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Abstract

Among the many related issues of diabetes management, its complications constitute the

main part of the heavy burden of this disease. The aim of this paper is to develop a risk advi-

sor model to predict the chances of diabetes complications according to the changes in risk

factors. As the starting point, an inclusive list of (k) diabetes complications and (n) their cor-

related predisposing factors are derived from the existing endocrinology text books. A type

of data meta-analysis has been done to extract and combine the numeric value of the rela-

tionships between these two. The whole n (risk factors) - k (complications) model was bro-

ken down into k different (n-1) relationships and these (n-1) dependencies were broken into

n (1-1) models. Applying regression analysis (seven patterns) and artificial neural networks

(ANN), we created models to show the (1-1) correspondence between factors and compli-

cations. Then all 1-1 models related to an individual complication were integrated using the

naïve Bayes theorem. Finally, a Bayesian belief network was developed to show the influ-

ence of all risk factors and complications on each other. We assessed the predictive power

of the 1-1 models by R2, F-ratio and adjusted R2 equations; sensitivity, specificity and posi-

tive predictive value were calculated to evaluate the final model using real patient data. The

results suggest that the best fitted regression models outperform the predictive ability of an

ANNmodel, as well as six other regression patterns for all 1-1 models.

Introduction

Diabetes is spreading all around the world as an unprecedented epidemic: in 2011, 366 million

people had diabetes and by 2030 this will have risen to 552 million (8.3% compared to 9.9% of

the adult population, respectively) [1].

Among many related issues of diabetes management, its complications constitute the main

part of the heavy burden of this disease. They represent around 60% of direct and almost 80–

90% of the indirect related costs [2]. These complications can be prevented if the treatment
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starts before the development of non-reversible clinical symptoms. This means that predicting

them is essential in order to intervene successfully. E.g. early detection and proper treatment of

diabetes can prevent up to 90% of blindness, at least 50% of kidney failure and nearly 80% of

amputations [3].

Diabetes and its complications have been well studied over the past 20 years and a great deal

of energy has been put into guidelines, best practice, optimization of care and other manage-

ment methods to improve outcomes. However, compliance with the recommended preventive

care for diabetic patients has been low [4, 5]. The discrepancy between what is known and

what is done in diabetes care indicates that better knowledge management is necessary in order

to improve results through sharing and making use of the information. Several studies have

documented a significant gap between actual clinical practice and optimal patient care. For ex-

ample, in a systematic review of the quality of health care in the United States, Schuster et al.

found that only about 60% of patients received recommended care for chronic conditions [6].

Because of this, computer-based clinical reminder systems are often seen as an effective strate-

gy to promote preventive procedures generally and in diabetes management, in particular [7–

10]. These facts justify the development of an advisory tool to help in the early and prompt de-

tection of diabetes complications.

This paper presents the model development for predicting the complications of diabetes by

systemically assessing the current literature on clinical trials. We gathered the results of the pre-

viously conducted surveys. Each survey has studied a number of patients during a period of

time to investigate the quantitative relationships between a series of diabetic risk factors and

complications. Using the results of these studies enabled us to build a model based on the infor-

mation from more than 450,000 patient/years. In the end, the real data of 84 diabetic patients

from one of the largest Australian longitudinal population-based studies (AusDiab [26]) has

been used in order to externally validate the final model.

Background

Since diabetes is a multi-factorial disease which is regulated by multiple genes and a number of

environmental factors, there is a need for predicting complications in order to reduce the eco-

nomic and social burden of the disease [11].

Computerized decision tools in diabetes
Apart from the broad categories of the use of medical informatics in the health care area, its

main applications with regard to diabetes have been grouped into three major categories: the

prompting of diabetes care, insulin dose adjustment and patient education [9, 12]. There have

been expert systems and decision support systems (DSS) to advise on patient management,

computer algorithms and artificial intelligence to regulate insulin dosage, and a range of math-

ematical models as well as approaches drawing upon optimal or adaptive control [13–16] in

order to manage the disease more effectively and decrease the burden of its complications.

Problem with current decision tools
There are limitations, however, which are common to all of these models. Firstly, it would not

be possible to add any new risk factor to the model which was not considered at the time of the

initial study. In addition, all models are created based on a specific population that makes it

hard to generalize to others. The last but not the least limitation is, most of the existing systems

use different risk factors to predict only a single complication, not all complications.

The literature shows no decision tools to individually predict the absolute risk of all diabetes

complications using individual patient data. The main reasons for failure and the difficulty of
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designing a beneficial decision system are inadequate usable data at hand and an over-empha-

sis on technology [17]. In order to implement an empirical tool to predict absolute risk of dia-

betes complications, these two obstacles must be overcome. Sufficient reliable data must be

gathered and correctly structured methods must be applied.

This study was approved by the Human Research Ethics Committee at the University of

Wollongong.

Methodology

The overall goal of this paper is to design a predictive risk advisor by modelling the relation-

ships between diabetic predisposing factors and their related complications. Because creating

a final n-k model for all risk factors and complications is very complicated, diabetic retinopa-

thy—and this includes any kind of diabetic retinopathy (DR), non-proliferative diabetic

retinopathy (NPDR) and proliferative diabetic retinopathy (PDR)—as well as diabetic ne-

phropathy, which includes both microalbuminuria and macroalbuminuria, are selected as

diabetic complications. Among all the related predisposing factors for these complications,

duration of disease and HbA1c for both groups, and albumin exertion rate (AER) and blood

pressure control (BP) for each group, respectively, are investigated. As a prerequisite, the rela-

tionship between selected risk factors and complications needs to be extracted through a sec-

ondary research approach and then, the data is presented in table format.

Another specific goal of this research is to design an innovative procedure to break down

the final model into simpler steps, including modelling the relation between one risk factor and

one complication (step 1), modelling the relation between n risk factors and one complication

(step 2), modelling the relation between n risk factors and k complications (step 3) and then

identifying the most reasonable methods and empirical techniques for modelling each step.

Fig 1 presents an outline of these steps.

This model uses individual patients’ current and previous data as its input and estimates the

relative risk of each diabetic complication as its output. Having created the final model, physi-

cians and other healthcare workers can thus predict the probability of complications by observ-

ing patients’ individual data, and this will result in better management of

diabetic complications.

Classification is a form of data analysis technique that can be used to extract models describ-

ing important data classes and predict future data trends. There are several popular techniques

that dominate tools for classification and prediction including neural networks (NNs), naïve

Bayes, Bayesian networks, decision trees (C4.5), association rules and support vector machines

(SVMs). Some of these techniques may be used for both prediction and classification, while

others have been used specifically for classification. We have used some of the abovementioned

methods for classification and predictions. There have been numerous comparisons of the dif-

ferent prediction and classification methods but no single method has been found to be superi-

or to all others for all data sets [18, 19]. Issues such as accuracy, training time, robustness,

interpretability and scalability must be considered and can involve tradeoffs, further complicat-

ing the quest for an overall superior method. Empirical studies show that the accuracy of many

algorithms is so similar that their differences are statistically insignificant [20–22].

Least square regression and artificial neural networks have been chosen for the first step.

The naïve Bayes is selected as a classifier for the second step as it can deal with the independent

factors. The naïve Bayesian classifier assumes class conditional independence. When the as-

sumption holds true, it is the most accurate compared with all other classifiers. The Bayesian

network has an appealing, transparent and intuitively clear structure which can be visualised

graphically. In addition, because all relations between variables are described by the rules of
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probability, there are no assumptions made by the method. A Bayesian network is, therefore,

used to illustrate the relation among all the risk factors and diabetic complications. Finally, the

accuracy of the model is evaluated by applying real patients’ data from the Australian diabetes,

obesity and lifestyle study (AusDiab), the largest Australian longitudinal population-based

study [23].

Data preparation
There are two central tasks for data preparation in this research.

Data gathering. First of all, a knowledge base is created, which uses some knowledge re-

presentation structures to capture the knowledge of the experts. This knowledge has been gath-

ered from secondary data. Although the principal methodology in medical secondary research

is systematic review, commonly using meta-analytic statistical techniques, there are three gen-

eral categories of research objectives: fact-finding, model building and database marketing [24]

and from these, in our approach, we have chosen to use secondary data for model building,

which involves specifying the relationships between two or more variables.

We examined the many surveys which have been conducted to investigate the relation be-

tween previously mentioned diabetic risk factors and complications to find relevant studies

and collate their results. For that, available related knowledge was gathered from peer reviewed

publications on clinical trials, meta-analysis and the Cochrane review fromMedline, Cinahl,

federated database searches and diabetes management guidelines published from 1981 to 2012.

We also systematically searched the reference lists of included studies and of relevant reviews

Fig 1. A perspective of system development steps.

doi:10.1371/journal.pone.0121569.g001
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for potential studies. The results of surveys provided an inventory of knowledge on which to

base our models. Three independent reviewers examined all titles of the resulting articles and

rated each paper as ‘potentially relevant’, ‘of doubtful relevance’ or ‘not relevant’. Then the pro-

cess was repeated for the first two groups by reviewing the abstracts and then the full-text ver-

sions and all ‘not relevant’ studies were omitted from the research. The chosen surveys were

reviewed and the final results of every survey were taken out. The results from this review work

were coded in Nvivo8 (a qualitative data analysis computer software package produced by QSR

International) to manage and analyse associations and themes among diabetes predisposing

factors and complications.

Data conversion. When secondary data are reported in a format that does not exactly

meet the researcher’s needs, data conversion is necessary. All the various kinds of expressed

data had to be converted into clear and concise records, with every record representing a rela-

tionship between one specific risk factor and one complication. Records had to be created in a

format capable of being drawn on a scatter graph in order for us to be able to fit a curve on the

scattered points. Therefore, data expressions had to be paraphrased into a table format as

shown in Table 1.

The reason for the choice of the ‘from-to’ format was to take into consideration the fact that

the research has independently studied the relation between factors and complications. In

other words, these tables are designed in a three-dimensional format in order to make data as

clear as possible, but later on could be used as two-dimensional records. This format shows by

how much the probability of a specific complication will change, if, independent of all other

factors, the value of a specific risk factor changes.

Some studies express their observations exactly in our desired format. For instance, accord-

ing to the DCCT research group [25], ‘A reduction in HbA1c from 11 to 9.9% yields a reduc-

tion in risk of retinopathy progression from 10.78 to 4.21 cases per 100 patient-years. In

contrast, a reduction from 8 to 7.2% yields a reduction in risk from 2.43 to 1.48 cases per 100

patient-years’. Most of the studies, however, express their results in other formats. Some report

only the change in severity occurring in a complication, but the absolute probability of that is

not known. In such cases, by having the risk percentage of the first point, the risk percentage of

other points could be calculated easily as the factors of change are available. A number of these

studies demonstrate the changes in graphical representations, but the data from these needed

to be extracted and presented in the format we needed.

Applying prediction methods to make 1–1 relation models
The ultimate purpose of this step is to predict the probability of complications. Artificial neural

networks (ANN) and least square regression analysis are two common techniques for making

a prediction model based on observed data [26, 27]. These are the tools which have been used

to create the models in this study.

Artificial Neural Networks (ANNs). ANNs can be trained to predict numerical values

such as probability, expected values, etc. This allows the systems to learn from past experience

(examples) to recognize patterns in the gathered data. The system becomes more efficient with

known results for large amounts of data [28]. Among the various neural network models, back

Table 1. Format of the records to show the relationship.

Factor Complication

From (value) To (value) From (risk percentage) To (risk percentage)

doi:10.1371/journal.pone.0121569.t001
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propagation is the best general-purpose model and probably the best at generalization [29]. It

is a supervised learning scheme by which a layered feed-forward network is trained to become

a pattern-matching engine. The ANN takes a dataset and tries to combine the 'inputs' (factor

value) in such a way as to model the 'output' (percentage of risk of the complication). These

models can then be used on new data to predict what the output is likely to be for a given set of

inputs. In this study we use the software application Tiberius [30].

Least square regression analysis. By far, the most widely used approach for numeric pre-

diction is regression. In fact, many texts use the terms ‘regression’ and ‘prediction’ synony-

mously [31]. The objective of regression analysis is to determine the model that can best relate

the output variable to various input variables. To produce the model using regression tech-

nique, a pattern which is likely to fit the data must be chosen first. There is a variety of patterns

that might fit the observed data appropriately. Seven different patterns, i.e. linear, logarithmic,

quadratic, cubic, power, s and exponential, have been chosen as the best options. SPSS 20 [32]

is the software used in this study.

Applying naïve Bayes to make n-1 relation models
Applying above mentioned methods, we would have a series of predictive models that indicate

the relationship between each factor/complication pair. As we know, however, each complica-

tion is affected by a variety of factors. In order to see the effect of all risk factors on a single

complication, we need to integrate all models created for that specific complication. For exam-

ple, retinopathy is affected by HbA1c, albumin excretion rate and the duration of the diabetes.

For every one of these factors a 1–1 model is created and then the models are integrated to

make a 3–1 model which shows the effect of all the factors together on the risk of retinopathy.

Because of the three dimensional data set tables (‘from-to’ format), every one of these models

estimates the probability of retinopathy separately and independently of other factors.

In order to create n-1 models, we use the classification method. For each model, two classes

are defined. Class one is to have that complication and the other class is lacking of that compli-

cation. The proposed model should be able to classify a new patient into one of these groups by

observing his/her risk factors. Each n-1 model observes n factors of a patient and estimates

how probable it is that s/he would be assigned to either of the two groups. In this study, naïve

Bayes is selected as a classifier to create the models because it can deal with the

independent factors.

Naïve Bayes. A naïve Bayesian classifier is a simple Bayesian classifier with strong inde-

pendence assumptions. In simple terms, naïve Bayes assumes that the effect of an attribute

value on a given class is independent of the values of the other attributes (class conditional

independence).

Let X be a patient’s data set, which is described by a set of n attributes f (f1, f2,. . ., fn). Let H

be a hypothesis such as ‘patient X belongs to complication class C’. For classification, we want

to determine P(H|X). Bayes’ theorem is useful in that it provides a way of calculating the poste-

rior probability,P(H|X), from P(H), P(X|H) and P(X).

Bayes’ theorem is

PðHjXÞ ¼
PðXjHÞ PðHÞ

PðXÞ

Bayes’ theorem is used in the naïve Bayesian classifier in the following way. Suppose that

there arem classes of complication C (C1, C2,. . ., Cm). Given a patient’s data set, X, the classifi-

er will predict that X belongs to the complication class having the highest posterior probability,

conditioned on X. That is, the naïve Bayesian classifier predicts that patient X belongs to class

Predictive Model for Diabetes Complications
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Ci if and only if

PðCijXÞ > PðCjjXÞ for 1 � j � m; j 6¼ i

Thus we maximize P(Ci|X) [31]. By Bayes’ theorem

PðCi jXÞ ¼
PðX jCiÞ PðCiÞ

PðXÞ

Since P(X) is constant for all classes, only P(X|Ci) P(Ci) needs to be maximized. We compute

the prior probabilities of the class P(Ci) as

PðCiÞ ¼
Number of patients in the class

Total number of patients

Because the computation of P(X|Ci) is extremely complex, especially for large data sets, the

naive assumption of class conditional independence between attributes f is made. This pre-

sumes that the values of attributes f are conditionally independent of one another, given the

complication class label of the patient. So,

PðXjCiÞ ¼
Y

n

k¼1

PðfkjCiÞ ¼ Pðf
1
jCiÞ � Pðf

2
jCiÞ � . . .� PðfnjCiÞ

As illustrated in the above equation, to calculate P(X|Ci), the values of P(fk|Ci) are needed.

The 1–1 models created in the previous phase equals P(Ci|fk) as they estimate the probability of

a complication class (Ci) on condition of observing a specific amount of a particular risk factor

(fk). To calculate the value of P(fk|Ci) from P(Ci|fk) using the Bayes' theorem, we have

PðfkjCiÞ ¼
PðfkÞ

PðCiÞ
� PðCijfkÞ

Classes priors, P(fk) and P(Ci) can be approximated with relative frequencies from the train-

ing data set:

PðfkÞ ¼
Number of patients with specific value of the factor fk

Total number of patients

PðCiÞ ¼
Number of patients in the class

Total number of patients

In calculating the probabilities of P(fk) and P(Ci) the patients should be counted only from

those studies which are used to make the 1–1 models, but since we are using secondary data

and there is no access to all original data-bases, we are obliged to use the data-base of the largest

Australian longitudinal population-based study, AusDiab [23], instead.

The final product of this phase is determining the maximized class Ci, to which patient X be-

longs on condition of observing attributes f1 to fn. This is an n-1 model as it points out how n

factors affect a single complication.

Table 2 illustrates the observed information of one patient as an example to make an n-

1 model.

Table 2. An example of observed information from a patient.

HbA1c AER Duration of disease Retinopathy risk

7.8 21 8 ?

doi:10.1371/journal.pone.0121569.t002
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p(Ret|HbA1c, AER, Duration) shows the 3–1 model to be created. Using the observations,

we have to estimate the following probability:

pðRet ¼ yesjHbA1c ¼ 7:8; AER ¼ 21; Duration ¼ 8Þ

¼ pðret ¼ yesÞ � pðHbA1c ¼ 7:8jRet ¼ yesÞ � pðAER ¼ 21jRet ¼ yesÞ

� pðDuration ¼ 8jRet ¼ yesÞ

For each factor we calculate the probability of p(Fi|Ret = yes). For instance for HbA1c we

have:

pðHbA1c ¼ 7:8jRet ¼ yesÞ ¼
pðHbA1c ¼ 7:8Þ

pðRet ¼ yesÞ
pðRet ¼ yesjHbA1c ¼ 7:8Þ

p(Ret = yes|HbA1c = 7.8) is calculated by using the 1–1 model created in the previous phase.

p(Ret = yes) and p(HbA1c = 7.8) are calculated simply by using AusDiab data, as mentioned in

Section 3.3.1. For that we need to calculate p(Ret = yes) and p(HbA1c 2 ]7, 8]) in all diabetic pa-

tients. We performed this calculation for all risk factors and complications which are selected

in this study. Then, p(Ret = yes|HbA1c = 7.8, AER = 21, Duration = 8) can be calculated once

all probabilities are available.

Applying a Bayesian network to make an n-k relation network
Unlike naïve Bayesian classification (which assumes class conditional independence), Bayesian

belief networks allow class conditional independencies to be defined between subsets of vari-

ables. Bayesian networks [33] are particularly good at providing a powerful and conceptually

transparent formalism for probabilistic modelling and they are typically well suited for repre-

senting medical knowledge.

A Bayesian network is a directed acyclic graph (DAG) on which a probability distribution is

overlaid. The nodes of the graph represent random variables or events. Each variable consists

of a finite set of mutually exclusive states. It is possible for variables to have a continuous state,

representing a numerical value, but there are several limits on their use, so we convert continu-

ous variables into discrete ones. The directed links between variables in the graph represent

causal relationships.

Each variable has a conditional probability table (CPT) associated with it. Variables with no

parents (risk factors) do not have any probability table as they are observed in the patient. Vari-

ables with parents (complications) have conditional probability tables, which give a probability

distribution for every combination of states of the variable’s parents.

There is a wide variety of Bayesian network software programs available [34]. One of the

most popular commercial programs in this area is Netica [35], from Norsys Software Corp,

which is used in this study. It provides a simple graphical user interface that can be used for

both creating and running a network.

Building a Bayesian network involves three major steps. First, the set of relevant variables

and their possible values must be decided. Next, the network structure must be built by con-

necting the variables into a DAG. Finally, the CPT for each network variable must be defined.

Constructing the graphical model. To construct a Bayesian network, the hypothesis vari-

ables should be determined first. These are variables for which the probability distribution is to

be calculated. In this study the hypothesis variables are complications. Next, evidence variables

are added. These variables represent the factors that will be observed in patients. Once ob-

served, these variables allow the information to be entered into the network. The network is

formed by linking these variables using directed edges (arrows).

Predictive Model for Diabetes Complications
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Constructing the probability tables. Each complication has a table which shows its prob-

ability for various degrees of different risk factors. The tables are filled by using the 1–1 and n-1

models created in previous phases. To deal with continuous values, we convert them into dis-

crete variables by defining a range for each group. The probability of the complication will be

calculated for all possible states of risk factors and will be entered into the table. Table 3 is an

example which shows how the probability of retinopathy is determined by different values of

HbA1c, blood pressure, diabetes duration, BMI and smoking.

Model validation
Validation is an important stage in a system’s development. Although several evaluation theo-

ries have been developed for application in different fields of expert systems in medicine, there

is no consensus on the best way to evaluate advice from expert systems in diabetes [36].

Evaluation of gathered data. One of the disadvantages of secondary data is that the user

has no control over their accuracy. Research conducted by others may be biased to support the

vested interest of the source. If the possibility of bias exists, the secondary data should not be

used. If the accuracy of the data cannot be established, the researcher must determine whether

using the data is worth the risk.

We accepted data from reliable studies such as the Diabetes Control and Complications

Trial and follow-up Study (DCCT) and the United Kingdom Prospective Diabetes Study

(UKPDS). Nevertheless, we assessed the reputation of the journals or conferences which pub-

lished the data and finally we did cross-checks of data, that is, the comparison of data from one

source with data from another source to determine the similarity of independent projects.

1–1 model comparison and testing. The accuracy of a predictor refers to how well a given

predictor can guess the value of the predicted attribute for new or previously unseen data.

It is important that we assess how well the model fits the actual data. We do this because

even though this model is the best one available, it can still be a bad fit to the data. This is easily

calculated by R2:

R2 ¼
SSM ðmodel sum of squaresÞ

SST ðtotal sum of squaresÞ

A second way of assessing the model is through the F-test. F is based upon the ratio of the

improvement due to the model (SSM) and the difference between the model and the observed

data (SSR). Actually, because the sums of squares depend on the number of differences that we

have added up, we use the average sums of squares (‘mean squares’ or MS). To work out the

mean sums of squares, we divide by the degrees of freedom. For SSM, the degrees of freedom

are simply the number of variables in the model, and for SSR (residual sum of squares) they are

the number of observations minus the number of parameters being estimated. The result is the

mean squares for the model (MSM) and the residual mean squares (MSR).

F ¼
MSM
MSR

It is important to know that the F-ratio tells us how much variability the model can explain

relative to how much it cannot explain. A good model should have a large F-ratio (greater than

1 at least).

Table 3. Format of the probability table for retinopathy.

HbA1c Blood pressure Diabetes duration BMI Smoking Retinopathy Risk

8–9 110–120 10–15 15–18.4 Sometimes 54%

7–8 130–140 0–5 22.9–27.5 No 46%

doi:10.1371/journal.pone.0121569.t003
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As a second part of this step, we have to assess how well our model can predict the outcome

in a different sample. To test whether the model can generalize, we can look at cross-validating

it. Assessing the accuracy of a model across different samples is known as cross-validation. In

this research, not only are the values of R2 calculated, but also an adjusted R2. This adjusted

value indicates the loss of predictive power. Whereas R2 tells us how much of the variance in Y

is accounted for by the predictive model from our sample, the adjusted value tells us how much

variance in Y would be accounted for if the model had been derived from the population from

which the sample was taken. SPSS derives the adjusted R2 using Wherry’s equation [37]. This

equation, however, has been criticized because it tells us nothing about how well the regression

model would predict an entirely different set of data. One version of adjusted R2 that does tell

us how well the model cross-validates uses Stein’s formula [38] which is:

adjusted R2 ¼ 1�
n� 1

n� k� 1

� �

n� 2

n� k� 2

� �

nþ 1

n

� �� �

ð1� R2Þ

In Stein’s equation, R2 is the unadjusted value, n is the number of participants and k is the

number of predictors in the model.

In addition, there is an independent errors assumption in regression, which means that for

any two observations the residual terms should be uncorrelated (or independent). This eventu-

ality is sometimes described as a lack of ‘autocorrelation’. This assumption can be tested with

the Durbin–Watson test, which tests for serial correlations between errors. The test statistic

can vary between 0 and 4, with a value of 2 meaning that the residuals are uncorrelated. As a

general rule, results between 1.5 and 2.5 imply independent errors [39].

n-1 and n-k model validation. Suppose that one has a data set including 10 positive and

90 negative samples. A simple decision model which classifies all the instances as negative

would represent 90% accuracy, whereas it could not correctly predict any positive instance.

From a medical point of view, a misclassified negative is the most critical decision, because the

patient would not have appropriate medical care in that case. One also needs to reduce the

number of misclassified positives, however, which leads to unnecessary additional physical ex-

amination or treatment. For classifiers, sensitivity, specificity and positive predictive value are

useful alternatives to the accuracy measure.

Sensitivity is the proportion of positive samples that are correctly identified, while specificity

is the proportion of negative samples that are correctly identified.

Sensitivity ¼

P

True Positive
P

All Positive

Specificity ¼

P

True Negative
P

All Negative

In addition, we may use positive predictive value or precision to access the percentage of

samples labelled as a ‘class’ that actually are in that ‘class label’ group.

Positive predictive value ¼

P

True Positive
P

Model outcome Positive

We use the real data of diabetic patients from the AusDiab research study to validate our

final model. For that, we define several cut-off points to convert the continuous probability of

each diabetes complication into two discrete groups (yes or no) and then calculate all men-

tioned measures for the model.
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Results

Gathered knowledge
NVivo8 is used to organize and analyse associations and themes related to predisposing factors

and chronic complications. Detailed descriptions of that have been included in a previous re-

port [40]. In brief, both chronic diabetes complications and diabetes predisposing factors have

been classified hierarchically by 27 and 47 nodes, respectively, based on existing endocrinology

text books [41–43]. The two are connected by 126 relationships, categorized into three different

types: ‘is a cause for’, ‘prevents from or decreases’ and ‘are the same’. All these nodes and rela-

tionships are supported by more than 590 identified facts from 99 different sources including

47 prospective or retrospective longitudinal studies (containing more than 450,000 patient/

years observations) and also 21 cross-sectional studies (containing more than 22,500 cases).

(Details are available in the supplementary files)

Codified knowledge
Next, data tables were created based on the format explained in Table 1. As mentioned, the rea-

son we chose the ‘from-to’ format was to take into consideration the fact that the research has

independently studied the relation between factors and complications, but here we use them as

two-dimensional records. Table 4, as an example, shows a dataset of the relation between

HbA1c and non-proliferative diabetic retinopathy (NPDR).

Mean arterial pressure (MAP) is used to represent the blood pressure level, applying this

equation:

MAP ffi DP þ
1

3
ðSP � DPÞ

where SP and DP are systolic and diastolic pressures, respectively.

Table 4. A dataset showing the relation between HbA1c and NPDR.

HbA1c level Risk of NPDR

6.8 14.5

6.95 3

7.85 20

7.95 3.8

8 14

8.95 7.1

9.2 27

9.5 20

9.9 27

9.95 7.9

10.5 9.9

10.55 28

11.7 51

12 32

13 32

13.7 40

doi:10.1371/journal.pone.0121569.t004
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1–1 Relation Models
In order to create the 1–1 models, all 15 data tables are used to perform curve fitting. We devel-

op models using two different software applications, Tiberius [30] and SPSS [32], which work

based on ANN and least square regression, respectively.

Artificial neural networks (ANNs). The ANNmodel produced by the software based on

dataset Table 4 (between HbA1c and NPDR) is presented in Fig 2 as an example.

Table 5 shows the statistical indices of ANN patterns for all dataset tables.

Regression analysis. Seven different types of regression model, i.e. linear, logarithmic,

quadratic, cubic, power, and exponential, have been chosen to build the data fitting model for

scatter graph illustrated in Fig 3. We entered all dataset tables in SPSS.

Fig 2. Themodels made by the neural network (HbA1c-all).

doi:10.1371/journal.pone.0121569.g002

Table 5. The statistical indices of ANN patterns.

Related data table Std. Error of the Estimate R R Square

HbA1c-PDR 9.288 0.748 0.560

HbA1c-NPDR 9.016 0.735 0.540

HbA1c-DR 13.317 0.739 0.546

HbA1c-Micro 8.147 0.796 0.633

HbA1c-Macro 4.391 0.693 0.480

Dur-PDR 10.522 0.792 0.628

Dur-NPDR 9.509 0.898 0.807

Dur-DR 16.254 0.854 0.729

Dur-Micro 8.516 0.411 0.169

Dur-Macro 2.730 0.961 0.924

BP-Micro 9.850 0.523 0.273

BP-Macro 3.977 0.681 0.464

AER-PDR 6.515 0.931 0.866

AER-NPDR 8.657 0.741 0.549

AER-DR 9.819 0.865 0.748

doi:10.1371/journal.pone.0121569.t005
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Fig 4 shows the scatter graph along with plots of the selected best fitted function to the set of

data values among all seven patterns for the HbA1c-Micro set of data.

SPSS calculates the values of parameters for all mentioned patterns to achieve the functions.

Table 6 is an example showing the statistical indices of these seven patterns for HbA1c-Micro

dataset tables. The highlighted row in the table indicates the selected best fitted function to the

set of data values among all seven patterns.

n-1 relation models
By using the naïve Bayes theorem we can calculate the probability of a complication by observ-

ing the risk factors of a patient.

n-k relation models
In this phase the final model is developed as a network which shows how risk factors and com-

plications affect each other. Firstly, the Bayesian network should be constructed.

Fig 3. A scatter graph between HbA1c level and risk of PDR.

doi:10.1371/journal.pone.0121569.g003
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Graphical model. First, the factors and complications are drawn in circles. Then, we use

the relationships created by Nvivo8 to link the variables by directed edges. As illustrated in Fig

5, all complications are directed by all factors. Retinopathy is affected by microalbuminuria

and macroalbuminuria, as two complications.

Fig 4. The best fitted function (quadratic) to the HbA1c-Micro set of data.

doi:10.1371/journal.pone.0121569.g004

Table 6. Statistical indices of selected seven patterns for HbA1c-Micro data table.

Models R R Square Wherry’s Adjusted R Square Std. Error of the Estimate F-ratio Sig

Linear 0.804 0.647 0.639 8.166 85.961 < 0.001

Logarithmic 0.761 0.579 0.570 8.911 64.662 < 0.001

Quadratic 0.834 0.695 0.681 7.671 52.350 < 0.001

Cubic 0.835 0.697 0.676 7.732 34.444 < 0.001

Power 0.642 0.412 0.400 0.527 32.946 < 0.001

S 0.597 0.357 0.343 0.551 26.045 < 0.001

Exponential 0.666 0.444 0.432 0.512 37.560 < 0.001

doi:10.1371/journal.pone.0121569.t006
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Constructing the probability tables. As mentioned before, each complication has a table

which shows its probability for various amounts of parental risk factors. This table consists of

rows that are combinations of all possible states of all risk factors. So, the number of rows is

equal to multiplying the number of states of all factors together. For each row, the probability

of complication is calculated by using an n-1 model as explained in the previous phase. Fig 6

and Fig 7 illustrate a piece of the probability table of the complications DR and

macroalbuminuria, respectively.

Using the network. Once the probability table of each complication is created, the net-

work is ready to be compiled. The compiled network is able to get risk factors as input

Fig 5. Bayesian network created by factors and complications.

doi:10.1371/journal.pone.0121569.g005

Fig 6. A piece of probability table for DR.

doi:10.1371/journal.pone.0121569.g006
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(observation) and estimate the probability of all complications. This network is bringing n risk

factors and k complications together, so it is called the n-k model. Fig 8 shows the compiled

network calculating the probability of complications for the patient in Table 6.

Fig 7. A piece of probability table for macroalbuminuria.

doi:10.1371/journal.pone.0121569.g007

Fig 8. A Bayesian network calculates the probability of complications for a patient.

doi:10.1371/journal.pone.0121569.g008
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Model evaluation
Model comparison and testing. We applied the Durbin-Watson test for all six dataset ta-

bles and all the results were between 1.5 and 2.5, which implies the existence of independent er-

rors [39]. Then, using R-squared, it can be clearly seen that the best selected regression models

fit the data in all 15 dataset tables better than ANN, as well as the other six regression patterns

(Table 7).

n-1 and n-k model validation
Validation is a measurement of correctness in a real environment or by means of real data. In

order to validate the final model, we randomly selected several samples of diabetic patients’

data from the AusDiab research study. For that, 84 random cases have been selected and their

model estimated risk of complications was compared with their real outcomes and then com-

puted the sensitivity, specificity and precision rate of model for all five complications. Five dif-

ferent cut-off points (60%, 70%, 80%, 90% and 100%) have also been considered, in order to

translate the percentage of complication probability into their presence or absence. The aver-

ages for sensitivity, specificity and precision were 80%, 85% and 60%, respectively. Except for

NPDR, the best cut-off point for all complications was 100%, while it was 60% for NPDR risk

prediction (Table 8).

Conclusion and Discussion

Early and appropriate intervention in diabetes is able to reduce the rate of complications, to

prolong life expectancy and to reduce the financial cost [44]. The most common predictive risk

assessment models for diabetes complications, however, are not able to deal with all the major

complications, but are mainly focused on cardiovascular diseases, coronary heart disease and

diabetic retinopathy [45]. In most of these studies only relatively simple statistical approaches,

such as additive scores or logistic regression assuming independence between variables, have

been applied [46].

Table 7. Statistical details of ANN and the best fitted regression models.

ANN Best fitted regression patterns

Dataset table R2 R2 Durbin-Watson Wherry’sAdj-R2 Stein’s Adj-R2 F ratio Sig. Patternshape

HbA1c-PDR .560 .628 1.923 .602 .544 23.7 <. 001 S

HbA1c-NPDR .540 .542 2.104 .509 .439 16.6 .001 linear

HbA1c-DR .546 .589 2.253 .580 .561 64.5 <. 001 linear

HbA1c-Micro .633 .695 1.520 .681 .668 52.4 <. 001 quadratic

HbA1c-Macro .480 .801 1.964 .612 .547 21.6 .001 S

Dur-PDR .628 .701 1.822 .685 .668 43.3 <. 001 quadratic

Dur-NPDR .807 .868 2.396 .857 .833 79.2 <. 001 power

Dur-DR .729 .731 1.545 .725 .713 122.3 <. 001 linear

Dur-Micro .169 .374 1.580 .360 .333 27.5 <. 001 logarithmic

Dur-Macro .924 .926 2.055 .919 .902 125.0 <. 001 linear

BP-Micro .273 .456 1.803 .427 .367 15.9 .001 exponential

BP-Macro .464 .631 2.380 .600 .533 20.5 .001 linear

AER-PDR .866 .926 1.770 .906 .869 46.1 <. 001 cubic

AER-NPDR .549 .585 1.801 .544 .451 14.1 .004 linear

AER-DR .748 .766 2.136 .743 .690 32.8 <. 001 linear

doi:10.1371/journal.pone.0121569.t007
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In this research, we gathered the observed data from previously conducted surveys which

investigate the relation between HbA1c, duration of disease, AER and blood pressure level, and

diabetic micro- and macroalbuminuria and any kinds of retinopathy using NVivo8 to organize

data and this enabled us to use and follow up the data from more than 450,000 patient/years.

Then we made the data uniform and constructed a table structure for them. In addition, be-

cause of its modular structure, the final model is flexible enough to include all chronic compli-

cations which have been previously studied including microvascular complications

(retinopathy, neuropathy and nephropathy) as well as macrovascular complications (coronary

heart diseases, cerebrovascular diseases and peripheral vascular diseases).

Curve fitting was performed using two different software applications, Tiberius [30] and

SPSS [32]. ANN created one model and regression analysis produced seven models using seven

different patterns, i.e. linear, logarithmic, quadratic, cubic, power, s and exponential. These

have been chosen as the best options. To see how well the 1–1 models fit the observed data, we

assessed them using R2 and F-test. R squared was between 0.374 and 0.926, and the F-ratio was

between 14 and 125 (greater than one) and significant at p� 0.001 for all models, thus indicat-

ing statistically acceptable results. To test whether the 1–1 models generalize, we used cross-

validation and calculated adjusted R2. R2 comparison suggests that the best fitted regression

techniques provide more accurate models than ANN or the other six regression patterns. As

ANN becomes more efficient with known results for large amounts of data, it is not surprising

that regression patterns outperform ANN in all models because of the small dataset tables we

Table 8. Sensitivity, specificity and precision rate of the model for all five complications.

Cut off % Sensitivity Specificity Precision

Micro(84 cases) 60 87.2 97.8 97.1

70 87.2 100 100

80 87.2 100 100

90 87.2 100 100

100 87.2 100 100

Macro(84 cases) 60 70 91.9 53.9

70 70 91.9 53.9

80 70 91.9 53.9

90 70 94.6 63.7

100 70 94.6 63.7

DR(84 cases) 60 93.3 59.3 56

70 90 61.1 56.3

80 83.3 66.7 58.1

90 83.3 68.5 59.5

100 80 70.4 60

NPDR(28 cases) 60 70 77.8 63.6

70 60 77.8 60

80 60 77.8 60

90 50 77.8 55.6

100 40 77.8 50

PDR(28 cases) 60 100 84 42.9

70 100 84 42.9

80 100 84 42.9

90 100 84 42.9

100 100 88 50

doi:10.1371/journal.pone.0121569.t008
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have. We also applied the Durbin-Watson test for all the dataset tables and all the results were

between 1.5 and 2.5. This implies the existence of independent errors.

In order to determine the probability of each complication, all its related models were inte-

grated to make an n-1 model using the naïve Bayes theorem. A random set of real patient data

from AusDiab research has been used to assess the validity of the final model. The range of sen-

sitivity and specificity was between 70 and 100 percent. This was between 53 and 100 percent

for positive predictive value, thus indicating a very high level of success in the prediction

of albuminuria.

Significant findings of the research
This model has benefits for diabetic patients and the health workers who are involved in diabe-

tes diagnosis and treatment. It can be used to inform diabetic patients about the risk and severi-

ty of probable complications, to help health advisors to convince patients to change their

lifestyle, and to inform healthcare providers so they can design immediate preventive interven-

tions before a patient loses her/his capability. The contributions of this research are:

• It proposes a divide-and-conquer technique to overcome the complexities of a very

intricate relationship.

• It proposes a method to gather and standardize the knowledge from other research and de-

vise a structured format for it.

• It creates a predictive model to indicate the relationship between individual risk factors

and complications.

• It suggests a method to integrate a number of different models and derive probability tables

from them.

• It proposes the application of a Bayesian network to relate all of the factors to

diabetic complications.

• This model which is, then, developed, was tested by real data and was shown to be

statistically acceptable.

Limitations
In data conversion, different measurement units, different statistical formats of data calculation

or presentation and different study conditions (such as the number of cases, duration of fol-

low-up, etc.) were some of the obstacles we needed to overcome. Because of the time-consum-

ing process of contacting the authors, we omitted the study wherever data conversion was not

possible using the published result.

Another limitation of this study was difficulties in accessing the raw data of the patients that

is necessary to weigh the finding of these studies. So, this research considers all the findings

with the same degree of importance.

In making the n-1 models, we need to calculate some probabilities from the same data-bases

which are used to make the 1–1 models. But since we are using secondary data and access was

not available to all original data-bases, we were obliged to use the database of the

AusDiab, instead.

The next limitation is that when we use the regression models for data beyond the training

dataset extrema, we cannot be sure about the accuracy of the model when we are working on

the data in these gaps.
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Future Work

We extracted a full list of risk factors and complications (37 risk factors and 19 complications)

[40], but hasn’t map out all the relationship (fifteen 1–1 modelling has been done). From here,

the first step is to gather adequate data to demonstrate the relation between all the risk factors

and complications through an extensive literature review. Then, 1–1, n-1 and n-k modelling

processes need to be performed to create the completed final model. Next, more experimental

research with a real time data must be used in order to improve accuracy. One way of doing

this would be to integrate the model with a regional electronic health database and design a

longitudinal survey considering both patients’ real data and health workers’ feedback.

In future, this methodology could also be applied to other multi-factorial chronic diseases.

Extracting a complete list of predisposing factors and complications, data gathering about the

relationships between these two groups, data conversion, 1–1 modelling, n-1 modelling and n-

k modelling could be applicable for all such diseases. Given enough related data, it may even be

possible to design a model for primary prevention of diabetes.
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