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ABSTRACT:

In this article we extend our previous work on the topic of ALS strip adjustment without GNSS/IMU trajectory data. Between overlap-

ping strip pairs the relative orientation as a 3D affine transformation is estimated by a 3D LSM approach, which uses interpolated 2.5D

grid surface models of the strips and the entire strip overlap as one big LSM window. The LSM derived relative orientations of all strip

pairs in the block together with their covariance matrices are then used simultaneously as observations in an adjustment following the

Gauss-Helmert model. This way the exterior orientation of each strip is computed, which refers to a relative block system. If proper

ground control data is given, then an absolute orientation of the block of strips can be computed by a final LSM run. In a small example

consisting of 4 strips with ca. 70% overlap the improvement in the relative geometric accuracy is demonstrated by the decreasing

σ
MAD

of the height differences from 8.4cm (before) to 1.6cm (after the strip adjustment).

1 INTRODUCTION1

Over the last ten years airborne laser scanning (ALS) has es-

tablished itself as the prime data acquisition method for digital

canopy and digital terrain models (DTM). ALS uses a multi sen-

sor system and is based on direct georeferencing (Skaloud, 2007);

i.e. position and attitude of the scanning system is determined by

GNSS (Global Navigation Satellite System) and an IMU (Iner-

tial Measurement Unit). Additionally, the correct georeferencing

of the original laser scanning measurements requires the internal

laser parameters (e.g. zero point and scale of the range and angle

measurements) and the parameters of the mounting calibration.

This calibration is made up of a rotational part (which describes

the rotation between the IMU system and the laser system) and a

translational part (which is the vector from the laser centre to the

GNSS antenna centre; often termed lever arm).

Direct georeferencing has the problem, that these mentioned pa-

rameters are affected by a certain instability over time (especially

the rotation between IMU and laser system). Consequently the

values of these parameters during a particular flight will differ

from the last known values (e.g. determined during a calibration).

These parameters can not be corrected during the GNSS/IMU

processing, because there the measurements of the laser scanner

do not take part. Even the synchronisation between the GNSS/IMU

data and the laser measurements can be wrong. For these reasons

(even after an error-free GNSS/IMU processing) the direct geo-

referencing will use wrong transformation parameters, which will

result in wrong 3D coordinates of the measured surface points. In

the derived DTM this may lead to, e.g., sudden jumps along the

strip borders.

For improving the accuracy of the points a strip adjustment, sim-

ilar to bundle block adjustment, needs to be done usually. Dur-

ing this adjustment the mentioned internal laser parameters, the

mounting calibration and the time synchronisation are determined

in an optimal way. The GNSS/IMU trajectory data is mandatory

for this adjustment. For some projects (e.g. historic ones) only

the directly georeferenced point cloud for each strip is available

1The presented work is a large extension of our previous work on

this topic (Ressl et al., 2009), therefore we adopt the introduction and

motivation from that paper.

– but no GNSS/IMU trajectory. If the originally delivered points

do not pass the quality control, then a strip adjustment without

GNSS/IMU trajectory data must be considered.

In (Ressl et al., 2009) we presented such a strip adjustment with-

out GNSS/IMU trajectory data. That adjustment method is based

on five parameters per strip: one 3D shift, one roll angle, and one

affine yaw parameter. For this model to be applicable, an internal

coordinate system is required for each strip, which is aligned with

the azimuth of the strip. Points are used as corresponding features

between overlapping strips and are measured using least squares

matching (LSM). For this purpose first for each strip a digital

surface model (DSM) in grid form is determined from the given

irregular ALS points by a plane based moving least squares in-

terpolation. Afterwards spots suitable for LSM are located manu-

ally. Such spots should have many different surface normals; e.g.

groups of buildings. Then the actual measurement of the corre-

sponding points is done by LSM using small windows centred at

the initial locations.

In the present paper we extend our previous work on strip adjust-

ment without GNSS/IMU trajectory data in three ways: (A) For

each strip a 3D affine transformation is used (having 12 parame-

ters). This way we avoid the need for the strip internal coordinate

system mentioned above and further errors are compensated. (B)

Between pairs of overlapping strips their relative orientation us-

ing a 3D affine transformation is directly computed by LSM us-

ing the entire strip overlap as one big window. This approach has

several advantages: (i) the measurement is fully automatic, thus,

no manual initial selection of points is required; (ii) the entire

continuous data in the overlapping DSMs of the strips is used in-

stead of discrete sparsely distributed points; (iii) because of using

the entire overlap as one big LSM window, the danger of hav-

ing too less surface variations inside a (small) LSM window is

practically no longer a concern. (C) The strip adjustment is now

reformulated so that these LSM-derived relative orientations be-

tween overlapping strips together with their covariance matrices

are directly used as observations in the adjustment. This approach

for strip adjustment is closely related to aerial triangulation using

independent models, because relative orientations between pairs

are computed first. However, it differs by not using discrete tie

features, but directly formulates the adjustment in the parameters
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of the relative orientations determined before.

Section 2 reviews the affine transformation model for an ALS

strip without trajectory data. Section 3 explains how the relative

orientation as a 3D affine transformation can be computed us-

ing LSM between two DSMs. Section 4 outlines how the LSM-

derived transformations between overlapping strips are used as

observations in a strip adjustment. Section 5 presents experimen-

tal results, followed by an outlook in section 6.

2 A MATHEMATICAL MODEL FOR ALS STRIP

ADJUSTMENT WITHOUT GNSS/IMU TRAJECTORY

DATA

If the GNSS/IMU trajectory is given, then a rigorous strip adjust-

ment can be computed; e.g. (Kager, 2004, Friess, 2006, Skaloud

and Lichti, 2006, Burman, 2000, Filin, 2001).Depending on the

used mathematical model, this rigorous strip adjustment deter-

mines corrections for the internal laser parameters and the mount-

ing calibration, and also additional parameters (e.g. for the time

synchronisation). The GNSS/IMU trajectory, however, is always

assumed error-free – except maybe for datum errors which can

be compensated using shifts and rotations of the strip trajectories.

After the strip adjustment the original surface points X will be

transformed using the corrected parameters resulting in corrected

surface points X+∆X . The basis for the adjustment is the trans-

formation equation, which describes the transition from the orig-

inal laser measurements to the 3D coordinates of the observed

surface points by taking into account the GNSS/IMU trajectory

data. Following (Skaloud and Lichti, 2006) this transformation

can be written as:

X = XGNSS + RIMU ·



m− RM ·





0
ρ · sin θ
ρ · cos θ







 (1)

X is the surface point in the world system. The antenna centre

XGNSS and the rotation RIMU of the IMU determine the position

and rotation of the air plane in the world system. The system of

the laser scanner is slightly rotated by RM with respect to the

IMU system and shifted by m with respect to the antenna centre.

RM and m make up the mounting calibration. The laser scanner

measures the distance ρ and the deflection angle θ.

Consequently, the corrections ∆X of the originally measured

points obtained by (1) after the strip adjustment can be seen as

a function of the 3D coordinates X , the measurement time t,

the GNSS/IMU trajectory data, the corrected internal laser pa-

rameters ∆i (subsuming potential additional parameters like a

time correction), and the corrected mounting parameters (∆RM ·

RM ,m+∆m): ∆X =

∆X(X(t),XGNSS(t),RIMU (t),∆RM · RM ,m+∆m,∆i)
(2)

If the original points are to be corrected without GNSS/IMU tra-

jectory data, then a different correction function is needed, which

consequently determines different corrections ∆X for the origi-

nal points. These corrections are functions of the original 3D co-

ordinates and new correction parameters ai: ∆X = ∆X(X, ai).
Because the dynamics, which are recorded in the GNSS/IMU tra-

jectory data, are not considered, these corrections ∆X can only

be an approximation to the corrections ∆X which would have re-

sulted from (2). Thus the question arises, which correction func-

tion should be taken.

In the past different approaches for this were published: From

only height adaptations (e.g. (Crombaghs et al., 2000, Kager and

Kraus, 2001)), over a 3D shift per strip (Filin and Vosselman,

2004) to a 3D similarity transformation for each strip (e.g. (Fritsch

and Kilian, 1994, Csanyi and Toth, 2007, Habib et al., 2009)).

(Vosselman and Maas, 2001) used 9 parameters per strip includ-

ing two bi-linear terms and one quadratic term.

In many projects where we computed strip adjustments (with

given GNSS/IMU trajectory) correcting the rotation component

RM of the mounting calibration turned out to be very effective.

In (Ressl et al., 2009) we therefore presented a linear formula-

tion for the effect of ∆RM on the surface points. Assuming that

the flight was done smooth in a straight line with constant height

above a horizontal terrain, we presented the following correction

function:

X +∆X = R
⊤

Z,α · RRoll · A · RZ,α · (X − S) + S + a (3)

where RZ,α represents a given rotation around the world Z-axis

by the angle α, which is the approximate strip direction. S is

the given centre of gravity of the surface points in the considered

strip and is included for numerical reasons. RRoll contains one

unknown roll correction, A one unknown affine yaw correction

and X three unknown shifts (which subsume the effect of a pitch

error and other possible translational errors of the datum or the

lever arm).

The major finding in (Ressl et al., 2009) was that the correction

of an error in the yaw rotation needs to be formulated with an

affine parameter. It follows now naturally to extend the correc-

tion function to a full 3D affine transformation (with a general

3× 3 matrix B and a 3× 1 shift vector b; see (4)). This way also

the initial strip direction for RZ,α as well as RRoll are no longer

required and by 12 instead of 5 unknown parameters per strip

additional effects can be compensated (e.g. the effect of a pitch

error over hilly terrain).

X +∆X = B · (X − S) + b+ S (4)

3 COMPUTING THE RELATIVE 3D AFFINE

TRANSFORMATION BETWEEN OVERLAPPING

STRIPS USING LSM

For improving the relative orientation of the strips during strip

adjustment corresponding tie features need to be measured in the

strip overlaps. Often planes (e.g. on roofs) are selected as tie fea-

tures; e.g. (Kager, 2004, Friess, 2006, Skaloud and Lichti, 2006).

They, however, have the drawback, that their occurrence in nat-

ural environments is very rare and in regions mixed with settle-

ments, vegetation and open land their distribution will depend on

the settlement structure and will, thus, be very inhomogeneous;

i.e. large regions with no planes are interrupted by smaller re-

gions with densely packed planes.

Depending on the inhomogeneity of the tie features’ distribution

non-linear movements during the flight might bias the parame-

ter estimation of an approach that does not use the GNSS/IMU

trajectory. Thus a homogeneous and dense distribution of the tie

features is desired. In this context the optimal distribution is the

entire overlap. Therefore we tie pairs of overlapping strips by

computing their relative orientation (as a 3D affine transforma-

tion) with LSM. For this we interpolate a DSM in grid form from

the given irregular ALS points for each strip (e.g. by moving

least squares interpolation) and use the overlap of the interpolated

DSMs of the strip pair as one big LSM window.

We denote the fixed strip (or search window) by F and the moving

strip (or template window) by M. The affine transformation of M
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is given by (4); i.e. S is the centre of gravity of M. However, for

simplifying the following notation we first subtract S from both

F and M. Thus the affine transformation of points X from M to

points Y in F is then simply given by

Y = (x, y, z)⊤ = B ·X + b =
[

B, b
]
·

(
X

1

)

= T
3×4

·

(
X

1

)

=
[

(X⊤
, 1)⊗I3

]

︸ ︷︷ ︸

3×12

· vec (T) (5)

where I3 denotes the 3× 3 identity matrix, ⊗ is the Kronecker

product and vec () is the vectorization operator. The last conver-

sion in (5) used the following essential relation

vec (A·B·C) = (C⊤
⊗A) · vec (B) (6)

The DSM of strip F is explicitly given by z = F (x, y) and im-

plicitly by 0 = F (x, y) − z = F ′(x, y, z). The condition for

LSM is that the transformed point of M lies on the DSM of F up

to a height residual vz . Its linearization is

0 + vz = F
′(Y ) = F

′(Y 0) + grad
(
F

′
)
⊤
· dY (7)

The objective is to determine the parameters of the affine trans-

formation T so that the squared sum of residuals is minimized.

For this we need to linearise (5)

Y = Y
0+dY =

[

(X⊤
, 1)⊗I3

]

·
(
vec

(
T
0
)
+ vec (dT)

)
(8)

Inserting dY from (8) into (7) gives finally the linearized obser-

vation equation for LSM by an iterative adjustment.

vz = grad
(
F

′
)
⊤
·

[

(X⊤
, 1)⊗I3

]

· vec (dT) + F
′(Y 0)

=
(

∂F
∂x

, ∂F
∂y

, −1
)

·

[

(X⊤
, 1)⊗I3

]

· vec (dT)

−(z0 − F (x0
, y

0))

Each transformed point X from strip M gives one such equation

for the 12 unknown corrections dT of the 3D affine transforma-

tion. The quantities ∂F
∂x

, ∂F
∂y

and F(x0, y0) need to be evaluated

at the location (x0, y0) at each iteration. If the points of M are

selected at the even grid locations of the DSM of M, then (x0,

y0) will be at uneven locations and thus interpolation will be re-

quired in the DSM of F and in the first derivatives of that DSM.

However, by selecting different points of strip M in each iteration,

namly X = B
0−1

· (Y •
− b0), where Y • are the even grid lo-

cations of the DSM of F, only the heights in the DSM of M need to

be interpolated in each iteration, whereas ∂F
∂x

, ∂F
∂y

and F(x0, y0)

can be used without interpolation. This circumstance is adopted

from (Kraus, 2007).

The errors in the involved sensor parameters are usually very

small, thus the propagated errors in the points X will not exceed

a few decimetres. Therefore the original georeferencing of the

data is good enough to initialize the affine transformation with

B
0 = I3 and b0 = 0. So we obtain a fully automatic procedure

for tieing two overlapping strips. For making the adjustment ro-

bust we remove the disturbing influence of vegetation and oc-

clusions (mentioned by e.g. (Maas, 2000)). Thus, our LSM pro-

cedure only uses the smooth surface parts, which can be easily

found (already before the adjustment) using a roughness mask

(see (Ressl et al., 2008)). Remaining blunders are then limited

in number (e.g. moving objects or cells that slipped through the

roughness mask) and can simply be dealt with by rejecting all

equations with abs(dz) > k · σ
MAD

with dz = z0 − F (x0, y0).

k depends on the quality of the original georeferencing and typ-

ically ranges between 6 and 10. If chosen too small, then valid

cells (e.g. on roofs) may be rejected before the first iteration.

σ
MAD

is a robust estimator for the standard deviation derived as

σ
MAD

= 1.4826 ·MAD; where MAD is the median of absolute

differences (with respect to the median) derived from the dz of

all smooth cells.

The presented approach can be considered as 3D LSM using 2.5D

data sets. It is similar to the approach in (Akca, 2007), which

is more general as it can deal with 3D data sets. However, for

the presented problem of ALS data the 2.5D approach is suf-

ficient and allows for very simple formulae (e.g. no correspon-

dence search is necessary).

4 SIMULTANEOUS ADJUSTMENT OF THE

LSM-DERIVED TRANSFORMATIONS BETWEEN

ALL PAIRS OF STRIPS

We assume that the area of interest on the ground is covered by

a set of ALS strips. This block is assumed to consist of several

parallel overlapping long-strips with optional cross-strips. After

running the presented LSM approach on all pairs of overlapping

ALS strips in the block, we get the relative affine transformation

for each pair independent of the other pairs. For computing the

exterior affine transformation of each strip with respect to a com-

mon block system, we need to make a strip adjustment where all

these pair-wise determined transformations are used simultane-

ously. We represent the exterior affine transformation of strip k

by

X = Gk · (Xk
− S

k) + gk + S
k

(9)

where X is the transformed point in the common block system.

The relative affine transformation from strip i to k determined by

LSM is represented by

X
k = T

k
i · (Xi

− S
i) + t

k
i + S

i
(10)

Inserting Xk from (10) into (9) we get

X = Gk ·T
k
i ·(X

i
−S

i)+(Gk−I3)·(S
i
−S

k)+Gk ·t
k
i +gk+S

i

The exterior transformation of strip i is defined analogous to (9)

by exchanging k with i. Consequently we get:

Gi = Gk · T
k
i

gi = (Gk − I3) · (S
i
− S

k) + Gk · t
k
i + gk

For converting the unknown matrices into vectors we can again

apply the Kronecker product and the vectorization operator. To-

gether with (6) we get

0
9×1

= (Tk
i
⊤
⊗I3) vec (Gk)− vec (Gi) (11)

0
3×1

= ((Si
−S

k+t
k
i )

⊤
⊗I3) · vec (Gk)+gk−gi−(Si

−S
k)

(12)

In these equations the quantities T
k
i and tki are observed (using

LSM), whereas Gi, gi, Gk and gk are unknowns. The remain-

ing quantities Si, Sk and I3 are constants. With these equations

we can set up the simultaneous adjustment of all transformations.

Since each equation contains more than one observed transforma-

tion parameter, we need to use the general case of least squares

adjustment (also called Gauss-Helmert model) (Mikhail, 1976,

Koch, 1999), which generally reads as

A · x+ B · v −w = 0 (13)
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where A contains the derivatives of (11) and (12) with respect

to the unknowns and B the derivatives with respect to the ob-

servations. The corrections of the unknowns are given by x, the

residuals of the observations are in v and w is the contradiction

vector. Since the equations (11) and (12) are bi-linear, the com-

putation of A and B is quite simple (and is skipped for lack of

space). Each pair of strips whose relative transformation is deter-

mined by LSM gives 9 equations in (11) and 3 equations in (12).

Given n strips and p pairs the dimensions are: A: 12p× 12n,

B: a block diagonal matrix with 12× 12 subblocks, x: 12n× 1,

v and w: 12p× 1. For proper weighting of all observations we

use a weighting matrix P, whose inverse P
−1 is a block diagonal

matrix with 12× 12 subblocks. These subblocks are the covari-

ance matrices of the relative transformations (Tk
i and tki ) from the

LSM adjustment.

Because so far only relative affine transformations between strip

pairs have been used, the equation system (13) will have a rank

deficiency of 12. We will fix the datum for a relative orientation of

the entire block first. Afterwards, if proper ground control infor-

mation in a superior world coordinate system is given, an abso-

lute orientation of the entire block from the relative block system

to that world system can be computed.

The datum for a relative orientation of the entire block can be

fixed in different ways. A natural choice would be to fix the affine

transformation of the central strip cs of the block by Gcs
0 = I3

and bcs
0 = 0. However, as shown in (Ressl et al., 2009) this will

strongly and unnecessarily affect the absolute orientation of the

block. Especially, an uncompensated yaw error in the fixed strip

introduces a shift in flight direction, which linearly grows for each

strip with the distance (across flight direction) to the fixed central

strip. Depending on the number of parallel flight strips this shift

can reach several meters. The position is determined by GNSS,

which usually has a high accuracy of a few cm. Consequently the

datum for the relative orientation of the entire block should be

defined such that the strips are not shifted globally in the flight

direction. Instead, the respective affine term of the central strip is

free in the adjustment to compensate for this. For this, we need to

know the dominant flight direction in the block. This is derived

from the alignment of the centres of gravity of all strips that par-

ticipate in the adjustment. Therefore the adjustment takes place in

a relative block system that has its origin in the centre of gravity

S
.

of all centres of gravity of the participating strips. The Y-axis

of that system is parallel to the adjusting straight line through all

centres of gravity. Consequently all relative transformations with

their covariance matrices are first transformed into this relative

block system for the purpose of adjustment and afterwards the

resulting exterior transformations are transformed back again to

the original datum.

In this relative block system we fix the 12 singularities in the

following way. First, the transformation of the central strip is fac-

torized as

X = Gcs · (X
cs

− Scs) + Scs + gcs =

Rαβγ · diag(sx, sy, sz) ·





1 axy axz

0 1 ayz

0 0 1



 · (Xcs
−Scs)

+ Scs + gcs

Here, Rαβγ is the 3D rotation of the strip, s. are the scales and

a.. are the pure affine terms. Now, we fix axz = 0, ayz = 0,

sx = 1, sz = 1, β = 0, γ = 0 and gcs = (0, 0, 0)⊤. The param-

eters axy and sy are free (this way the above mentioned effect

of a yaw mounting error is resolved). The free α angle is the ro-

tation around the X-axis (which in this relative block system is

the dominant flight direction) and resolves a similar effect due to

a roll error in the mounting. Dealing with the 12 singularities is

completed by fixing gbs = (0, 0, 0)⊤, where bs is the border strip

(parallel to cs but farthest away from it). These 12 singularities

are fixed in the adjustment by constraints, which in a linearized

way are written as

C · x−wc = 0 (14)

The dimension of C is 12× 12n, where only the transformation

parameters of the strips cs and bs are effected by 9 resp. 3 rows;

x is 12n× 1; wc and 0 are of size 12× 1. Using Lagrange mul-

tipliers µ (a 12-dimensional vector) the solution to the combined

system (13) and (14) is obtained as

[
A

⊤
WA C

⊤

C 0

](
x

µ

)

=

(
A

⊤
Ww

wc

)

(15)

with W = (B · P
−1

· B)−1. This solution needs to be iterated

by adapting the unknown transformation parameters till either a

maximum number of iterations is reached or the changes in the

unknowns is below a user defined threshold.

Correcting the absolute orientation of the block If proper

ground control information in a superior world coordinate sys-

tem is given, a correction of absolute orientation of the entire

block can be computed using an 3D affine transformation from

the common block system to that world system. Usually, such in-

formation is provided as ground control points. If they are located

on smooth surface parts (e.g. roofs or streets), then a final LSM

can be computed between these points and the relatively adjusted

block of strips. The resulting affine transformation is then applied

to all exterior transformations of the block adjustment. Since the

quality of the absolute orientation of the original direct georefer-

encing using GNSS/IMU is typically in the range of a few cm or

dm and the datum of the relative block adjustment was chosen to

have minimal changes in the location of the block of strips, the

correction of the absolute orientation will be in the same range.

Two notes on this LSM-based absolute orientation:

• The ground control points must be well distributed to allow

for the computation of the absolute affine 3D transformation

by LSM without any singularities; thus, they must not lie

e.g. entirely on horizontal surfaces but also on differently

tilted ones.

• If these control points are close together, so that the surface

between them is well represented (depending on the curva-

ture), then a patch wise surface interpolation of these control

points can be beneficial (e.g. using a triangular irregular net-

work). Then during the final absolute LSM the influence of

the ground control points is not defined by their count, but

by the sum of areas they are enclosing. This approach is,

e.g., possible if roof planes are used as ground control fea-

tures and each roof is represented by at least four points.

5 EXPERIMENTAL RESULTS

The methods presented in the previous sections have been im-

plemented in the software OPALS2 (Mandlburger et al., 2009)

and in the following the result of the proposed strip adjustment

method is presented on a small example, which consists of four

flight strips (with identifiers 5 – 8) covering an area of ca. 830×
1150m2. These strips are taken from a larger block, which was

acquired over Schönbrunn palace, Vienna, Austria, in 2004 using

a Riegl LSM Q560 laser scanner. The average point density per

strip is 1 point/m2. For each strip a DSM with grid width 1m
was computed from the last echo points by a plane based mov-

ing least squares interpolation using the 8 closest points within a

2http://www.ipf.tuwien.ac.at/opals/
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Figure 1: Histogram of the masked strip differences

based on all overlapping strips. Left: original georeferencing

(σ
MAD

= 8.4cm). Right: improved georeferencing after strip ad-

justment (σ
MAD

= 1.6cm).

F M n σ0[cm]

6 5 126897 2.2

7 5 83907 1.9

7 6 154948 2.2

8 6 42072 2.6

8 7 91702 3.4

Table 1: Information about the 3D LSM runs on the five pairs

of strip DSMs: identifier of the fixed (F) and moving strip (M);

number (n) of points used in the entire overlap after applying the

roughness mask; the root of the reference variance σ0 of the LSM

adjustment.

3m search radius. Fig. 2 (left) shows a colour coding combined

with a shading of the four strips together with their boundaries.

From this we see that the strips overlap by ca. 70%. Thus strip 5

is overlapping with strips 6 and 7, strip 6 with 7 and 8, and strip

7 only with 8.

The relative geometric quality of the given orientation of these

strips is first documented following (Ressl et al., 2008). There-

fore roughness masks are derived for each strip from two features

of the moving least squares interpolation: its standard deviation

σZ and its excentricity ǫ (the distance between grid point of inter-

polation and the centre of gravity of the surrounding ALS points

used for the plane computation). Grid points with σZ > 10cm
and ǫ > 0.8m are excluded. Such points lie mainly in vegetation

areas and on boundaries around buildings. Afterwards we com-

pute masked strip differences for the 5 mentioned pairs of over-

lapping strips. A colour coded mosaic of these strip differences is

shown in fig. 2 (middle), which clearly shows systematic errors

exceeding ±15cm – especially at buildings and steeper terrain.

Additionally, fig. 1 (left) shows a histogram of the combination

of all 5 masked differences. Based on 502905 height differences

the robust statistics are: the median is 2cm, σ
MAD

is 8.4cm (how-

ever, the histogram is clearly not Gaussian at all); Selecting only

the height differences between ±30cm would yield a standard

deviation of 7.9cm (based on 494899 values).

Now for each of the 5 strip pairs the LSM approach presented

in section3 is computed using the masked DSMs as input. The

robustness of each LSM adjustment is further enhanced, by using

only the points with absolute height difference below 10 · σ
MAD

.

Tab. 1 lists the number of used points in the entire overlap of each

strip pair, as well as σ0.

The 3D affine transformations computed by LSM describe the

relative orientation between these pairs. These transformations

together with their covariance matrices are then the input for the

strip adjustment presented in section 4. The result of this adjust-

ment are then the exterior orientations of the five strips (again

represented by 3D affine transformations) referring to a common

block system. As described in section 4 the adjustment itself is

performed in a relative block system, which is defined by the

dominant flight direction and the most central strip (which in this

example is strip 7). The resulting corrections ∆X of the surface

points reach 60cm in X , 40cm in Y and 10cm in Z. For this

example no ground control points were given, therefore no cor-

rection of the absolute orientation of the block was possible.

After the strip adjustment, the relative geometric quality of the

orientation of strips is expected to be better than before. There-

fore, the above mentioned quality documentation with masked

strip differences is repeated for the improved orientation. Fig. 2

(right) shows the colour coded mosaic of these strip differences,

which clearly shows the improvement over the original ones in

fig. 2 (middle). The systematic errors – especially at buildings

and steeper terrain – are reduced to a large extent. At the east-

ern border three spots with still larger errors are apparent. Since

there the surrounding areas do not show these large differences,

it hardly can be attributed to sudden non-linear manoeuvres in

the flight path of the involved strips (i.e. 7 and 8), which can not

be modelled by an affine 3D transformation of the entire strip.

A closer investigation reveals, that the terrain at these spots has

small hills where the quality of the moving planes interpolation

(in form of σZ ) is significantly worse compared to the more pla-

nar regions. However, that σZ is still below the mask threshold.

This demonstrates that the masking approach and especially the

choice of the thresholds needs to be further investigated in the

future.

The improved geometric quality is further visualized by fig. 1

(right), which shows a histogram of the combination of all 5

masked differences after the strip adjustment. Based on 505154

height differences the robust statistics are: the median is 0cm,

σ
MAD

is 1.6cm (the histogram is now clearly Gaussian); Select-

ing only the height differences between ±30cm would yield a

standard deviation of 2.7cm (based on 504899 values). The dif-

ference between the latter value and σ
MAD

is caused by some

remaining rough points of the grids which slipped through the

roughness mask. Both values, nevertheless, fit well to the σ0 val-

ues of the LSM adjustments listed in tab. 1.

6 OUTLOOK

The example showed clearly, that the relative orientation between

the strips can very well be improved by a strip adjustment – even

without using the GNSS/IMU trajectory. The presented approach

runs fully automatically and only a few user settings are required

(grid width of the strip DSM, number of points for the moving

least squares interpolation, two thresholds for the masking and

one thresholds for LSM). All of which are easy to come by.

Despite these promising results, the proposed strip adjustment

method needs to be further tested with different block setups (e.g.

turbulent flight paths or blocks over mountainous terrain). Be-

cause a strip adjustment without GNSS/IMU trajectory can not

consider the dynamics of the data acquisition, the results obtained

by the proposed method need to compared with strip adjustment

methods, that do use the trajectory, to fully understand and quan-

tize the differences between both approaches.
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