
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Applying a Model-Based Approach for
Embedded System Development

Christian Bunse, Hans-Gerhard Gross, and Christian Peper

Report TUD-SERG-2007-020

SERG



TUD-SERG-2007-020

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2007, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.



Applying a Model-based Approach for Embedded
System Development

Christian Bunse
International University

in Germany
Campus 2 / School of IT
76646 Bruchsal, Germany

Email: Christian.Bunse@i-u.de

Hans-Gerhard Gross
Software Engineering Research Group

Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands
Email: h.g.gross@tudelft.nl

Christian Peper
Fraunhofer Institute

Experimental Software Engineering
Fraunhofer-Platz 1,

67663 Kaiserslautern, Germany
Email: Christian.Peper@iese.fraunhofer.de

Abstract—Model-based and component-oriented software de-
velopment approaches are slowly superseding traditional ways
of developing embedded systems. For investigating to which
extent model-based development is feasible for embedded system
development, we conducted a case study in which a small
embedded system is developed using the MARMOT approach. In
order to evaluate the degree of reuse that might be achieved, the
components of the case study are used in the context of different
small projects. Several aspects of reuse, application size, ease of
adaptation, and development effort are quantified. This analysis
reveals that model-based and component-oriented development
performs well for small embedded systems, and it leads to the
conclusion that model-driven/component-based development of
embedded systems enables adaptable applications with higher-
than-normal reuse rate.

I. INTRODUCTION

The main motivation for applying model-driven and
component-based engineering techniques is that new appli-
cations can be created with much less effort than in tradi-
tional approaches, simply by assembling existing parts. The
principles of model-driven and component-based development
are successfully applied in hardware manufacturing (e.g., pro-
duction lines in the automotive industry). However, embedded
software systems are still afar from rapid application assembly
with components. Many embedded system projects are tar-
geted at small 8 or 16 bit processors with limited resources,
whereby the complexity of these systems is continuously
increasing. This leads engineers to applying informal but
structured development techniques including the application
of object and component technologies, and the UML [28] as
a unifying specification notation. The underlying hypothesis
is that applying such techniques will help control the com-
plexity of embedded systems, and improve maintainability,
adaptability and portability, as well as time-to-market [12].
Component-based development methods, technologies, and
tools have evolved well in the information systems domain.
However, engineers working in the embedded systems domain
do not readily exploit the effects of component technology and
modeling for an apparent reason: We believe, the disciplines
involved, mechanical-, electronic-, and software engineering,
are not in sync, a fact which cannot be attributed to any one of
these fields alone. Engineers are struggling hard to master the

pitfalls of modern, complex embedded systems, and often they
only approach the problems from their individual perspectives.
What is really lacking is a vehicle to transport the recent
advances in software engineering and component technologies
into the embedded world in a way that engineers of the three
disciplines can actually communicate and understand each
other.

This paper introduces the MARMOT development method
[4] for mastering multi-disciplinary (involving mechanical
and software engineering and electronics) embedded systems
development. It provides templates, models and guidelines for
the products describing a (software) system, and how these
artifacts are built up throughout the development process.
We introduce a case study in which we apply MARMOT
to the development, adaptation and reuse of components in
the context of a control system for a car’s exterior mirror.
We validated the expected benefits concerning reuse, time-to-
market, adaptability, etc., according to several aspects such as
number and size of models, amount of reuse, defect numbers,
etc.

Section II gives an overview on related work. Sections III
and IV describe MARMOT in detail including product and
process model. Section V presents the case study in detail
including example UML models, and Section VI presents the
evaluation of the case study and describes results obtained.
Finally, Section VII presents a brief summary, conclusions
drawn, and the hypotheses for future research.

II. RELATED WORK

Growing complexity and short release cycles of embedded
systems stimulated the transfer of model-driven development
techniques to the domain of embedded software systems.
There are two research routes: Formal modeling languages for
embedded system design, and non-formal approaches using
standard notations such as UML. Initially, formal languages
such as Z [19], functional decomposition [26], or state-based
notations [11] were used, but these approaches lack reuse
mechanisms on higher levels of abstraction. Newer develop-
ments such as MATLAB [24] or MODELICA [9] provide
tool and (additional) methodological support, but lack effective
reuse strategies and adaptation mechanisms. Recently, the

SERG Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development

TUD-SERG-2007-020 1



(a) Component meta model.
Decomposition

Composition

Abstraction

ConcretizationModel

Hardware

Source/Binary 

Code

Embodiment

C
om

po
si

tio
n

D
ec

om
po

si
tio

n

Validation

Genericity

Specialization

(b) Development dimensions.

Fig. 1: MARMOT’s product and process models.

Unified Modeling Language (UML) [28] was adapted for
modeling embedded and real-time systems, but it still lacks
precise semantics, and guidelines about its usage.

OMEGA [13], HIDOORS [32], or FLEXICON [22], or the
work presented in [7], [8], [20], [23], [30] define development
methods for real-time and embedded systems using the UML.
Although a step in the right direction, they often do not use the
enhanced features of UML 2.0, nor do they address complexity
and reuse issues. Another problem is the inadequate support
for mapping UML (2.0) models to code [15]. Developers
follow traditional approaches, and a complete transition to
object- or component technology is prevented by the required
time and space efficiency of the product, or due to standards to
be followed (e.g., DO-178B in the civil aviation domain). Em-
bedded system development would benefit from the advantages
of model-driven development (MDD) [15] if the technologies
could be integrated into existing development processes (i.e.,
keep C as target language). Most approaches and tools map
models to sophisticated languages (e.g., Java, resulting in run-
time performance, memory, or timing problems [15]), or use
straightforward mapping strategies (UML to C) that neglect
concepts such as inheritance or dynamic binding.

III. RESEARCH APPROACH

By applying MDD and component-based development
(CBD) methods, engineers expect an increase of model or
component reuse, and, thus, shorter time-to-market, improved
adaptability, and higher quality. However, introducing MDD
and CBD principles in an organization is generally a slow and
incremental procedure [21]. An organization will start with

some reusable components, and eventually build a component
repository. But they are unsure about the return on investment
gained by initial component development plus reuse for a real
system, and the impact of the acquired technologies on quality
and time-to-market. This is the motivation for performing this
case study and assessing the benefits of these techniques.

A. Research Questions

Our research questions focus on two sets of properties of
MDD in the context of component-oriented development. The
first set of questions (Q1-Q4) will lead to an understanding of
basic and/or general properties of a methodological approach
to embedded system development:

• Q1: Which process was used to develop the system?
The answer to this question will give a brief qualitative
description of the method we used for developing the
initial exterior mirror system (MARMOT, RUP, Agile).

• Q2: Which types of diagrams have been used? Are all 13
UML diagram types required, or is there a specific subset
sufficient for a domain?

• Q3: How were models transferred to source code? Devel-
opers typically follow the traditional procedural paradigm
(i.e., C) that impedes the transformation of UML concepts
into C [15].

• Q4: How was reuse applied and organized? Reuse is
central to MDD with respect to quality, time-to-market,
and effort, but reuse must be built into the process, it
does not come as a by-product (i.e., components have to
be developed for reuse).

Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development SERG

2 TUD-SERG-2007-020



The second set of questions (Q5-Q9) deals with the resulting
product of the applied MDD/CBD approach. The developed
systems are examined from a customer’s point of view, with
respect to code size, defect density of the released code, and
time-to-market.

• Q5: What is the model-size of the systems? MDD is often
believed to create a large overhead of models, even for
small projects. Model-Size is calculated by using standard
metrics as defined in [18].

• Q6: What is the defect density of the code? Defect density
is computed per one hundred lines of code.

• Q7: How long did it take to develop the systems and how
is this effort distributed over the requirements, design,
implementation, and test phases? Effort saving is one
promise of MDD and CBD [31], though, it does not occur
immediately (i.e., in the first project), but in follow-up
projects. Effort is measured for all development phases
to identify where savings are realized.

• Q8: What is the size of the resulting systems? MDD for
embedded systems will only be successful if the resulting
code size, obtained from the models, is small.

• Q9: How much reuse did take place? Reuse is central
for MDD and CBD and it must be seen as an upfront
investment paying off in many projects. Reuse must be
examined between projects and not within a project.

B. Research Procedure

The assumption is that by using a systematic method (i.e.,
MARMOT), we can obtain efficient reuse, and shorter time-
to-market. However, such claims need to be evaluated. The
benefits of MDD and CBD are only realized in follow-up
projects, so that we developed an initial mirror control system
as basis for further application engineering. Students of the
Department of Computer Science at the Technical University
of Kaiserslautern used the initial system documentation and
MARMOT as method in the context of different (small)
system development projects. The students were taught basic
software engineering principles, object-oriented development
techniques, and UML. All students had sufficient knowledge of
developing micro-controller-based applications through part-
time employment at local companies. Students knew that
data would be collected and analyzed. They were unaware
of the concrete nature of questions/hypotheses being tested.
The student projects were organized according to typical reuse
situations in component-based development, and a number of
measurements to answer the research questions of the previous
sub-section were performed. The measures are:

• Model-size measured using the absolute and relative
size measures proposed in [18]. Relative size measures,
defined as ratios of absolute measures, are used to address
UMLs multi-diagram structure as well as to deal with
completeness issues [18]. The absolute size measures
(i.e., metrics that measure numbers of elements or LOC)
used within this paper are: the number of classes in
a model (NCM), number of components in a model
(NCOM), number of diagrams (ND), and LOC. NCOM

Fig. 2: Exterior mirror control system.

describes the number of hardware and software com-
ponents within the system. NCM is used to denote the
number of software components. These metrics are com-
parable to the traditional LOC or McCabe’s cyclomatic
complexity (MVG) for estimating the size and nesting of
a system’s program code [16].

• Code-size measured in normalized LOC (i.e., without
comment and blank lines).

• System-size is measured in KBytes of the hex-file to be
flashed to the controller. All systems were compiled using
the GCC’s space optimization facilities.

• The amount of reuse is described as the proportion of
the system which can be reused without any changes or
with small adaptations (i.e., configuration but no model
change). Measures are taken at the model and the code
level and are normalized using the system size (model,
LOC).

• Defect density is measured in defects per 100 LOC
(defects collected via inspection and testing activities)

• Development effort and its distribution over development
phases are measured as development time. Since all
projects were quite small, development hours were used,
coming from daily effort sheets.

IV. OVERVIEW OF MARMOT
Reuse can be seen as a major driving force in hardware

and software development. Reuse is pushed forward mainly
by the growing complexity of systems. This section introduces
the MARMOT method that facilitates reuse in embedded
systems development. MARMOT is an extension to the KobrA
method [2], a component-based development framework for
information systems, and it adds concepts addressing the
specific requirements of developing embedded systems.

Composition is a key activity in component-based develop-
ment with MARMOT. A system is viewed as a hierarchy of
components, in which the parent/child relationship represents
composition, i.e., a super-ordinate component is composed out
of its contained sub-ordinate components. Another established
principle is the separation of interface and implementation

SERG Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development

TUD-SERG-2007-020 3



which supports independent component development, and
allows versions of a component to be exchanged. Following
those principles, each component can be described through a
suite of models (e.g., UML diagrams) as if it was a system in
its own right (see Figure 1a).

A. The MARMOT process model

The core principle of MARMOT is separation of con-
cerns, with two basic development dimensions (Composi-
tion/Decomposition and Abstraction Concretization) that map
to four basic activities (Decomposition, Embodiment, Com-
position, and Validation) [2]. These are depicted in Figure 1b
and described in the following list:

• Decomposition. A development project starts above the
top left-hand side box in Figure 1b. It represents the entire
system to be built. Before the specification of the box, the
concepts of the domain in which the system is supposed
to operate must be determined comprising descriptions
of all entities relevant in the domain such as standard
hardware components that will appear on the right-
hand side towards concretization. These implementation-
specific entities determine the way in which a system
is divided into smaller parts [10]. Decomposition deter-
mines the shapes of identified individual components in
an abstract and logical way.

• Embodiment. The system, or its parts, can then be moved
towards more concrete representations, mostly through
reusing existing components (or custom development).
There is no distinction between hard- and software com-
ponents at this early phase because all components are
treated in terms abstract models.

• Composition. The reused and implemented components
are assembled according to the abstract model, and the
subordinate boxes have to be coordinated with their re-
spective super-ordinate boxes according to the MARMOT
component model.

• Validation assesses to which extent the concrete compo-
sition of the embedded system corresponds to its abstract
description.

B. The Basic MARMOT Product Model

MARMOT follows the principles of encapsulation, modu-
larity and unique identity [31], which lead to a number of
obligatory properties:

• Composability is the primary property and it can be
applied recursively: components make up components,
which make up components, and so on.

• Reusability is the second key property, separated into
development for reuse, i.e., components are specified to
be reusable, and development with reuse, dealing with
the integration and adaptation of existing components in
a new application.

• Having unique identities requires that a component must
be uniquely identifiable within its development and run-
time environment.

• Modularity/encapsulation refer to a component’s scoping
property as an assembly of services, which is also true for
a hardware component, and as an assembly of common
data, which is true for the hardware and the software. The
software represents an abstraction of the hardware.

• An additional important property is communication ac-
cording to interface contracts which becomes feasible in
the hardware or embedded world through typical software
abstractions. Here, the additional hardware wrapper of
MARMOT realizes that the hardware communication
protocol is translated into a component communication
contract.

Composition turns a MARMOT project into a tree-shaped
structure, a containment tree, with nested component repre-
sentations. Every box in the tree is treated as a system in its
own right. It comprises a component specification, a model
defining everything externally knowable about a component,
and a component realization, a model about the internal design
of the component. Any component in a tree, represents a
containment tree in its own right and, thus, another MARMOT
project.

V. CASE STUDY

The exterior mirror control system that we used as case
study is composed of electrical and mechanical components
and control logic. It allows the mirror to be adjusted horizon-
tally and vertically into the desired position. Cars supporting
different driver profiles can store the mirror position and recall
as soon as the profile is activated. Here, we use a simplified
version for brevity of illustration. The system (Figure 2)
comprises a microcontroller, a button, two potentiometers, and
two servos. It controls the two servo-drives via two poten-
tiometers, and indicates their movement on a small LCD panel.
The micro-controller reads values from the potentiometers,
converts them to degrees, and generates the needed servo
control signals, while at the same time indicating movement
and degree on the LCD display. The system stores a position
through pressing the button for more than 5 seconds.

1) Requirements Modeling: Use cases describe the require-
ments in a textual and a graphical representation. Activity
diagrams describe the general flow of control, including a
UML representation of the target platform (see Figure 3). The
actor ’User’ initiates the task of controlling the mirror aptitude
rotation, and stores and recalls positions through the button.
The system uses an ATMega8 controller and several hardware
components.

2) System Architecture: The artifacts shown in Figure 3
represent the ’context realization’ of the mirror system. The
context is like a pseudo component realization at the root of
the development tree that embeds the system as a regular
component. Since components are identified in a top-down
manner, a component or containment hierarchy is established.
Figure 4a shows the containment hierarchy of the mirror
system in its final form.

Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development SERG

4 TUD-SERG-2007-020



Fig. 3: Requirements-level models of the mirror control system.

(a) Containment hierarchy. (b) Specification diagrams.

Fig. 4: Mirror control system.

(a) Realization diagrams. (b) Source code structure

Fig. 5: Mirror control system.

SERG Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development

TUD-SERG-2007-020 5



3) Component Modeling: Component modeling creates the
specification and realization of all software components using
class, state, interaction, and activity diagrams, as well as
operation schemata. Since timing is critical in embedded
systems, the component realization is extended by timing
diagrams. Modeling starts at the root of the containment
hierarchy, and the top-level component is specified using three
different UML models (see Figure 1a): (1) structural model,
showing with which other classes the component interacts; (2)
functional model, describing the externally visible operations
supplied by the component; (3) behavioral model, showing the
externally visible state model. Figure 4b shows the model of
the Application component. The component specification is
further decomposed to the component realization comprising
the private design of the component. It describes how the
component fulfills its requirements, throug (1) a structural
model, showing its internal class architecture, (2) an activity
model specifying the algorithms, and (3) an interaction model
showing how a group of instances collaborate to realize an
operation.

These primary artifacts can be enhanced, if needed, by
timing diagrams, or other non-functional specifications. Figure
5a depicts some of the realization models of the Application
component (interaction model, activity model, and structural
model). The models are devised for every component in the
containment hierarchy.

4) Implementation: Iteratively devising specifications and
realizations is continued until an existing component is found,
thereby targeting existing abstractions, or, until it can be imple-
mented (no reuse). Coming to a concrete implementation from
the models requires us to reduce the level of abstraction of
our descriptions. First, the containment hierarchy is simplified
according to the technical restrictions of the used implemen-
tation technology. That is through refining the containment
hierarchy and mapping it to a UML model with the source
code structure of the resulting system (shown in Figure 5b).
Second, the models are mapped to source code, either through
a code generator, or through manual mapping according to
[15]. Figure 6 shows an example code snippet for a servo
component.

5) Follow-Up Projects: Reuse can only be assessed in
follow-up projects. This is why we devised a number of
student assignments, in order to change and extend the original
mirror system, with the aim to look at the reuse situations
described in [5].

• Porting to different hardware platforms retaining its func-
tionality. We ported the system to a similar processor
(i.e., ATMega32, 32Kb Flash, 2Kb RAM, 1Kb EEPROM,
16MhZ), and to an entirely different processor (i.e., PICF,
7Kb Flash, 192Byte RAM, 128Byte EEPROM, 20MHz).
Implementing a port on the same type of processor can be
automated at the code-level, whereas, a port to a different
kind of hardware may affect the models [25].

• We implemented evolving system requirements as to (1)
remove the recall position functionality, referred to as
Adapt-), and (2) add a defreeze/defog function with a

Fig. 6: Source code for the servo component.

humidity sensor and a heater, referred to as Adapt+.
• Parts of the mirror system were reused in a door control

unit, referred to as Door, that incorporates the control of
the mirror, power windows, and door illumination. It was
realized using three controller boards, and a serial-line
communication between the controllers.

As development tools, the students used Rational Rose [29]
or ARGO UML [1] for modeling, and the AVRStudio/GCC
environment [3] for programming and debugging.

VI. RESULTS OF THE CASE STUDY

The presented case study applied the MARMOT approach
(Q1) according to the research questions stated (Section III),
whereby mapping models to code (Q3) was done manually.
We performed a number of measurements in order to get
a first impression whether maintainability, portability, and
adaptability of embedded systems, developed with MARMOT,
may be improved. Table I provides all data concerning model
and code size as well as data on quality- (e.g., defect numbers),
and process measures (e.g., effort). The figures follow the
metric definitions presented in Section III.

On first thought, the number of diagrams (ND) seems to be
quite high for such a simple example. Modeling at the spec-
ification and realization level results in several diagrams plus
textual descriptions for each component. Due to MARMOT’s
modeling principles, every component has two associated sets
of diagrams, one at the specification- and one on the realization
level. This increases the number of diagrams and creates the
impression of redundant information. However, the separation
and explicit distinction of specification and realization pro-
vides several advantages (see Sect. IV). In addition, realization

Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development SERG

6 TUD-SERG-2007-020



Project Original ATMega32 PICF Adapt- Adapt+ Door
LOC 310 310 320 280 350 490
Hex-Size (Kbytes) 4 4 4 3.5 4.5 6
Model NCM 8 8 8 6 10 10

NCOM 15 15 15 11 19 29
ND 46 46 46 33 52 64

Relative StateCharts
Classes

1 1 1 1 0.8 1
Model Operations

Classes
3.25 3.25 3.25 2.5 3 3.4

Size Associations
Classes

1.375 1.375 1.275 1.33 1.3 1.6
Reuse Reuse Fraction 0 100 97 100 89 60
in New 100 0 3 0 11 40
percent Unchanged 0 95 86 75 90 95

Changed 0 5 14 5 10 5
Removed 0 0 0 20 0 40

Effort Global 26 6 10.5 3 10 24
in Hardware 10 2 4 0.5 2 8
hours Requirements 1 0 0 0.5 1 2

Design 9.5 0.5 1 0.5 5 6
Implementation 3 1 3 0.5 2 4
Test 2.5 2.5 2.5 1 2 4

Quality Defect Density 9 0 2 0 3 4

TABLE I: Results of the case study.

diagrams are only relevant if the component cannot be reused
without modification.

It is interesting to see that porting the system to another
hardware platform, required only minimal changes to the mod-
els (e.g., UML hardware representation, ports, and the like).
Thus, MARMOT supports the MDA idea [25] of platform
independent modeling. Only in the embodiment step, models
become platform-specific. Portability of a system to different
platforms is also supported by the high amount of reuse
with minimal changes, the low effort, and the low number
of defects. Concerning the adaptation of existing systems by
adding or removing functionality, the data presented in Table
I reveals that MARMOT provides sufficient support. (1) A
large proportion of the systems could be reused from the
original system. (2) In comparison to the initial development
project (i.e., ’Original’), the effort for adaptation is low, i.e.,
26 hours initial development vs. 3 or 10 hours for the adapted
systems. (3) The quality of the final systems benefits from the
quality assurance activities carried out in the initial component
development.

The promises of component-oriented development concern-
ing time-to-market and quality could be confirmed in our
case-study. The effort for the initial system corresponds to
standardized effort distributions over development phases such
as the ones used by common cost estimation methods [6]. The
the effort for the variants is significantly lower, and it supports
the assumption that component-oriented development has an
effort-saving effect in subsequent projects. In general, porting
and adaptation activities within a component-based system
development takes place during devising the system variants.
On the one hand, our systems are very similar, which explains
why reuse works so well. On the other hand, the consistent
use of C as programming language and the encapsulation
of the hardware (i.e., using a ’Driver’ component) supports
the porting, since this requires only changing the hardware
capsule. Even if code is not generated automatically (as in

this case-study) the MARMOT component structure permits
easy localization of necessary changes and reduction of the
number of changes.

In order to investigate the development of larger systems
that reuse the original system as a whole or to a large extent,
we carried out the ’Door’ case study. Table I indicates that 60%
of the overall original mirror control system was reused in the
new door control system. The integrated mirror control system
did not require extended adaptations. The effort and defect
density was found to be higher in this case, than those of the
other mirror system variants. We could attribute this to the fact
that on top of the additional component development, major
hardware extensions and intensive quality-assurance activities
took place. When compared to the initial development effort
and quality of the product, i.e., the original mirror control
system, we can observe a positive trend supporting our as-
sumption that embedded systems can be developed quickly,
resulting in high quality.

Up to this point, we have only examined the effects of
following the MARMOT method in developing our case study.
However, it is also interesting to compare our experience,
gathered so far, with the ways other development methods
may be applied in such a setting. This is why we are
currently performing two more experiments, developing the
same system, using other methods and development teams.
In one experiment, we follow the Unified Process [17], with
a specific adaptation to embedded system development [5],
and in the second experiment, our developers follow an agile
development process according to the principles outlined in
[14]. In addition, we are interested to see whether or to which
extent exchanging personnel is going to affect the factors that
we have looked at here. Having many different people work on
the same system or components is normal in industry where
maintenance or adaptations are not necessarily performed by
the people originally involved in a project. We will have
the follow-up projects being developed by other development

SERG Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development

TUD-SERG-2007-020 7



teams in parallel.

VII. SUMMARY AND CONCLUSIONS

The case-study indicates that the promises of model-driven
and component-oriented development can also be achieved in
embedded system development. However, component-based
development projects require an upfront investment before
they pay-off. We are aware of the fact, that there may be
problems with the validity of our results impeding their
generalization. First, the developers were students, and they
may not be representative for software professionals, although
the results may be useful in an industrial context, because,
sometimes, engineers have a negative attitude towards model-
ing, in contrast to students.

Introducing a method requires a steep training curve, even
for professionals. Second, volunteers may affect the validity
of the study (i.e., selection bias), because they are motivated.
In contrast, people in companies are often afraid that new
technology takes too much of their time. These differences
between study participants and people in real organizations
may limit the generalizability of our conclusions. Finally, the
systems developed may not be representative in terms of their
size and complexity, although we regard them as indicating a
trend of possible benefits.

The growing interest in the UML provides a unique op-
portunity to increase the amount of software modeling, and
to elevate quality standards. UML 2.0 promises new ways
to apply object/component-oriented and model-based devel-
opment techniques throughout embedded system engineering.
However, this chance will be lost, if developers are not given
effective and practical means for handling the complexity of
such systems, and guidelines for systematically applying them.
This paper has outlined the UML modeling practices, which
are needed in order to fully leverage the component paradigm
in the development of software for embedded systems. Fol-
lowing the principles of encapsulation and uniformity, and de-
scribing both levels with a standard set of models, it becomes
feasible to model hardware and software components of an
embedded system with UML. This facilitates also a ”divide
and conquer” approach to modeling, in which a system unit
can be developed independently, and it permits new versions
of a unit to be interchanged with old versions, provided that
they do the same thing.

We carried out a case-study, and we are still in the process of
gathering more experimental results to assess the MARMOT
method. Quantitative and qualitative results of our study
indicate that MARMOT supports systematic reuse and thereby
reduces development effort, and improves the quality of a
software system. However, these results are only a starting
point for more elaborate validation and generalization. Besides
the extended experiments that we are currently performing,
we plan a larger controlled experiment in order receive more
experimental data.

REFERENCES

[1] ArgoUML Homepage: http://argouml.tigris.org/

[2] C. Atkinson, J. Bayer, C. Bunse, and others, Component-Based Product-
Line Engineering with UML, Addison-Wesley, UK, 2001.

[3] AVR Studio, Atmel Corp. http://www.atmel.com.
[4] C. Bunse, H.-G. Gross, Unifying Hardware and Software Components

for Embedded System Development, In: Architecting Systems with Trust-
worthy Components, R. Reussner, J.A. Staffort, C.A. Szyperski (Eds),
Lecture Notes in Computer Science, Vol. 3938, Springer, Heidelberg,
2006.

[5] M. Cantor, Rational Unified Process for Systems Engineering, the
Rational Edge e-Zine, 2003, http://www.therationaledge.com/content
/aug 03/f rupse mc.jsp.

[6] S. Cohen, Predicting when Product Line Investment Pays, Proc. of the
Second International Workshop on Software Product Lines: Economics,
Architectures, and Implications, pages 15-18, 2001.

[7] I. Crnkovic, M. Larsson (Eds.), Building Reliable Component-Based
Software Systems, Artech House, 2002.

[8] B.P. Douglass, Real-Time Design Patterns, Addison-Wesley, 2003.
[9] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1, Wiley, 2004.
[10] H.-G. Gross, Component-Based Software Testing with UML, Springer,

Heidelberg, 2005.
[11] D. Harel, H. Lachover, A. Naamad, and others, Statemate: A working

environment for the development of complex reactive systems, IEEE TSE,
16(4), April 1990.

[12] B. Heck, L. Wills, G. Vachtenavos, Software technology for Imple-
menting Reusable, Distributed Control Systems, IEEE Control Systems
magazine, February, 2003.

[13] J. Hooman, Towards Formal Support for UML-based Development of
Embedded Systems, Proc. of the 3d PROGRESS Workshop on Embed-
ded Systems, Technology Foundation STW, 2002.

[14] P. Hruschka, C. Rupp, Agile Softwareentwicklung fr Embedded Real-
Time Systems mit der UML, Hanser, 2002.

[15] M.U. Khan, K. Geihs, and others, Model-Driven Development of Real-
Time Systems with UML 2.0 and C, 3rd International Workshop on
Model-based Methodologies for Pervasive and Embedded Software at
the 13th IEEE Int. Conf. on Engineering, 2006.

[16] H. Kim, C. Boldyreff, Developing software metrics applicable to UML
models, Proc. of the 6th ECOOP Workshop on Quantitative Approaches
in Object-oriented engineering, Malaga, Spain, June 2002.

[17] P. Kruchten, The Rational Unified Process - An Introduction, 2nd edition,
Addison-Wesley, 2000.

[18] C.F.J. Lange, Model Size Matters, Workshop on Model Size Metrics,
2006 (co-located with the ACM/IEEE MoDELS/UML Conference);
October, 2006.

[19] K. Lano, Formal Object-Oriented Development. Springer, 1995.
[20] L. Lavagno, G. Martin, B. Selic (Eds.), UML for Real Design of

Embedded Real-Time Systems, Kluwer, 2003.
[21] J. Li, R. Conradi, P. Mohagheghi and others, A Study of Developer

Attitude to Component Reuse in Three IT Companies, 5th Int. Conference
Product Focused Software Process Improvement, PROFES 2004, Japan,
2004.

[22] M. Marcos, E. Estvez, U. Gangoiti and others, UML Modeling of
Industrial Distr. Control Systems, Proc. of the 6th Portuguese Conf. on
Automatic Control, Portugal, 2004.

[23] P. Marwedel, Embedded System Design, (Updated Version), Springer,
2006.

[24] The MathWorks, Inc., Simulink Reference, 2005,
http://www.mathworks.com.

[25] J. Miller, J. Mukerji, MDA Guide 1.0, omg/03-05-01, 2003
(http://www.omg.org/).

[26] H.D. Mills, V.R. Basili, J.D. Gannon and others, Principles of Computer
Programming: A Mathematical Approach. Allyn and Bacon Inc., 1987.

[27] A. Mockus, R.T. Fielding, J. Herbsleb, A Case Study of Open Source
Software Development: The Apache Server, Proc. of the 22nd Interna-
tional Conference on Software Engineering, Limerick Ireland, 2000.

[28] Object Management Group, UML 2.0 Super-structure Specifica-
tion, OMG document formal/05-07-04, 2005, http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

[29] Rational Rose, http://www.rational.com.
[30] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented Modeling,

John Wiley & Sons, 1994.
[31] C. Szyperski, Component Software. Beyond Object-Oriented Program-

ming, Addison-Wesley, 2002.

Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development SERG

8 TUD-SERG-2007-020



[32] J. Ventura, F. Siebert, and others, HIDOORS - A High Integrity Dis-
tributed Deterministic Java Environment, Proc. of the 7th Int. Workshop
on Object-Oriented Real-Time Dependable Systems, USA, 2002

SERG Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development

TUD-SERG-2007-020 9



Bunse, Gross, Peper – Applying a Model-Based Approach for Embedded System Development SERG

10 TUD-SERG-2007-020





TUD-SERG-2007-020
ISSN 1872-5392 SERG


