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Abstract 

In this review I discuss in some detail the structure and physical consequences of 
global and local supersymmetric (SUSY) gauge theories. Section 1 contains motivations 
for SUSY theories, whilst zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§§ 2 and 3 explain what supersymmetry is, and what are its 
physical properties. The observable consequences of SUSY at low energies and super- 
high energies are discussed in § §  4 and 5. The physical structure of simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N  = 1) 

local SUSY (= supergravity) is given in § 6, whilst § 7 contains the physics of simple 
supergravity both at superhigh as well as at low energies. The experimental evidence 
(?) for supersymmetry is analysed in § 8, whilst § 9 contains the conclusions. Amazingly 

enough, we find that gravitational effects, as contained in supergravity theories, may 
play a rather fundamental role at all energy scales. This strong interrelation between 
gravity and particle physics is unprecedented. 
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1. Motivation(§) for supersymmetry 

Unification of all elementary particle forces has been the holy grail of theoretical 
physics. The first realistic step towards this end has been the highly successful 
unification between electromagnetic and weak interactions, now called electroweak 
interactions. The obvious (and natural) next step is then the amalgamation of electro- 
weak and strong interactions, justifiably called grand unified theories (GUTS). (For 
reviews on GUTS see e.g. Ellis 1984, Nanopoulos 1980, Langacker 1981.) The qualitative 
successes (e.g. charge quantisation, equality of diff erent coupling constants and equality 
of certain quark-lepton masses at superhigh energies, natural understanding of quark 
and lepton quantum numbers, etc), as well as the quantitative successes (e.g. disparity 
of coupling constants and of quark-lepton masses at low energies, determination of 
the electroweak mixing angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( eEW), possible limit on the number of flavours, virtually 
massless neutrinos, etc) are rather well known (Ellis 1984, Nanopoulos 1980, Langacker 
1981). It is also well known that the grand unification scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMx is rather large 

Mx - l O I 5  GeV. (1.1) 

GUTS contain baryon and lepton number violating interactions, and the presently 
observed proton stability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(rP> 1031-1032 yr) immediately puts a lower bound on M x  
which more or less is saturated by (1.1). The existence of two scales, the electroweak 
scale (Mw- 100 GeV) and the GUT scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, so different 

creates a fundamental problem for GUTS. 
The gauge hierarchy problem: how is it possible to keep these two scales separate, 

incommunicado? In ordinary field theories, even if we fix the parameters at the classical 
level to satisfy (1.2), quantum corrections will undo this relationship and we will have 
to adjust it at each order in perturbation theory. This does not sound right if we claim 
to have a natural theory. The heart of the problem is the existence of scalar fields. 
The only way to break a gauge theory and keep renormalisability is through spontaneous 
breaking (sB). The simplest way to achieve SB is to allow certain scalar fields to have 
a vacuum expectation value (VEV). In GUTS we need two sets of scalars, one set to 
break the big group G which supposedly contains all interactions down to SU(3)X 
SU(2) x U( 1) at M x  , and thus the VEV of these fields V - Mx,  and another set to break 
SU(3) x SU(2) x U( 1) down to SU(3) x U( l )EM,  and thus they should get VEVS U - Mw. 

Since the masses of these Higgs fields are proportional to their VEVS, we end up 
with light Higgs of masses O(MW) and heavy Higgs of masses O(Mx). Again this can 
be arranged at the classical level. But, since light and heavy Higgs are both coupled 
to gauge bosons, fermions and scalars, already at the 1-loop level there is a communica- 
tion between the light and heavy Higgs, through the above mentioned fields running 
around the loop. That immediately creates corrections to light scalar masses O(M,), 
while only corrections at most O(MW) are allowed, i.e., end of the gauge hierarchy! 
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This happens because there is no symmetry able to keep scalars massless (or virtually 

massless: Mw<<<M,), in contrast to gauge or chiral symmetries which keep gauge 
bosons or fermions massless. 

One way out would be to abandon completely the use of scalar fields as a means 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASB. Then we have to attempt dynamical SB. This approach has been tried (tech- 

nicolour, extended technicolour, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . ) but led to fatal flaws, so it became evident that 
technicolour has created more heat than light (Farhi and Susskind 1981). So back to 

scalars again. One may now try a different way. Is there any possibility that when 
one adds up all the 1-loop corrections to light scalar masses, they practically vanish, 

becoming at most of order Mw? We may exploit the fact that, thanks to the ‘spin- 
statistics theorem and all that’, boson and fermion loops differ by an all-over minus 

sign. Then if suitable relations exist between fermion and boson masses on the one 

hand and gauge, Yukawa and scalar self-coupling constants on the other, the hope of 
cancellation between different 1-loop diagrams may be realised. Well, this is a very 

neat way to discover supersymmetry (SUSY) (Gol’fand and Likhtman 1971, Volkov 

and Akulov 1973, Wess and Zumino 1974a; for reviews, see Fayet and Ferrara 1977, 

Wess and Bagger 1983). Actually, one may rigorously prove that the only way to get 
the desired 1-loop cancellation is through supersymmetry (Vetman 1981, Inami et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 
1983, Deshpande et a1 1981). As we will see later, a remarkable property of supersym- 

metry is that if the cancellation occurs at the 1-loop level, then it occurs automatically 
to all orders in perturbation theory. The technical aspect of the gauge hierarchy 

problems then has been solved. 
Since exact supersymmetry implies equal fermion boson masses, which is not seen 

experimentally, supersymmetry has to be broken. The corrections to the light Higgs 

masses will be O(MLEsB) and they should better not exceed O(Mw), otherwise the 

gauge hierarchy problem strikes back again, thus 

(1.3) 

where MLEsB refers to the low energy supersymmetry breaking, i.e. the SUSY breaking 
that the low energy world suffers. Talking about hierarchies, another serious problem, 
this time concerning quantum chromodynamics (QCD), naturally comes to mind. 

Non-perturbative effects in QCD have the disturbing feature of adding a term: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ep v p c  F”, FapU e (1.4) 

where FLY is the gluon field strength and 8 is a new parameter. There is a contribution 

from the non-perturbative term (1.4) to d,, the dipole electric moment of the neutron 
(DEMON) 

d,=10-168ecm (1.5(a)) 

which imposes a severe upper bound on 8 

e s o( io-’) 

when the present experimental upper bound (Altarev et al 1981, Dress et a1 1977, 
Ramsey 1978) d, < O( lo-’’ e cm) on DEMON is used. This is the strong CP-hierarchy 
problem. Again supersymmetry solves the technical aspect of this problem (Ellis et al 
1982a). Starting with 8 = 0, one proves (Ellis et a1 1982a) that in spontaneously broken 
SUSY type theories, 8 naturally lies below the limit posed by (1.5). The same type of 
miraculous cancellations, as mentioned above, occur again. Supersymmetric theories 
are very well behaved; they respect hierarchies. 
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We have by now enough physical motivation to have a close look at the structure 

of supersymmetric theories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Supersymmetry (SUSY) 

All kinds of symmetries that one normally uses in particle physics, global (like isospin, 

eightfold way, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . ) or gauge (SU(3) x SU(2) x U(1), SU(5), 0(10),  E6,.  . . ), always 
transform fermions to fermions and bosons to bosons. Supersymmetry, or fermion- 

boson symmetry, tries to bypass this prejudice and aims to be a theory in which a 
fermion-boson transformation will also be possible. Indeed, such theories have been 

constructed and are in full accord with all the standard laws of quantum field theory 

(Gol’fand and Likhtman 1971, Volkov and Akulov 1973, Wess and Zumino 1974; for 

reviews see Fayet and Ferrara 1977, Wess and Bagger 1983). In its simplest form, one 

has to extend the usual PoincarC algebra of the generators of space-time rotations and 
translations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMPV and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPP, to contain a self-conjugate (Majorana) spin 1 generator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Qa, which turns boson fields to fermion fields and vice versa. Schematically, 

Q,lboson) = /fermion). (2.1) 

a = 1, 2, 3, 4 is the spinor index. 
They satisfy the following (anti)commutation rules: 

[ Q m ,  M’””I= i(aPLYQIa (2.2) 

[Qa,PpI=O (2.3) 

{Qa, Qd = -2(YP)app’” (2.4) 

in which uPy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a [  yP, y y ]  and Q = QTyo. 

The Qa are four Hermitian operators and we use Majorana representation for Dirac 

matrices. Because of the spinorial character of the generators Qm, the extended PoincarC 

algebra, called supersymmetry algebra, involves both commutation and anticommuta- 
tion relations. It is not an ordinary Lie algebra, but what the mathematicians call a 
graded Lie algebra (GLA). The spinorial generator Qa is a grading representation of 

the PoincarC Lie algebra. Supersymmetry extends this algebra in a rather non-trivial 
way; one can associate in irreducible representations a jinite number of bosons and 

fermions. This fact is extremely important if one wants to construct conventional 

renormalisable quantum field theories invariant under supersymmetry and satisfying 
the usual Wightman axioms. Graded Lie algebras play perhaps a unique role in particle 

physics, because they realise truly relativistic spin-containing symmetries in which 

particles of different spin belong to the same supermultiplet. It is remarkable that by 
making the spinorial generators transform as some representation of an internal 

svmmetry group, the resulting algebra provides also a fusion between space-time and 
internal symmetry overcoming previous no-go theorems (Coleman and Mandula 1967). 
Irreducible multiplets combine in this case fermions and bosons with different internal 
quantum numbers. 

The physical meaning of the (anti)commutation rules (2.2), (2.3) and (2.4) is rather 
apparent. Equation (2.2) simply states that Q transforms as a spinor, while equation 
(2.3) states that the spinor charges are conserved and are translation invariant. Presum- 

ably the most important is equation (2.4), and it suggests the terminology that the 
supersymmetry charges are the ‘square root of translations’. Clearly, SUSY involves 
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the structure of space-time and it is this connection that is fully developed in local 

supersymmetry or supergravity (van Nieuwenhuizen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1981) .  
It is very easy to show that SUSY implies a relation between particles of different 

spin. Apply the spinor charge Qa to a particle state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P, S) of definite momentum and 

helicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

Q ~ ~ P ,  S ) =  aJP, S + i ) + b l ~ ,  S-4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 .5 )  

Because of (2.3), the RHS is a superposition of particles of the same momentum and 

energy-thus, the same mass. Furthermore, addition of angular momentum implies 

that these particles have helicities S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i. Supersymmetry transformations connect states 

which differ by i unit of spin. These states fill in the so-called supermultiplets. They 

therefore relate bosons to fermions. One may easily generalise the (anti)commutation 
rules (2.2), (2.3) and (2.4) to involve more than one spinorial charge, say Q c ,  
N = 1 , 2 ,  . . . , 8. Then we talk about N-extended supersymmetry in contrast to N = 1 
or simple supersymmetry. Since here we are not going to be involved with N >  1 
supersymmetries we stick to the above given (anti)commutation rules. 

When trying to mix SUSY with gauge theories we had better keep in mind certain 
general features and constraints that more or less come out from first principles. 

1.  In global supersymmetry the supercharges ( Q a )  always commute with gauge 

symmetries; the commutator, if not zero, would be a supersymmetry transformation 

depending on the infinite number of parameters of the gauge symmetry, so would have 
to be a local SUSY. Thus, 

There are two immediate consequences of this fact: 

(i)  all members of a supermultiplet have the same internal quantum numbers. This 

means that 
(ii) only N = 1 (global) SUSY makes phenomenological sense, since N 2 (global) 

supersymmetric theories always yield fermions in real representations of SU(3) x 
SU(2) x U( 1 )  in sharp contrast with what we observe experimentally at low energies 
(parity violation exists both in charged and neutral currents). For example in N = 2 
global supersymmetry there are two types of supermultiplets containing spin 1 fermions: 

(i, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4) and ( l , ; ,  0). Both of them provide vector-like theories. The ( i , O ,  -4) multiplet 
relates fermions of helicity 4 and -4 which would have to have the same quantum 

numbers. The (1, i, 0) multiplet relates fermions of helicity 4 to massless bosons of 

helicity 1. But massless bosons of helicity 1 are always gauge bosons, transforming in 
the adjoint representation, which is real. So whether we consider the (1 ,  4, 0) or the 

(4, 0, -4) multiplet, the fermions in N = 2 (or N > 2) global SUSY transform in a real 
representation of the gauge group: helicity 5 and helicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-f transform equivalently. 
This observation justifies our attitude of not considering very seriously any N 3 2 
global SUSY theories. 

2. An immediate consequence of equation (2.4) is that in global SUSY theories with 
SB the Hamiltonian H is the sum of the squares of the supersymmetry charges 

Since H is the sum of squares of Hermitian operators, the energy of any state is positive 

or zero. 
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Clearly, if there exists a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY invariant state, that is a state annihilated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQm, then 

it is automatically the true vacuum state since it has zero energy, and any state that is 

not invariant under supersymmetry has positive energy. Thus, in contrast with ordinary 
gauge theories, if a SUSY state exists, it is the ground state and SUSY is not SB. Only 
if there does not exist a state invariant under SUSY, SUSY is SB. In this case the ground 

state energy is positive. Obviously, it is far more difficult to achieve SUSY SB than to 

achieve gauge symmetry SB. The supersymmetric state would have to be ostracised 
from the physical Hilbert space. 

In global SUSY theories, it is impossible to spontaneously break an N-extended 

SUSY to an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ' ( N >  N ' 2  1) SUSY, because all 0," satisfy separately equation (2.7) and 

if one breaks down some N, then all of them break down as well. No stepwise extended 
SUSY SB in global supersymmetric theories is possible. Things are different though in 
supergravity. 

We are ready now to move to the construction of N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 SUSY models. 

3. Physical properties of supersymmetry 

From our previous discussion of the general features of supersymmetry theories, we 

recall the fact that only N = 1 global SUSY theories make phenomenological sense. 

Thus each supermultiplet contains only two kinds of particles, with identical internal 
quantum numbers but with a 'spin-shift' o f t  unit. 

Let us take an arbitrary gauge group, with gauge mesons A t  (spin 1) and fermionic 

partners A "  (spin 5) called gauginos, belonging to the adjoint representation of the 
gauge group. They consist of the vector multiplet. The gauginos have to have spin i 
and not 5 because of renormalisability. In addition, we may introduce left-handed 

fermions in an arbitrary multiplet of the gauge group. They form supersymmetry 
multiplets 

Pi [ (3.1) 

with complex scalar bosons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,. They consist of the chiral multiplets. The right-handed 

fermion fields are the complex conjugates of the left-handed fields, i,b,R = ( PL)* and 
their SUSY partners are the complex conjugates s: of the S I .  We have to use scalar 

fields and not spin-1 fields to complete the 'fermion' multiplet because of renormalisabil- 
ity; the only allowed spin-1 bosons are gauge bosons, but then the fermions should 

belong to the adjoint representation of the gauge group, in contradiction to what we 
see experimentally. It is very interesting that renormalisability plus 'observation' define 

the superpartners uniquely. The superpartners of the observed fermions (quarks, 

leptons) are called sfermions (squarks, sleptons) and have spin 0, while the superpart- 
ners of Higgs are called higgsinos and have spin i. We will see below why in N = 1 

global SUSY, the usual Higgs fields cannot be identified with the superpartners of the 
observed quarks and leptons. 

In addition, we introduce a function f (cp, ) ,  which is known as the 'superpotential'. 
f must be an analytic function of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp,, i.e. a function of cpz but not of their complex 
conjugates cp:. For a renormalisable theory f should be at most cubic in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc p I ,  
otherwise f is restricted only by gauge invariance. The general form of f is f( cp,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a$' + aIJcp'cpJ + bvkcp'cpJcpk, where a,, a,,, b,,k are gauge covariant tensors. 
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Notice that in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY theories the usual Higgs fields cannot be identified with the 

superpartners of the observed quarks and leptons (sfermions). In ordinary gauge 
theories we can use a Higgs doublet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( H2)  to give masses to up quarks, while its charge 
conjugate (H:)  can provide masses to charged leptons and down quarks. In SUSY 

theories, since the superpotential f is a function only of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp, and not of the cp?, H2 
and HF should be chosen to be completely unrelated, different, fields. Thus, even if 
we identified the (sv, se) doublet with H:, we are missing H,, i.e. we are left with 
massless up quarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U, c, t)!  Furthermore, in a GUT theory, quarks and leptons are 
sitting in the same multiplet; thus by identifying sleptons with 'weak' Higgs fields, we 
have to interpret squarks as colour Higgs fields, which is catastrophic, since these 
colour Higgs fields will cause protons to decay instantly. For example, in SU(5), the 
Higgs doublet H2 is sitting in the same multiplet, a 5-plet of SU(5), with a coloured 
Higgs triplet, H 3 .  The colour Higgs mediates proton decay and since it is coupled to 
quarks and leptons with the normal Yukawa couplings, it had better be superheavy 
(2 10" GeV), otherwise matter will disintegrate instantly! Thus, if we identified s-ups 
or s-downs with coloured Higgs fields, we are in big trouble since s-ups and s-downs 
cannot weigh much more than Mw ( K  10" GeV) if we want to solve the gauge hierarchy 
problem. Finally, the existence of a pair of Higgs supermultiplets of opposite helicities 
is crucial in cancelling the Adler-Bell-Jackiw anomalies of the higgsino sector. 

It is an unfortunate fact of supersymmetric life that no known particle can be the 
spartner of any other particle. In N =  1 SUSY, all particles and their spartners must 
have identical SU(3)c x SU(2)L x U( l)y x global baryon and lepton quantum numbers. 
No known particles fit into the appropriate pairs, so we must invent a doubling of the 
elementary particle spectrum as seen in table 1. 

Table 1. Spectrum of supersymmetric particles. 
~ 

Particle Spin Sparticle Spin 

1 

1 
2 squark G&,R 0,o 

lepton lL,R z slepton lL,R 030 

quark qL,R 

photon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 1 photino i 2 1 

gluon g 1 gluino 2 1 
I 

1 

1 
2 

W 1 wino ,iv T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 1 zino Z - I 

Higgs H 0 shiggs H 

Gauge theories including the above mentioned supermultiplets embody the follow- 
ing relations between couplings (Fayet and Ferrara 1977): 

d L o r  R Y p f L o r  RGp -+ d2g(.fL or R&or  R ) f L o r  R +  (HC) (3.21 

p =  h(fLft)H~h[(fLE;TL)~L+fL(ftI?iL)I (3.3) 

where thefL,R are left- (right-)handed fermions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGp are gauge bosons, 6 are gauginos, 
the products of two fermions are denoted by 

( f i f L )  = E a P f f p  (3.4) 

and the f (I?) are 'sfermion' ('shiggs') partners of conventional fermions and Higgs 
bosons. 

It is convenient to introduce the concept of superspace, which possesses anticom- 
muting (Grassmannian) coordinates ea as well as the conventional space-time coordin- 
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ates x,. Supermultiplets can then be represented by superfields which can be expressed 
as power series in the superspace coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, which are of finite order because 
they anticommute. Chiral superfields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp are spin-0 fields of the form 

cp(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s(x)+&e$(x)+ 68F(x) (3.5) 

whereas vector superfields V are written as 

v = - wvv, (XI  + (-i i i e ~  (XI  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHC) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+feeii[ D(X) - i a, V, (x)]. (3.6) 

The so-called auxiliary fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF and D can be eliminated using the equations of motion, 
leaving us with physical degrees of freedom corresponding just to the supermultiplet 
structures. The interactions of the supermultiplets are derived from a supersymmetric 
action which can be written schematically as: 

A = {  [Gcp e ’ ” + f ( d +  WI (3.7) 

where the integral over space and superspace denotes a 5 d4x d48 for the first term, 
which is a kinetic term for the chiral supermultiplet cp = (s, $) and an 5 d4x d48 for the 
last term, which is a kinetic term for the gauge supermultiplets ( V ,  ?). The middle 
term in (3.7) is a 5 d4x d28 which gives Yukawa interactions, fermion masses and 
multiple scalar interactions. The object f ( c p )  is a cubic polynomial, introduced above 

f (9) = aijpipj + bijk(Pz(PjpPk (3.8) 

called the superpotential. Fermion interactions are obtained from f (cp) (3.8) by 
removing two cp and putting in their spin-; $ components, while taking the scalar 
components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs of any remaining p: 

(3.9) 

The first term on the right-hand side of (3.9) is a fermion mass term, while the second 
term is a conventional Yukawa interaction. The multiscalar interactions obtained from 

f(cp) are 

(3.10) 

We easily derive from (3.8) a (mass)’ matrix: 

( m ~ ) i k = a i k a ~ = ( m ~ m $ ) i k  (3.11) 

which we see to be identical with the fermion (mass)’ matrix derived from (3.9). Thus, 
fermion and boson masses are identical, as we would expect from exact SUSY (2.1). 
Gauge interactions also give quartic scalar interactions (Fayet and Ferrara 1977) 

g’, Is*Tas12 
a 

Thus, the full scalar potential is given by 

(3.12) 

(3.13) 

where the second sum runs over all generators a of the gauge group, the g ,  are the 
gauge coupling constants and T” are the generators of the gauge group acting on the 
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representation of the group furnished by the si. If the gauge group is not semi-simple 
but contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( l )  generators, say yr with charge g,, then its contribution to (3.13) 
becomes 

482,,l(S*, K S )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ &I2 (3.14) 

where are arbitrary constants of mass dimension 2. Usually one defines 

(3.15) 

and 

0, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s* ,  T"s) + a , ,  a 6 ( TYI = y r )  (3.16) 

and thus 

(3.17) 

In the classical approximation, the zero point energy of the fields may be neglected, 
and the energy of the ground state just equals the minimum of the potential V(s i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsf). 
SUSY is unbroken if V = 0 for si = (s i ) .  As V is a sum of squares, V = 0 if each term 

separately vanishes. Thus the condition for unbroken SUSY is 

for each field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi, and 

D, ( s*, T"s) + 6,yI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0 (3.19) 

for every generator T" of the gauge group. 
If (3.18) and (3.19) have a simultaneous solution, SUSY is unbroken at the tree 

level. Otherwise, SUSY is spontaneously broken. It is not difficult to show that a 

necessary condition to have spontaneous SUSY breaking at the tree level in a supersym- 
metric gauge theory is to have one of the following two conditions satisfied. 

(i) The group G should contain at least a neutral field X with linear terms in the 
superpotential J: This is called F-type breaking because (3.18) cannot be satisfied. 

(ii) The group G should contain at least an Abelian factor U( 1) with a non-vanishing 

6 in (3.16). This is called D-type breaking because (3.19) cannot be satisfied. 

Similarly to the SB of global continuous symmetry where there are Goldstone 
bosons, in the case of SB of global SUSY a Goldstone fermion, called a goldstino, 
should be present. In general, up to a normalisation factor the goldstino is given by: 

(3.20) 

Let us define the coupling Mg of the supercurrent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpa( Qa = d3x Sam) to the goldstino 

by: 

(OIS,&d = M3%Jap. (3.21) 

There is a simple and fundamental relation between the value of the potential at the 
minimum (vacuum energy) V, and Mg: 

V,=(M;)'= M i .  (3.22) 
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The physical meaning of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMs is apparent: Mg is the ‘order parameter’ of supersymmetry. 
A value of M, different from zero implies that supersymmetry is spontaneously broken. 
In particular, if we denote by E the coupling of the goldstino to a supermultiplet, then 
there is a mass splitting between the boson and the fermion inside the supermultiplet: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- m: = M ~ E .  (3.23) 

The form of the mass splitting (3.23) is very suggestive. If one wishes, one may arrange 
things in such a way that, by making the coupling of the goldstino to certain supermulti- 
plets small ( E  << l), these supermultiplets suffer mass splittings, much smaller than the 
primordial SUSY breaking scale Ms. This simple mechanism, the SUSY decoupling 
mechanism (SUDEC), has been discovered only recently (Barbieri et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1982a, b). 

Its importance in constructing realistic SUSY models is difficult to overestimate 
(Barbieri et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 1982a, b). The reason is very simple. As we have seen before (see (1.3)), 
because of the gauge hierarchy problem, MLESB, the mass splitting that the low energy 
world supermultiplets suffer, has to be of order Mw. Then if we identify Ms with 

MLESB, a la Fayet (1980), no realistic model can be constructed (Barbieri et a1 1982a, b, 
Farrar and Weinberg 1983). All Fayet type models (Fayet 1980) (Ms - MLESB) suffer 
either from Adler-Bell-Jackiw type anomalies or/and flavour changing neutral currents 
or/and other pathologies related to the standard established low energy phenomenology 
(Barbieri et a1 1982a, b, Farrar and Weinberg 1983). It seems that we definitely need 

Ms >> MLESB (3.24) 

which, in turn, means that necessarily the SUDEC mechanism (Barbieri et a1 1982a, b) 
has to be employed (E<< 1). Actually, thanks to the ‘magic’ properties of SUSY theories 
(non-renormalisation theorems), one can prove (Barbieri et a1 1982a, b, Polchinsky 
and Susskind 1982) that (3.24) persists to all orders in perturbation theory, i.e. it is 
stable against large radiative corrections. Indeed, realistic models have already been 
constructed (Barbieri et al 1982a, b) where one usually finds that 

M?i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE MWMPlanck (3.25) 

implying that, by using (1.3) and (3.23), 

(3.26) 

Things become very interesting because local SUSY or supergravity (van Nieuwenhuizen 
1981) cannot be neglected any more (Barbieri et a1 1982~) .  In local SUSY the goldstino 
becomes the missing longitudinal components of the spin gravitino, the gauge fermion 
of local supersymmetry (the superpartner of the spin 2 graviton) through the superhiggs 
effect (Volkov and Soroka 1973, Deser and Zumino 1977). In analogy with ordinary 
gauge theories in which the gauge boson mass is given by 

M - dcp> (3.27) 

where g is the gauge coupling constant and (cp) is the VEV of the scalar field causing 
the breaking, i.e. the order parameter of the gauge symmetry, the mass of the gravitino 
is given by (Deser and Zumino 1977) 

(3.28) 
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in terms of the gravitational coupling constant G, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(= l/M$,) and M ; ,  the order 
parameter of supersymmetry. One then finds (Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1978a, 1979,1982, 1983a, 

Ellis and Nanopoulos 1982b) extra contributions to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARHS of (3.23) proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m:/2 .  By putting together (3.25) and (3.28) we find that 

m 3 / 2 -  MW (3.29) 

implying that the extra gravitational contributions to (3.23) proportional to m:/2 cannot 

be neglected any more (Barbieri et a1 1982c), as they are of the same order of magnitude 
as the non-gravitational ones. One may even suspect that it is possible to create the 

whole MLEsB through gravitational effects. This possibility will be explored further in 
P 6. There is another way of breaking global supersymmetry: the soft zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAway, i.e. interac- 

tions of dimensions less than four which do not lead to quadratic divergences (Girar- 
dello and Grisaru 1982). For example, scalar and gaugino mass terms belong to the 

list of allowed soft SUSY breaking terms. The ultraviolet properties of the theory, e.g. 

softening of divergences, etc, hold true in soft breaking as they do in SB (Girardello 

and Grisaru 1982), so soft breaking may be employed in physical applications as good 
as SB. Amazingly enough, recent progress has shown that it is almost impossible 
(Barbieri et a1 1982a, b, Farrar and Weinberg 1983) to construct appealing SUSY models 

with spontaneous global SUSY breaking, while realistic SUSY models have appeared 
(Ellis 1984, Nilles 1984) satisfying all possible phenomenological constraints, with a 

very definite pattern of soft SUSY breaking emerging from the spontaneous breakdown 
of local supersymmetry. Gravity seems to play a rather fundamental role here, as will 

be discussed later. 
One of the central features of supersymmetric theories is that, thanks to their 

fermion-boson symmetry, there are a lot of cancellations between ‘badly’ behaving 
graphs. This amounts to a much better behaved field theory in the ultraviolet, compared 

with the ordinary field theories, which make them very attractive. Actually, recently 

it has been proven that the N = 4 SUSY Yang-Mills (YM) field theory in d = 4 space-time 
dimensions is Jinite (Mandelstam 1983a, b, Howe et a1 1984)! 

The remarkable property of SUSY gauge theories which has recently made them so 

interesting is their non-renormalisation theorem (Ferrara et a1 1974, Ferrara and Piquet 

1975, Grisaru et a1 1979, Iliopoulos and Zumino 1974, Wess and Zumino 1974b). 
Since all loop diagrams have a d48 form, there is no intrinsic renormalisation of the 
superpotential f( p), but only wavefunction renormalisations of the chiral supermulti- 

plets: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
91 + Zij~j (3.30) 

and renormalisations of the gauge couplings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,. There is no intrinsic renormalisation 
of the Yukawa coupling parameters a,, bgk i n f ( p )  (3.8). This means that we can ‘set 
and forget’ them: any small (or vanishing) superpotential term remains small (or 
vanishing) in all orders of perturbation theory. 

‘Set it andforget it.’ It is this property that solves (Kaul 1982, Maiani 1979, Witten 
1981) the technical aspect of the gauge hierarchy and strong CP-hierarchy problems 
(Ellis et a1 1982a) that we discussed in the beginning as motivation for SUSY theories. 
By the same token, one can prove that if SUSY is unbroken at the tree level, it remains 
unbroken to all orders in perturbation theory (Ferrara et a1 1974, Ferrara and Piquet 
1975, Grisaru et a1 1979, Iliopoulos and Zumino 1974, Wess and Zumino 1974b). It 
sounds like a magic world full of miracles. But still, it is true! 
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4. 'Low energy' physics and SUSY 

Indeed, if SUSY provides the solution (Kaul 1982, Maiani 1979, Witten 1981) to the 
gauge hierarchy problem, then the phenomenological implications are tremendous. 
Firmly, each one of the 'standard' particles of the low energy world (quarks, leptons, 
gauge bosons, Higgs) should have their superpartners in a mass range at most not far 
above Mw. This fact makes the situation very exciting because the hope exists that 
these particles will be discovered in the not very far future. Present experimental limits 
from PETRA and PEP put the mass of any new charged particles approximately above 
20 GeV, which puts a lower bound on the mass of charged SUSY particles. I will not 
discuss here how to find SUSY particles since this has been discussed in lengthy detail 
elsewhere (for an exhaustive review see Nanopoulos and Savoy-Navarro 1984). 

Here I will discuss the constraints that well established phenomenological facts 
like absence of flavour-changing neutral currents (FCNC), absence of strong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP- 
violation, g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2, etc, impose on SUSY models. Clearly, the introduction of new particles, 
which are coupled to the low energy world with ordinary gauge or Yukawa couplings 
and of mass not far above M,, sound like trouble. For example, analogously to the 
gauge boson-fermion-fermion coupling there is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgaugino-sfermion-fermion coupling 
of comparable strength (see equation (3.2)). Such kinds of couplings contribute to all 
kinds of rare processes, like the real and imaginary part of KL - Ks, KL + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApp, p + e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, 
etc. 

We saw before that exact SUSY would require degenerate spin 0 and spin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 particles: 

mg = m$2. (4.1) 

Since all squarks and charged sleptons must have masses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O(20) GeV, it must be that 
SUSY is broken. A first approach to describing SUSY breaking might be to introduce 
soft SUSY breaking, i.e. interactions of dimension less than four which do not lead to 
quadratic divergences (Girardello and Grisaru 1982). These could include the desirable 

~ ~ ~ ~ ~ 3 - m ~ 1 q " 1 ~ - m m 1 i ( ~ - m o ( ~ )  (4.2) 

with m i  and ma being general matrices in both flavour and helicity spaces. (Recall 
that since quarks and charged leptons have both left- and right-handed components 
qL, qR, lL, lR, there must exist all the corresponding spartners iL, iR, iL, rR.) We 
must be careful with our choice of mf and mf so as to avoid problems with flavour- 
changing neutral interactions (Ellis and Nanopoulos 1982a). Recall first the usual 
formalism (Ellis et a1 1976) for the Cabibbo-Kobayashi-Maskawa (CKM) mixing for 
quarks: a general mass matrix mq is diagonalised to my by unitary transformations 

U:,, on the quark fields: 

mqijRqL = mD q qRqL. -D D. m y =  UgmqUEi; qF,R= U?,RqL,R. (4.3) 

When we make the transformations (4.3) the neutral gauge boson interactions remain 
flavour-diagonal: 

(4.4) 
0 - -D 

9L,RYpqL,RGp - qL,R( uz?R U f , R )  ypqE,RGt = (T?,Ry*q:,RGt * 

However, the left-handed charged currents acquire non-trivial CKM angles because 
the unitary rotations U:, U t  are in general different: 

iiLypdL WL = ti:( U t t  U t )  ypdL WL 

= ii? UcKM ypdL W:: UcKM = U:' U t .  (4.5) 
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Consider now what could happen to the corresponding neutral gaugino interactions: 

GL,R( qL,R6:,R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G?,R( fifTR U E , R ) (  q F , R G ? , R )  (4.6) 

where the new unitary rotations f i e , R  diagonalise m4 to my: 

(my) '  = Uqm$ q?,R = UE,RqL,R.  (4.7) 

f i ? , R =  u f , R  (4.8) 

The interaction (4.6) would contain flavour-non-diagonal neutral gaugino couplings 

unless we arrange that 

which in turn implies that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY CKM angles should be identical to the conventional 

CKM angles: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e . .  

fit,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEZ U:+ U;: = U:+ ut = U,,, . (4.9) 

You might wonder how important it is to ensure the absence of flavour-changing 

neutral gaugino interactions. If they were present, the .i, and g SUSY box diagrams of 
figure 1 would make disastrously large contributions to the K, - K2 mass difference 

(Barbieri and Gatto 1982, Campbell 1983, Ellis and Nanopoulos 1982a, Inami and 
Lim 1982). Furthermore, if the photino 7 were light enough to be produced in 
K*+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-*TT decay, the rate would greatly exceed the experimental upper limit on 
K*+ n-*+nothing observed, unless fie,R= U p , ,  (Suzuki 1982). Of course, it is not 
necessarily the case that mS<(m,-m,)/2, so we may not need to worry about 

K* + 7r'T.i; decay, but the problem with K1 - Kz box diagrams exists for all f or g" 
with masses O(100) GeV. To avoid this problem by ensuring the equality (4.8) of fi 
and U matrices, we must demand that the m$ matrix be a simple function of the quark 

mass matrix mq, presumably a quadratic function: 

m i  = &'I + Clmq& +  mi. (4.10) 

By making the ansatz (4.10) we also avoid any problem (Barbieri and Gatto 1982, 
Campbell 1983, Ellis and Nanopoulos 1982a, Inami and Lim 1982, Suzuki 1982) with 

%* box diagrams. Equation (4.10) guarantees that 

mf-  mf=O(l)(m:- mi )  (4.11) 

if the Ci = 0(1), and, therefore, the %box diagrams will be suppressed by a super-GIM 

mechanism to 

(4.12) 

(01 (b l  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a )  Neutral gaugino and ( b )  charged gaugino SUSY box diagrams contributing to the K,-K, mass 

difference (Barbieri and Gatto 1982, Campbell 1983, Ellis and Nanopoulos 1982a, Inami and Lim 1982). 
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which is of the same order as the W* box diagrams if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm+ and mq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O( mw). Our 

problem is then to derive the desirable form (4.10) in a natural way. Lo and behold, 

mass matrices of the form (4.10) do occur in most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASB SUSY models of F or D type or 
in softly broken SUSY models where the soft breaking is provided from supergravity 

effects, as will be discussed later. 
Similar results are obtained from the analysis of g - 2 (Grifols and Mindez 1982, 

Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1982c, Barbieri and Maiani 1982) or of the absence of strong CP-violation 

(Ellis et a1 1982a). Once again, we find that F- or D-type SB SUSY models, or 
supergravity induced softly broken SUSY models, easily satisfy very stringent types of 

constraints (Grifols and MCndez 1982, Ellis et a1 1982c, Barbieri and Maiani 1982). 

It is remarkable that realistic SUSY models satisfy automatically severe low energy 

phenomenological constraints (Barbieri and Gatto 1982, Barbieri and Maiani 1982, 
Campbell 1983, Ellis et a1 1976, 1982c, Ellis and Nanopoulos 1982a, Grifols and 

MCndez 1982, Inami and Lim 1982, Suzuki 1982), which have been the nemesis of 
other alternatives like technicolour models ( Farhi and Susskind 1981). 

Being very happy with the low energy front, let us move now to the GUT front. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Supersymmetric GUTS 

The main reason for supersymmetrising grand unified theories is of course the solution 

(Kaul 1982, Maiani 1979, Witten 1981) of the cumbersome gauge hierarchy problem. 
We have seen that a proliferation of the ‘low energy’ particle spectrum is then necessarily 
unavoidable. Every ‘known’ particle, fermion, Higgs boson or gauge boson should 
have its corresponding superpartner with characteristic mass differences of order 
O(Mw). Additional problems to the ones discussed in the previous section appear. 

The new ‘low energy’ degrees of freedom will definitely modify the standard programme 
of grand unification and, in general, there is the danger that the whole programme 

will be mucked up. It is remarkable that in SUSY GUTS the standard success of ordinary 

GUTS remains more or less intact. So let us see how the unification programme changes. 
Our SUSY GUT should contain at least the supersymmetrised SU(3) x SU(2) x U ( l )  

model. This piece of information is enough to give a kind of general analysis. It is 
clear from the beginning that the unification point is going to be raised. The new 
‘light’ degrees of freedom involve fermions and scalars; thus their contribution 
to the various zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp functions has the effect of delaying the change of the various 

coupling constants with energy. Notably, the strong coupling constants fall down 
with energy much smoother than before and so it will take ‘longer’ for the differ- 

ent coupling constants to ‘meet’. At the same time, one expects a larger unification 

coupling constant. More precisely, in ‘minimal’ type SUSY GUTS (Dimopoulos and 
Georgi 1981, Sakai 1981) one finds, for the coefficients of the SU(3), SU(2) and U ( l )  

p functions, 

where f represents the number of flavours zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f b 6) and h stands for the number of 
‘light’ Higgs doublets ( h  b 2). 
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Concerning the coupling constants we get, using equation (5.1), 

where as usual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai gf/47r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2,3),  aSG is the SUSY GUT unification fine structure 
constant and Msx is the SUSY GUT unification mass; m is a 'low energy' mass scale 

larger than or equal to -O(Mw). We can recast equations (5.2) in a more useful form: 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 . 5 )  

-- 1 - (9- f ) /a (Mw) -[6- ( 8 f / 3 )  - hI /a3(Mw) 

a S G  18+h 

where, for simplicity, we have identified the supersymmetry breaking scale ( MLESB) 
with Mw. 

Using equations (5.3)-(5.5),  and taking into account higher order corrections, we 
get (Einhorn and Jones 1982, Ellis et al 1982e) 

6 x 1016Rm { 3 x 1 0 ' ~ n ~  

for h = 2 

for h = 4  
(5.6) Msx = 

where the present favourable value of Am (the QCD scale parameter evaluated in the 
modified minimal subtraction scheme with four flavours) is between 100 and 200 MeV. 
The electroweak angle is calculated to be (Einhorn and Jones 1982, Ellis et a1 1982e): 

0.236 * 0.003 for h = 2 

= { theor, 0.259 * 0.003 f o r h = 4  
sin2 OEW( Mw) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.7) 

while aSG= 1/24 to 1/25 for six flavours and two light Higgs doublets. The present 
measured value of sin2 eEW(Mw) is (Ellis 1984, Nanopoulos 1980, Langacker 1981): 

Sin' ~~~(M~)~exper .=0 .215*0 .010*0 .007 .  (5 .8 )  

We move next to the mb/m, ratio in SUSY GUTS. Here we find (Einhorn and Jones 
1982, Ellis et a1 1982e): 

and substituting aSG -- 1/24, aG = 1/41 and a3( Mw) = 0.12, we get 

(5.9) 

(5.10) 



Applied supersymmetry and supergravity 77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and thus by recalling that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( mb/ mT)ord, = 2.8-2.9, which literally coincides with its 
experimentally measured value, we declare that (5.10) is a very successful relation. 
We find this ‘coincidence’ remarkable. The situation is rather clear. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs was expected 
the unification scale moves upwards and the unification coupling constant increases, 
as does the electroweak angle always compared with the ordinary GUTS results (Ellis 
1984, Nanopoulos 1980, Langacker 1981). The mb/ m, remains unchanged, a surprise 
at least to me! Concerning the value of sin2 OEW, it seems to be a bit high for the case 
of two light Higgs doublets compared with the experimental value (5.8). On the other 
hand, the increase of the grand unification scale by a factor of O(10) with respect to 
ordinary GUTS suppresses the conventional (gauge-boson mediated) proton decay 
mode, p + e + r o ,  by a factor of O( lo4) compared with the ordinary GUTS value, thus 
evading any conflict with the present experimental lower bound (Ellis 1984, Nanopoulos 
1980, Langacker 1981). However, the show is not over! It has been remarked (Weinberg 
1982a, Sakai and Yanagida 1982) that in a large class of SUSY grand unified theories, 
if there are no preventing symmetries, there are loop diagrams that may cause rapid 
proton decay. For example, by ‘dressing up’ diagrams of the form shown in figure 2, 
where sf and e,, represent the SUSY partners of ‘light’ fermions (f) and ‘superheavy’ 
coloured Higgs triplets respectively, one may get ‘looping’ proton decay (figure 3) 

Figure 2. Dimension five operators contributing to proton decay. 

Figure 3. ‘Looping’ proton decay through dimension five operators. 

where, again, % stands for the SUSY partners of the charged weak bosons. The bizarre 
thing here is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ C C  M z x M &  and not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ C C  Mi,. One may then naively think that 
these kinds of SUSY theories are dead because they cause a too rapid proton decay 
(Weinberg 1982a, Sakai and Yanagida 1982). A more careful analysis showed though 
that things are different (Ellis et a1 1982e). Indeed, we have found that in such theories 
the proton lifetime can easily be lo3’ yr or a bit longer (not much longer, though), 
and with the very ‘peculiar’ characteristic decay mode P,K+ (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1982e). The 
appearance of ‘strange’ particles in the final decay products of the nucleon should not 
sound strange. As is apparent from figures 2 and 3, ‘looping’ nucleon decay involves 
Yukawa couplings; thus the nucleon will prefer to decay predominantly to the heaviest 
energetically allowed quark, i.e. the strange quark! Thus in the so-called softly broken 
SUSY GUTS (without ‘preventing’ symmetries) we find (Ellis et a1 1982e) 

T~ = o( 1 0 ~ l * ~ )  yr 

T (  N + PTK) >> r( N + P,K) >> r( N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr, p + K )  >> T(N + p+r) (5.11) 

>> r ( N  + e+K) >> r( N + e + r ) .  
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But the surprises are not over. Very recently we have found (Nanopoulos et al 1982, 
Nanopoulos and Tamvakis 1982a, Srednicki 1982a, b) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY GUTS may solve 
naturally the monopole problem. In doing so, though, we may upset the standard 
solution of the baryon asymmetry problem. One way to reconcile this puzzle and keep 
both solutions intact (Nanopoulos et al 1982, Nanopoulos and Tamvakis 1982a, 
Srednicki 1982a, b) is the existence of 'light' superheavy triplets, i.e. MHJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 10" GeV. 
Further details on this interesting possibility will be given in 9 7. Actually we find 
(Nanopoulos and Tamvakis 1982a, b, c, Ellis et al 1984a) in this case sin2 O E W =  0.220, 
much closer to the experimental value given by equation (5.8) than in other SUSY GUTS 

(see equation (5.7)). But it is well known (Ellis et a1 1979a) that such higgsons mediate 
proton decay with lifetime -0(1031*2) yr, and we find that in SUSY GUTS the decay 
modes are given by (Nanopoulos and Tamvakis 1982a, b, c, Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1984a): 

T N  = O( 10"*~) yr 

r( PpK+, p+Ko): r(F,K+, e+Ko, p + r o ) :  T(e+ro,  P e r + )  
( Oc = Cabibbo angle). 

(5.12) 

= 1: sin2 ec: sin4 oC 
All these predictions have to be contrasted with the ordinary GUT predictions (Ellis 
1984, Nanopoulos 1980, Langacker 1981): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TN = 1029*2 yr 

B ( N +  e+ non-strange, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFe non-strange, p+ or Fp strange): 

B ( N +  e+ strange, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfie strange, p+ or Fp non-strange) 
(5.13) 

= 1 : sin2 ec . 
The contrast between equations (5.11), (5.12) and (5.13) is rather dramatic. Apart 

from the case where the protons decay in the 'conventional' way (equation (5.13)) but 

with T,K  M:, and M,, as given by equation (5.6) (which will make life very, very 
difficult, if not impossible), all other possibilities are very interesting and hopefully 
not impossible to test experimentally. It should be emphasised once more that proton 
decay in SUSY GUTS at an observable rate always involves strange particles (K., . . . ) in 
the jinal state. This striking difference in the proton decay modes between SUSY and 
ordinary GUTS is maintained also in supergravity models, as we shall see later. 
Experiment will tell us! 

One may wonder if there are at all realistic SUSY models encompassing all different 
phenomenological constraints previously mentioned. Indeed, realistic SUSY model 
building is not an easy task. However, any effort is worthwhile since SUSY models are 
left as the only candidates for a physical description of the world, at least up to energies 
of the Planck scale Mp,. Any high standard(s) SUSY model should satisfy the following 
two SUSY golden rules. 

(1) It should provide naturally an acceptable form of SUSY breaking such that 

O((20 GeV)2) S m i  - m:= f i2  S O ( M & )  
t 

gauge hierarchy 
t 

experiment 

(5.14) 

where f i2  is a typical boson-fermion mass splitting of a supermultiplet. The sparticle 
mass spectrum should be such that not only all types of low energy constraints are 
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satisfied (e.g. equation (4.10)) but in addition some possible potential problems of the 

standard model should find a satisfactory resolution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) It should provide a complete solution to the three-fold gauge (scale) hierarchy 

problem: create, stabilise and dynamically explain the scale hierarchy. All (small) 
mass scales should be determined dynamically in terms of one fundamental one, the 
super-Planck scale M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Mp,/J(87r) = 2.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10l8 GeV: 

Mw & 
M M  
--_- - -o(10-l6). (5.15) 

Surprisingly enough, such no-scale models (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 1984b, c, g, h, i, j) have 
recently been constructed. Since their construction involves a lot of very interesting 
physics, it is worth discussing the different steps that lead (uniquely?) to them. 
Furthermore, it should be recalled that we would like to understand in a natural, 
satisfactory way: 

(i) How to separate at the tree level the masses of the Higgs doublet and its GUT 

partner the coloured Higgs triplet. 
(ii) How to incorporate gravitational interactions, etc. 

(iii) The absence of the cosmological constant. 
A possible answer to all these questions may potentially be found in the framework 
of local SUSY theories or supergravity (SUGAR), where we move next (for a review, see 
van Nieuwenhuizen 1981). It should be stressed that the move to supergravity theories 
is not only for aesthetic reasons, but is entailed by the structure of realistic SUSY 

models, as discussed above (see the remarks after equation (3.29)). 

6. Physical structure of simple (N = 1) supergravity 

We are then led to consider local SUSY gauge theories (Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1978a, 1979, 
1982, 1983a). The effective theory below the Planck scale must be N = 1 supergravity 
(Ellis et a1 1983e). The restriction to N = 1 follows from the apparent left-right 
asymmetry of the 'known' gauge interactions. Since we are dealing with local SUSY, 

the breaking of SUSY must be spontaneous, not explicit, if Lorentz invariance or 
unitarity are not to be violated. It is remarkable that the effective theory below MpI 
has been determined (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983e) to be a spontaneously broken N = 1 local SUSY 

gauge theory (Cremmer et a1 1978a, 1979, 1982, 1983a). 
We start with a reminder of the structure of N = 1 supergravity actions containing 

gauge and matter fields (if not explicitly stated, we use natural units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 = 8 r G N  = 
(87r/Mz,)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1/ M2 = 1): 

A =  d4x d48E{@(cp, $e'")+Re[R-'g(q)]+Re [ R - ' f a b ( q )  W ~ E " ' ~ ~ ] }  (6.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
where E is the superspace determinant, CP is an arbitrary real function of the chiral 
superfields cp and their complex conjugates 6, V is the gauge vector supermultiplet, 
R is the chiral scalar curvature superfield, g is the chiral superpotential, f ab  is another 
chiral function of the chiral superfields cp, and Wz is a gauge-covariant chiral superfield 
containing the gauge field strength. In addition to all the obvious general coordinate 
transformations, local supersymmetry and gauge invariance, the action (6.1) is also 
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invariant under the transformations (Cremmer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1978a, 1979, 1982, 1983a): 

J =  3 In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-fa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ J +  K(cp) + K*(G) g( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp) + eK(qp) g(cp) (6.2) 

where K(cp) is any analytic function of cp. These transformations can be related to a 
description of the chiral superfields cp as coordinates on a Kahler manifold with Kahler 
potential G, defined by 

G = J -In (ilgl’) (6.3) 

and the transformations (6.2) are known as Kahler gauge transformations (Zumino 
1979). 

The general couplings of chiral and vector multiplets (3.1) to N =  1 supergravity 
is specified by two functions of the complex scalar fields ‘pi contained in the chiral 
multiplets (Cremmer et a1 1978a, 1979, 1982, 1983a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn analytic function f a b ( ( p )  = 

f b a ( c p ) ,  related to the YM part of the Lagrangian, gives for the kinetic terms of the 

gauge fields 

(a, 6 are indices of the adjoint representation of the gauge group G). Then, a real 
gauge invariant function G(q, cp*), the Kahler potential (6.3), defines the scalar kinetic 
terms, given by 

Gj ( a’”cp’) (P cp 7 )  (6.5) 

in the notation 

The kinetic terms have a form characteristic of supersymmetric non-linear (+ models. 
The scalar fields ‘pi in N = 1 SUGAR span a Kahler manifold with Gj  as its metric 
(Zumino 1979). Clearly, the functions G(cp, cp*) and f , b ( (P )  largely determine the 
physics of the N = 1 SUGAR YM theories (Cremmer et a1 1978a, 1979, 1982, 1983a). 
Indeed, the scalar potential V has two terms (Cremmer et a1 1978a, 1979, 1982, 1983a, 
Barbieri et a1 1982c, Arnowitt et a1 1982, 1983a, b, Bagger 1983, Bagger and Witten 
1982a, b): 

v =  v,+ v,. (6.6) 

V, =t(Ref;;d)D“Db (6.7) 

The gauge potential V, reads 

where the real functions D“ are 

D“ = gaGj( 7’”)jcp’ 

(g, is the gauge coupling constant associated with the normalised generator 7’”). The 
‘chiral’ potential is 

V, = exp { G[ G,G’( G) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7’’ - 31). (6.9) 

It is apparent from the potential (6.9) that, unlike the global case, spontaneously 



Applied supersymmetry and supergravity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81 

broken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY does not imply (V) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0. This is fortunate since one can now obtain 
spontaneous breakdown of local SUSY (the super-Higgs effect) - in Minkowski space 
(( V) = 0). The theory also contains a gravitino mass term, m3/2t,hpLupyt,h,L, with 

m 3 / 2  = (exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GI2))*  (6.10) 

The most naive choice for the functions G and f a b  would be the ones that provide 
canonical scalar and vector kinetic terms, 

G: = a-: f o b  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa a b  (6.11) 

corresponding to a flat Kahler manifold. In such cases, one writes 

G =  rp,rp’’*+ln If(d12 (6.12) 

where f (p )  stands for the gauge invariant superpotential. The ‘minimal’ choice of G 
and fab in (6.11) has some rather unpleasant consequences. The cosmological constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( V )  = A is zero due to some unbearable fine-tuning of the parameters in G. Furthermore, 
scalar boson masses are proportional (Ellis and Nanopoulos 1982b) to the gravitino 
mass (6.10), as they are given by the curvature of the potential (6.9) at the minimum. 
In this case, the gravitino mass is essentially a free parameter and because of its relation 

(Ellis and Nanopoulos 1982b) to scalar boson masses or equivalently to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.14), it 
has to be chosen by hand O(M,). Dynamical determination of 6 is excluded, thus 
violating the second SUSY golden rule. 

There is, however, a very elegant way to circumvent these two unsatisfactory points: 
there exist non-trivial Kahler potentials for which the chiral potential V, is identically 
zero. Supersymmetry is, however, broken. Vacuum expectation values are not deter- 
mined by the classical theory, ditto for the gravitino mass. The cosmological constant 
is naturally zero (Cremmer et a1 1983b, Chang et a1 1983). As we shall see later, 
radiative corrections are then used (Ellis et a1 1984b, c, g, h, i, j) to determine the 
various scales of gauge symmetry breaking, which in general will be closely related to 
the gravitino mass. Eureka! This is what we are aiming at to satisfy the second SUSY 

golden rule. In principle, it is sufficient to require zero chiral potential only in the 
direction of a gauge singlet complex scalar z field, the Polonyi field. In such a case, 
we may rewrite (6.10) as (Cremmer et a1 1983b): 

exp (-5G) V, = 9 exp (;G)G;,? - 
a’ 

az az* 
(6.13) 

and 

exp (-$G) = 0 V,=O implies - 
a’ 

az az* 

with solution (Cremmer et a1 1983b) 

G = -3 In ( z +  z* ) .  (6.14) 

The scalar kinetic term G,,*(a,z)(a,z*) is never canonical, and the gravitino mass is 
(Cremmer et a1 1983b) 

m3/’ = ((z + z* ) -~ ’~ ) .  (6.15) 
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m3/2 is undetermined but non-zero since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(G,,*) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3( m3,2)4/3 # 0. (6.16) 

V, = 0 entails a very particular geometry of the Kahler manifold. The Kahler curvature 

is given by (Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983b): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R,* = $G,,. (6.17) 

or R (= R,,*/GZzc) =$. Equation (6.17) means that the Kahler manifold is an Einstein 
space (maximally symmetric space), i.e. that the scalar field z is a coordinate of the 
coset space SU(1, l ) /U( l )  (Cremmer et al 1983b, Ellis et a1 19848). The non-compact 
global SU(1,l)  invariance can be checked explicitly in the whole Lagrangian apart 
from the gravitino mass term (Ellis et al 19848, Ferrara and van Proeyen 1984, 
Derendinger and Ferrara 1984). It is very interesting to notice (Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983b) 
that the N = 1 Lagrangian for one chiral multiplet with vanishing potential corresponds, 
up to the gravitino mass term, to a particular truncation of N = 4 supergravity, which 
is known (Cremmer et a1 1978b) to possess an SU( 1 , l )  non-compact global symmetry. 
Vanishing chiral potentials for an arbitrary number n of chiral multiplets also exist 
(Cremmer et a1 1983b, Ellis et a1 1984b, c, g, h, i, j, Ferrara and van Proeyen 1984, 
Derendinger and Ferrara 1984). In one case (Ellis et a1 1984i), the scalar fields c$~, 
i = 1,2, . . . , n, are coordinates of an SU(n, l) /SU(n) x U( 1) coset space, which is an 
Einstein space with curvature given by (6.17) but with ( n i l )  replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in the 
numerator. 

Clearly, in both cases n = 1 or n > 1 the 'flatness' of the potential implies massless 
scalar bosons, neglecting radiative corrections. There is some kind of 'curvature 
conservation' between the Kahler manifold spanned from the scalar fields of the chiral 
multiplets and the chiral potential V,, as schematically represented by figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Curved potential V 

4 
F la t  Kahler manifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J-**** t I) 

IRrO)  'Minimal '  

Einstein- Kahler manifold F l a t  potent ia l  V 

t t 

SUln, l ) /SVln l  x U l 1 )  

Figure 4. Relation between the form of the Kahler manifold and the induced scalar (chiral) potential. 
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It should be stressed that higher than four ungauged extended supergravities also 
exhibit invariances under non-compact global groups which contain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASU( 1 , l )  as a 
subgroup (Cremmer and Julia 1979): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 :  SU(5,l);  N = 6: SO*( 12); N = 7, 8: E7.7. (6.18) 

In addition, extended N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 4 and gauged N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 supergravities do inevitably contain 
(Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1978b, Cremmer and Julia 1979) non-minimal kinetic terms for the 
gauge smultiplets (Lb # &b in equation (6.4)). As a result, tree level gaugino masses 
are introduced, of the form (Cremmer et a1 1978a, 1979, 1982, 1983a): 

(6.19) 

for f a b  = t iab f ( $I,, z ) ,  and with primes indicating z differentiation. The usefulness of 
this remark will become apparent shortly. After this unavoidable digression into the 
‘esoterics’ of N = 1 SUGAR, the road is now open to physical applications. 

N = 1 supergravity YM field theories seem to be the only available framework for 
physics description below the Planck scale MpI. Alas, these theories are not renormalis- 
able! This fact should not bother us, since we are going to use the N = 1 SUGAR 

framework anyway as an effective theory to describe physics for scales below MpI. 
Indeed, Ellis, Tamvakis and myself (Ellis et a1 1983e) have suggested interpreting 

equation (6.1) as an effective action suitable for describing particle interactions at 
energies << MpI just as chiral SU( N )  x SU( N )  Lagrangians were suitable for describing 
hadronic interactions at energies << 1 GeV. In much the same way as we know that 

physics gets complicated at E = 1 GeV, with many new hadronic degrees of freedom 
having masses of this order, we also expect many new ‘elementary particles’ to exist 
with masses O(Mpl). It may well be that all the known light ‘elementary particles’, as 
well as these heavy ones, are actually composite, and that at energies >> MPI a simple 
preonic picture will emerge, analogously to the economical description of high-energy 
hadronic interactions in terms of quarks and gluons. It may even be that these preonic 
constituents are themselves ingredients in an extended supergravity theory (Cremmer 
and Julia 1979, Ellis et a1 1980). But let us ignore these speculations for the moment 

and return to our pedestrian phenomenological interpretation of the action (6.1). 
The well known rules of phenomenological L,agrangians (Callan et aZl968, Coleman 

et a1 1968, Weinberg 1968) are that one should write down all possible interactions 
consistent with the conjectured symmetries (e.g. chiral SU(2) x SU(2)), and only place 
absolute belief in predictions which are independent of the general form of the 
Lagrangian (e.g. m~ scattering lengths). These are the reliable results which could 
also be obtained using current algebra arguments. It does not make sense to calculate 
strong interaction radiative corrections (read: supergravity loop corrections) to these 
unimpeachable predictions: these are ambiguous until we know what happens at the 
1 GeV scale (read: MPJ, and our ignorance can be subsumed in the general form of 
the phenomenological Lagrangian, in which any and all possible terms are present a 
priori (read: non-trivial J, non-polynomial g and fah). On the other hand, non-strong 
interaction radiative corrections can often be computed meaningfully (e.g. the 7r+ - v0 
mass difference, large numbers of pseudo-Goldstone boson masses in extended tech- 
nicolour theories). Similarly, it makes sense to compute matter interaction (gauge, 
Yukawa, Higgs) corrections to the tree level predictions of the effective action (6.1). 

Since the supergravity action is non-renormalisable, and since both the 0 and f a b  

terms in the action (6.1) have a Id4@ form, we expect general variants of them to be 
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generated by loop corrections. Presumably, radiative corrections maintain the essential 
geometry of the Kahler manifold (Zumino 1979). Therefore, we expect loop corrections 
to fall into the class of Kahler gauge transformations (6.2). The only analogous 
transformation allowed in a conventional renormalisable theory is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= constant, corre- 
sponding to a wavefunction renormalisation. In our case, more general gauge functions 
K ( q )  might appear. 

Thus it seems that we have enough justification to use the N = 1 SUGAR framework 
as an effective theory to describe physics below M, according to the general scheme 

2( N = 1 SUGAR) - 2( N = 1 SUSY) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZSom (6.20) 

where LE’soFT stands for a highly constrained set of soft SUSY breaking terms. The 
passage described by (6.20) is carried out by making a choice for G (6.3) and f a b  (6.4) 
such that: 

E < MPI 

(1) Supersymmetry is spontaneously broken; 
(2) Certain fields associated with this breaking ( z )  decouple (hidden sector); 
(3) Certain fields become superheavy ( X ) ;  
(4) Remaining fields (9,) are to be observed in low energy theory (observable 

sector). After shifting all fields by their VEVS, and discarding terms involving decoupled 
( z )  or superheavy fields ( X ) ,  ZSom is obtained 

(6.21) 

while more general forms (Hall et aZl983, Soni and Weldon 1983) are certainly possible 
but irrelevant to our discussion here. A is a model-dependent parameter (Nilles et al 
1982) of O( 1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfn  is the nth term in the superpotential f ( q i )  = Z , f ,  = Z, C,pl with 
n = 1,2,3, .  . . , not necessarily terminating at 3, because non-renormalisable terms are 
allowed in these effective theories. If we imagine that the low energy theory is embedded 
in a GUT model at some GUT scale below the Planck mass, then all gaugino masses 
are equal at the GUT scale, so that only one single parameter MO is needed (MO in 
principle may be of O(M, ) ) :  

mi4Mx) = MO (6.22) 

while at lower energies mp evolves in a manner identical for the gauge couplings: 

(6.23) 

with ua, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaG the usual SU(3), SU(2), U(1), GUT fine-structure constants. The mass 
parameters m and mq in (6.21) depend on the form of G and f a b .  We may distinguish 
three interesting cases (see also figure 4): 

(i) ‘Minimal’ (6.11) (Barbieri et a1 1982d, Nilles et al 1982) 
(All scalar fields z ;  pi satisfy (6.12)): 
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(ii) ‘Mini-muxi’ (Ellis et a1 19848, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj) 

(All scalar fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi satisfy (6.12), while the z (Polonyi) field satisfies (6.14)): 

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ; m,/,# 0 (6.15) 

+= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  = O( m3/*) undetermined at I tree level 

(iii) ‘Maximal’ (Ellis et a1 1984b, c, h, i) 
(All scalar fields z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘pi satisfy (6.14)-like G): 

( m = O ;  A = O  

undetermined at 
tree level 

+ f i  = O( mc). 

It is interesting to notice that in the ‘maximal’ case (iii), the emerging low energy 
theory (Ellis et a1 1984i) (observable sector) is globally supersymmetric ( m  = 0, A = 0) 
and so all the burden of the necessary global zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY breaking shifts unavoidably to the 
gaugino mass mi. (Ellis et a1 1984b, c, h, i). If the gaugino mass is non-zero (5.14), 
then radiative corrections will generate non-zero scalar masses. Thus, we expect the 
gaugino mass to be O(Mw) ,  but the gravitino mass could a priori be very different 
(Ellis et a1 1984b, c, h). This possible decoupling (Ellis et a1 1984b, c, h) of the local 
SUSY breaking parameter ( m3/J and the global SUSY breaking parameter (61) has some 
very interesting particle physics and cosmological implications to be discussed later. 
In order to cover all cases, f i  will generically stand for either 171312 or me, both 
originating from supergravity and providing the ‘seed’ for global SUSY breaking. 
Clearly, the form of Ltso, as given by (6.21) is simple enough. 

In the physics applications which follow, we shall make extensive use of two main 
characteristics of the general framework discussed above. First, since we are dealing 
with an effective theory (the N = 1 SUGAR action is non-renormalisable), the super- 
potential g is not any longer necessarily constrained by renormalisability to be at most 
cubic, but it may contain any higher powers, suitably scaled, by inverse powers of 
M p l ,  the natural cut-off of the theory (Ellis et a1 1983e). Secondly, because of the 
non-renormalisation theorems (Ferrara et a1 1974, Ferrara and Piquet 1975, Iliopoulos 
and Zumino 1974, Grisaru et a1 1979, Wess and Zumino 1974b) of SUSY (‘set it and 
forget it’ principle), we may set, as we wish, certain parameters equal to zero, even if 
no symmetry implies that-a very different situation from ordinary gauge theories. 
Here, no apologies are needed. As explained in detail before, most of the physics is 
contained in the ‘observable’ sector superpotential f (  pi). Here we shall assume that, 
in one way or another, the ‘hidden’ sector has played its role, as discussed previously, 
and we shall concentrate on the form off(pi) .  We follow the natural (cosmic) evolution 
of things starting at energies below MpI and ‘coming down’ to Mw. So we distinguish 
physics around the GUT scale ( M x )  and physics around the electroweak (EW) scale 

(Mw).  
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All physics from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&fpI down to (and including) low energies should emerge from 
such a programme. We will show next that this is indeed possible. 

7. Physics with simple ( N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1) supergravity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.1. Physics around the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGUT scale (Mx)  

The superhigh energy regime (-10l6 GeV) is the theorists’ paradise. There is a lot of 
freedom in building models, even though the constraints both from particle physics 
and cosmology become tighter and tighter. For definiteness, simplicity and out of 
habit, we shall take as our prototype GUT an SU(5) type model (Ellis 1984, Langacker 
1981, Nanopoulos 1980). All G u r  physics information will be contained in fGUT, the 
GUT part of the ‘observable sector’ superpotential. There is no consensus about the 
definite form of this superpotential, but it should unavoidably contain a piece ( f i )  that 
breaks SU(5) down to SU(3) x SU(2) x U ( l )  and, if possible, a piece ( f i r )  providing 
some explanation about the tree-level gauge hierarchy problem, so we write: 

f G U T = f I + f i I .  (7.1) 

For example, we may take (Nanopolous et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983~) :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a1 

M M 
f i  = - X4+% X 2  Tr(Z3) (7.2) 

and (Kounnas et al 1983d): 

(-1 (-1 (-1 (-1 
where X = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI; = 24, 0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0, H = 5 are chiral superfields of SU(5). The Higgs fields 

H and R couple to quark and lepton fields in the usual way. All components of 0 
and 8 have a bare mass M (which is taken to be of order Mx or larger), and so remain 
heavy after SU(5) breaks to SU(3) x SU(2) x U(1). After minimising the potential, 
obtained by plunging into (6.12) and (6.9) the sum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi and fix as given by (7.2) and 

(7.3), we get zero VEV for H and 6 but non-zero ones for: 
(-1 (-1 

3/8 

( X ) = ( y )  M 

(X)=(%) M. 
114 

(7.4) 

Furthermore, we find (Nanopoulos et a1 1983c) that the SU(3) x SU(2) x U(1) sym- 
metric minimum is the lowest one for all values of a, and a2,  with a value: 

(7.5) 

What do these results mean? First, since the VEV of Z sets the scale of SU(5) breaking, 
we find that the GUT scale Mx satisfies (Nanopoulos et a1 1983~) :  

M i  = O( m3,2M3) (7.6) 
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which is a highly successful relation. Using as an input the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( M , / M )  - 10-2-10-4, 
we obtain that m3/2-0(100GeV)! More generally, relations of the form 
O(m,,2M2p-3) with p 3 3 ,  are also possible (Nanopoulos et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983c) by suitably 
modifying the exponents in (7.2). The supergravity hierarchy problem has been solved 
in a rather simple way. 

Secondly, the SU(3) x SU(2) x U( 1) symmetric minimum is lower in energy density 
than the SU(5) symmetric minimum X = = 0 by an amount ( m3j2/ M)5 ’2M4.  Thirdly, 
the barrier between these two minima is never larger than ( M , ~ , / M ) ~ I ‘ M ~ ,  the same 
as the splitting between the states. Why this is so can be seen by noting that if we 
replace X by its VEV (7.4) in (7.2), the effective renormalisable self-coupling of E is 

Tr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X3). Thus we have generated (Nanopoulos et a1 1983c) a small renormalisable 
coupling for X from our starting point of only non-renormalisable interactions among 
X and E. This small coupling suppresses the barrier between the SU(5) and the 
SU(3) x SU(2) x U( 1) phases. The consequences of this suppression for supercos- 
mology (Nanopoulos et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 1982, Nanopoulos and Tamvakis 1982a, Srednicki 1982a, b) 
are difficult to overestimate. Simply, it now makes possible the transition from the 
SU(5) to the SU(3) x SU(2) x U ( l )  phase at temperatures T -  10” GeV, which was 
previously blocked, since the barrier between the two phases was of the order of ( Mx)4 .  
Incidentally, in this picture, the number density of GUT monopoles is naturally sup- 
pressed below its present experimental upper bound (Nanopoulos et al 1982, 
Nanopoulos and Tamvakis 1982a, Srednicki 1982a, b). 

It should be clear that the basic result-small renormalisable couplings arising 
from non-renormalisable ones suppressed only by inverse powers of M-is quite 
general and does not depend on the detailed form of the superpotertial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5)  
(Nanopoulos et a1 1983~).  The main characteristics of these types of models 
(Nanopoulos et a1 1983c, Kounnas et a1 1983b, c) are that they provide relations of 
the type (7.6); they make possible ‘delayed’ SU(5) to SU(3) x SU(2) x U ( l )  phase 
transitions at T - 10” GeV, and they contain more ‘light’ particles than the ones in 
the minimal SUSY SU(3) x SU(2) x U(l)  model. This last fact may sound dangerous 
when calculating M,, sin2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOEw and mb/m7, since in general an arbitrary increase of 
‘light’ stuff gives an out-of-hand increase (Ellis et a1 1982e, Einhorn and Jones 1982, 
Nanopoulos and Ross 1982) and thus experimentally unacceptable values for the above 
mentioned quantities. A more careful analysis (Kounnas et a1 1983a, 1984) of these 
cosmological acceptable models (CAM) shows that they make predictions as successful 
(for sin2 OEW, mb/mT, .  . . ) as at least the ones (Einhorn and Jones 1982, Ellis et a1 
1982e) of the phenomenologically acceptable minimal type models (MIM). For a 
detailed thorough phenomenological analysis of CAMS, see Kounnas et a1 (1983a, 1984). 

Next, we discuss (Kounnas et a1 1983d) physics related tofII as given in (7.3). The 
VEV of X not only breaks SU(5) to SU(3) x SU(2) x U(l)  but also provides a mass term 
which mixes the colour triplets in H and a with those in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO and 8 However, there is 
no weak doublet in the 50, and so the weak doublets in H and H remain massless. The 
colour triplets will have a mass matrix (Kounnas et al 1983d): 

where MO should be of order Mx or larger ( S  M p J ,  to avoid having particles from 0 
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and e influencing the renormalisation group equations at scales below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMx (or even 

AIpI) .  The eigenvalues of this mass matrix are O(M,)  and O ( M i / M e M 2 ) ;  this latter 

eigenvalue is about 10'' GeV for Mx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- O( 10l6 GeV) and M, - O(Mp,). In this case, 
the Higgs colour triplet can be used to generate (Nanopoulos et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1982, 1983c, 

Nanopoulos and Tamvakis 1982a, Srednicki 1982a, b) the baryon number of the 

universe after the SU(5) to SU(3) x SU(2) x U ( l )  transition which, as discussed earlier, 

occurs at temperatures T -  10'' GeV in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAMS (Kounnas et a1 1983a, 1984). It is 
remarkable that O(lO1o GeV) is the lower bound (Ellis et a1 1979a) allowed for colour 
triplet Higgs masses from present limits (Ellis 1984, Langacker 1981, Nanopoulos 

1980) on proton decay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T ~ >  1031-32 yr). If indeed there are 10"GeV Higgs triplets, 

as discussed before (see equation (5.12)). Of course in this case one has to control 

the menace of dimension 5 operators mediating proton decay (see figures 2 and 3), 
because they lead to a catastrophically short proton lifetime (Nanopoulos and Tamvakis 

1982a, b, c, Ellis et a1 1984a). 

The role of supergravity in this natural explanation (Kounnas et a1 1983d) of the 

Higgs triplet-doublet mass splitting (= tree-level gauge hierarchy problem) is funda- 

mental, in several aspects. The same kind of explanation had been suggested before 
in the framework of renormalisable global SUSY GUTS, where Z2 in (7.3) was replaced 

by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA75 of SU(5) and higher than two powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC were absent (Masiero et a1 1982, 

Grinstein 1982). Unfortunately, the use of 75 drastically conflicts with cosmological 

scenarios (Nanopoulos and Tamvakis 1982a, Nanopoulos et al 1982, 1983c, Srednicki 
1982a, b, Kounnas et a1 1983b, c) based on SUSY GUTS. The barrier between the SU(5) 
and SU(3) x SU(2) x U ( l )  phases is impossible to overcome unless most of the 75 is 

very light (-Mw). But then all hell breaks loose. A light 75 makes the gauge coupling 

in the SU(5) phase decrease at lower energies so there is no phase transition at all 
(Nanopoulos and Tamvakis 1982a, Nanopoulos et al l982,1983c, Srednicki 1982a, b). 

Furthermore, the presence of these new light particles in the SU(3) x SU(2) x U ( l )  

phase changes the renormalisation group equations, and prevents perturbative 

unification. On the contrary, in SUGAR theories, since we may use non-renormalisable 

terms, we may replace the fundamental 75 by an 'effective' 75 contained in Z2. Unlike 

a light 75, a light 24 neither makes the SU(5) gauge coupling decrease at energies 
below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  , nor upsets perturbative unification. The previously mentioned cosmological 

scenarios of Nanopoulos et a1 (1982, 1983c), Nanopoulos and Tamvakis (1982a), 
Srednicki (1982a, b) and Kounnas et a1 (1983b, c) can proceed without modification. 
In addition, SUSY non-renormalisation theorems (Ferrara et a1 1974, Ferrara and Piquet 

1975, Iliopoulos and Zumino 1974, Grisaru et aZ1979, Wess and Zumino 1974b) ensure 

the stability of the triplet-doublet splitting to all orders in perturbation theory. Since 

the only modifications of the theory are at the GUT scale Mx,  it seems that we have 
got (Kounnas et a1 1983d) a harmless and elegant solution of the tree level, and for 
that matter, to all orders in perturbation theory, gauge hierarchy problem. 

SUGAR models give good physics at the GUT scale-unique, cosmologically accep- 

table breaking of SU(5) to SU(3) x SU(2) x U(1), with an explanation of the smallness 
of the gravitino mass (Nanopoulos et a1 1983c) ((7.6)-like relations), and a natural 
explanation (Kounnas et a1 1983d) of the Higgs triplet-doublet splitting, cosmologically 
fitted and general enough. We believe that even if the very specific form off i  in (7.2) 
may change, then fiI as given by (7.3) (or its obvious generalisation to other GUT 

models) will always be a useful part of the fGUT. 

After finding plausible explanations for the SUGAR hierarchy problem (gravitino 

mass -0( 100 GeV)), the tree level and higher-order gauge hierarchy problem (triplet- 

then protons should decay predominantly to F,K, /*.K with a lifetime -0(1031-32 Yr), 
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doublet Higgs splitting), it is time to explain the last gauge hierarchy problem (1.2), 

i.e. why is Mw/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( 10-13)? This problem brings us naturally to our next subject. 

7.2. Physics around the electroweak scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Mw) 

Although there is no consensus on the best way to incorporate grand unification in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SUGAR models, a unique minimal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlow energy model has recently emerged (Ellis et a1 
1983c, e, Alvarez-GaumC et a1 1983, Ibanez and Lopez 1983). In this model, the physics 
of the TeV scale is described by an effective SU(3) x SU(2) x U ( l )  gauge theory, in 
which the breaking of weak interaction gauge symmetry is induced by renormalisation 
group scaling of the Higgs (mass)' operators (Ellis et a1 1983e). Much of the attractive- 
ness of this model stems from the fact that no gauge symmetries or fields beyond those 
required in any low energy SUSY theory are included. Sometimes, it may happen, as 
is the case of cosmologically acceptable models (CAMS) (Kounnas et a1 1983a, 1984), 
that there are GUT relics which are light (-Mw), but they do not seem to play any 
fundamental role at low energies, so we may neglect them in our present discussion. 
Furthermore, adding random chiral superfields to the low energy theory may be 
problematic. For example, the presence of a gauge singlet superfield coupled to the 
Higgs doublets and added to trigger SU(2) x U( 1) breaking (Barbieri et a1 1982d, Nilles 
et a1 1982, Hall et al 1983, Soni and Weldon 1983), usually (but not always (Ferrara 
et a1 1983)) destroys (Nilles et a1 1983, Lahanas 1983) any hope of understanding the 
gauge hierarchy problem; the reason being (Nilles et a1 1983, Lahanas 1983) that in 
a GUT theory, the gauge singlet couples not only to the Higgs doublets but also to 
their associate, superheavy colour triplets. Then we have to try hard (Ferrara et a1 
1983) to avoid (MwM)"'= 10" Higgs doublet masses, generated by (Nilles et a1 1983, 
Lahanas 1983) one-loop effects involving colour triplets. Something smells fishy. 

We focus then on the standard low energy SU(3)xSU(2)xU(l )  gauge group, 
containing three generations of quarks and leptons, along with two Higgs doublets, 
as chiral superfields. The low energy effective superpotential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(fLES) of the model 
consists only of the usual Yukawa couplings of quark and lepton superfields to the 
Higgs superfields, along, in general, with a mass term coupling the two Higgs doublets, 
H1 and H 2 .  Explicitly, in a standard notation: 

fLEs = h,UfQjH,+ h: jDfQjHl+J jL iEfHl+ m4H1H2 (7.8) 

where a summation over generation indices ( i , j )  is understood and Q( U' )  denote 
generically quark doublets (charge -3 antiquark singlet) superfields, while L( E ' )  refers 
to lepton doublets (charge +1 antilepton singlet) superfields. With the exceptions of 
the top quark (h,)  Yukawa coupling and the mass parameter m4, which in principle 
may be of order O(m3I2),  all other parameters appearing in (7.8) contribute to the 

masses of the observed quarks and leptons and are known to be small. Neglecting 
these small couplings, the effective low energy potential ( VLEp) can be written as (see 
(6.9) and (6.21)): 
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The effective parameters appearing in (7.9) take, at large scales zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-Mx), the values: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m:(Mx) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d ( M x )  = m:,*+ d ( M X )  

m 6 , ( M x )  = mL, (Mx)  = mgt(Mx) = mir(Mx) = m$JM,) = m$2 (7.10) 

A( M x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4; B ( M x )  = A - 1 ; ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2,3)  

as dictated by (6.21). It should be stressed once more that the boundary conditions 

(7.10) are exact, if we only neglect corrections at the Planck scale, ignore the scaling 
of parameters from M to M,, and pay no attention to corrections (Hall et U /  1983, 

Soni and Weldon 1983) at the GUT scale. All these effects are expected to be small 
and it is assumed that they do not seriously disturb (’7.10) and the picture hereafter. 

It is apparent from (7.9) that SUGAR models can easily succeed in giving weak 

interaction scale masses ( r q 2 - -  Mw) to squarks, sleptons and gauginos (see (6.21)). 

Alas, SUGAR models also give large positive (mass)’ to the Higgs doublets, thus making 
the breaking of SU(2) x U( 1) difficult. One way to overcome this difficulty is the 
introduction (Barbieri et a1 1982d, Nilles et al 1982, Hall et ul 1983, Soni and Weldon 
1983) of a gauge singlet coupled to H ,  and H 2 ,  but, as mentioned above, with disastrous 
effects (Nilles et UI 1983, Lahanas 1983) for the gauge hierarchy. A particularly simple 

solution to the SU(2) x U(1) breaking relies upon the fact that the boundary conditions 

(7.10) need be satisfied only at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  (or M ) ,  and that large renormalisation group 
scaling effects can produce a negative value for m k  at low energies (Ellis et a1 1983e). 

The full set of renormalisation group equations for the parameters in V,,, (6.21) has 

been written elsewhere (Inoue et a1 1982). Here we concentrate on the most interesting 

equation, the one for the mass-squared of the Higgs ( m i ) ,  which gives mass to the top 
quark: 

(7.11) 

where we have neglected gauge couplings other than the ‘coloured’ one, a3 (= g:/4.rr), 
mi is the gluino mass (see (6.21) and (6.23)), and Yukawa couplings other than h,, 
for the top, have been dropped. The physics content of (7.11) is apparent. Since p 
is decreasing (we come from high energies down to low energies), the sign of the first 

two terms in (7.11) is such as to make all mi,  mL,,  m i ,  smaller at low energy with 

the decrease of mi becoming more pronounced because of the 3 : 2:  1 weighting. On 
the other hand, the sign of the last two terms in (7.11) is such as to make m;, and 

m i ,  (the squark masses) larger at low energy, but have no direct effect on mi (notice 
the ‘zeros’ in the corresponding matrices in (7.11)). Indirectly though, the net effect 
on m: of the last two terms in (7.11) is to enhance further its decrease at low energies, 
by increasing m’u, and m i 3 ,  which then drive down m: via the first two terms of (7.11). 
This is exactly what we are after! We want large ( -M$)  and positive squarks and 
slepton (masses)’, but negative Higgs (mass)’ to trigger SU(2) x U( 1) breaking. The 
ways of obtaining negative Higgs (mass)’ now become clear (see (7.11)). We have to 
use either a large top Yukawa coupling ( h J ,  or large A, or large m4, or a fourth 
generation to provide large Yukawa couplings, or some suitable physically plausible 
combination of the above possibi,lities. There are pros and cons for every one of the 
above situations. In the case of large h,, a lower bound on the mass of the top quark 
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is set (Alvarez-GaumC et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983, Ellis er a1 1983c, e, Ibanez and Lopez 1983): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> O( 60 GeV) (7.12) 

which some people may find uncomfortable. We may avoid a large h, by moving it 

into the large A (> 3) regime (Ellis et a1 1983c, Claudson et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983). The price though 
is high. The phenomenologically acceptable vacuum becomes unstable against dunnel- 
ling into a vacuum in which all gauge symmetries, including colour and electromagnet- 
ism, are broken. We must (Ellis et a1 1983c, Claudson et a1 1983) then arrange things 
in such a way that the lifetime for this vacuum decay process is greater than the age 
of the universe. Some people, not without reason, may find this possibility dreadful. 
We may avoid large h, and/or large A by using non-vanishing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm4 (“312) where a 
rather satisfactory picture then emerges (Kounnas et a1 1983a, 1984). Some people 
may object here to the basic assumption of large m4 ( - m ~ ~ , ~ ) ,  since in the case of 
natural triplet-doublet Higgs splitting-type models (Kounnas et a1 1983d) (see (7.3)), 
m4 has a tendency to be small, if not zero, even though other sources of m4 may be 
available. 

Finally, we come to the possibility of a fourth generation which, suitably weighted, 
may help us to avoid large h,, A or m4. The problem here is that low energy 
phenomenology (evolution of coupling constants, mb/m,, . . . ) (Kounnas et a1 1983a, 
1984) as well as firm cosmological results like nucleosynthesis (especially 4He abund- 
ance) (Olive et a1 1981), may suffer almost unacceptable modifications. Furthermore, 
one has to watch out for the mass of the fourth generation charged lepton, since it is 
going to behave like m: in (7.11), and thus mi,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi, may easily go negative, 
breaking electromagnetic gauge invariance. 

Whatever mechanism (if any) turns out to be correct, it is rather remarkable that 
in SUGAR-type models, there is a simple explanation of the breaking of SU(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX U( 1) 
and of the non-breaking of SU(3) x U( l)EM. Furthermore, for the first time, we have 
a simple explanation of why M,<<< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  (or M ) ,  i.e. a simple solution of the cumbersome 
gauge hierarchy problem. Starting with a positive Higgs (mass)2, of order m$2 at Mx,  
and noticing that (see (7.11)) the evolution with p 2  of the Higgs (mass)’ is very slow 
(logarithmic), it is not surprising that we have to come down a long way in the energy 
scale, before the Higgs (mass)’ turns negative and is thus able to trigger SU(2) x U( 1) 
breaking. Another very amazing fact is that the values of the parameters of the low 
energy world seem to cooperate with us. Since quarks are feeling strong interactions 
(7.11) tells us that quarks may enjoy large masses (Yukawa couplings) without making 
squark (masses)* negative, because of the last term (-a3), which easily balances off 
large Yukawa couplings, without any sweat. On the other hand, since leptons are not 
feeling strong interactions, the balance-off between the weak gauge couplings and large 
Yukawa couplings becomes extremely delicate and could be problematic. How nice 
that for all three generations, leptons and down quarks weigh less than 5 GeV and 
especially for the third generation that the top quark (t) is heavier than the bottom 
quark (b). An inverse situation would be disastrous, because, in any reasonable GUT, 
a very heavy b quark would mean a very heavy T lepton, thus making electromagnetic 
gauge invariance tremble in such SUGAR-type schemes. I will not go any further into 
the esoterics of this type of SU( 2) x U( 1) breaking model, since a rather thorough and 
detailed expos6 of these types of theories and of their phenomenological consequences 
is now available (Kounnas et a1 1983a, 1984). It should be stressed that things are 
now very constrained, as we see from table 2, taken from Kounnas et a1 (1983a, 1984) 
where the whole low energy spectrum is worked out in terms of very few parameters, 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Particle spectrum (Kounnas et al 1983a, 1984). Physical mass spectrum of the cosmologically 

acceptable model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(CAM) and the minimal model ( M I M )  corresponding to the same gravitino mass m3,2= 
15 GeV for top quark masses equal to 25 GeV, 35 GeV and 50 GeV respectively. 5 denotes the ratio of the 

gaugino to the gravitino mass at M,. All masses are in GeV units. The light neutral Higgs gets its mass 

via radiative corrections. 

CAM MIM CAM MIM CAM MIM 

4 M X )  

5 
m,(M,) 
TOP 
All 

families 

1st and 2nd 

families 

m 3 / 2  

3rd family 

(sleptons), 

(sleptons), 

(swark), 

(squark), 

(sbottom), 

(sbottom), 

(stop), 

(stop), 
Charged Higgs 

Neutral Higgs 

‘Axion’ 

Gluinos 

Photino 

HW, WH-inos 

HZ, HZ-inos 

Axino 

r 

3 3 

15 15 

2.8 2.2 

15 17 

25 25 

29 27 

21 20 
58 71 

74 

58 76 

54 74 

81 96 

26 54 

93 rl” 104 

3 
51 46 

42 84 
11 4.6 

87 
82 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ ![ 108 

85 
26 23 

{ :: 74 

2.8 

3.2 

15 

16 

35 

32 
22 

66 

61 

60 
64 

60 
95 

23 

95 
105 

49 

41 

87 

79 

99 

91 

24 

4.4 

9.4 

2.8 

3.1 

15 

18 

35 
36 

23 
108 

104 

103 
106 

104 

132 

78 
94 

105 

48 

118 

94 

79 

116 

80 
24 

5.3 

7.3 

2.0 1.6 

3.5 1.9 
15 15 

11 7 

50 50 
35 25 
23 19 

1 2  67 

67 65 

66 65 
68 66 

66 65 

112 106 

21 31 
88 83 

100 95 
6 5 

35 19 
52 72 

4 3 
84 90 

82 75 

101 106 

88 83 

17 9 

m3/2r  A ( M x ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf =  Mo/m,, ,  (see (6.22)) and m,(Mx).  Eventually, with more theoretical 
insight, we hope to determine even these very few parameters, thus predicting uniquely 
the low energy spectrum. For example, we have already discussed ways of determining 
m3/2 (see (7.6)), while some people may favour A(M,)  = 3 as a natural solution 
(Cremmer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983b) to the absence of the cosmological constant problem, etc. 
Among other interesting things contained in the table, the existence of a very light 
(-(3-6) GeV) neutral Higgs, with the usual Yukawa couplings to matter, should not 
escape our attention. Since such a particle is a common feature of a large class of 
models (Kounnas et a1 1983a, 1984, Ellis et a1 1983c), a search in the Y + H o + y  
channel, which is expected to be a few per cent of the Y +  pL+p- decay, may turn out 
to be very fruitful. 

7.3. No-scale models 

As already mentioned above, the complete solution of the gauge hierarchy problem 
demands both scales, Mw and m3/2 ,  to be explained. We saw before how by using 
non-renormalisable interactions, e.g. equation (7.2), we can relate the gravitino mass 
to the M,, e.g. equation (7 .6) ,  working only at the tree level. Some people may find 
this approach a bit ad hoc and it may be very much dependent on the specific form 
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of the non-renormalisable terms, which deviates slightly from the standard philosophy 

of effective Lagrangians: put more weight on results emerging from the general 
symmetries and not from the very specific form of the effective Lagrangian. Well, here 

is a rCsumC of our new, more ambitious approach (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1984b, c, g, h, i, j) .  
An interesting possibility in this framework is the determination of the weak 

interaction scale by dimensional transmutation (Kounnas et a1 1983a, 1984, Ellis et a1 
1983~).  The multiplicative renormalisation (7.1 1) of the soft zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY breaking mass 
parameters means that the renormalisation scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo at which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm; goes negative is 

independent of the magnitude of fi’. The value of po is determined by the logarithmic 

rate of evolution specified by the renormalisation group equations (7.11). Hence 

(7.13) 

Once m& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0, it is possible to have weak gauge symmetry breaking and Mw = O(po) ,  
implying through (7.13) the highly desirable relation 

(7.14) 

The dynamical determination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Mw has been realised (Kounnas et a1 1983a, 1984, 

Ellis et a1 1983~) .  The first half (5.15) of the second SUSY golden rule has been satisfied. 

It should be emphasised that we have tacitly assumed f i  < po, otherwise the renormali- 

sation group equations ( RGE) will be frozen at some renormalisation scale p > po, 
implying m; > 0 and thus no SU(2)L x U( 1) breaking. But who determines f i?  In the 

‘minimal’ case (6.24(a)), f i  is put in by hand and that is no good. In the ‘mini-maxi’ 

or ‘maximal’ cases (6.24( b )  and ( c ) )  f i  is undetermined at the tree level and we should 
use non-gravitational standard model radiative corrections to determine it, thus finally 

realising the no-scale model dream (Ellis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1 1984b, c, g, h, i, j ) .  

To explore the basic mechanism (Ellis et a1 19843) for this trick, we consider the 
usual low energy Higgs potential (7.9) of the SUSY standard model, in an idealised 

limit where the mixing between the two light Higgs doublets is neglected 

(7.15) 

We denote by H2 the Higgs field coupled to the t quark. Radiative corrections (7.11) 

drive m: < m: and when mi < 0 weak SU(2)L x U( 1) gauge symmetry is spontaneously 
broken and the vacuum energy can become negative: 

(7.16) 

In writing equation (7.16), we have recalled that since the Higgs mass is multiplicatively 
renormalised (7.11) for p > O ( f i ) ,  the Higgs mass is always xf i ,  and hence Vmin.x 
/m;1’OC fi4. The negative coefficient in equation (7.16) means that increasing Im;l and 
hence f i2  is energetically preferred, at least for small values of fi. However, if f i  gets 
to be larger than the scale po at which m: falls through zero, then the evolution of m, 
with the renormalisation scale p will become truncated at p = 0(fi2) > po, m: will 

never become negative, and the potential will always be positive semidefinite. The 
general form of Vmin.(fi) is therefore as shown in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 
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Figure 5. Sketch of the variation of the srisu-breaking mass parameters m:, m: with the renormalisation 

scale p. The Higgs (mass)' mi = 0 at a scale yo, which determines the dynamically preferred value of f i , 
as seen in the bottom half of the figure. 

It decreases from zero to negative values as 6 increases from zero, but then rises 
to zero again for some 6I = O(po).  (The precise value depends on the choice of 

renormalisation scheme, but physical parameters such as particle masses do not depend 
on this choice.) It is apparent from figure 6 that there must (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 19848, j )  be a 
dynamically preferred value of 6 in the range (0, po). Indeed, one finds (Ellis et al 
19848, j): 

(7.17) 

with c and d calculable parameters. Minimising the potential (7.17) with respect to 
61, one finds a minimum at 

6I = O(P"). (7.18) 
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‘“t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-.- 30  G e V  

6 0  G e V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
90 GeV 

120 Ge.V 

- - -  - 
......... 
-. . - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. Values of m, (in GeV) for general values of the Higgs mixing parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh4, [=  mi. /m, , ,  and 

A = 3. Our present vacuum is unstable in the allowed region on the right of the figure. The shaded domain 

indicates values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, and [ disallowed because of the absence of a charged sparticle with mass less than 

20GeV (P), and/or because of an excessive cosmological density of the lightest neutral sparticle (C). 

Remember that po is a dimensional transmutation scale (7.13), so that the preferred 
value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61 is also fixed by dimensional transmutation, leading through equations (7.14) 

and (7.18) to the golden relation (5.15), 

(7.19) 

This simultaneous and dynamical determination (Ellis et a1 1984b, c, g, h, i, j )  of Mw 
and 6I combined with the non-renormalisation theorems (Ferrara et a1 1974, Ferrara 
and Piquet 1975, Iliopoulos and Zumino 1974, Grisaru et a1 1979, Wess and Zumino 
1974b) of global SUSY (stabilisation) and with the classic ‘missing partner’ mechanism 

(6.21) (Kounnas et a1 1983d, Masiero et a1 1982, Grinstein 1982) (natural tree-level 
GUT Higgs-electroweak Higgs splitting), completely solves the gauge (scale) hierarchy 

problem. 
No-scale SUSY standard models (Ellis et a1 19848, j )  contain three adjustable 

parameters: possible non-zero gaugino masses .$ = mi./ m3/2, non-zero H1H2 mixing 
characterised by a mixing parameter m4 (h4= m4/m3,J and the A parameter (6.21) 

(Nilles et a1 1982). As seen in figure 6, we find (Ellis et aI 1984g,j) domains of 6 and 

h4 which give phenomenologically acceptable models for which all charged sparticles 
have masses above 20 GeV (denoted by P), and the cosmological density of the lightest 
stable neutral sparticle is less than 2 x 

No-scale SUSY GUT models have also been constructed (Ellis et a1 1984i). In most 
cases, it is obligatory (Ellis et a1 1984i) to use the ‘maximal’ alternative (6.24(c)) 
because global SUSY ( m  = 0, A = 0), at the GUT scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  is badly needed in order to 

get rid of the highly undesirable huge GUT vacuum energy. That is good news, since 
the decoupling entailed in principle between m3,* and 61 is very welcome. There are 
two very interesting physical implications of this gravitino mass liberation movement 

g cm-3 (denoted by C). 
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(Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1984b, c, h), one cosmological and the other hierarchical. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs is well known 

(Pagels and Primack 1982, Weinberg 1982b), standard cosmological constraints (critical 
energy density, primordial nucleosynthesis, etc) exclude gravitino masses in the region 

1 keV to lo4 GeV, thus excluding m3,* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- O( Mw). Inflation can save (Ellis et a1 1982d) 
the gravitino by diluting its original number density, but gravitino regeneration proces- 

ses (Krauss 1983, Nanopoulos et a1 1983a) put a rather low upper bound (Ellis et a1 
1984f, Krauss 1983, Nanopoulos et a1 1983a, Khlopov and Linde 1984) on the reheating 

temperature TRG O( 10’’ GeV). This is rather unfortunate, because then ‘standard’ 
baryosynthesis (Olive 1984) is in conflict with long-lived protons (Ellis et a1 1984a, 

Kim et a1 1984). This is the gravitino problem. It seems that we need either superlight 
(< 1 keV) or (super)heavy (> lo4 GeV) gravitinos. No-scale models encompassing both 

possibilities have been constructed (Ellis et a1 1984b, c, h), thus resolving the gravitino 

problem in a Gordian-knot way by ‘cutting’ the m 3 / 2  - O(Mw) relation. Actually, the 

superlight gravitino case has a very interesting hierarchical implication (Ellis et a1 
1984b, c): it completely solves the strong CP problem (5.1). One simply notices from 
(6.4) that non-minimal gauge boson kinetic terms, necessarily needed for non-vanishing 

gaugino masses (6.19), give rise to e ~ , ~ - ( I m f ~ b / R e f ~ b ) .  Then, since there are two 
dynamical degrees of freedom (Re z, Im z ) ,  it is evident that these will determine 

dynamically two physical parameters. Since the gravitino is decoupled, we may 

naturally choose mi. and ~ Q C D  as the two dynamically determined quantities. While 
standard model radiative corrections fix the gaugino mass mi., the only non-trivial 

dynamical dependence on ~ Q C D  comes from non-perturbative QCD effects which favour 
e Q c D = O .  The dynamical freedom accorded to us by the Im fab field enables us to 

‘relax’ to ~ Q C D  = 0, thus completely solving (Ellis et a1 1984b, c) the strong CP problem. 
In this case, in a class of no-scale models (Ellis et a1 1984b, c), the gravitino mass is 

determined to be 

(7.20) 

with 1 < p  < 2, in order to avoid too singular couplings to ordinary matter (Fayet 1980). 
Turning now to baryon decay, an interaction of the form (Ellis et a1 1983e): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f 3 - - 1 F T T T  
M 

(7.21) 

where F is a 5 of matter (quark+lepton) chiral superfields in SU(5), T is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 of 

matter superfields and A is some generic Yukawa coupling, could replace the Higgs 
exchange in the Weinberg-Sakai-Yanagida (Weinberg 1982a, Sakai and Yanagida 

1982) loop diagram for baryon decay. The magnitude of the diagram with (7.21) 
relative to the conventional Higgs diagram (see figure 3) is: 

(7.22) 

The ratio (7.22) could easily be > 1, making a non-renormalisable superpotential 
interaction the dominant contribution to proton decay. A careful analysis of SUGAR- 

induced baryon decay shows (Ellis et aZ1983b), surprisingly enough, that the expected 
hierarchy of decay modes is similar to that (Ellis et a1 1982e, 1984a, Nanopoulos et 
a1 1982, Nanopoulos and Tamvakis 1982a, b, c, Sakai and Yanagida 1982, Srednicki 
1982a, b, Weinberg 1982a) coming from conventional minimal SUSY GUTS as given by 

(5.11) and (5.12). One might have wrongly expected that no hard and fast predictions 
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could be made about gravitationally induced baryon decay modes. Anyway, this 
mechanism could give observable baryon decay even if the GUT mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. 

Incidentally, similar terms like (7.21) have been considered (Nanopoulos and 
Srednicki 1983a) in efforts to explain the 'lightness' of the first two generations of 
quarks and leptons. One replaces (Nanopoulos and Srednicki 1983a) direct Yukawa 
couplings for the first two generations with (very schematically) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1; - i;; i;' - 1' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f 3 -  HZT2F2+-  HT2T2Z++ HZ2TlFl+--+ H T l T J 2 + .  . . (7.23) 

M M M M 

which not only repairs (Ellis er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983e, Nanopoulos and Srednicki 1983a) wrong 
relations like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmd( M x )  = m,(Mx) ,  very difficult to correct (Ibanez 1982, Masiero et a1 
1983) in conventional SUSY GUTS, bur also provides reasonable masses for the first two 
generations. Indeed, it follows from (7.23) that the second generation is getting masses 
(M,/M)M,- (0.1-1 GeV), while the first generation masses are ( M x / M ) 2 M w -  
(1-10 MeV), exactly what was ordered. It is amazing that in SUGAR models, by 
increasing Mx (-10l6 GeV), relative to its ordinary GUT value GeV), and by 
decreasing MPI, what is relevant is the super-Planck scale M (-10" GeV), the highly 
desired ratio ( M x / M )  - lo-*, which appears naturally. It seems now, for the first time, 
that gravitational interactions may be responsible for the masses of at least the first 
two generations. Once more, non-renormalisable interactions contained in SUGAR 

models provide a simple solution (Nanopoulos and Srednicki 1983a) to another 
hierarchy problem, the fermion mass hierarchy problem. 

I hope I have convinced you by now that (no-scale) phenomenological supergravity 
models are worth considering and I proceed next to discuss experimental evidence for 
(or against) them. 

8. Experimental evidence (?) for supersymmetry 

Low energy supersymmetric models have a very rich structure that makes them experi- 
mentally vulnerable at accessible (present or very near future) energies, if SUSY indeed 
solves the gauge hierarchy problem (see equation (5.14)). Since several reports exist, 
covering, in rather lengthy detail, the numerous experimental consequences of SUSY 

(Nanopoulos and Savoy-Navarro 1984, Haber and Kane 1984b) I shall limit my 
discussion here to the relation between SUSY and the new experimental results men- 
tioned in the beginning. 

Let me start with direct evidence, i.e. with SUSY particle production. As I emphasised 
before (see (3.2) and (3.3)), SUSY particles in general can only be produced in pairs. 
This means that among the decay products of every sparticle, there must be another 
sparticle, and hence the lightest sparticle must be stable. The lightest sparticle is 
probably neutral (Ellis et a1 1984d) and not strongly interacting and the most likely 
candidate may be the photino 7. Thus, a characteristic signature for SUSY could be 
(Nanopoulos and Savoy-Navarro 1984, Haber and Kane 1984b) missing energy- 
momentum carried away by weakly interacting photinos, for example, from gluino or 
squark-pair production (Kane and Leveille 1982, Harrison and Llewellyn Smith 1982, 
1983): 

p+p-,g"g"+x G i + X  

(8.1) 



- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj e t  

{s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA540 GeV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Total 
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the squark case. So, despite the naive expectations from (8.1) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ or @ production 
should give four-jet or two-jet final states respectively, surprisingly enough for mi or 
m G S  O(40 GeV) one-jet final states dominate, in accordance with experiment (UA1 
1984b). 

Are then the observed events with large p p s s ,  due to the production of either g or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 with mass 0(40GeV)? Both are possible interpretations of the UA1 data (UA1 
1984b), but neither can be confirmed or refuted until more data are accumulated. 
Nevertheless, the squark interpretation has been favoured (Ellis and Kowalski 1984a, b) 
on two grounds: (i) the hardness of the observed missing p L  spectrum, which is more 
naturally explained by two-body 4‘ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq + j decays and (ii) the thinness of the observed 
monojets, which disfavours g” + q + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij + j decay which yields monojets with invariant 
masses up to O(20 GeV) and an average of O(10 GeV), while the squark decay yields 
monojet invariant masses O(2 GeV) consistent with the observed ones. Other more 
contrived explanations are still possible. For example, if g and are both very light 
and approximately degenerate (-3 GeV) to ensure long enough g” lifetime, then 
qg + @ + q( fg) with mi - 100 GeV may also explain (Barger et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1984) the ‘monojet’ 
events. Concerning the ‘photon’ UAl event(s) (UAl 1984b), it may possibly be a 
monojet with a large collimated electromagnetic component containing one or more 
T O  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 whose charged multiplicity fluctuated down to zero. This event actually 
contains some soft charged tracks which are nearby in angle and could perhaps be 
associated in the ‘monojet’. Another source of photons could be (Tracas and 
Vlassopoulos 1984) + qy, assuming m4 S EFgger such that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY content of the 
proton is plausibly excited, but in this case, one should take care of the jet coming 
from the decay of the left-over spectator (;). Putting everything together, it does not 
look unreasonable to me to pursue the interpretation (Ellis and Kowalski 1984a, b) of 
the UA1 monojet data as squarks with m4 = 40 GeV, and infer a lower limit mi 2 40 GeV 
on the gluino mass. Furthermore, such an assumption is not in contrsdiction with 
possible explanations of the UA2 ‘Wen’ events (UA2 1984). For example (Haber and 
Kane 1984a), pp+ %g” or %i production, followed by %+ e u j  and g”+ qqj or ij+ q j ,  
would produce ‘Wen’ events (e+jet+large amounts of pyiss”.). It has been argued 
(Haber and Kane 1984a) that with mG= (40-60) GeV, mi= (70-100) GeV and mc= 
(35-40) GeV, one may probably get suitable (?) rates. In addition, such an explanation 
is consistent with the observation that in the three UA2 ‘Wen’ events, the missing ‘U’ 

vector is consistently larger than the pT of the observed electron. They should on 
average be equal in W+ eu decay, but could easily be different in SUSY, where the ‘U’ 

is actually a combination of one Y and two photinos j .  
If we indeed buy the squark explanation ( m4 = 40 GeV; mi 5 O(40 GeV)) of the 

Zen-Wen events, then its phenomenological implications are rather dramatic. In a 
large class of phenomenological supergravity models discussed before (Kounnas et a1 
1983a, 1984, Ellis et a1 1983c, 1984b, c, g, h, i, j), one may write down (Kounnas et 
a1 1983a, 1984) convenient approximate formulae for physical squark and slepton 
masses at relevant renormalisation scales p = O( Mw): 

* w 

m i  = m’( 1 + 7.6&, cj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii, d, 5,  e, b (8.3) 

and 

mf,= m2(1 +0.15t2) 

m f ,  = m2( 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 0.5t2) 
(8.4) 
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where m and .$m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E mo( M ) )  are respectively the scalar boson and gaugino masses at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMx or M ( m  is commonly, but not always necessarily, identified with the gravitino 
mass). The corresponding formulae for gaugino masses take the simple form (see also 

(6.23)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f f 1  f f3 

f f G  f f G  
m+=- mo(m) mg = -- me( m )  

implying 

m- 3 a  1 

mi 8 a3 sin2 ew 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 8 . 5 )  

where it has been assumed that, thanks to grand unification, all gaugino masses are 

equal at Mx or M, not necessarily an unavoidable assumption (Ellis et a1 1984i). 
Clearly enough, as it has been repeatedly emphasised in the literature (Kounnas et al 
1983a, 1984, Ellis et a1 1983c, 1984b, c, g, h, i, j) for some time now, the supergravity 

sparticle mass spectrum is rather tight. For example, assuming m+ = 40 GeV, mg 2 

O(40 GeV) and miL,R2  20 GeV, it is trivial to show (Ellis and Sher 1984) that the set 
of equations (8.3)-(8.6) imply: 

20 GeV m jL,R 6 30 GeV 

5 GeV6 m+ c 10 GeV 
(8.7) 

and 

40 GeV6 mg c 60 GeV 

a rather ‘light’ and easily experimentally accessible spectrum. In addition, while SUSY 

in general entails the existence of at least two Higgs doublets, dimensional transmuta- 

tion (Kounnas et a1 1983a, 1984) or no-scale type (Ellis et al 1984b, c, g, h, i, j) 
supergravity models ask for the existence of a ‘light’ (sometimes (Kounnas et a1 1983a, 

1984) c10GeV)  neutral Higgs boson. Actually, if indeed (8.7) holds, then the 
O(10 GeV) upper bound is certainly quite firm (Kounnas et a1 1983a, 1984, Ellis and 
Sher 1984). The suggestion was then made (Kounnas et al 1983a, 1984), some time 

ago, that Y + Ho+ y is an excellent place (Wilczek 1977, Ellis et al 1979b) to look for 
such a ‘non-standard’ light Higgs. If indeed (8.7) holds true, then news (good or bad) 

should come very soon from almost everywhere: e+e- + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi” f-; e+e- +. ( T T )  y (Ellis and 

Hagelin 1983, Fayet 1982) (one event has already been reported (Prepost 1984)), 
p p + @  or @)+X,  pp+(W++f+v’ )+X or pp+(Zo+f[ iv”)+X and Y+Ho+y .  
Wait and see! 

There are other very interesting features concerning low energy phenomenology 
stemming from the general form of V,,, (see (7.9) and (7.10)) in SUGAR models. Very 
tight constraints coming from natural suppression of flavour-changing neutral currents 
(FCNC) (Barbieri and Gatto 1982, Campbell 1983, Ellis and Nanopoulos 1982a, Inami 
and Lim 1982), absence of large corrections to (g -2) (Barbieri and Maiani 1982, Ellis 
et a1 1982c, Grifols and MCndez 1982) and p (= ( Mw/ Mz cos OEW)*) (Alvarez-GaumC 
et a1 1983, Barbieri and Maiani 1983, Lim et a1 1983) as well as to eQcD (Ellis et al 
1982a), which have been the nemesis of SUSY models with arbitrary and explicit soft 
SUSY breaking, are satisfied in SUGAR models. The highly constrained set of soft SUSY 

operators (6.21) in SUGAR models fits the bill (Ellis el a1 1983e, Alvarez-GaumC et al 
1983). Concerning FCNC, (7.10) guarantees the s u p e r a m  mechanism, since the mass 
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matrices for the quarks and leptons are diagonalised by the same transformation that 
renders the mass matrices for their scalar partners and gluino couplings generation 
diagonal. Despite the fact that this property does not survive, in general, after renor- 
malisation, it has been shown (Lahanas and Nanopoulos 1983, Donoghue et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 1983) 
that these effects are controllable. Furthermore, the Buras stringent upper bound 
(Buras 1981) on the top quark mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(< O(40 GeV)), coming from kaon phenomenology 
(KL-Ks and K L + p + p L -  systems), is avoided (Lahanas and Nanopoulos 1983) in 
SUGAR models. There are a lot of cancellations between ordinary and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUSY contribu- 
tions in K processes (Inami and Lim 1982), such that the top quark mass may be 
stretched up to 100GeV without problem (Lahanas and Nanopoulos 1983). That 
sounds very satisfactory, especially for SUGAR models (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1983c, Alvarez-GaumC 
et a1 1983, Ibanez and Lopez 1983) that do need a large top quark mass for SU(2) x U(l)  
breaking. It looks like a self-service situation. Similar comments apply in the case of 
( g  -2)@ or p, where it has been shown that SUGAR model contributions are acceptable 
(Kounnas et a1 1983a, 1984, Alvarez-GaumC et a1 1983, Barbieri and Maiani 1983, 
Lim et a1 1983). Typical values for SUGAR contributions are (Kounnas et a1 1983a, 
1984, Kosower et a1 1984) IA(g -2)pl G (3 x low9) and (Alvarez-GaumC et a1 1983, 
Barbieri and Maiani 1983, Lim et a1 1983) Ap s 0.01, which compare favourably with 
the present experimental upper bounds of ( 4 x  lo-’) and (0.03) respectively, but are 
large enough to be interesting. Better experimental bounds, especially on Ap, could 
be revealing. 

9. Conclusions 

We have shown that gravitational effects, as contained in SUGAR theories, cannot be 
neglected any longer in the regime of particle physics. On the contrary, it may be that 
supergravitational effects are really responsible: for the SU(5) breaking at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x  with 
an automatic triplet-doublet Higgs splitting; for the SU(2) x U( 1) breaking (and 
SU(3) x U( l)EM non-breaking) at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, naturally exquisitely smaller than M x ;  for the 
‘constrained’ soft SUSY breaking at f i , hierarchically smaller than M in a natural way; 
for definite, at present experimentally acceptable departures from the ‘standard’ low 
energy phenomenology (like the DEMON, or Ap, with values below, but not far from, 
their present experimental upper bounds, or the existence of very light (< O(10 GeV)) 
neutral Higgs bosons), as well as a rather well defined low-energy SUSY spectrum; for  
observable baryon decay even if M x  = M ;  and for the light fermion masses of the first 
two generations. Incidentally, it has been argued (Ginsparg et a1 1983) recently that 
the observed (Fernandez et al 1983, Lockyer et a1 1983) long b-quark lifetime and a 
‘light’ top quark (UA1 1984a) (-40GeV) may not fit together in the conventional 
Kobayashi-Maskawa six-quark CP-violation model, as they give too small CP-viola- 
tion. It has even been suggested (Ginsparg et a1 1983) that a ‘light’ top quark will be 
a signal for a fourth generation in the standard model. Well, this is not the case in a 
SUSY-KM model (GCrard et a1 1984a, b). We have found (Gkrard et a1 1984a, b) that 
long T~ and a ‘light’ top quark provide enough CP-violation, if we supersymmetrise 
the standard KM model. For us (GCrard et a2 1984a, b) a long-lived b-quark and 
‘light’ top maybe is a signal for supersymmetry but not necessarily for a fourth 
generation (Ginsparg et a1 1983). Furthermore, supergravity theories may provide, for 
the first time, a problem-free cosmological scenario (Ellis et a1 1983d, Nanopoulos et 
a1 1983a, b, Gelmini et al 1983a, b, Enqvist and Nanopoulos 1984a, b; for reviews see 
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Olive 1984, Nanopoulos 1983), from primordial inflation through GUT phase transitions 
to baryon and nucleosynthesis, ostracising troublesome particles such as GUT 

monopoles, gravitinos (Ellis et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1982d, 1984f, Nanopoulos et al 1983a, Krauss 1983, 
Khlopov and Linde 1984), Polonyi fields (Nanopoulos and Srednicki 1983b) or other 
SIJSY relics (Ellis et a1 1984d). 

Putting the whole thing together, it becomes apparent that spontaneously broken 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 local SUSY gauge theories, with their prosperous and appropriate structure, may 
well serve as an effective theory describing all physics from MpI down to (and including) 
low energies, with well defined and rich experimental consequences. What's next then? 
Well, we really have to understand where this highly successful theory comes from. 
There are reasons to believe (Cremmer and Julia 1979, Ellis et a1 1930) that N - 8  
extended supergravity, suitably broken down to N = 1 supergravity (Barbieri et a1 
1981, Ellis et a1 1982b), may provide the fundamental theory. But this next move asks 
for a deep understanding of physics at Planck energies, which is as exciting as it is 
difficult, taking into account that even quantum mechanics may need modification 
(Hawking 1982, Ellis et a1 1984e), if quantum gravitational effects have to be considered 
seriously. It may even be needed to consider extended fundamental objects like 
superstrings (Green 1985). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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