

∫

Q

h2(t, q)φQ(q)dq = λ(t)dtEQ[h2(t; Q)] ≡ λ(t)dth2(t). (5.27)

Proof. The jump-amplitude function h(t, Q) is independently distributed, through
the mark process Q, from the underlying Poisson counting process here, except that
this jump in space is conditional on the occurrence of the jump-time or count of
the underlying Poisson process. However, the function h(t, q) is deterministic since
it depends on the realization q in the space-time Poisson definition, rather than the
random variable Q. The infinitesimal mean (5.26) is straightforward,

E[dΠ(t)] = E

[∫

Q

h(t, q)P(dt,dq)

]
=

∫

Q

h(t, q)E[P(dt,dq)]

= λ(t)dt

∫

Q

h(t, q)φQ(q)dq = λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t)

noting that the expectation operator applied to the mark integral can be moved to
apply just to the Poisson random measure P(dt,dq).
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140 Chapter 5. Stochastic Calculus for General Markov SDEs

However, the result for the variance in (5.27) is not so obvious, but the co-
variance formula for two Poisson random measures with differing mark variables
Cov[P(dt,dq1),P(dt,dq2)] (5.15) will be useful by converting to the mean-zero

Poisson random measure P̃(dt,dq) in (5.22),

Var[dΠ(t)] = E

[(∫

Q

h(t, q)P(dt,dq) − h(t)λ(t)dt

)2
]

= E

[(∫

Q

(h(t, q)P(dt,dq) − h(t, q)φQ(q)λ(t)dt)

)2
]

= E

[(∫

Q

h(t, q)P̃(dt,dq)

)2
]

= E

[∫

Q

h(t, q1)

∫

Q

h(t, q2)P̃(dt,dq1)P̃(dt,dq1)

]

=

∫

Q

h(t, q1)

∫

Q

h(t, q2)Cov
[
P̃(dt,dq1), P̃(dt,dq1)

]

= λ(t)dt

∫

Q

h2(t, q1)φQ(q1)dq1 = λ(t)dtEQ

[
h2(t, Q)

]
≡ λ(t)dth2(t) .

Examples 5.3.

• Uniformly Distributed Jump Amplitudes:
As an example of a continuous distribution, consider the uniform density for
the jump-amplitude mark Q be given by

φQ(q) =
1

b − a
U(q; a, b), a < b , (5.28)

where U(q; a, b) = 1q∈[a,b] is the step or indicator function for the interval
[a, b], i.e., U(q; a, b) is one when a ≤ q ≤ b and zero otherwise. The first few
moments are

EQ[1] =
1

b − a

∫ b

a

dq = 1 ,

EQ[Q] =
1

b − a

∫ b

a

qdq =
b + a

2
,

VarQ[Q] =
1

b − a

∫ b

a

(q − (b + a)/2)2dq =
(b − a)2

12
.

In the case of the log-uniform amplitude letting Q = ln(1+h(Q)) be the mark-
amplitude relationship using the log-transformation form from the linear SDE
problem (4.76), then

h(Q) = eQ − 1
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5.2. State-Dependent Generalizations 141

and the expected jump-amplitude is

EQ[h(Q)] =
1

b − a

∫ b

a

(eq − 1)dq =
eb − ea

b − a
− 1 .

• Poisson Distributed Jump Amplitudes:
As an example of a discrete distribution of jump-amplitudes, consider

ΦQ(k) = pk(u) = e−u uk

k!
,

for k = 0 : ∞. Thus, the jump process is a Poisson-Poisson process or a
Poisson-mark Poisson process. The mean and variance are

EQ[Q] = u ,

VarQ[Q] = u .

Remark 5.4. For the general discrete distribution,

ΦQ(k) = pk ,

∞∑

k=0

pk = 1 ,

the comparable continuized form is

ΦQ(q)
gen
=

∞∑

k=0

HR(q − k)pk =

⌊q⌋∑

k=0

pk ,

where HR(q) is again the right-continuous Heaviside step function and ⌊q⌋ is
the maximum integer not exceeding q. The corresponding generalized density
is

φQ(q)
gen
=

∞∑

k=0

δR(q − k)pk .

The reader should verify that this density yields the correct expectation and
variance forms.

5.2 State-Dependent Generalization of
Jump-Diffusion SDEs

5.2.1 State-Dependent Generalization for Space-Time Poisson

Processes

The space-time Poisson process is generalized to include state-dependence with X(t)
in both the jump-amplitude and the Poisson measure, such that

dΠ(t; X(t), t) =

∫

Q

h(X(t), t, q)P(dt,dq; X(t), t) (5.29)
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on the Poisson mark space Q with Poisson random measure P(dt,dq; X(t), t),
which helps to describe the space-time Poisson mechanism and related calculus. The
space-time state-dependent Poisson mark, Q = q is again the underlying random
variable for the state-dependent and mark-dependent jump-amplitude coefficient
h(x, t, q). The double time t arguments of dΠ, dP and P are not considered redun-
dant for applications, since the first time t or time set dt is the usual Poisson jump
process implicit time dependence, while the second to the right of the semi-colon de-
notes explicit or parametric time dependence paired with explicit state dependence
that is known in advance and is appropriate for the application model.

Alternatively, the Poisson zero-one law form may be used, i.e.,

dΠ(t; X(t), t)
dt
=
zol

h(X(t), t, Q)dP (t; Q, X(t), t) , (5.30)

with the jump of Π(t; X(t), t) being

[Π](Tk) = h(X(T−
k ), T−

k , Qk)

at jump-time Tk and jump-mark Qk. The multitude of random variables in this sum
means that expectations or other Poisson integrals will be very difficult to calculate
even by conditional expectation iterations.

Definition 5.5. The conditional expectation of P(dt,dq; X(t), t) is

E[P(dt,dq; X(t), t)|X(t) = x] = φQ(q; x, t)dqλ(t; x, t)dt , (5.31)

where φQ(q; x, t)dq is the probability density of the now state-dependent Poisson
amplitude mark and the jump rate λ(t; x, t) now has state-time dependence. In this
notation, the relationship to the simple counting process is given by

∫

Q

P(dt,dq; X(t), t) = dP (t; Q, X(t), t) .

Hence, when h(x, t, q) = h̃(x, t), i.e., independent of the mark q, the space-time
Poisson is the simple jump process with mark-independent amplitude,

dΠ(t; X(t), t) = h̃(X(t), t)dP (t; Q, X(t), t) ,

but with non-unit jumps in general. Effectively the same form is obtained when
there is a single discrete mark, e.g., φQ(q) = δ(q−1), so h(x, t, q) = h(x, t, 1) always.

Theorem 5.6. Basic conditional infinitesimal moments of the state-
dependent Poisson process:

E[dΠ(t; X(t), t)|X(t) = x] =

∫

Q

h(x, t, q)φQ(q; x, t)dqλ(t; x, t)dt

≡ EQ[h(x, t, Q)]λ(t; x, t)dt (5.32)
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and

Var[dΠ(t; X(t), t)|X(t) = x] =

∫

Q

h2(x, t, q)φQ(q; x, t)dqλ(t; x, t)dt

≡ EQ[h2(x, t; Q)]λ(t; x, t)dt . (5.33)

Proof. The justification is the same justification as for Eqs. (5.27-5.27). It is
assumed that the jump-amplitude h(x, t, Q) is independently distributed due to Q
from the underlying Poisson counting process here, except that this jump in space
is conditional on the occurrence of the jump-time of the underlying Poisson process.

5.2.2 State-Dependent Jump-Diffusion SDEs

The general, scalar stochastic differential equation (SDE) takes the form

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) +

∫

Q

h(X(t), t, q)P(dt,dq; X(t), t)

dt
= f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t) ,

(5.34)

for the state process X(t) with a set of continuous coefficient functions {f, g, h}.
However, the SDE model is just a useful symbolic model for many applied situations,
but the more basic model relies on specifying the method of integration. So

X(t) = X(t0) +

∫ t

t0

(f(X(s), s)ds + g(X(s), s)dW (s)

+h(X(t), s, Q)dP (s; Q, X(s), s))

ims
= X(t0) +

ms

lim
n→∞

[
n∑

i=0

(
fi∆ti + gi∆Wi +

∆Pi∑

k=0

hi,k

)]
,

(5.35)

where fi = f(Xi, ti), gi = g(Xi, ti), hi,k = h(Xi, Tk, Qk), ∆ti = ti+1 − ti, ∆Pi,k =
∆P (ti; Q, Xi, ti) and ∆Wi = ∆W (ti). Here, Tk is the kth jump-time and {Q, Qk}
are the corresponding random marks.

The conditional infinitesimal moments for the state process are

E[dX(t)|X(t) = x] = f(x, t)dt + h(x, t)λ(t; x, t)dt , (5.36)

h(x, t)λ(t; x, t)dt ≡ EQ[h(x, t, Q)]λ(t; x, t)dt , (5.37)

and

Var[dX(t)|X(t) = x] = g2(x, t)dt + h2(x, t)λ(t; x, t)dt , (5.38)

h2(x, t)λ(t; x, t)dt ≡ EQ[h2(x, t, Q)]λ(t; x, t)dt , (5.39)
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using (1.1,5.32,5.33,5.34) and assuming that the Poisson process is independent of
the Wiener process. The jump in the state at jump time Tk in the underlying
Poisson process is

[X ](Tk) ≡ X(T +
k ) − X(T−

k ) = h(X(T−
k ), T−

k , Qk) , (5.40)

for k = 1, 2, . . . , now depending on the kth mark Qk at the pre-jump-time T−
k at

the kth jump.

Rule 5.7. Stochastic Chain Rule for State-Dependent SDEs:
The stochastic chain rule for a sufficiently differentiable function Y (t) = F (X(t), t)
has the form

dY (t) = dF (X(t), t)
sym
= F (X(t) + dX(t), t + dt) − F (X(t), t)

= d(cont)F (X(t), t) + d(jump)F (X(t), t)

dt
= Ft(X(t), t)dt + Fx(X(t), t)(f(X(t), t)dt + g(X(t), t)dW (t))

+
1

2
Fxx(X(t), t)g2(X(t), t)dt (5.41)

+

∫

Q

(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq; X(t), t) ,

to precision-dt. It is sufficient that F be twice continuously differentiable in x and
once in t.

5.2.3 Linear State-Dependent SDEs

Let the state-dependent jump-diffusion process satisfy a SDE linear in the state
process X(t) with time-dependent rate coefficients,

dX(t)
dt
= X(t) (µd(t)dt + σd(t)dW (t) + ν(t, Q)dP (t; Q)) , (5.42)

for t > t0, with X(t0) = X0 and E[dP (t; Q)] = λ(t)dt, where µd(t) denotes the
mean and σ2

d(t) denotes the variance of the diffusion process, while Qk denotes the
kth mark and Tk denotes the kth time of the jump process.

Again, using the log-transformation Y (t) = ln(X(t)) and the stochastic chain
rule (5.41),

dY (t)
dt
= (µd(t) − σ2

d(t)/2)dt + σd(t)dW (t) + ln (1 + ν(t, Q) dP (t; Q), (5.43)

with immediate integrals

Y (t) = ln(x0) +

∫ t

t0

dY (s) (5.44)

and

X(t) = x0 exp

(∫ t

t0

dY (s)

)
, (5.45)
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or in recursive form,

X(t + ∆t) = X(t) exp

(∫ t+∆t

t

dY (s)

)
. (5.46)

Linear Mark-Jump-Diffusion Simulation Forms

For simulations, a small time-step, ∆ti ≪ 1, approximation of the recursive form
(5.46) would be more useful, with Xi = X(ti), µi = µd(ti), σi = σd(ti), ∆Wi =
∆W (ti), ∆Pi = ∆P (ti; Q) and the convenient jump-amplitude coefficient approxi-
maton, ν(t, Q) ≃ ν0(Q) ≡ exp(Q) − 1, i.e.,

Xi+1 ≃ Xi exp
(
(µi − σ2

i /2)∆ti + σi∆Wi

)
(1 + ν0(Q))∆Pi , (5.47)

for i = 1 : N time-steps, where a zero-one jump law approximation has been used.
For the diffusion part, it has been shown that

E
[
eσi∆Wi

]
= eσ2

i ∆ti/2,

using the completing the square technique. In addition, there is the following lemma
for the jump part of (5.47):

Lemma 5.8. Jump Term Expectation

E
[
(1 + ν0(Q))∆Pi

]
= eλi∆tiE[ν0(Q)], (5.48)

where E[∆Pi] = λi∆ti and ν0(Q) = exp(Q) − 1.

Proof. Using given forms, iterated expectations, the Poisson distribution and the
IID property of the marks Qk, then

E
[
(1 + ν0(Q))∆Pi

]
= E

[
eQ∆Pi

]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
kEQ

[
ekQ
]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
k
(
EQ

[
eQ
])k

= e−λi∆tieλi∆tiEQ

[
eQ
]

= eλi∆tiEQ[ν0(Q)].

An immediate consequence of this result is the following corollary:

Corollary 5.9. Discrete State Expectations:

E[Xi+1|Xi] ≃ Xi exp((µi + λiEQ[ν0(Q)])∆ti) (5.49)
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and

E[Xi+1] ≃ x0 exp




i∑

j=0

(µj + λjEQ[ν0(Q)])∆tj


 . (5.50)

Further, as ∆ti and δtn → 0+, the continuous form of the expectation follows
and is given later in Corollary 5.13 on page 148 using other justification.

Example 5.10. Linear, Time-Independent, Constant-Rate Coefficient
Case:
In the linear, time-independent rate-coefficient case with µd(t) = µ0, σd(t) = σ0,
λ(t) = λ0 and ν(t, Q) = ν0(Q) = eQ − 1,

X(t) = x0 exp


(µ0 − σ2

0/2)(t − t0)+ σ0(W (t) − W (t0))+

P (t;Q)−P (t0;Q)∑

k=1

ν0Qk


, (5.51)

where the Poisson counting sum form is now more manageable since the marks do
not depend on the pre-jump-times T−

k .
Using the independence of the three underlying stochastic processes, (W (t) −

W (t0)), (P (t; Q) − P (t0; Q)) and Qi, as well as the stationarity of the first two
and the law of exponential to separate exponentials, leads to partial reduction of the
expected state process:

E[X(t)] = x0e
(µ0−σ2

0
/2)(t−t0) · EW

[
eσ0W (t−t0)

]
·

∞∑

k=0

E[P (t − t0; Q) = k]E
[
e

P

k
ℓ=1

Qℓ

]

= x0e
(µ0−σ2

0
/2)(t−t0)

∫ +∞

−∞

e−w2/(2(t−t0))

√
2π(t − t0)

eσ0wdw

·e−λ0(t−t0)
∞∑

k=0

(λ0(t − t0))
k

k!

k∏

i=1

EQ

[
eQ
]

= x0e
µ0(t−t0)e−λ0(t−t0)

∞∑

k=0

(λ0(t − t0))
k

k!
Ek

Q

[
eQ
]

= x0e
(µ0+λ0(EQ[eQ]−1))(t−t0) (5.52)

where λ0(t− t0) is the Poisson parameter and Q = (−∞, +∞) is taken as the mark
space for specificity with

EQ

[
eQ
]

=

∫

Q

eqφQ(q)dq .

Little more useful simplification can be obtained analytically, except for infinite ex-
pansions or equivalent special functions, when the mark density φQ(q) is specified.
Numerical procedures may be more useful for practical purposes. The state expecta-
tion in this distributed mark case (5.52) should be compared to pure constant linear
coefficient case (4.81) of Chapter 4.
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Exponential Expectations:

Sometimes it is necessary to get the expectation of an exponential of the integral of
a jump-diffusion process. The procedure is much more complicated for distributed
amplitude Poisson jump processes than for diffusions since the mark-time process is
a product process, the product of the mark process and the Poisson process. For the
time-independent coefficient case, as in a prior example, the exponential processes
are easily separable by the law of exponents. However, for the time-dependent case,
it is necessary to return to use the space-time process P and the decomposition
approximation used in the mean square limit. The h in the following theorem
might be the amplitude coefficient in (5.43) or h(s, q) = q = ln(1 + ν(s, q)), for
instance.

Theorem 5.11. Expectation for the Exponential of Space-Time Counting
Integrals:
Assuming finite second order moments for h(t, q) and convergence in the mean
square limit,

E

[
exp

(∫ t

t0

∫

Q

h(s, q)P(ds,dq)

)]
= exp

(∫ t

t0

∫

Q

(
eh(s,q) − 1

)
φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(eh − 1)(s)λ(s)ds

)
. (5.53)

Proof. Let the proper partition of the mark space over disjoint subsets be

Qm = {∆Qj for j = 1:m| ∪m
j=1 ∆Qj = Q}

Since Poisson measure is Poisson distributed,

ΦPj
(k) = Prob[P(dt, ∆Qj) = k] = e−Pj

(Pj)
k

k!

with Poisson parameter

Pj ≡ E[P(dt, ∆Qj)] = λ(t)dtΦQ(∆Qj , ti) .

for each subset {∆Qj}.
Similarly, let the proper partition over the time interval be

Tn = {ti|ti+1 = ti + ∆ti for i = 0:n, t0 = 0, tn+1 = t, max
i

[∆ti] → 0 as n → +∞} .

The disjoint property over subsets and time intervals means P([ti, ti + ∆ti), ∆Qj)
and P([ti, ti+∆ti), ∆Q′

j) will be pairwise independent provided j′ 6= j for fixed i cor-
responding to the Property (5.15) for infinitesimals, while the P([ti, ti +∆ti), ∆Qj)
and P([ti, ti + ∆t′i), ∆Q′

j) will be pairwise independent provided i′ 6= i and j′ 6= j,
corresponding to the Property (5.16) for infinitesimals.
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For brevity, let hi,j ≡ h(ti, q
∗
j ) where q∗j ∈ ∆Qj , Pi,j ≡ Pi([ti, ti + ∆ti), ∆Qj)

and P i,j ≡ λi∆tiΦQ(∆Qj).
Using mean square limits, Pi,j playing the dual roles of the two increments

(∆ti, ∆Qj), the law of exponents and independence (symbol
ind
=
inc

),

E

[
exp

(∫ t

t0

∫

Q

hP

)]
ims
=

ms

lim
m,n→∞

E


exp




n∑

i=0

m∑

j=1

hi,jPi,j






ind
=
inc

ms

lim
m,n→∞

Πn
i=0Π

m
j=1E [exp (hi,jPi,j)]

=
ms

lim
m,n→∞

Πn
i=0Π

m
j=1 exp

(
−Pi,j

) ∞∑

ki,j=0

Pi,j
ki,j

ki,j !
exp (hi,jki,j)

=
ms

lim
m,n→∞

Πn
i=0Π

m
j=1 exp

(
Pi,j (exp(hi,j) − 1)

)

=
ms

lim
m,n→∞

exp




n∑

i=0

m∑

j=1

(exp(hi,j) − 1)λi∆tiΦQ(∆Qi, ti)





ims
= exp

(∫ t

t0

∫

Q

(exp(h(s, q)) − 1)φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(exp(h(s, Q)) − 1)λ(s)ds

)
.

Thus, the main technique is to unassemble the mean square limit discrete approx-
imation to get at the independent random part, take its expectation and then re-
assemble the mean square limit back again, justifying the interchange of expectation
and exponentiation-integration.

Remarks 5.12.

• Note that the mark space subset ∆Qj is never used directly as a discrete
element of integration, since the subset would be infinite if the mark space
were infinite. The mark space element is only used through the distribution
which would be bounded. This is quite unlike the time domain where we can
select t to be finite. If the mark space were finite, say Q = [a, b], then a
concrete partition of [a, b] similar to the time-partition can be used.

• Also note that the dependence on (X(t), t) was not used, but could be consid-
ered suppressed but absorbed into the existing t dependence of h and P.

Corollary 5.13. Expectation of X(t) for Linear SDE:
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Let X(t) be the solution (5.45) with ν(t) ≡ E[ν(t, Q)] of (5.42), then

E[X(t)] = x0 exp

(∫ t

t0

(µd(s) + λ(s)ν(s)) ds

)
(5.54)

= x0 exp

(∫ t

t0

E[dX(s)/X(s)]ds

)
. (5.55)

Proof. The jump part, the main part, follows from exponential Theorem 5.11
Eq. (5.53) and the lesser part for the diffusion is left as an exercise for the reader.

However, note that the exponent is the time integral of E[dX(t)/X(t)], the
relative conditional infinitesimal mean, which is independent of X(s) and is valid
only for the linear mark-jump-diffusion SDE.

Remark 5.14. The relationship in (5.55) is a quasi-deterministic equivalence
for linear mark-jump-diffusion SDEs and was shown by Hanson and Ryan [114]
in 1989. They also produced a nonlinear jump counter example that has a formal
closed form solution in terms of the gamma function, for which the result does not
hold and a very similar example is given in Exercise 9 in Chapter 4.

Moments of Log-Jump-Diffusion Process:

For the log-jump-diffusion process dY (t) in (5.43), suppose that the jump-amplitude
is time-independent and that the mark variable was conveniently chosen as

Q = ln(1 + ν(t, Q))

so that the SDE has the form

dY (t)
dt
= µld(t)dt + σd(t)dW (t) + QdP (t; Q) , (5.56)

or in the case of applications for which the time step ∆t is an increment that is not
infinitesimal like dt there is some probability of more than one jump,

∆Y (t) = µld(t)∆t + σd(t)∆W (t) +

∆P (t;Q)∑

k=1

Qk . (5.57)

The results for the infinitesimal case (5.56) are contained in the incremental case
(5.57).

The first few moments can found in general for (5.57), and if up to the fourth
moment, then the skew and kurtosis coefficients can be calculated. These calcula-
tions can be expedited by the following lemma concerning sums of zero-mean IID
random variables:

Lemma 5.15. Zero-mean IID random variable sums:
Let {Xi|i = 1:n} be a set of zero-mean IID random variables, i.e., E[Xi] = 0. Let
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M (m) ≡ E[Xm
i ] be the mth moment and

S(m)
n ≡

n∑

i=1

Xm
i ,

with S
(1)
n = Sn being the usual partial sum over the set and

E[S(m)
n ] = nM (m) , (5.58)

then the expectation of powers of Sn for m = 1:4 are

E [(Sn)m] =





0, m = 1
nM (2), m = 2

nM (3), m = 3

nM (4) + 3n(n − 1)
(
M (2)

)2
, m = 4





. (5.59)

Proof. First by the linear property of the expectation and the IID properties of
the Xi,

E
[
S(m)

n

]
=

n∑

i=1

E[Xm
i ] =

n∑

i=1

M (m) = nM (m) . (5.60)

The m = 1 case is trivial due to the zero mean property of the Xi’s and the
linearity of the expectation operator, E[Sn] =

∑n
i=1 E[Xi] = 0.

For m = 2, the induction hypothesis from (5.59) is

E
[
S2

n

]
≡ E

[(
n∑

i=1

X2
i

)]
= nM (2)

with initial condition at n = 1 is E[S2
1 ] = E[X2

1 ] = M (2) by definition. The hypoth-
esis can be easily proved by partial sum recursion Sn+1 = Sn + Xn+1, application
of the binomial theorem, expectation linearity and the zero-mean IID property:

E
[
S2

n+1

]
= E

[
(Sn + Xn+1)

2
]

= E
[
S2

n + 2Xn+1Sn + X2
n+1

]

= nM (2) + 2 · 0 · 0 + M (2) = (n + 1)M (2) . (5.61)

QED for m = 2.
Similarly for the power m = 3, again beginning with the induction hypothesis

E
[
S3

n

]
≡ E



(

n∑

i=1

Xi

)3

 = nM (3)

with initial condition at n = 1 is E[S3
1 ] = E[X3

1 ] = M (3) by definition. Using the
same techniques as in (5.61),

E
[
S3

n+1

]
= E

[
(Sn + Xn+1)

3
]

= E
[
S3

n + 3Xn+1S
2
n + 3X2

n+1S
2
n + X3

n+1

]

= nM (3) + 3 · 0 · nM (2) + 3 · M (2) · 0 + M (3) = (n + 1)M (3) . (5.62)
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QED for m = 3.
Finally, the case for the power m = 4 is a little different since an additional

nontrivial term arises from the product of the squares of two independent variables.
The induction hypothesis is

E
[
S4

n

]
≡ E




(

n∑

i=1

Xi

)4


 = nM (4) + 3n(n − 1)(M (2))2

with initial condition at n = 1 is E[S4
1 ] = E[X4

1 ] = M (4) by definition. Using the
same techniques as in (5.61),

E
[
S4

n+1

]
= E

[
(Sn + Xn+1)

4
]

= E
[
S4

n + 4Xn+1S
3
n + 6X2

n+1S
2
n + 4X3

n+1S
1
n + X4

n+1

]

= nM (4) + 3n(n − 1)(M (2))2 + 4 · 0 · nM (3) + 6 · M (2) · nM(2)

+4 · M (3) · 0 + M (4)

= (n + 1)M (4) + 3(n + 1)((n + 1) − 1)(M (2))2 . (5.63)

QED for m = 4.

Remark 5.16. The results here depend on the IID and zero-mean properties, but
do not otherwise depend on the particular distribution of the random variables. The
results are used in the following theorem:

Theorem 5.17. Some Moments of the Log-jump-diffusion (ljd) Process
∆Y (t):
Let ∆Y (t) satisfy the stochastic difference equation (5.57), the marks Qk be IID
with mean µj ≡ EQ[Qk] and variance σ2

j ≡ VarQ[Qk], then the first four moments,
m = 1:4, are

µljd (t) ≡ E[∆Y (t)] = (µld (t) + λ(t)µj)∆t ; (5.64)

σljd (t) ≡ Var[∆Y (t)] =
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)
∆t ; (5.65)

M
(3)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])3

]
=
(
M

(3)
j + µj

(
3σ2

j + µ2
j

))
λ(t)∆t , (5.66)

where M
(3)
j ≡ EQ[(Qi − µj)

3];

M
(4)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])4

]

=
(
M

(4)
j + 4µjM

(3)
j + 6µ2

jσ
2
j + µ4

j

)
λ(t)∆t

+3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)2
(∆t)2 , (5.67)

where M
(4)
j ≡ EQ[(Qi − µj)

4].
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Proof. One general technique for calculating moments of the log-jump-diffusion
process is iterated expectations, so

µljd (t) = E[∆Y (t)] = µld(t)∆t + σd(t) · 0 + E∆P (t;Q)



EQ




∆P (t;Q)∑

i=1

Qi

∣∣∣∣∣∣
∆P (t; Q)









= µld(t)∆t + E∆P (t;Q)




∆P (t;Q)∑

i=1

EQ[Qi]





= µld(t)∆t + E∆P (t;Q)[∆P (t; Q)EQ[Qi]] = (µld(t) + µjλ(t)) ∆t ,

proving the first moment formula.
For the higher moments, the main key technique for efficient calculation of the

moments is decomposing the log-jump-diffusion process deviation into zero-mean
deviation factors, i.e.,

∆Y (t) − µljd (t) = σd(t)∆W (t) +

∆P (t;Q)∑

i=1

(Qi − µj) + µj(∆P (t; Q) − λ(t)∆t).

In addition, the multiple applications of the binomial theorem and the convenient
increment power Tables 1.1 for ∆W (t) and 1.2 for ∆P (t; Q) are used.

The incremental process variance is found by

σljd(t) ≡ Var[∆Y (t)]

= E

»

“

σd(t)∆W (t) +
P∆P (t;Q)

i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)
”2

–

= σ2
d(t)E∆W (t)[(∆W )2(t)]+2σd ·0

+E

»

“

P∆P (t;Q)
i=1 (Qi−µj) + µj(∆P (t; Q)−λ(t)∆t)

”2
–

= σ2
d(t)∆t + E∆P (t;Q)

h

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+2µj(∆P (t;Q) − λ(t)∆t)
P∆P (t;Q)

i=1 EQ[(Qi − µj)]

+µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

= σ2
d(t)∆t + E∆P (t;Q)

ˆ

∆P (t;Q)σ2
j + 0 + µ2

j (∆P (t;Q) − λ(t)∆t)2
˜

=
`

σ2
d(t) +

`

σ2
j + µ2

j

´

λ(t)
´

∆t .
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The case of the third central moment is similarly calculated,

M
(3)
ljd (t) ≡ E

ˆ

(∆Y (t) − µljd (t))3
˜

= E

»

“

σd(t)∆W (t) +
P∆P (t;Q)

i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)
”3

–

= σ3
d(t)E∆W (t)

ˆ

(∆W )3(t)
˜

+3σ2
dE∆W (t)

ˆ

(∆W )2(t)
˜

E
h

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

i

+3σd · 0 + E

»

“

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”3
–

= σ3
d(t) · 0 + 3σ2

d(t)∆t · 0

+E∆P (t;Q)

h

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1 EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)]

+3µj(∆P (t;Q) − λ(t)∆t)
P∆P (t;Q)

i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+3µ2
j (∆P (t;Q) − λ(t)∆t)2 · 0 + µ3

j(∆P (t; Q) − λ(t)∆t)3
˜

= E∆P (t;Q)

h

∆P (t; Q)M
(3)
j + 3µj(∆P (t;Q) − λ(t)∆t)∆P (t;Q)σ2

j

+µ3
j(∆P (t; Q) − λ(t)∆t)3

˜

=
“

M
(3)
j + µj

`

3σ2
j + µ2

j

´

”

λ(t)∆t .,

depending only on the jump component of the jump-diffusion.
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The case of the fourth central moment is similarly calculated,

M
(4)
ljd (t) ≡ E

ˆ

(∆Y (t) − µljd (t))4
˜

= E

»

“

σd(t)∆W (t) +
P∆P (t;Q)

i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)
”4

–

= σ4
d(t)E∆W (t)

ˆ

(∆W )4(t)
˜

+ 4σ3
d · 0 + 6σ2

dE∆W (t)

ˆ

(∆W )2(t)
˜

E

»

“

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”2
–

+4σd · 0 + E

»

“

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”4
–

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

h

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1

EQ[(Qi − µj)(Qk − µj)]

+2µj(∆P (t; Q) − λ(t)∆t) · 0 + µ2
j (∆P (t; Q) − λ(t)∆t)2

˜

+E∆P (t;Q)

h

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1

P∆P (t;Q)
m=1

EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)(Qm − µj)]

+4µj(∆P (t; Q) − λ(t)∆t)
P∆P (t;Q)

i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1

EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)]

+6µ2
j (∆P (t; Q) − λ(t)∆t)2

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+4µ3
j (∆P (t; Q) − λ(t)∆t)3 · 0 + µ4

j (∆P (t;Q) − λ(t)∆t)4
˜

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

ˆ

∆P (t; Q)σ2
j + µ2

j (∆P (t;Q) − λ(t)∆t)2
˜

+E∆P (t;Q)

h

∆P (t;Q)M
(4)
j +3∆P (t;Q)(∆P (t;Q)−1)σ4

j

+4µj(∆P (t;Q)−λ(t)∆t)∆P (t;Q)M
(3)
j

+6µ2
j (∆P (t;Q) − λ(t)∆t)2∆P (t;Q)σ2

j + µ4
j(∆P (t; Q) − λ(t)∆t)4

˜

=
“

M
(4)
j + 4µjM

(3)
j + 6µ2

jσ
2
j + µ4

j

”

λ(t)∆t

+3
`

σ2
d(t) +

`

σ2
j + µ2

j

´

λ(t)
´2

(∆t)2 ,

completing the proofs for moments m = 1:4.
Also, used throughout, the expectations of odd powers of ∆W (t), the single

powers of (Qi −µj) and the single powers of (∆P (t; Q)−λ(t)∆t) were immediately
set to zero. In addition, the evaluation of the mark deviation sums of the form
E[(
∑k

i=1(Qi − µj)
m] for m = 1 : 4 is based upon general formulas of Lemma 5.15.

Remarks 5.18.

• Recall that the third and fourth moments are measures of skewness and peaked-
ness (kurtosis), respectively. The normalized representations in the current
notation are the coefficient of skewness,

η3[∆Y (t)] ≡ M
(3)
ljd (t)/σ3

ljd (t), (5.68)

from (B.11), and the coefficient of kurtosis,

η4[∆Y (t)] ≡ M
(4)
ljd (t)/σ4

ljd (t) . (5.69)
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from (B.12).

• For example, if the marks are normally or uniformly distributed, then

M
(3)
j = 0,

since the normal and uniform distributions are both symmetric about the mean,
so they lack skew and

η3[∆Y (t)] =
µj

(
3σ2

j + µ2
j

)
λ(t)∆t

σ3
ljd (t)

=
µj

(
3σ2

j + µ2
j

)
λ(t)

(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)3
(∆t)2

,

using σljd (t) given by (5.65). For the uniform distribution, the mean µj is
given explicitly in terms of the uniform interval [a, b] by (B.15) and the vari-
ance σ2

j by (B.16), while for the normal distribution, µj and σ2
j are the normal

model parameters. In general, the normal and unform distribution versions
of the log-jump-diffusion process will have skew although the component incre-
mental diffusion and mark processes are skew-less.

In the normal and uniform mark cases, the fourth moment of the jump marks
are

M
(4)
j /σ4

j =

{
3, normal Qi

1.8, uniform Qi

}
,

which are in fact the coefficients of kurtosis for the normal and uniform dis-
tributions, respectively, so

η4[∆Y (t)] =

({
3, normal Qi

1.8, uniform Qi

}
σ4

j + 6µ2
jσ

2
j + µ4

j

)
λ(t)∆t/σ4

ljd (t)

+3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)2
(∆t)2/σ4

ljd (t) .

• The moment formulas for the differential log-jump-diffusion process dY (t) fol-
low immediately from Theorem 5.17 by dropping terms O((∆t)2) and replacing
∆t by dt.

Distribution of Increment Log-Process:

Theorem 5.19. Distribution of the State Increment Logarithm Process
for Linear Marked Jump-Diffusion SDE:
Let logarithm-transform jump-amplitude be ln(1 + ν(t, q)) = q, then the increment

of the logarithm process Y (t) = ln(X(t)), assuming X(t0) = x0 > 0, approximately
satisfies,

∆Y (t) ≃ µld(t)∆t + σd(t)∆W (t) +

∆P (t;Q)∑

j

Q̂j , (5.70)
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where µld(t) ≡ µd(t)−σ2
d(t)/2 is the log-diffusion drift, σd > 0 and the Q̂j are pair-

wise IID jump marks for P (s; Q) for s ∈ (t, t + ∆t], counting only jumps associated

with ∆P (t; Q) given P (t; Q), with common density φQ(q). The Q̂j are independent
of both ∆P (t; Q) and ∆W (t).

Then the distribution of the log-process Y (t) is the Poisson sum of nested
convolutions

Φ∆Y (t)(x) ≃

∞∑

k=1

pk(λ(t)∆t)
(
Φ∆G(t) (∗φQ)

k
)

(x) , (5.71)

where ∆G(t) ≡ µld (t)∆t + σd(t)∆W (t) is the infinitesimal Gaussian process and
(Φ∆G(t)(∗φQ)k)(x) denotes a convolution of one distribution with k identical densi-
ties φQ. The corresponding log-process density is

φ∆Y (t)(x) ≃

∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)

k
)

(x) , (5.72)

Proof. By the law of total probability (B.92), the distribution of the log-jump-

diffusion ∆Y (t) ≃ ∆G(t) +
∑∆P (t;Q)

j Q̂j is

Φ∆Y (t)(x) = Prob[∆Y (t) ≤ x] = Prob



∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x





=

∞∑

k=0

Prob



∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x|∆P (t; Q) = k



Prob[∆P (t; Q) = k]

=

∞∑

k=0

pk(λ(t)∆t)Φ(k)(x) , (5.73)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t)∆t and letting

Φ(k)(x) ≡ Prob



∆G(t) +

k∑

j=1

Q̂j ≤ x



 .

For each discrete condition ∆P (t; Q) = k, ∆Y (t) is the sum of k + 1 terms,
the normally distributed Gaussian diffusion part ∆G(t) = µld(t)∆t + σd(t)∆W (t)

and the Poisson counting sum
∑k

j=1 Q̂j where the marks Q̂j are assumed to be IID
but otherwise distributed with density φQ(q), while independent of the diffusion
and the Poisson counting differential process ∆P (t; Q). Using the fact that ∆W (t)
is normally distributed with zero-mean and ∆t-variance,

Φ∆G(t)(x) = Prob[∆G(t) ≤ x] = Prob[µld (t)∆t + σd(t)∆W (t) ≤ x]

= Prob[∆W (t) ≤ (x − µld (t)∆t)/σd(t)] = Φ∆W (t)((x − µld (t)∆t)/σd(t))

= Φn((x − µld(t)∆t)/σd(t); 0, ∆t) = Φn(x; µld (t)∆t, σ2
d(t)∆t) ,
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provided σd(t) > 0, while also using identities for normal distributions, where
Φn(x; µ, σ2) denotes the normal distribution with mean µ and variance σ2.

Since Φ(k) is the distribution for the sum of k+1 independent random variables,
one normally distibuted and k IID jump marks Q̂j for each k, Φ(k) will be the nested
convolutions as given in (B.100). Upon expanding in convolutions starting from the
distribution for the random variable ∆G(t) and the kth Poisson counting sum

Jk ≡

k∑

j=1

Q̂j,

Φ(k)(x) =
(
Φ∆G(t) ∗ φJk

)
(x) =

(
Φ∆G(t)

k∏

i=1

(∗φQi
)

)
(x) =

(
Φ∆G(t) (∗φQ)

k
)

(x) ,

using the identically distributed property of the Qi’s and the compact convolution
operator notation

(
Φ∆G(t)

k∏

i=1

(∗φQi
)

)
(x) = ((· · · ((Φ∆G(t) ∗ φQ1

) ∗ φQ2
) · · · ∗ φQk−1

) ∗ φQk
)(x) ,

which collapses to the operator power form for IID marks since
∏k

i=1 c = ck for
some constant c. Substituting the distribution into the law total probability form
(5.73), the desired result (5.71), which when differentiated with respect to x yields
the kth density φ∆Y (t)(x) in (5.72).

Remark 5.20. Several specialized variations of this theorem are found in Hanson
and Westman [123, 125], but corrections to these papers are made here.

Corollary 5.21. Density of Linear Jump-Diffusion with Log-Normally
Distributed Jump Amplitudes:
Let X(t) be a linear jump-diffusion satisfying the SDE (5.70) and let the jump-
amplitude mark Q be normally distributed such that

φQ(x; t) = φn(x; µj(t), σ
2
j (t)) (5.74)

with jump mean µj(t) = E[Q] and jump variance σ2
j (t) = Var[Q]. Then the jump-

diffusion density of the log-process Y (t) is

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)φn(x; µld (t)∆t + kµj(t), σ
2
d(t)∆t + kσ2

j (t)) . (5.75)

Proof. By (B.101) the convolution of two normal densities is a normal distribution
with a mean that is the sum of means and a variance that is the sum of the variances.
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Similarly, by the induction exercise result in (B.198) the pairwise convolution of one
normally distributed diffusion process ∆G(t) = µld (t)∆t+σd(t)∆W (t) density and
k random mark Qi density φQ for i = 1:k will be a normal density whose mean is
the sum of the k + 1 means and whose variance is the sum of the k + 1 variances.
Thus starting with the result (5.73) and then applying (B.198),

φ∆Y (t)(x) =

∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)

k
)

(x)

=
∞∑

k=1

pk(λ(t)∆t)φn

(
x; µld (t)∆t +

k∑

i=1

µj(t), σ
2
d(t)∆t +

k∑

i=1

σ2
j (t)

)

=

∞∑

k=1

pk(λ(t)∆t)φn(x; µld (t)∆t + kµj(t), σ
2
d(t)∆t + kσ2

j (t)) .

Remark 5.22. The normal jump-amplitude jump-diffusion distribution has been
used in financial applications, initially by Merton [202] and then by others such as
Düvelmeyer [75], Andersen et al. [6] and Hanson and Westman [123].

Corollary 5.23. Density of Linear Jump-Diffusion with Log-Uniformly
Distributed Jump Amplitudes:
Let X(t) be a linear jump-diffusion satisfying the SDE (5.70), and let the jump-
amplitude mark Q be uniformly distributed (5.28). i.e.,

φQ(q) =
1

b − a
U(q; a, b) ,

where U(q; a, b) is the unit step function on [a, b] with a < b. The jump mean is
µj(t) = (b + a)/2 and jump variance is σ2

j (t) = (b − a)2/12.
Then the jump-diffusion density of the increment log-process ∆Y (t) satisfies

the general convolution form (5.72), i.e.,

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x) =

∞∑

k=1

pk(λ(t)∆t)φ
(k)
ujd(x) , (5.76)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t). The ∆G(t) =
µld(t)∆t + σd(t)∆W (t) is the diffusion term and Q is the uniformly distributed
jump-amplitude mark. The first few coefficients of pk(λ(t)∆t) for the uniform jump-
distribution (ujd) are

φ
(0)
ujd(x) = φ∆G(t)(x) = φn(x; µld (t)∆t, σ2

d(t)∆t) , (5.77)

where φn(x; µld (t)∆t, σ2
d(t)∆t) denotes the normal density with mean µld (t) and

variance σd(t)∆t,

φ
(1)
ujd(x) =

(
φ∆G(t) ∗ φQ

)
(x) = φsn(x − b, x − a; µld(t)∆t, σ2

d(t)∆t) , (5.78)
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where φsn is the secant-normal density

φsn(x1, x2; µ, σ2) ≡
1

(x2 − x1)
Φn(x1, x2; µ, σ2) (5.79)

≡
Φn(x2; µ, σ2) − Φn(x1; µ, σ2)

x2 − x1

with normal distribution Φn(x1, x2; µ, σ2) such that

Φn(xi; µ, σ2) ≡ Φn(−∞, xi; µ, σ2)

for i = 1 : 2, and

φ
(2)
ujd(x) =

(
φ∆G(t)(∗φQ)2

)
(x) (5.80)

=
2b − x + µld (t)∆t

b − a
φsn(x − 2b, x − a − b; µld(t)∆t, σ2(t)∆t)

+
x − 2a − µld(t)∆t

b − a
φsn(x − a − b, x − 2a; µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b − a)2
(
φn(x − 2b; µld(t)∆t, σ2

d(t)∆t)

−2φn(x − a − b; µld(t)∆t, σ2
d(t)∆t) + φn(x − 2a; µld(t)∆t, σ2

d(t)∆t)
)

.

Proof. First the finite range of the jump-amplitude uniform density is used to
truncate the convolution integrals for each k using existing results for the mark

convolutions like φ
(2)
uq (x) = (φQ ∗ φQ)(x) = φQ1+Q2

(x) for IID marks when k = 2.
The case for k = 0 is trivial since it is given in the theorem equations (5.77).
For k = 1 jump,

φ
(1)
ujd(x) = (φ∆G(t) ∗ φQ)(x) =

∫ +∞

−∞

φ∆G(t)(x − y)φQ(y)dy

=
1

b − a

∫ b

a

φn(x − y; µld(t)∆t, σ2
d(t)∆t)dy

=
1

b − a

∫ x−a

x−b

φn(z; µld(t)∆t, σ2
d(t)∆t)dz

=
1

b − a
Φn(x − b, x − a; µld(t)∆t, σ2

d(t)∆t)

= φsn(x − b, x − a; µld(t)∆t, σ2
d(t)∆t) ,

−∞ < x < +∞, upon change of variables and use of identities.
For k = 2 jumps, the triangular distribution exercise result (B.199) is

φ(2)
uq (x) = (φQ ∗ φQ)(x) =

1

(b − a)2





x − 2a, 2a ≤ x < a + b
2b − x, a + b ≤ x ≤ 2b
0, otherwise



 . (5.81)
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Hence,

φ
(2)
ujd(x) = (φ∆G(t) ∗ (φQ ∗ φQ))(x) =

∫ +∞

−∞

φ∆G(t)(x − y)(φQ ∗ φQ)(y)dy

=
1

(b − a)2

(∫ a+b

2a

(y − 2a)φ∆G(t)(x − y)dy +

∫ 2b

a+b

(2b − y)φ∆G(t)(x − y)dy

)

=
1

(b − a)2

(∫ x−2a

x−a−b

(x − z − 2a)φ∆G(t)(z)dz

+

∫ x−a−b

x−2b

(2b − x + z)φ∆G(t)(z)dz

)

=
2b − x + µld (t)∆t

b − a
φsn(x − 2b, x − a − b; µld(t)∆t, σ2

d(t)∆t)

+
x − 2a − µld (t)∆t

b − a
φsn(x − a − b, x − 2a; µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b − a)2
(
φn(x − 2b; µld(t)∆t, σ2

d(t)∆t)

−2φn(x − a − b; µld(t)∆t, σ2
d(t)∆t) + φn(x − 2a; µld(t)∆t, σ2

d(t)∆t)
)

,

where the exact integral for the normal density has been used .

Remarks 5.24.

• This density form φsn in (5.79) is called a secant-normal density since the
numerator is an increment of the normal distribution and the denominator is
the corresponding increment in its state arguments, i.e., a secant approxima-
tion, which here has the form ∆Φn/∆x.

• The uniform jump-amplitude jump-diffusion distribution has been used in fi-
nancial applications, initially by the authors in [125] as a simple, but appro-
priate, representation of jump component of market distributions, and some
errors have been corrected here.

Example 5.25. Linear SDE Simulator for Log-Uniformly Distributed
Jump Amplitudes:The linear SDE jump-diffusion simulator in Appendix MAT-
LAB code C.14 can be converted from the simple discrete jump process to the dis-
tributed jump process here. The primary change is the generation of the another set
of random numbers for the mark process Q, e.g.,

Q = a + (b − a) ∗ rand(1, n + 1)

for a set of n + 1 uniformly distributed marks on (a, b) so that the jump amplitudes
of X(t) are log-uniformly distributed.
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An example is demonstrated in Fig. 5.1 for uniformly distributed marks Q on
(a, b) = (−2, +1) and time-dependent coefficients {µd(t), σd(t), λ(t)}. The MAT-
LAB linear mark-jump-diffusion code C.15 is a modification of the linear jump-
diffusion SDE simulator code C.14 illustrated in Fig. 4.3 for constant coefficients
and discrete mark-independent jumps. The state exponent Y (t) is simulated as

Y S(i + 1) = Y S(i) + (µd(i) − σ2
d(i)/2) ∗ ∆t + σd(i) ∗ DW (i) + Q(i) ∗ DP (i) ,

with t(i + 1) = t0 + i ∗ ∆t for i = 0 : n with n = 1, 000, t0 = 0, 0 ≤ t(i) ≤ 2.
The incremental Poisson jump term ∆P (i) = P (ti + ∆t) − P (ti) is simulated by a
uniform random number generator on (0, 1) using the acceptance-rejection technique
[230, 96] to implement the zero-one jump law to obtain the probability of λ(i)∆t that
there a jump is accepted. The same random state is used to obtain the simulations
of uniformly distributed Q on (a, b) conditional on a jump event.
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Linear Mark−Jump−Diffusion Simulations
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X(t), State 5
X(t), State 9
X(t), State 10
XM(t), th. Mean=E[X(t)]
XSM(t), Sample Mean

Figure 5.1. Four linear mark-jump-diffusion sample paths for time-
dependent coefficients are simulated using MATLAB [210] with N = 1, 000 time-
steps, maximum time T = 2.0 and four randn and four rand states. Initially,
x0 = 1.0. Parameter values are given in vectorized functions using vector functions
and dot-element operations, µd(t) = 0.1 ∗ sin(t), σd(t) = 1.5 ∗ exp(−0.01 ∗ t) and
λ = 3.0 ∗ exp(−t. ∗ t). The marks are uniformly distributed on [−2.0, +1.0]. In
addition to the four simulated states, the expected state E[X(t)] is presented us-
ing quasi-deterministic equivalence (5.55) of Hanson and Ryan [114], but also the
sample mean of the four sample paths are presented.
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5.3 Multi-Dimensional Markov SDE

The general, multi-dimensional Markov SDE is presented here, along with the cor-
responding chain rule, establishing proper matrix-vector notation, or extensions
where the standard linear algebra is inadequate, for the sequel. In the case of the
vector1state process X(t) = [Xi(t)]nx×1 on some nx-dimensional state space Dx,
the multi-dimensional SDE can be of the form,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t; Q,X(t), t) , (5.82)

where

h(X(t), t,Q)dP(t; Q,X(t), t)
dt
= dΠ(t;X(t), t)

=

∫

Q

h(X(t), t,q)P(dt,dq;X(t), t) (5.83)

is compact symbolic notation for the space-time Poisson terms, W(t) = [Wi(t)]nw×1

is an nw-dimensional vector Wiener process, P(t; Q,X(t), t) = [Pi(t;X(t), t)]np×1

is an np-dimensional vector state-dependent Poisson process, the coefficient f has
the same dimension at X, and the coefficients in the set {g, h} have dimensions
commensurate in multiplication with the set of vectors {W,P}, respectively. Here,
P = [Pi]np×1 is a vector form of the Poisson random measure with mark random
vector Q = [Qi]np×1 and dq = [[qi, qi + dqi)]np×1 is the symbolic vector version of
the mark measure notation. The dP(t;X(t), t) jump-amplitude coefficient has the
component form

h(X(t), t;Q) = [hi,j(X(t), t; Qj)]nx×np
,

such that the jth Poisson component only depends on the jth mark Qj since simul-
taneous jumps are unlikely.

In component and jump counter form, the SDE is

dXi(t)
dt
= fi(X(t), t)dt +

nw∑

j=1

gi,j(X(t), t)dWj(t)

+

np∑

j=1

hi,j(X(t), t,Q)dPj(t; Q,X(t), t) , (5.84)

for i = 1 : nx state components. The jump of the ith state due to the jth Poisson
process

[Xi](Tj,k) = hi,j(X(T−
j,k), T−

j,k, Qj,k),

where T−
j,k is the pre-jump-time and its k realization with jump-amplitude mark

Qj,k. The diffusion noise components have zero mean,

E[dWi(t)] = 0 (5.85)

1Boldface variables or processes denote column vector variables or processes, respectively. The
subscript i usually denotes a row index in this notation, while j denotes a column index. For
example, X(t) = [Xi(t)]nx×1 denotes that Xi is the ith component for i = 1 : nx of the single-
column vector X(t).
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for i = 1:nw, while correlations are allowed between components,

Cov[dWi(t), dWj(t)] = ρi,jdt = [δi,j + ρi,j(1 − δi,j)]dt, (5.86)

for i, j = 1:nx, where ρi,j is the correlation coefficient between i and j components.
The jump noise components, conditioned on X(t) = x, are Poisson distributed

with P mean assumed to be of the form

E[Pj(dt,dqj ;X(t), t)|X(t) = x] = φ
(j)
Qj

(qj ;x, t)dqjλj(t;x, t)dt , (5.87)

for each jump component j = 1:np with jth density φ
(j)
Q (qj ;x, t) depending only on

qj assuming independence of the marks for different Poisson components but IID
for the same component, so that the Poisson mark integral is

E[dPj(t; Q,X(t), t)|X(t) = x] = E

[∫

Qj

Pj(dt,dqj;x(t), t)

]

=

∫

Qj

E
[
Pj(dt,dqj ;x(t), t)

]

=

∫

Qj

φ
(j)
Q (qj ;x, t)dqiλj(t;x, t)dt

= λj(t;x, t)dt (5.88)

for i = 1 : np, while the components are assumed to be uncorrelated, with condi-
tioning X(t) = x pre-assumed for brevity,

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)] = φ
(j)
Q (qj ;x, t)δ(qk − qj)dqkdqjλj(t;x, t)dt ,

(5.89)

generalizing the scalar form (5.15) to vector form, and

Cov[dPj(t; Qj,x, t), dPk(t; Qk,x, t)] =

∫

Qj

∫

Qk

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)]

= λj(t;x, t)dt δj,k (5.90)

for j, k = 1 :np, there being enough complexity for most applications. In addition,
it is assumed that, as vectors, the diffusion noise dW, Poisson noise dP and mark
random variable Q are pairwise independent, but the mark random variable depends
on the existence of a jump.

This Poisson formulation is somewhat different from others, such as [94, Part
2, Chapter 2]. The linear combination form has been found to be convenient for
both jumps and diffusion when there several sources of noise in the application.

5.3.1 Conditional Infinitesimal Moments in Multi-Dimensions

The conditional infinitesimal moments for the vector state process X(t) are more
easily calculated by component first, using the noise infinitesimal moments (5.85-
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5.90). The conditional infinitesimal mean is

E[dXi(t)|X(t) = x] = fi(x, t)dt +

nw∑

j=1

gi,j(x, t)E[dWj(t)]

+

np∑

j=1

∫

Qj

hi,j(x, t, qj)E[Pj(dt,dqj ;x, t)]

= fi(x, t)dt +

np∑

j=1

∫

Qj

hi,j(x, t, qj)φ
(j)
Q (qj ;x, t)dqjλj(t;x, t)dt

=


fi(x, t) +

np∑

j=1

hi,j(x, t)λj(t;x, t)


 dt (5.91)

where hi,j(x, t) ≡ EQ[hi,j(x, t, Qj)]. Thus, in vector form

E[dX(t)|X(t) = x] =
[
f(x, t)dt + h(x, t)λ(t;x, t)

]
dt , (5.92)

where λ(t;x, t) = [λi(t;x, t)]np×1.
For the conditional infinitesimal covariance, again with pre-assuming condi-

tioning on X(t) = x for brevity,

Cov[dXi(t), dXj(t)] =

nw∑

k=1

nw∑

ℓ=1

gi,k(x, t)gj,ℓ(x, t)Cov[dWk(t), dWℓ(t)]

+

np∑

k=1

np∑

ℓ=1

∫

Qk

∫

Qℓ

hi,k(x, t; qk)hj,ℓ(x, t; qℓ)

Cov[Pk(dt,dqk;x, t),Pℓ(dt,dqℓ;x, t)]

=

nw∑

k=1

(
gi,k(x, t)gj,k(x, t) +

∑

ℓ 6=k

ρk,ℓgi,k(x, t)gj,ℓ(x, t)



 dt

+

np∑

k=1

(hi,khj,k)(x, t)φ
(k)
Q (qk;x, t)λk(t;x, t)dt

=

nw∑

k=1

(
gi,k(x, t)gj,k(x, t) +

∑

ℓ 6=k

ρk,ℓgi,k(x, t)gj,ℓ(x, t)


 dt

+

np∑

k=1

(hi,khj,k)(x, t)λk(t;x, t)dt , (5.93)

for i = 1 :nx and j = 1 :nx, in precision-dt, where the infinitesimal jump-diffusion
covariance formulas (5.86) and (5.89) have been used. Hence, the matrix-vector
form of this covariance is

Cov[dX(t), dX⊤(t)|X(t) = x]
dt
=
[
g(x, t)R′g⊤(x, t)

+ hΛh⊤(x, t)
]
dt , (5.94)
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where

R′ ≡ [ρi,j ]nw×nw
= [δi,j + ρi,j(1 − δi,j)]nw×nw

, (5.95)

Λ = Λ(t;x, t)) = [λi(t;x, t)δi,j ]np×np
. (5.96)

The jump in the ith component of the state at jump-time Tj,k in the underlying
jth component of the vector Poisson process is

[Xi](Tj,k) ≡ Xi(T
+
j,k) − Xi(T

−
j,k) = hi,j(X(T−

j,k), T−
j,k; Qj,k) , (5.97)

for k = 1 : ∞ jumps and i = 1 : nx state components, now depending on the jth
mark’s kth realization Qj,k at the pre-jump-time T−

j,k at the kth jump of the jth
component Poisson process.

5.3.2 Stochastic Chain Rule in Multi-Dimensions

The stochastic chain rule for a scalar function Y(t) = F(X(t), t), twice continuously
differentiable in x and once in t, comes from the expansion,

dY(t) = dF(X(t), t) = F(X(t) + dX(t), t + dt) − F(X(t), t) (5.98)

= Ft(X(t), t) +

nx∑

i=1

∂F

∂xi
(X(t), t)

(
fi(X(t), t)dt +

nw∑

k=1

gi,k(X(t), t)dWk(t)

)

+
1

2

nx∑

i=1

nx∑

j=1

nw∑

k=1

nw∑

ℓ=1

(
∂2F

∂xi∂xj
gi,kgj,ℓ

)
(X(t), t)dWk(t)dWℓ(t)

+

np∑

j=1

∫

Q

(
F
(
X(t) + ĥj(X(t), t, qj), t

)
− F(X(t), t)

)

·Pj(dt,dqj ;X(t), t) ,

dt
=
(
Ft(X(t), t) + f⊤(X(t), t)∇x[F](X(t), t)

)
dt

+
1

2

nx∑

i=1

nx∑

j=1

∂2F

∂xi∂xj

nw∑

k=1



gi,kgj,k +

nw∑

ℓ 6=k

ρk,ℓgi,kgj,ℓ



 (X(t), t)dt

+

np∑

j=1

∫

Qj

∆j [F]Pj

=

[
Ft + f⊤∇x[F] +

1

2

(
gR′g⊤

)
: ∇x

[
∇⊤

x [F]
]]

(X(t), t)dt

+

∫

Q

∆⊤[F]P

to precision-dt. Here, the

∇x[F] ≡

[
∂F

∂xi
(x, t)

]

nx×1
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is the state space gradient (a column nx-vector),

∇⊤
x [F] ≡

[
∂F

∂xj
(x, t)

]

1×nx

is the transpose of the state space gradient (a row nx-vector),

∇x

[
∇⊤

x [F]
]
≡

[
∂2F

∂xi∂xj
(x, t)

]

nx×nx

is the Hessian matrix for F, R′ is a correlation matrix defined in (5.95),

A : B ≡
n∑

i=1

n∑

j=1

Ai,jBi,j = Trace[AB⊤] (5.99)

is the double-dot product of two n × n matrices, related to the trace,

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1 (5.100)

is the jth jump-amplitude vector corresponding to the jth Poisson process,

∆⊤[F] = [∆j [F](X(t), t, qj)]1×np

≡
[
F(X(t) + ĥj(X(t), t, qj), t) − F(X(t), t)

]

1×np

(5.101)

is the general jump-amplitude change vector for any t and

P = [Pi(dt,dqi;X(t), t)]np×1

is the Poisson random measure vector condition. The corresponding jump in Y(t)
due to the jth Poisson component and its kth realization is

[Y]
(
T−

j,k

)
= F

(
X
(
T−

j,k

)
+ ĥj

(
X
(
T−

j,k

)
, T−

j,k, Qj,k

)
, T−

j,k

)
− F

(
X
(
T−

j,k

)
, T−

j,k

)
.

Example 5.26. Merton’s Analysis of Black-Scholes Option Pricing Model:
A good application of multi-dimensional SDEs in finance is the survey of Merton’s
[201] (Merton [203, Chapter 8]) analysis of the Black-Scholes [34] financial options
pricing model in Section 10.2 of Chapter 10. This treatment will serve as motivation
for the study of SDEs and contains details not in Merton’s paper.

5.4 Distributed Jump SDE Models Exactly
Transformable

Here, exactly transformable distributed jump-diffusion SDE models are listed, both
in the scalar and vector cases, where conditions are applicable.
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5.4.1 Distributed Jump SDE Models Exactly Transformable

• Distributed Scalar Jump SDE:

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) +

∫

Q

h(X(t), t, q)P(dt,dq).

• Transformed Scalar Process: Y (t) = F (X(t), t).

• Transformed Scalar SDE:

dY (t) = (Ft + Fxf +
1

2
Fxxg2)dt + FxgdW (t)

+

∫

Q

(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq).

• Target Explicit Scalar SDE:

dY (t) = C1(t)dt + C2(t)dW (t) +

∫

Q

C3(t, q)P(dt,dq).

5.4.2 Vector Distributed Jump SDE Models Exactly

Transformable

• Vector Distributed Jump SDE:

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) +

∫

Q

h(X(t), t,q)P(dt,dq).

• Vector Transformed Process: Y(t) = F(X(t), t).

• Transformed Component SDE:

dYi(t) = (Fi,t +
∑

j

Fi,jfj +
1

2

∑

j

∑

k

∑

l

Fi,jkgjlgkl)dt

+
∑

j

Fi,j

∑

l

gjldWl(t)

+
∑

ℓ

∫

Q

(yi(X + hℓ, t) − Fi(X, t))Pℓ(dt,dqℓ),

hℓ(x, t,qℓ) ≡ [hi,ℓ(x, t, qℓ)]m×1

• Transformed Vector SDE:

dY(t) = (Ft + (fT∇x)F +
1

2
(ggT : ∇x∇x)F)dt + ((gdW(t))T∇x)F

+
∑

ℓ

∫

Q

(F(X + hℓ, t) − F(X, t))Pℓ(dt,dqℓ).
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• Vector Target Explicit SDE:

dY(t) = C1(t)dt + C2(t)dW(t) +
∑

ℓ

∫

Q

C3,ℓ(t, qℓ)Pℓ(dt,dqℓ).

• Original Coefficients:

f(x, t) = (∇xF
T )−T (C1(t) − yt

−
1

2
(∇xF

T )−T C2C
T
2 (∇xF

T )−1 : ∇x∇
T
x F);

g(x, t) = (∇xF
T )−T C2(t),

F(x + hℓ, t) = F(x, t) + C3,ℓ(t, qℓ) {note: left in implicit form}.

• Vector Affine Transformation Example:

F = A(t)x + B(t),

Ft = A′x + B′,

(∇xF
T )T = A,

f(x, t) = A−1(C1(t) − A′x − B′),

g(x, t) = A−1C2(t),

hℓ(x, t, qℓ) = A−1C3,ℓ(t, qℓ).

5.5 Exercises

1. Simulate X(t) for the log-normally distributed jump-amplitude case with
mean µj = E[Q] = 0.28 and variance σ2

j = Var[Q] = 0.15 for the linear
jump-diffusion SDE model (5.42) using µd(t) = 0.82 sin(2πt− 0.75π), σd(t) =
0.88− 0.44 sin(2πt− 0.75π) and λ(t) = 8.0− 1.82 sin(2πt− 0.75π), N = 10000
time-steps, t0 = 0, tf = 1.0, X(0) − x0, for k = 4 random states, i.e.,
ν(t, Q) = ν0(Q) = exp(Q)−1, with Q normally distributed. Plot the k sample
states Xj(ti) for j = 1 : k, along with theoretical mean state path, E[X(ti)]

(5.49), and the sample mean state path, i.e., Mx(ti) =
∑k

j=1 Xj(ti)/k, all for
i = 1 : N + 1.

{Hint: Modify the linear mark-jump-diffusion SDE simulator Example 5.25
with Appendix A MATLAB code C.15 and Corollary 5.9 for the discrete ex-
ponential expectation. }

2. For the log-double-uniform jump distribution,

φQ(q; t) ≡





0, −∞ < q < a(t)
p1(t)/|a|(t), a(t) ≤ q < 0
p2(t)/b(t), 0 ≤ q ≤ b(t)
0, b(t) < q < +∞





, (5.102)
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where p1(t) is the probability of a negative jump and p2(t) is the probability
of a posative jump on a(t) < 0 ≤ b(t), show that

(a) EQ[Q] = µj(t) = (p1(t)a(t) + p2(t)b(t))/2;

(b) VarQ[Q] = σ2
j (t) = (p1(t)a

2(t) + p2(t)b
2(t))/3 − µ2

j(t);

(c) EQ

[
(Q − µj(t))

3
]
=(p1(t)a

3(t)+p2(t)b
3(t))/4 − µj(t)(3σ2

j (t)+µ2
j(t));

(d) E[ν(Q)] = E[exp(Q) − 1], where the answer needs to be derived.

3. Show that the Itô mean square limit for the integral of the product of two
correlated mean-zero, dt-variance, differential diffusion processes, dW1(t) and
dW2(t), symbolically satisfying the SDE,

dW1(t)dW2(t)
dt
= ρ(t)dt , (5.103)

where

Cov[∆W1(ti), ∆W2(ti)] ≃ ρ(ti)∆ti

for sufficiently small ∆ti. Are there any modified considerations required if ρ =
0 or ρ = ±1? You may use the bivariate normal density in (B.146), bounded-
ness Theorem B.59, Table B.1 of selected moments and nearby material of the
Preliminaries Appendix B.

4. Finish the proof of Corollary 5.13 by showing the diffusion part using the
techniques of Theorem 5.11 Eq. (5.53).

5. Prove the corresponding corollary for the variance of X(t) from the solution
of the linear SDE:

Corollary 5.27. Variance of X(t) for Linear SDE:

Let X(t) be the solution (5.45) with ν2(t) ≡ E[ν2(t, Q)] of (5.42), then

Var[dX(t)/X(t)]
dt
= σ2

d(t) + ν2(t)

and

Var[X(t)] = E2[X(t)]

(
exp

(∫ t

t0

Var[dX(s)/X(s)]ds

)
− 1

)
. (5.104)

Be sure to state what extra conditions on processes and precision are needed
that were not needed for proving Corollary 5.13 on E[X(t)].

6. Justify (5.94) for the covariance in multi-dimensions by giving the reasons for
each step in the derivation. See the proof for (5.27).
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• Çinlar, 1975 [55].

• Cont and Tankov, 2004 [59].

• Gihman and Skorohod, 1972 [94, Part 2, Chapter 2].

• Hanson, 1996 [108].
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