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ABSTRACT

TIIis paper describes an experiment of integrating expert systems technol

ogy and advanced compiler optimization teclmiques to the problem of paralIeliz

ing programs for different classes of parallel computers. Our approach to solve

the problem is to separate machine features from programming heuristics and

organize the program parallelization knowledge in a hierarchical structure which

we called heuristic hierarchy. The reasoning mechanism of the program restruc

turing system utilizes the heuristic hierarchy and features of the program and the

target machine to choose appropriate sequences of transformations automatically.

Theories and mechanisms for organizing and integrating the parallelism optimi

zation knowledge are discussed. Methodologies for abstracting machine

features, data management, and programming parallel computers are presented.
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1 Introduction

1.1 The Trend Toward Parallelism

Perhaps the most important trend in supercomputer design is the reliance on parallelism to

achieve perfOImance improvements over our fastest sequential processors. During the three-year

period from 1984 to 1987. the number of commercially available general purpose parallel pro

cessing systems jumped from a couple to over a dozen. The number of ways in which different

architectures exploit parallelism is almost as large as the number of different companies. TItis is

a healthy situation for computer architecture. Many good ideas are emerging. Unfortunately, each

different machine presents a different architecnrraI model to the programmer. A program that has

been optimized for one system may not be well suited to another. At first glance. the differences

may appear to be due to the fact that each machine supports a different set of extensions to FOR

TRAN, or even a different base programming language. But a deeper analysis shows that the

architecrural difference between machines plays a fundamental role in the organization of the

computation. Surface level syntactic changes are not enough to pan a program optimized for a

Cray XMP to good code for a MTh1D hypercube design. While this is an extreme case, it illus

trates the problems faced by the small, but growing, cadre ofprogrammers who have taken up the

task of putting these machines to productive use.

Because of these problems, it has become clear that the greatest need in supercomputer

development is a new generation of software tools that can help in the task of optimizing code for

new architectures.

In this paper, we describe a project under development at Purdue University and Indiana

University, which is an experiment in integrating expert systems technology with the advanced

compiler optimization research conducted over the last ten years by Kuck, Wolfe, and their asso

ciates in Urbana illinois [ASKL79, KKLW80. KKLPW81. KuWM84. Wolfe8Z, Poly86.
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Padua79. PaKu801. Kennedy and his students at Rice [Kenn80. Allen83l. and Allan, Cytron. and

Burke at Yorktown Heights [Cytton84, BuCy86]. There are three key ideas that are guiding our

work:

• Interactive program restructuring tools are essential in helping users move programs to

new machines.

• Expert knowledge about bow to choose a sequence of restrucbJring transformations that

optimize performance can be organized as an "advice giving" system. Furthermore, per

formance models of the target architecture can be incorporated into a rule based system to

guide the transformation process.

• New architecrural models and expert programming heuristics for new target machines

must be easily incorporated into such a system in a uniform manner.

Of course, interactive tools already exist. For example. FORGE from Pacific-Sierra

Research provides an excellent user interface. PrOOL from Rice University [AlKe84] has an

elegant way to help users identify data dependence in programs. And all automatic program res

oucmrers, such as VAST, KAP and Paraphrase, employ powerful heuristics to rerarget user code.

The goal of this research is to show that an expert systems approach is a more flexible and exten

sible model than the conventional parallel compilers for designing a tool that can be rapidly

adapted to new target machines and new heuristics for parallel program optimization.

1.2 Automatic Program Parallelism Optimization

The program parallelism optimization problem is the following: given a program and a tar

get parallel machine. how can a parallel program that is both functionally equivalent to the origi

nal program and optimal for the target machine be generated?

The basic algorithm for program parallelism optimization can be outlined as the following:

Basic Program Restructuring Algorithm.

Input" a sequential or paraliel program. and the description of the target machine.

Output: a parallel program that is optimal for the target machine.

Begin

repeat

pick the •'best" trnnsformation from a set of applicable transformations;

apply the selected transformation to the program;

until the resulting program is optimal for the target machine

End;
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TIIis algorithm is superficial in the sense that. it does not specify how to determine eilher

which transformation is the best or when the program is optimal. However, this is the algorithm

that most parallel computer users use when they hand-optimize their programs. Picking the

•'best" transformation requires expert intelligence.

Our goal is to design an intelligent system that can perform the program. parallelism optimi

zation process for different classes of target machines automatically. Several fundamental issues

must be addressed before such an intelligent system can be constructed:

Machine klwwledge representation. Conventional program restructuI'ers hide the impact of

machine Irnowledge on the decisions made during program resttucmring as a part of the process

of selecting of the heuristics used in the system. - only heuristics that are effective for the target

machine are included. 11tis is possible because only one target machine is considered. However,

when the program paralIelization system is designed to handle different classes of architectures,

the features of the parallel computers that affect program parallelism must be abstracted and

represented in a uniform structure. Separating the machine features from the heuristic acquisition

process allows the description of the heuristics to be based on the machine features as well the

program features. In this way, a heuristic can be applied to any target machine that has the

appropriate set of features.

Program representation. The program representation problem is to define internal data

structures that can encode the program's semantic and parallelism conslI'aints. A good program

representation must preserve the exact semantic and parallelism constraints of the original pro

gram.. The program representation scheme must also allow easy and efficient accesses and

modifications.

Transformation rechniques. Transformation techniques are the essential elements of pro

gram restructuring systems. Many transformation techniques have been studied during the past

two decades by a number of pioneering researchers. Rather than going through the details of the

mechanical techniques for modifying program structures, in this paper we will emphasize the

heuristics for applying the transformations and the effects of the transformations on program

parallelism.

Restructuring helUisrics. The optimal sequences of transformations needed to get good per

formance from a section of code is very dependent on the program and the target machine. There

are no algorithms that provide the optimal sequence of transformations for all circumstances.

Heuristics are usually used to perfonn the task and these heuristics are usually based on the par

ticular application and make assumptions about the target machine. In. order to make the heuris

tic general the special features of the program and the assumptions about the machine must to be

made clear.



-4-

The representation and organization of transformation knowledge. The representation.

organization, and integration of the transformation Imowledge are the central issues for an

automatic program parallelizing system. They actually determine the effectiveness and efficiency

of the system.

Parallelism metries. Parallelism metrics are used to compare the effects of different

transformations and to decide when to terminate the optimization process. Measuring the achiev

able parallelism of a program on a target machine must be based on the parallelism features that

the machine provides and the matching between the program structure and the target machine.

The remainder of this paper is organized into three sections. In section 2, we formally

define the program parallelism optimization process and discuss the machine knowledge

representation problem. The program representation problem and the problem of defining paral

lelism metrics are also briefly discussed.. In section 3. the transformation lmowledge representa

tion problem and some program restt'Ueturing heuristiCS are presented. Examples that describe

the work of the inference engine are also included. In section 4 we give a brief summary and

describe the starus ofour project.

2 Abstracting the Machine Features and Building Knowledge Base

In this section, we define the program parallelism optimization process. A machine

feature abstraction scheme is introduced and a function to estimate the matching between

the program level parallelism and the machine level parallelism is also given.

2.1 Parallelism and Program Parallelization

Parallelism can be exploited at three different levels: the algorithm level, the pro

gram level, and the machine level. Each of these three levels has a conceptual con

currency model of computation and we call this model the vinual machine for that level.

At the algorithm level, the virtual machine is the computational model (e.g. mesh,

hyper-cube, etc.) that the parallel algorithms are based upon. Algoritiun level parallel

ism can be characterized as the number of virtual processors, the complexity of inter

processor communications, and the complexity class of the parallel execution time on the

virtual machine model when expressed as a function of problem size.

At the program level, each parallel programming language defines a virtual machine

by the semantics of its parallel control constructs. Program level parallelism can be

characterized by the control and data dependence constraints imposed by the language

and the user's choice of data strucrures.
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Machine level parallelism is the maximum concurrent execution capacities of the

architecture and can be characterized by various machine features.

When mapping problems from the algorithm level to the program level or from the

program level to the machine level, the differences in the computational models of the

two levels may cause parallelism to be lost For example. when an algorithm is

translated into a program, the concurrent properties of the algorithm may be serialized by

the dependence relations inherited from program constructs and data synchronization. In

some cases, the concurrency is lost because the limited parallel constructs provided by

the programming language simply can not express the full parallelism in the algorithm.

The problems encountered in translating parallelism from the algorithm level to the pro

gram level fall into the scope of parallel programming language desigu and will not be

discussed in this paper.

When the program is mapped from the program level to the machine level, the pro

grams may have to be restrucrnr~ since some specific program structures or data struc

tures may suit the target machine bener than others. Program restrUcturing is the pro

cess of improving the match between the program level parallelism and the machine

level parallelism by applying a sequence of program transformations to restructure the

program.

2.2 Program Realization and Restructuring

The process of optimizing program parallelism consists of two steps: the program

restructuring process and the program realization process. The program restructuring

process improves the program parallelism by modifying the structure of the program

representation. The program realization process maps the programs onto the computa

tional model of the target machine by effectively utilizing the concurrency potential of

the machine.

Program level parallelism can be divided into three concurrency levels: task, micro

task, and operation. At the task level, a program is decomposed into large processes

which may be run on different processors. At the operation level, vector operations or

scalar operations are the units of computation. The size of the vector operation

represents the degree of concurrency of this level. The micro task level is the level

between task level and operation level and is often characterized by loop bodies. More

specifically, inside a task, operations are grouped. into micro tasks, which are the blocks

of code that are executed between synchronization points.
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Based on the dependence constraints of the program and the feature descriptions of

the target machine, the program realization process partitions the program into operation

blocks and composes them to form vector operations, micro tasks, tasks, and processes.

Abstractly, the process can be viewed as a function:

Program_realization: ComputationaCmodel X Programs ~ ProgramA

where elements of ProgramA are programs that are augmented with parallelism and run

time information such as processor assignments. synchronization, vectorizable or paraI

lelizable loops. etc.

The program realization process does not actually improve the true parallelism of

the program. It simply takes the current form of the computation, as represented by the

program, and based on the features of the target machine, applies a mapping to realize

the program into parallel form. For example, for multiprocessor systems, the outermost

parallelizable loop is always used to generate tasks. For machines with vector capability,

the innermost loop is the one that is vectorized (if it is legal to do so). The synchroniza

tion technique that is provided by the computational model is used to satisfy any data

dependence not already satisfied by sequential execution of pans of the program.

The program resrructuring process improves the match between the program level

parallelism and the machine level parallelism by modifying program structure and

improving the datalocaIity in the program. In particular, it involves techniques such as

changing the instruction execution order (by forward. substitutions, statement reordering,

etc), modifying program control (by loop interchange. loop distribntion, etc), and elim

inating unnecessary data accesses and modification (by data localization, block transfer,

cache optimization, dead code elimination, etc). Each individual technique used to

modify the structure of the program is called a rransfonnation.

Abstractly, a program transformation, T, is a mapping

T: Program -+ Program

that maps a program representation to a new program representation that has the same

input-output semantics. The precondition of a transformation is the list of conditions that

must be satisfied so that the result of the transformation will have the same meaning as

the original program. IT a program satisfies the precondition of a transformation, we say

that the transformation is applicable to the program.

Program transformations are just mechanical techniques for changing the structure

of the program. To have a positive effect on the perfonnance, the transformations must

be chosen based on the full knowledge of the program, the target machine, and a set of

effective heuristics. The program restrucmring process is a composite function of a
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sequence of transfOImations. It uses heuristics that are based both on features of the pro

gram and the machine to guide the transformations and effectively translate the program

into optimal form. Abstractly, it takes the form

Program_Restructuring: Program X Computationatmodel X Heuristics ~PTogram

At the heart of the program restructuring is the set of rules in the knowledge base that

represents the expertise about program constructs, transformation techniques, machine

parallelism, and heuristics for improving the matching between programs and machines.

These rules decide the effectiveness of the program restructuring process.

2.3 Problems in Program Parallelism Optimization

Corresponding to the concurrency levels of the program paralIelism, the task of

improving program paralIelism can be subdivided into the following problems:

Partitioning problem. How does one partition a problem into tasks and micro tasks

and form good vector operations? If the current structure of the program does not

suit the hardware, various transformation techniques should be used to improve the

program structures and to achieve a better partition.

Synchronization problem. When mapping a sequential program to a multiproces

sors machine, the proper synchronization operations must be insetted in the code to

preserve the meaning of the original program. Synchronization costs penalize the

program performance, and. in the worst case, it may serialize the whole computa

tion. Fewer synchronization points mean less processor idling time and better sys

tem performance. Grouping closely related micro tasks into one task, copying

repeatedly used data into local memories, and changing data access patterns may

have a positive effect on minimizing the synchronization cost.

Scheduling problem. The scheduling of the processes is another important factor in

obtaining optimal performance. Traditionally, this problem is viewed as the task of

the operating system. However, studies have shown that static estimates done at

compile time can simplify the task of the operating system at ron time [Cytron84].

There are techniques (e.g. do-across) that can estimate the required minimum pro

cess delay time and significantly reduce the amount of time the processor in "busy

wait" loops. Run-time tests can also be generated at compile time to guide the exe

cution of the process.

Memory utilizan'on problem. Since the data access time for different components of

the memory hierarchy may be different, the utilization of fast memory components
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(like cache) and the removal of unnecessary data accesses will shorten the access

time and speed up the computation. Array decomposition, data copying, scalar

gathering, stride mining, loop interchanging, loop blocking, and other transforma

tions can be used to achieve a lower cache miss ratio and improve locality.

Due to the complexity of the task, most algorithms used in solving the above prob

lems are heuristic-driven. Some useful heuristics fot program restructuring are discussed

in section 3 and others can be found in the literature on program transformations.

2.4 Program Representation

The state of the program can be represented by program dependence graphs which

consist of the control flow subgraph [FeOt83] and the data dependence subgraph

[KKLPW8 I, WoIfe82] of the program. The data dependence subgraph represents the set

of essential constraints on the execution order of the operations. The control flow sub

graph specifies the preconditions on the operations which are required for them to be

actually executed. Together, these two subgraphs form a complete summary of the

semantics of the program. The dependence relations in the program dependence graph

specify the sequential order that the program parallelization process must respect.

Violating the dependence relations may cause data access and modifications to happen in

the wrong order which will change the meaning of the program. Program dependence

graphs have been studied extensively, details of the representation and computation of

the graph can be found in [FeOt83, KKLPW8I, BuCy86, Wang87, WoIfe82].

2.5 The Representation of Machine Structures.

One of the major advantages of multi-target optimization systems over dedicated

single-target optimization systems is that the heuristics can be shared among all target

machines that have the same properties. When a heuristic is synthesized, the influences

of the target machine must be distilled to identify the properties of the target machine

that actually affect the heuristic. These properties of the machine must be represented in

a uniform structure so that different parallel computers can be easily characterized. The

properties of the target machines that affect program parallelism optimizations are called

machinefeatures.

The space of all possible values of a feature is called the feature space. A feature

space may be either a subspace of the reals or a discrete space. The cross product of all

the feature spaces forms the space of all possible computational models, which we call

the Computational_Model. An element in the Computational_Model represents the com

putational model of a particular target machine. The computational model is the
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abstraction of the properties of the target machine that influence program parallelism

optimization. It represents the program. restructuring system's understanding of the tar

get machine.

Since the intelligent program restructuring system can reason, not all of the

hardware properties need to be included in the computational model. Instead, properties

that can be derived from other features can be omitted from the computational model,

since they can be derived by the system when they are needed. This helps keep the size

of the feature list manageable.

We represent the Computational_Model as a frame "slot filler" model. This frame

model of representing the computational model is called the raw model. Each individual

[canrre is an slot of the raw model to be filled. The computational model of a target

machine can be defined. by filling the feature space attributes in the raw model with the

correct values. Not all the slots have to be filled when abstracting a machine feature. A

set of rules can be used to derive default values for the unfilled slots.

The computational model of the target machine can be divided into the following

four categories:

1. Processor hierarchy

2. Processing units

3. Memory hierarchy

4. NetworkslBusses

Each of these 4 subspaces consist of a list of features. In the following three subsections,

we examine the elements of these features and discuss their attributes in the program res

tructuring process.

2.5.1 Processor Hierarchy and Processing Elements

The set of computational elements (PEs) in a parallel computer can be characterized

by the following components of the feature space:

1. Number of processors.

2. Modes of computation: (SIMD, MISD, MIMD, etc.)

3. Methods of scheduling: (data driven, data-flow, demand driven, control flow)

4. CPU scalar speed.

5. CPU scalar instruction type: (stack, two address, three address, etc.)

Vector attributes--

6. Vector instructions: (diadic, triadic-vec-vec-vec, triadic-vec-vec-scalar, etc.)
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7. Vector instruction speed.

8. Vector startup time.

9. Vector operands: (register, memory)

10. Vector results: (register, memory)

11. Number of vector registers.

12. Size of vector registers.

13. Chaining.

14. Cost of non-uniform stride.

15. Cost of scatter-gather.

16. Vector reductions: (max, add., inner-product, etc.)

17. Horizontally coded multiple function units.

18. Special resrtictions/feamres: (list)

The number of processors affects the way in which a program is partitioned into

tasks. For example, when partitioning a nested loop. the best way to create tasks is to

first match the number of iterations of the outermost loop with the number of processors.

then block the loop to form tasks. Loop interchange can be used to cause the best match

ing loop to be the outermost loop.

For processors with vector processing capabilities, issues such as where the

operands are stored (in memory or in register), whether it has vector registers, and the

size of vector registers affect the way that data is decomposed and how vector operations

are formed. Vector operation start up time and relative speed of vector/scalar operations

are critical in justifying whether a loop should be translated into vector operations. In

addition, the use of special vector instructions (e.g., triadic vector operations. inner pro

duct reductions. vector operand gathering) can be more important than the absolute speed

of the vector processors.

The processors may have a special hierarchy that the programmer must keep in

mind. This processor hierarchy, usually based on processor clustering, affects task

decomposition. Features in this category include:

1. Cluster size.

2. Shared resources within clusters: (memory, synchronization hardware. etc.)

3. Task: switching time within a cluster.

4. Processor scheduling within a cluster. (loop oriented, data-driven. etc.)

5. Special topological constraints: (mesh, cube, elc.)

6. Cluster task granularity.

7. Cluster scheduling policy: (users or special operation system policy)
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A cluster can be viewed as a collection of processors that is capable of executing a

collection of very finely grained tasks in a tightly-coupled marmer which is not possible

by the set of all processors. For example, the computational complex (CEs) of the Alli

ant FX/8 forms a cluster that is distinct from the interactive processors (IPs) system. A

system may suppon multiple clusters with multiple processors per cluster (as in the

Cedar system), or it may be viewed as one tightly-coupled cluster of processors (as in the

Connection Machine) or a loosely-coupled system of one-processor clust&rs (as in the

Cray XMP). In a machine with multiple clusters, there will often be two levels of

scheduling: a "micro-task" level that manages jobs within each processor and a "pro

cess" level that assigns processes to each cluster.

2.5.2 Memory Hierarchy.

The memory hierarchy of a parallel computer consists of global memory, local

memory. and cache memory. as well as the networks or busses that connect these com

ponents. Global memory is shared by all processors, and can be either physically central

ized in one memory module (as in the Alliant FXJ8) or distributed among processor units

(as in the BBN Butterfly and the IBM RP3). Local memory is owned exclusively by

individual processors. Processors are not allowed to access other processors' local

memories directly. However, some computers have a centralized controller which can

access all local memories (as in the Pringle [KGSF84, KWGCS84J. or the Connection

Machine). The feature space for the memory hierarchy consists of the following items:

1. Size of cache.

2. Cache sharing: (shared cacbe, private cache, etc)

3. Cache coherence strategy: (compiler managed, snoopy cache, etc.)

4. Cost of cache data fetch relative to register fetch.

5. Size of local memory.

6. Cache shared by cluster.

7. Cost of local memory data fetch relative to register fetch.

8. Size of global memory.

9. Interleaved or non-interleaved global memory.

10. Centralized or distributed global memory.

11. Cost of "near" global fetch relative to register fetch.

12. Cost of •'far' , global fetch relative to register fetch.

13. Vector prefetch mechanism: (from global to local, from global to cache, none)

14. Special synchronization memory commands: (fetch-add,locks. memory tags, etc.)

Normally, accessing data from the global memory is slower than accessing data

from a local memory, which is in rum slower than accessing data from a cache. In mul

tiprocessor systems, an excessive amount of shared diUa access and synchronization
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might cause network contention and, as a result. saturate the entire system. For example,

on the BBN Bunerfly, if all processors make frequent references to the same critical sec

tion lock or data structure, a memory •'hot spot" is created. If the data is not a critical

section lock, then a local copy can be made. TIris can double performance on many algo

rithms.

Management of cache and local memory is also critical If the cache miss-ratio or

the locality of an algorithm is bad. then the system utilization will be low since most of

the processing power will be wasted waiting for data. On the Alliant FX/8, cache is

shared by all computational elements. Because the cache is twice the speed of main

memory, bad cache management can cut performance in half.

Although better locality always means better memory utilization, the cost ratios of

data accesses from different components of the memory hierarchy plays an important

role in resolving conflicts between improving data locality and decreasing the number of

instructions. We will discuss this issue in more detail in the next section.

Different machines may have different memory hierarchies. On some machines,

one or more components in the memory hierarchy may be missing. For example, the

connection machine has no cache, most MllvID hypercubes have only local memory;

message passing strategies are the basis of all synchronization and access to shared infor

mation. Data flow machines have a completely different memory model. The Pringle

has no shared memory; processor communication is done by message passing through

reconfigurable processor-to-processor routing switches. Each processor in the Pringle

has only eight ports, so a message routed to another processor might need to go through a

couple of hops, and setting up an optimal message routing network for a given algorithm

is a non-trivial task. Although some heuristics for data allocation and routing on non

shared memory machines like the Pringle do exist. the data decomposition problem for

non-shared memory remains largely unsolved. More effort is needed before an optimal

result can be achieved.

On the other extreme are the IBM RP3 and Cedar, which both have a complete

memory hierarchy that includes cache, local memories, and global memories. On the

RP3. global memories and local memories reside in the same memory modules that

belong to individual processing elements. The same mechanism is used in the BBN

Butterfly Uniform system. On the RP3. a sophisticated memory addressing scheme

allows the boundaries between global and local memories to be adjustable. On both

machines, it is more expensive for a PE to access another PE's global memory than it is

for the PE to access its own. Therefore, it is very important that the locality is explored

on these machines. The Butterfly provides a block transfer operations which makes
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localizing frequently used data attractive.

The Alliant FXJ8 has no local memory, and its two 32KB caches are shared by eight

processors. The shared cache is connected to the processors by an 8 x 8 crossbar switch,

and is connected to memory through a high speed bus (188 :rvm read-access per second).

Therefore, cache utilization for the Alliant is important Examples of data utilization for

the Alliant will be diScussed in the next section.

2.5.3 Interconnection Networks and Busses.

The connections between processors. or between processors and the memory hierar

chy, or between the components of the memory hierarchy may utilize either busses or

complicated networks. There are a number of factors that are very important to under

stand:

1. Network topology: (bus. ring, cube, mesh, tree. banyan. etc.)

2. Network bandwidth.

3. Delay per network stage.

4. Packet or circuit switched.

5. Packet size.

6. Maximum. pending memory references a processor can have in the network.

7. Routing type: (self-routing, compiler routing, both)

8. Performance penalty of self-routing.

Network topology plays an important role in the way data structures are distributed

around the system. On networks with a low bisection width, such as a tree, certain data

movements are notoriously slow. For example, a matrix transpose is extremely slow on

trees and rings. A complete study of the role of topology in parallel algorithm design is

found in the paper [GaVR84].

From the point of view of a program restructurer, there are two issues which are

more critical. First, if the network is not self-routing, then the compiler needs to plan a

path and generate switch settings for the network. Many non-shared memory machines

require that each intermediate processor be programmed to intercept and fOIVIard cross

network traffic as part of the target code. Second, if the network is such that some proces

sors are "nearer" than others, and if the message delay from a far processor is

significandy more than from a near processor, optimal data structure decomposition

becomes critical. Not only is this problem NP-complete, there are also very few good

heuristics for it. In addition, for dynamic allocation of new processes, it may cost more

for a processor to stan-up a new process on a remote processor than it does for it to do
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the computation itself. The program restructuring system bas to consider all these

differences in network implementation before it can actually perform. task and data

decompositions.

Some interconnection networks have special properties to enhance the capabilities

of the system. For example, the IBM RP3 has a combining network which supports

fetch-and-op kinds of operations. making the implementation of system primitives much

easier; in particular, it supports the implementation of task queues and makes self

scheduling loops possible. (On the Cedar and BBN Butterfly these same operations exist,

but they are done by the memory controllers rather than the network) For machines that

support self-scheduling loops, the program restructuring system can leave the task

scheduling problem to the operating system of the machine by transforming the outer

most loop into a self-scheduling loop. However. the self-scheduling loop makes the glo

bal array decomposition almost impossible. since it can only be known at ron time which

loop will be run by which processor. Our experience shows that the data decomposition

is usually more important than the loop scheduling, so in programs that have decompos

able arrays (Le. arrays that can be allocated into the local memories of the processing

units) data decomposition should be favored.

In multistage networks, non-uniform network traffic, known as "network hot spots".

is typically (but not uniquely) produced by shared locks or data synchronization. This

can generate effects that severely degrade the network traffic. Studies have shown that

combining data access requests within the switches is an effective technique for dealing

with a hot spot contention problem that is caused by global shared locks [PfN085]. For

machines that have no combining network, balancing the operation load is one of the

major challenges to the program restructuring system.

2.6 Program and Machine Feature Abstraction

As we discussed above, the program parallelism abstraction process bases its deci

sions on the features of the program at hand and the target machine. The features of the

program and target machine are abstracted into concepts that can be used by various

heuristics. In the case of program representation, this feature abstraction can be done by

either matching patterns or Checking program dependence relations to find out whether

the program region under consideration matches some predefined "concepts." For

example, an inner-product operation can be recognized by matching the pattern that a

statement inside a loop accumulates the product of corresponding elements of two arrays

into a variable. A more complicated example is tile concept of "vectorizable", a loop is

vectorizable if each statemem, S, in the loop can be executed for all values of the index

set of the loop before executing any of the statements in the loop following S, and this
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alternate execution order will compute the same result The vectorizable concept can be

captured by examining the dependence relations of the loop. A procedure (or rule) that

does the test inserts the fact "the CLUrent loop is vecrorizab/e" into the solution space if

the test is true.

As for the machine, we should note that there are usually some heuristics which

accompany the features of the machine. These heuristics are the methodologies of utiliz

ing the properties of the machine. Examples of this are: "improve locality if the machine

has cache or local memories," and "generate P( = numbecoCprocessors) tasks if task

creation cost is high." It is the collection of these methodologies that really defines the

computational model of the machine.

There is a fundamental difference between the abstraction of features of the pro

gram and the abstraction of features of the machine. That is. the features of the machine

are static, but the features of the program are dynamic. The facts that are derived by the

feature abstraction process will stay true throughout the optimization process for the

machine, but the facts about the program may be changed as the structure or data distri

b u t i ~ n of the program is changed. Therefore, the feamre abstraction process for the

machine is done at the time the target machine is chosen but the feature abstraction pro

cess is done during the program reslIUcturing process. Another dynamic aspect of the

feature abstraction process is that only the features of the program that are currently

important are abstracted. For example, it would make no sense for the restructuring sys

tem to check whether a loop is "vectorizable" when it is trying to figure out how to

create tasks from a simple loop. However, if the loop is a nested loop and the machine

suppons both multiprocessing and vector processing, then the loops will be checked for

"vectorizability" since the best way to schedule the loops is to create vector operations

from the innermost loop and create most tasks out of the outermost loop.

2.7 The Pnrallelism Metric

In order to justify the merit of a particular transformation, a valuation function

which evaluates both the degree of program parallelism and the matching between the

program and the machine is needed. The valuation function:

Matching: CompurarionatMode/ X Program ~ R

returns a simple real valued index that estimates the matching between the computational

model and the current structure of the program. The matching function is a weighted

linear combination of several factors. Among these are: how well the size of the program

structure fits the size of the target machine (size matching), how well the data access pat

tern matches the data distribution on the memory hierarchy (data access matching) and

how much synchronization delay is needed (scheduling matching). Each of these factors
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can be defined as a match function that maps the cross product of the spaces of the com

putational model and the program into a subset of the real space.

The size matching function quantifies the structure matching between the program

and the target machine. For example, an outer loop that generates only two tasks on a

machine with 100 processors would get a rather low score. For machines with vector

instructions, the size matching function estimates the efficiency of the vector instructions.

Data access patterns are also measured. If possible, data that is repeatedly refer

enced should be kept in local memory or cache to reduce the network traffic. The most

common example of repeatedly referenced data is the array references inside loops. The

subscripts of the references, plus the loop bounds, give a good estimate of the number of

array references in the loop. Non-unit stride array references are discriminated against

when cache size is relatively small since these references will generate a much higher

cache miss ratio than unit-stride array references.

Shared data accesses might cause memory contentions and serialize the data

accesses and thus degrade the system performance. The more shared data references that

a program has, the higher its synchronization cost will be. So the shared data synchroni

zation factor can be defined to be the reciprocal of the number of shared data accesses in

the program region under consideration.

Task scheduling and synchronization are also modeled by the match function.

Based on a do-across schedule [Cytron84]. an estimate is made of processor utilization.

This estimate contributes to the final value.

Once processor assignment is completed, only the cross-task dependence may pro

duce inter-processor synchronization. Another source of synchronization cost is the seri

alized access of shared variables. This kind of data synchronization can also be character

ized by inter-task data dependence.

The number of inter-task dependence, IDEP, can then be used to quantify the effec

tiveness of the synchronization factor. The fewer of these dependence there are, the

better the matching is. Let NDEP be the total number of dependence in the focused pro

gram region. The synchronization matching factor, SYNC, is defined as:

SYNC=(NDEP-IDEP)INDEP.

A large number of other factors go into the evaluation of the Match function. A much

more detailed discussion is given in [Wang87].
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The weighted-combination approach of computing the match function has the fol-

lowing advantages:

Dynamism. Weights of the components can be adjusted dynamically and this makes

the matching function very flexible and powerful. Different architectures can have

different weights to suit their particular configurations. For example, on a vector

machine that has vector registers, the weight of the size matching can be increased

so that longer vector operations will be generated, and bad stride vector operations

will be avoided.. During the program transformation process, some factors can be

intentionally ignored to resolve conflicts, or to allow alternative paths to be

explored.

Simplicity. Each individual matching function focuses on the matching between the

program and a set of particular features of the machine, making it easier to compute.

Modularity. When new factors that affect matching are introduced, they are vary

easy to be added into the matching function. One only needs to define the sub

function and give it a weight that represents its imponance in matching parallelism.

Topics discussed in this section form the foundation of the program parallelism

optimization process. However, what really decide the effectiveness of the program

parallelism optimization systems are the heuristics which are based on this foundation

and the program transformation techniques which are used to restructure the program to

match the machine. In the next section. we will discuss the mechanism used to organize

the heuristics that deal with program transformation theory and we will describe the

operation of the inference engine.

3 Intelligent Program Transformations

In this section. the organization, integration. and interpretation of program transfor

mation knowledge are discussed. An example of optimizing a matrix-vector multiply

program for three different parallel machines (BBN Butterlly, Allianl FX/8, and Purdue

Pringle) is given to describe the operation of the inference engine.

3.1 System Organization

There are three major components in the expen systems organization: the

knowledge base, the inference engine. and the user interface mechanism. The knowledge

base contains the domain dependent rules, facts. heuristics, and procedural knowledge.

The inference engine is the mechanism used to select and apply the rules in the

knowledge base to solve the problem. The user interface mechanism contains the utili

ties to build user friendly interfaces. These include a menu selection mechanism,
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graphics interface utilities, an explanation mechanism, and help utilities. The inference

engine and the user interface are domain independent, and they can be used to consttuct

other expert systems by adding a domain dependent lmowledge base.
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The organization of the system components is shown in figure 1. As the figure

shows, the inference engine analyzes the machine feature list to form the parallelism/ac

tors, which are the key components of the computational model discussed in the last sec

tion. It selects part of the dependence graph as the program focus, and it analyzes and

restructures the focus region based on the parallelism factors and the heuristics in the

knowledge base. The strucrnre of the knowledge in the knowledge base is discussed in

the next two sections. Figure 2 illustrates the process of building the domain dependent

knowledge base.
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Figure 2 Process of constructing domain dependent knowledge base.

3.2 Heuristic Hierarchy

While the modularity and integratabillty of the rule-based expert system makes

modifying the knowledge base easy, its inefficient execution and the opacity of the

knowledge are the major drawbacks.

For example, translating a heuristic into a set of rules causes the knowledge to be

fragmented, this makes the maintenance and modification of the knowledge difficult.

Even though there are still strong relations between many of the roles, the fragmentation

causes an unfortunate loss of coherence.

In order to improve the integration and modularity of the knowledge, and the

efficiency of the system, we have devised a new hierarchical strucrure to organize the

heuristics. This heuristic hierarchy is used to integrate the rules into conceptually and

logically related units. Since this is a new concept, we devote the remainder of this sec

tion to a general description of heuristic hierarchies. In section 3.3 we detail the organi

zation of the hierarchy for the program restructuring system.

As shown in figure 3. a heuristic hierarchy consists of one or more lCI)'ers; rules in

the same layers are divided into groups that we call actions. Each heuristic hierarchy has
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a goal and some rules associated with it to accomplish the goal. The actions in the top

most layer represent possible solution steps that the hierarchy can use in trying to accom

plish its goal. In other words, the rules of a heuristic hierarchy can use any actions of the

top layer in attempts to satisfy the goal of the hierarchy. For each action. there is a goal

for the rules in the action to accomplish. The rules in the action can select among the

actions in the lower layer to satisfy its goal. Similarly, the actions in the lower layer may

in turn select the actions in the next layer when trying to satisfy their goals. There are no

goals associated with the layers because a layer represents a conceptual level of the prob

lem solving process in which different actions can be applied to achieve lhe goal of the

control flow that calls the action.

A complicated action can be organized into a heuristic hierarchy. This recursive

definition makes the heuristic hierarchy very flexible and it can be constructed

corresponding to the step-wise refinements in a top-down problem-solving approach. In

a top-down problem-solving process, the problem is divided into multiple stages that

represent the problem solving steps of the process. Each stage can be refined stepwise as

the system is implemented.
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The inference engine of the heuristic hierarchy works as follows: the process tries to

satisfy its goal by executing the rules of the hierarchy. The rules may select any of the

actions in the top layer. An action works just like a hierarchy, except that the actions in

the next layer may be called by any rules in the action. When a rule fails to satisfy the

goal, other rules in the group are tried until either the goal is accomplished or all the rules

have been tried. In either case, the control goes back up one level to the previous layer.

If the selected action fails to satisfy the goal, an alternative action in the lower layer is

selected. This process is repeated until the goal of the hierarchy is either satisfied or

failed, and the control flow goes back to the caller of the hierarchy.

This hierarchical structure organization of the heuristics is actually a simplified

hierarchical production system. It has the following advantages:

Modularity. Conceptually related rules can be grouped together. Grouping related

rules together makes implementing, understanding, maintaining and updating the

knowledge base easier. The lmowledge representation process that translates

heuristics into rules can be done in either a top down or a bottom up fashion.

Efficiency. Only a small subset of the knowledge base needs to be considered at any

given instance. The size of the knowledge base for real problems is usually very

large. It is very inefficient to perform rule selection and backtracking when a flat

structure knowledge base is used.

Flexibility. The order of the actions to be taken can be decided dynamically.

Note that the purpose of introducing the hierarchical structure is not to impose a

tightly coupled structure into the knowledge base, because not all knowledge can be

represented in structured or procedural form. Also, if the sttucture of the rules is too

tight, then the flexibility of the rule-based system may be los!' The purpose of the

hierarchical structure is to provide a knowledge organization structure that matches the

hierarchical structures in a top down problem solving processes. The hierarchical struc

ture preserves all the advantages of a rule-based system but has better efficiency, modu

larity, and flexibility in the way it represents knowledge.

The hierarchical structure of the rules can be specified by the following hierarchy

declaration:

hierarchy(name, [ iayer(name, [action J* )J* );

where the notation [expression]* represents a list of one or more expressions of the same

type. Examples of this will be shown in the next section.
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The lexical order of the layers represents the level of the layers from top down. The

lexical order of the rules decides the default ordering of the rules to be applied. This

default ordering can be overwritten by explicit rules. The order of the actions is

irrelevant. since they are selected by the rules in the upper layer.

In the system, knowledge and heuristics are represented as rules of the following

form: .

[Rule, [action_name>]]:

If

{condition list}

then

{action list}.

The actioD_name'" is used to label the action(s) in the hierarchy to which the rule

belongs. These hierarchy declarations provide an easy way for the system engineer to

specify the structure of the heuristics and keep closely related rules together.

3.3 Program Transformation With Heuristics

The program restructuring process is an iterative process. At each step, the depen

dence graph of the program focus region is analyzed, and a transformation that can

improve the parallelism matching between the program and the machine is chosen and

carried out. There are two difficulties with this process. The first problem is "when and

Iww to apply which transformation?" Different sequences of transformations may lead

to different results. Also, a transformation may have different effects when it is applied

to different program states.

The second problem is "how does the system detect that the program is in its

optimal Jonn and stop the transforman"on process?" Unlike some other AI problems,

there is no good description of the goal states. The goal of performing the transfonna

tions is to optimize the matching between the program and the computational machine

model. For the same program, there may be many different representations of the pro

gram that have the same input-output semantics. The problem is to find a sequence of

transformations that transforms the current representation of the program into a represen

tation that allows maximum parallelism on the target machine.

Since it is expensive to test the applicability of the transfonnations and apply the

transformations, and since there may be m3IlY different applicable transformation

sequences for a given program, it is impractical to try all of the sequences and then to
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choose the best way to restrucrnre the program. Heuristics, and some kind of metric,

must be employed in order to find the most promising transformation to apply at each

step. The matching functions described in section 2 can be used to measure the effective

ness of the transformations. But we should also note that the matching function can only

be used to compare the relative merit of the transformations since an optimal form can

only be found after we try all the possible transformation paths.

On the other hand, the user selectable optimization degree indicates how deep the

user wants the system to explore. The user can control the optimization depth by choos

ing the optimization degree or by stopping the process during an interactive session. The

optimization degree is a real number between 0 and 1. If the user specifies an optimiza

tion degree of 1, the system tries all possible transformation sequences and selects the

best sequence to apply. IT the optimization degree is set to zero, no program restructur

ing effort will be tried, the system takes the program as it is and applies the program real

ization process to parallelize the program. When the optimization degree is set to some

number between 0 and 1, the heuristics will be applied in selecting transformations. The

higher the optimization degree is, the more aggressive the system is in trying different

transformations. The optimization degree also sets a limit for the parallelism matching

index to compare against. The attempt at restructuring the program is stopped when the

parallelism matching index passes a certain limit, or when the heuristics are exhausted.

Another advantage of using a user selectable optimization degree is that different optimi

zation degrees can be set for different regions of the program. During an interactive ses

sion, the user can concentrate the attention of the system (as well as his own) on parts of

the program that he considers more critical.

Empirical studies of the sequences of transformations have been reported by Kuck

and his associates. A number of fixed sequences of transformations, tailored for different

architectures. have been investigated and built into the Parairase project [KKLW80,

ASKL79, PaKu80, KKLPW81j. Although these sequences work well for certain pro

grams on the architectures and problems for which they are designed, the inflexibility of

the fixed sequence of transformations may limit potential optimization. In fact, recogniz

ing the shortcomings of fixed sequences of transformations. the Parafrase system relies

on the user to provide the sequences of transformations as options for particular applica

tions that the user knows well. Also, the user can provide assertions or directives to help

the compiler recognize the parallelism that it overlooked.

In our system., heuristics are organized into heuristic hierarchy structures. The

heuristic hierarchy and other user interface mechanisms are built on top of the UNIX C

Prolog. In the following subsections we explain the organization of the heuristics and

illustrate the operation of the inference engine with an example.
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3.4 Organization of Transformation Heuristics

There are three kinds of transformation heuristics: the heuristics to define program

parallelism and machine parallelism, the heuristics to reslIUcrure the program. to match

parallelism between the program and the machine, and the heuristics to control the paral

lelism matching process. These three kinds of heuristics correspond to the three layers in

the heuristic hierarchy which we call the parallelism-defining layer, the parallelism

matching layer, and the parallelism-matching control layer. Each of these three layers

are further divided according to the purpose and effects of the heuristics. The hierarchy

structure of the transformation heuristics is shown in figure 4.

The parallelism-defining layer is the basis of the program restructuring process. It

defines the program parallelism and the machine parallelism by asserting facts about

parallelism into the solution state. The computational model represents the machine

parallelism and its construction is based on the machine features and the heuristics of

utilizing them. The program parallelism is represented by program dependence graphs.

The parallelism matching functions and the heuristics (for analyzing the matching

between the program and the computational model) are included in this layer. Custom

ized conflict resolution strategies and inference rules can be added to this layer as well.

The program parallelism optimization process improves the matching between the

program. and the machine by repeatedly selecting program regions and restructuring

them. Corresponding to this process. the parallelism-matching layer consists of two

actions that are implemented as hierarchies: the program/ocus selection and the program

restructuring control. The program focus selection process is responsible for selecting

the program fragment to optimize, and the program restructuring control process utilizes

heuristics to optimize the program focus.

The program restructuring control process is the part of the heuristic hierarchy that

actually selects and performs the transformations. Corresponding to the problems of

parallelism optimization discussed in section 2, the purposes of the transformations can

be classified into the following four categories: improving program parallelism, minimiz

ing synchronization, creating tasks and allocating processors, and utilizing memory

usages. Since each transformation may fit into several categories, we separate the heuris

tics in the program restructuring control layer into two layers: the program restructuring

subgoal selection layer and the trans/ormation layer. The restructuring subgoal selection

layer contains the heuristics for solving the four problems mentioned. above, and the

transformation layer contains the transformation techniques which we tenned transfor

mation modules.
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Figure 4 Heuristic hierarchy ofthe program transformation heuristics.

Each transformation module consists of the description of the transformation tech

nique, the conditions for the transformation to be applicable and the procedures to carry

out the transformation. Also included in the module are the heuristics about feasibility of

the transformation under various circumstances, shon-cut rules in applying the transfor

mation, methods of estimating the effects of the transformation, etc. As an example, the
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module for "loop interchange" is outlined below. The direction vector notation is taken

from [Wolfe82].

Module Name: Loop interchange

Purpose: Change the order of headers of

nested loops into 'optimal' ordering.

Description :Based on heuristics, compute the loop order

that matches the computational model best.

Restrictions: Loop orders that cause a dependence to

have direction vectors in the fonn of

(... , <•...• >, ...) is prohibited.

Test Algorithm: Procedure legal_order(L, ORD)

Given a loop order ORD,

for each dependence DEP in the loops do

if the direction vector of DEP has the form

(...• <, ...• >•...) according to ORD

then return(faiI);

end for

return(true); j* The order is legal*j

Applying Algorithm: j* find the best ordering of the loops. *j

procedure besUoop_order(L)

old-ord = generate-loop-order(L);

while «new-ord = generate-Ioop-order(L» != NULL) do

old-order = better-order(old-ord. new-oro);

return(old-ord);

Transformation Algorithm: Loop_intcrchange(Outmostlp, Norder)

change all distance vector according to Norder,

update control dependence of the loop headers;

Heuristics:

if has_IO(FOCUS)

then fail.

if (is_loop(FOCUS)) and (no, nested(FOCUS»)

then apply loop_distribution(FOCUS).
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if (nested_loops(Ll, U)) and

(in(SI, L1) and in(S2, U)) and

(dep(SI, S2, [<, >]))

then not interchangeable(Ll, L2).

if ('memory optimization dominates instruction minimization')

then

(set(weight, size-matching, light)) and

(set(weight, memory-access-matching, heavy))

The program restructuring process can be divided into the following stages that we

termed the program restrueruring subgoa[s. These include the program parallelism

improvement subgoal, the synchronization minimization subgoal, the task creation and

processor allocation subgoal, and the memory-access optimization subgoa!. A transfor

mation might be applied in different situations for different reasons. Therefore, each

subgoal category may select any of the transformations in the underlying transformation

layer. Rules in each of the program restructuring subgoals select the appropriate

transformations to apply. The selection of the transformations is based on the heuristics

in the transformation layer and the parallelism-defining layer.

The program parallelism improving subgoal consists of rules about the methods of

improving program structures. This goal is achieved by restructuring the program to cut

down on the amount of data or control dependence presented in the program dependence

graph. The synchronization minimization subgoal contains the heuristics for trying to

decrease the cost of inter-processor synchronization. The task creation and processor

allocation subgoal is formed by the heuristics for both decomposing the program into

tasks and matching the tasks against the target machine. The memory-accesses optimiza

tion subgoal is aimed at utilizing the memory hierarchy. Issues considered here include

array decomposition and allocation, cache utilization, inter-task communications minimi

zation, and improving locality.

The program focus selection layer cooperates with the parallelism matching control

layer in selecting the appropriate program focus. It consists of rules to select a portion of

the program to serve as the current focus of program restructuring. Depending on the

size and the structure of the program, as well as the optimization degree that the user sets,

the size of the program focus ranges from a loop to the whole program. If the program is

complicated, a divide-andRconquer strategy is used to subdivide the program. The pro

gram is divided into several "super-tasks" and each super-task is restructured separately.

Then the restructured portions are combined based on global considerations. Depending

on the dependence relations, the super-tasks of programs can be executed either sequen

tially or simultaneously. If these super-tasks are to be executed sequentially on the target
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machine, then each part is restructured based on the computational model of the original

machine. On the other hand, if some super-tasks of the program are to be executed

simultaneously, then the machine is subdivided into several independent virtual machines

(or clusters) and the super-tasks are assigned to the vinual machines.

Note that when a program is divided into sub-programs, and the sub-programs are

restructured separately, the memory accesses optimization subgoal will try to optimize

the memory accesses and decompose the array storages based on the program focus and

the machine model to which it is assigned. The array decompositions chosen in the

subgoal may be changed when global consideration and adjustments are made.

The parallelism-matching control layer is the topmost layer of the hierarchy and it

represents the process that controls the overall optimization of the program. It uses the

subgoals in the parallelism-matching layer to decompose the program into tasks which

we call program focuses. It then matches them with the machine model individually. and

finally adjusts the results based on global considerations.

The hierarchy structure significantly improves the flexibility and efficiency of the

transformation process. The rules in a layer may select any of the actions (subgoals) in

the lower layers. Thus no fixed ordering for applying the actions needs to be specified

This allows the system to be very flexible in deciding the sequences of the transforma

tions. Unrelated rules do not need to be checked, since only the set of rules in the

subgoal selected by the upper layer needs to be evaluated Furthermore, back tracking

only occurs within the set of rules in the same layer.

3.5 Applying a Heuristic Hierarchy to Program Transformation

The program restructuring process starts by examining the rules on the top layer of

the hierarchy. Mter the focus of the program is chosen, the transformation subgoals on

the next layer are selected and the rules associated with the subgoal are involved in

selecting the applicable transformations. Similarly. when a transformation is chosen, the

rules associated with it are applied to decide the merits and methods of performing the

transformation on the program focus.

The flow of control is decided by the rules in the heuristic hierarchy. We will illus

trate the decision making process of the system with a simple example. A matrix-vector

multiply is a nice illustration of the ideas behind the system, since very few data depen

dence are involved and many transformations are possible. The program is a simple

nested iteration.
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fori in [1.. nl do

forj in [1 .. ml do

y[il = y[il + a[i,jl*xUl;

end for;

end for;

To simplify the discussion we assume that the result vector y has been previously initial

ized to zero. We seek to transform this program to programs suitable for three different

machines: the BBN Butterfly, the Purdue Pringle, and the Alliant FXJ8. The rules used

in this example are listed in the appendix.

3.5.1 Mapping onto the BBN Butterfly

First, we consider the Butterfly. As we discussed in section 2, the machine feature

database is first consulted in the construction of the virtual computational model. For

example, the fact "parallelize outermost loop without blocking" is added by rule 3.a.1

(listed in the appendix) because the Butterfly provides a mechanism, uOenOnIndex,"

which can schedule the loops automatically. The system discovers, among other facts,

that memory optimization dominates instruction minimization (rule 3.a.5), locality is

i m p o n a n ~ and local memory should be used whenever possible (rule 3.a.6). These facts

are added to the system's state space in the working memory.

Next, the transformation heuristic hierarchy is used to optimize the program. First.

the parallelism-matching control layer is involved to control the resrructuring of the pro

gram. In this example, it is trivial to select the program focus. By rule 3.b.l. the whole

subroutine is chosen as the program focus, since the original program consists only of a

single statement inside the doubly nested loop.

The next step is for the program restructuring control layer to decide which

sequence of program restructuring subgoals to achieve. Due to the simplicity of the

dependence graph of this program, none of the transformations which are used to break

the data dependence cycles are needed. Thus, the parallelism improvement subgoal is

skipped (rule 3.c.l). For the sake of flexibility, it is best to do processor assignment

toward the end of the transformation process. However, array decomposition can be

done only after tasks are created. So there is a conflict in deciding which of the two

subgoals, task crean'on and processor aUoean·on subgoal or memory access optimization

subgoal, should be done first. Our solution to this problem is as follows. First, we find

the tentative process allocation scheme and block the outermost loop to create

"processes." The newly created outermost loop is marked, but is not actually parallel

ized. The loop instances of this marked loop fonn the tentative processes, and this infor

mation will be used to guide the array decompositions in memory access optimization

subgoa!. The actual processor allocation is carried out at the end of the transformation

process if the marked loop remains marked by then. This heuristic is encapsulated in the
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default ordering of rules 3.c.4, 3.c.5, and 3.c.7.

After the task creation and processor allocation subgoal is picked, the system con

centrates its restructuring efforts on the loop structures. At this stage, applicable

transformations include loop interchanging and loop blocking (to create processes).

According to the heuristic (rule 3.e.l), if the program focus is a nested loop, then loop

interchanging is checked to find the best order of the loops before the processes are

created.

Therefore, the control goes down to the lower level transformation layer, and rules

associated with loop interchanging are applied. We assume that the arrays in Butterfly

are stored in row order. There are no dependence relations that prevent us from inter

changing the loop. so the loop is interchangeable. However, if loop j is changed to be the

outcnnost loop, the array a will be accessed in columns no matter how we block the

outer loop to form processes. This- is not attractive because it increases the inter-task

communications significantly. Therefore, based. on the rules associated with loop inter

change, the system decides that the original loop order is the best and that no loop inter

change is needed.

The next step is to find a tentative way of allocating the processes to the processors.

Since the Bunerfly has an instruction, GenOnindex, that can schedule the loops automat

ically, we can parallelize the outermost loop without blocking (rule 3.a.I). As a result,

the outer loop i is marked to form tasks (rule 3.e.4). There are n instances of the loop i,

so n tasks are formed if each loop instance is viewed as a task. This information will be

used to guide the array decompositions when the memory access optimization subgoal is

involved.

After the processor allocation phase, rule 3.c.3 chooses the memory access optimi

zation subgoal. Since local memory access is faster than global memory access on the

Butterfly, locality is important (rule 3.a.6). Also, the Butterfly supports a "block

transfer" instruction, which allows a block of memory to be transferred to, or from, the

local memory to speed up the data transfer. This makes copying array references inside

loops into local memory beneficial. In the matrix-vector multiply program, there are two

array references in the nested loops. Each element of array x is accessed once by every

instance of the loop j. Also, elements of the i-th row of the array a are accessed

exclusively by loop instance i. Since loop i is marked to be parallelized in the "proces

sor allocation" subgoal. every processor that runs loop instance i will have to access

every element of the array x and the i-th row of array a once. Rule 3.f.l suggests we

copy array x and array a into local memory with block transfer operations. Since the i

th iteration accesses only the i-th row of the array a, there is no need to copy the whole

array. The block transfer operation on array a is later changed by rule 3.f.2 into a block

transfer operation on row i of the array a in loop i. This gives us (by applying rule 3,f.3):
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fori in [looN] do

block_transfer(x, x_local, sizeof(x»;

block transfer(a[i, *], a local, sizeof(a[i, "']»);- -

forjin [I.oM] do

y[ij:= a_Ioca1[j] * xJoca1[j];

end for

end for

Since the block transfer statement of copying array x does not depend on loop i. it

can be moved outside loop i to form another parallelized loop of P instances, where P is

the number of the processors (rule 3.f.4). In this way, the array is copied P times instead

of N times, as it was in the original fann.

After the memory allocations are complete, the parallelism improving subgoal is

tried. This is to see if there is any chance to improve the program further. It is relatively

easy for the system to recognize that the inner loop j is an inner-product operation (rule

3.d.!), so the loop is replaced by an inner-product operation (rule 3.d.2). The final step

involves the processor allocation subgoal again. Since no transformation that might

prevent the parallelizing of the outermost loop i (which is marked for parallelizing) has

been performed, the loop is directly parallelized as shown below.

coprocess k in [1 .. Pj do

block_transfer(x, xJocal, sizeof(x»;

end coprocess

coprocess i in [1 .. Nj do

block_transfer(a[i, *], a_local, sizeof(a[i, *]);

y[i] := inner-product(a local[*], x local[*]);- -
end coprocess

3.5.2 Mapping onto the Pringle/CHiP

The Pringle/CHiP architecture consists of an array of 64 processors which commun

icate with each other via a packet-switched message network. There is no shared

memory. and each processor runs one process. The communication pattern of messages

between processors, defined at compile time as a communication graph, is used to

configure the switch network at load time. Each of the memory modules is dual ported..

One pon goes to the processor while the other goes to a global bus, this allows the local

memory of each processor to be a page of the global address of the front-end host.

Downloading programs and data to each processor and loading the results of a computa

tion to the host is done over this bus.
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For the same reason as in the case of Bunerfly, the system decides not to change the

original order of loops after the rules in the transformation module, loop interchange, are

used to decide the order of loop headers. Making the program restructuring task different

here are the facts that process creation time on the Pringle is expensive, and no self

scheduling primitive is available. The best strategy for processor allocation on the Prin

gle is to create P processes to run on the P processors that the Pringle bas (rule 3.a.2).

So, the n inst~ces of the outermost loop i are blocked to form P tasks (rule 3.e.3). The

result is shown below:

coprocess k in [0 .• P·I] do

for i in [k*nJP .. (k+I)*nJP] do

forjin [l .. m]do

y[i] := y[i] + ali, j] * x[j];

end for;

end for;

end coprocess;

Nex.t, the memory access optimization subgoal is invoked [0 allocate the data

Since the Pringle is a non-shared memory machine. all the data must be distributed

among the processors. Array decompositions are done by means of inter-process depen

dence analysis. By checking the bounds of the loops, the system discovers that the pr0

cessor which runs process k (k-th iteration of the coprocess loop) accesses only rows

k*nlP to (k+1)*nIP of the array a. In terms of the dependence relations. this means that

no out-of-bounds dependence (dependence edge that has only one end in the loops) or

cross-iteration dependence (dependence whose source and sink are in different loop itera

tions) of the array a exist. So, it is best to store these rows of the array in the local

memory of the processor that runs the task. By rule 3.f.11, the array a is divided into P

blocks according to the memory access pattern, and the P blocks are allocated to local

memories in the corresponding processors. Similarly, array y can be blocked into P

"chunks" and stored in the local memories of the processors. Therefore, each of the

processors computes nIP components of the y vector.

Since each process uses all the elements of array x, the processor that runs the pro

cess needs to access the whole array x no matter where the array is allocated. If we are

free to allocate the array x anywhere, the most direct method is to put it in one processor,

say PEO, and then "broadcast" it to other processors by means of a pipeline process (rule

3.f.12). To accomplish this, each element of.x is passed from one processor to the next

by using a "channel" variable. This transformation is termed "pipelining," which is a

modified version of the transformation ••scalar expansion" to pass the data through

"channel_variables" instead of temporary variables. The channel variable Ch_x[kl

implements a communication channel between processor k and processor k+1. Processor

k =0 reads the value of xU] and puts it in ChJ[O]. Processor k=! reads the value in

Chy [0] and puts it into Ch_x [ll, etc. The result of the transformation is shown below:



- 33-

coprocess k in [0 .. p-I] do

local tmp;

for j in [1 •• m] do

tmp = if (k==0) then x[j] else Ch_x[k-I];

Ch_x[k] = tmp;

fori in [k'nlp .• (k+I)'nlp] do

y[i] = y[i] + a[iJ] • tmp;

end for;

end for;

end coprocess;

On some non-shared memory machines it is too costly to send a message consisting

of only one word (for example, the Intel IPSC and the N-cube). In this case, it is best to

send large segments of the x vector through the pipeline at a time.

Perhaps the most important problem to be solved for both non-shared memory

machines and shared-memory machines that require programs exploit locality is how to

analyze a program and derive an optimal partition of the data structures.

3.5.3 Mapping onto the AIliant FXl8

In the case of the AlIiant FXJ8 there are three important programming issues. First,

because of the powerful vector instruction set in each processor, one should exploit as

many vector operations as possible. Second, since cache access is twice as fast as a

memory access, the programmer must force as many memory accesses to be from the

shared data cache as possible. Third. because only one operand in a vector instruction

may come from memory or cache, it is important to keep vector operands that are used

repeatedly in vector registers.

Most parallel compilers can recognize the inner-product operation in the original

matrix vector multiply program and translate the program into the following form:

foriinl .. ndo

y[i] = inner_product(A[i, '], x);

Although the Alliant suppons fast inner-product operations, this transformation

does Dot really utilize the parallelism capabilities of the AIliant FXl8. Each processor

that runs the program accesses the array x n times, so the array x needs to be brought

into the cache repeatedly. Since each vector register in the Alliant FXI8 can hold only

thiny-two words of data, the vector x and the matrix a in the sample program need to be

loaded into the vector registers repeatedly. This data traffic floods the bus and slows

down the computations significantly.
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In general, without intelligent program analysis, this communication bottleneck

problem is hard to solve. Our system tries to improve the matching between the program

and the computational model of the Alliant by examining and managing the memory

accesses intelligently.

As in the case of the Butterfly, task creation and processor allocation is the first

subgoal selected. Since the AlIiant bas a vector capability. both the vector processing

parallelism in the innermost loop and the multi-processing parallelism in the outermost

loop need to be explored. Before the outer loop is blocked to form tasks and the inner

loop is blocked to form vector operations, loop interchange is considered to find the best

ordering of the loop headers (rule 3.e.I). So control goes down to the transformation

layer, and the roles associated with the transformation "loop interchange" are applied..

First, the nested loops i and j in the original source are checked, and the conclusion that

they are interchangeable is reached. Next. rules about loop orders are applied to decide

the best order of the loop headers. Program size matching and memory utilization

matching indices can be used to select the loop order. Rule 3.a.5 suggests that memory

optimization dominates the instruction minimization, so memory optimization matching

is considered.

The matrix-vector multiply program accesses vector x n passes in total, one pass for

each loop instance of loop i. Loop j is the loop that scans through vector x. If loop j is

the inner loop, and loop i is the outer loop, then each value of the vector x will be

accessed once by every loop instance of loop i. Therefore, the vector needs to be brought

into cache repeatedly. On the other hand., if loop i is the inner loop and loop j is the outer

loop, the value x[j] is brought into the cache and used by all loop instances of the inner

loop i for each loop instance of the outer loop j. In this loop order. the network traffic for

references of vector x is decreased significantly. Therefore, the loop order where loop j

is outside is preferred according to the memory allocation matching function. In other

words, the loops need to be interchanged.

After the loops are interchanged, the innermost loop is blocked to form vector

operations, and the outermost loop is translated into tasks and may be blocked to form

processes. For the vector loop blocking. the inner loop i is blocked according to the vec

tor register size of the Alliant (rule 3.e.2). The vector operation is created by vectorizing

the innermost loop after the blocking. The resulting program is shown below. Each loop

instance of the outermost loop j forms a task.. Since the Alliant instruction set provides a

means to automatically allocate the processes to the 8 processors, no loop blocking is

needed to match the number of processes with the number of processors (rule 3.a.1).

SubsequentlY,loop j is marked to be parallelized.
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forjin[1 .. m]do

for k in [0 .• nl32-1] do

k1=k*32+1;

k2 = (k+1) * 32;

y[k1 .• k2] sum= a[k1 .. k2, j] * x[j];

end fOT;

end for;

The next step is to perform memory access optimization. Rule 3.a.7 suggests that

keeping one vector operand in a vector register is beneficial. Since vector segment

y[k*32+1 .. (k+1)*32] is used repeatedly by each instance of the outer loop j, it is best to

keep this segment in the vector register. This can be accomplished by interchanging

loops j and k (rule 3.f.13). Note that in the previous task creation and processor alloca

tion subgoal. the loop j is marked as "to be parallelized". However. according to rule

3.f.14. the utilization of vector registers and vector operations is weighted to be more

important So the previous decision is revoked, and the loops are interchanged. Loop k

becomes the outermoSt loop to be parallelized. The resulting program is:

coprocess k in [0 .. nl32-1] do

local kl, k2 : iot;

k1 = k * 31 + 1;

k2 = (k+1) * 32;

forjin [1 •• m]do

y[k1 .. k2] sum= a[k1 .. k2, j] * x[j];

end for;

end coprocess;

In the final version, each 32 word y vector segment can be saved in a register for the

lifetime of the process and can be written to memory only at the end of the computation.

Experiments performed in collaboration with Dan Sorensen at the llIinois Center for

Supercomputer Research and Development [CSRD] have shown that this implementation

of the program is the fastest version of a matrix-vector multiply available for the

machine.

The mattix-vector multiply example described above served three purposes:

1. It demonstrated how the inference engine works.

2. It illustrated the fact that a different sequence of transformations was required to

produce an optimal program for each machine.

3. It showed the complexity of the program parallelism optimization process.

Many heuristics were needed even for this simple program. This reinforces our

view that an expert systems approach is a more flexible and extensible approach than the

conventional hard-wired heuristics approach.
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On the other hand, the example described above is far too simple to illustrate many

of the most interesting and imponant issues in program restructuring. In particular, it

fails to illustrate the issues relating to the introduction of synchronization needed in many

problems to satisfy data dependence constraints between parallel tasks. This topic and

many other are considered in greater depth in [Wang87].

4 Conclusion

Different parallel architectures use different properties of parallel algorithms to

speed up computation. These properties require different programming methodologies

and heuristics in order to be well utilized. Most users of scientific parallel computers use

the following approach: they study the target parallel architecture extensively, then

develop tricks and expertise to utilizing the architecture. From these experiences, they

carefully code their applications to exploit the parallelism provided by the hardware.

TItis "study and experience cycle" may need to be repeated many times before the

resulting program achieves a satisfiable speed-up. As a result, users need to pay a great

deal of attention to the problem of matching program parallelism to machine parallelism

for each application. Furthermore, algorithms tailored to suit the particular underlying

hardware may not be easily ported to other machines without major modifications. It is

clear that this approach is expensive in human terms, i.e. software development and

maintenance grow as the diversity of parallel machines increases.

Although most program transformation techniques are machine independent, the

heuristics of applying these techniques to the target machine are not. These heuristics are

based on extensive study of the particular target machine and are usually hard-wired into

a compiler. As a result, existing parallel compilers/restIucturers can only generate paral

lel code for one particular target machine. Much effort must be spent in order to build

compilers for different machines even though much of the knowledge can be transferred

with minor modifications. Furthermore, the transformation sequence is often predefined

by the compiler or specified by the user as an option to the compiler. Given the dynamic

nature of programs. this approach is not flexible and may not be able to generate optimal

code across a wide spectrum of algorithms.

Building an interactive program restrucrurer is an attempt to improve the program

ming environment to allow users to experiment with different program restructuring

sequences interactively. But the user still has the burden of matching program parallel

ism with the underlying machine. From our point of view, what the user really needs is a

user friendly environment that is capable of exploring program parallelism and providing

expert advice for different architectures when it is requested to do so.

The expert systems approach of program parallelism optimization has the following

advantages over the conventional hard-wired approach:
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Modulariry. The heuristic hierarchy structure provides a means to organize the pro

gram transformation heuristics into a modular form for easy understanding and

maintenance of the system. Basing heuristics on both the program features and

machine features can clean up the heuristics and allow the heuristics to be used for

different parallel machines. It also makes modifying and expanding the system

easy. New heuristics can be easily installed. Porting the system to new target

machines is just a ma.tter of specifying the machine features and providing a

mechanism go generate target code for that machine.

Flexibility. The decision of which transformation to apply is made dynantically dur

ing the program optimization process. Both current program structures and the tar

get machine features are considered as the program is optimized. This allows the

system to select transformations that suit the particular program and target machine

well.

Retargetabiliry. The system can handle different kinds of target machines. It would

be very difficult, if not impossible, to implement a program parallelism optimization

system using the conventional hard-wired approach.

In its current form, our system consists of three major components: an interactive

incremental parser/structured editor for a simple functional language BLAZE [MeVR85]

or FORTRAN. an interactive graphics based program resttl1cturer that allows the user

complete control over the program restructuring process, and the lmowledge base and

inference engine described in this paper. All three components now work in prototype

form only, and much work remains to be done before we willlmow if this experiment has

been a success. Experimental results and many more details about the system will be

published in a later volume [Wang87].
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Appendix

Rules used in the examples.

Construction of the Computational Model.

Process Creation.

[Rule 3.a I, ['computational model construction']]

if ('has self-scheduling-loop primitives')

then

assert('parallelize outermost loop without blocking').

[Rule 3.a2, ['computational model construction']]

if ('process creation cost' (high» and

(number-of-processors(p»

then

assert('number of processes to create'(p».

[Rule 3.a.3, ['computational model construction']]

if ('process creation cost'Oow»

then
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assertCparallelize outermost loop without blocking').

Locality

[Rule 3.a.4, ['computational model construction'}]

if has-cache
then

assert('locality is importan~').

[Rule 3.a.5. ['computational model construction']]

if ('data access/process cost ratio'(large»

then

assert('memory optimization dominates instruction minimization').

[Rule 3.a.6, ['computational model construction']]

if ('shared/local memory access ratio'(large»

then

(assen('locality is important'» and

(assen('use local variable whenever possible'».

[Rule 3.a7 ['computational model construction']]

if ('has vector register')

then

('try to keep vector operand in register')

The Program Focus Selection Subgoal

[Rule 3.b.l, ['program focus selection']]

if ('nested loop'(PDG)) and

(nested-in(BB, PDG)) and

('single statement block'(BB))

then

FOCUS=PDG.

The Transformation Selection Subgoal.

[Rule 3.c.l. ['program restructuring subgoal selection']]

if ('nested loop'(FOCUS)) and

(nesled-in(BB, FOCUS)) and

('single statement block'(BB»

then

select('task creation and processor allocation').

[Rule 3.c.2, ['program restructuring subgoal selection']]

if ('compound statement'(Focus))

then

select('parallelism improvement').
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[Rule 3.c.3, ['program restrocturing subgoal selection']]

if ('tasks created')

then

select('memory access optimization').

[Rule 3.c.4, ['program restructuring subgoal selection']]

:- (select('task creation and processor allocation'».

[Rule 3.c.5. ['program resmIcturing subgoal selection']]

if ('has cache') or ('has arrays in'CFocus)) or ('locality is important'))

then

seleet('memory access optimization').

[Rule 3.c.6, ['program restructuring subgoal selection']]

if ('multiple tasks are created')

then

select('parallelism improvement'),

[Rule 3.c.7. ['program restructuring subgoal selection']]

if ('task creared'CFOCUS)) and (not 'parallelized'CFOCUS)))

then

selectCtask-creation and processor allocation')

Parallelism Improvement Subgoal

[Rule 3.d.l, ['parallelism improving']]

if (is-a-IoopCL)) and

CL = (for i in [RANGE] do A += B[i] • C[i]; end for))

then

is-inner-produet(L)

[Rule 3.d.2, ['parallelism improving']]

if ('has built-in fast inner product') and

(is-inCL, FOCUS)) and

(is-inner-product(L»

then

apply(t:rnnsformadon(inner-product, L».

[Rule 3.d.3, ['parallelism improving']]

if ('has fetch-and-op operations') and

('recurrence relation'(STMT»

then

('change into accwnulation'(STMT).

[Rule 3.d.4, ('parallelism improving']]

If ('nested-Ioops'CFocus)) and

(not 'perfectly-nested-loops'(Focus» and
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«('is-multi-processors' and high('task-creation-time'» or

('has vector operations'»

then

apply('loop distribution').

Rules about task creation and processor allocation

[Rule 3.e.l, ['task creation and processor allocation']J

If (is-nested-loop(FOCUS))

then

selectOoop-interchange(FOCUS)).

(Rule 3.e.2. ['task creation and processor allocation 'J]

if (is-nested-Ioop(FOCUS)) and

('has vector operations') and

('size ofveetor registers'(V) and

r:v <> 0) and

(innermost-loop(FOCUS. INNER)) and

(nom-of-iterations(INNER, N)) and

r:v<N)
then

'loop blocking'(INNER, N).

[Rule 3.e.3. ['task creation and processor allocation']]

if (is-a-Ioop(FOCUS)) and

(outermost-loop(FOCUS, OUTER)) and

(nom-of-iterations(OUTER, N)) and

(nomber-of-processor(P)) and

(N)P)

then

'loop blocking'(OU1ER, Pl.

[Rule 3.e.4. ['task creation and processor allocation']]

if ('parallelize outermost loop without blocking') and

(is-nested-loop(FOCUS)) and

(outermost-loop(FOCUS, OUTER))

then

(parallelize(OUTER)).

Memory Access Optimization.

[Rule 3.f.l, ['memory access optimization']]

(Assume L2 is the innermost loop that is nested in Ll such

that array references of X depends on the loop index cfL2.

Also let X-sub be the part of the array X whose references

depend on the loops inside L2.)
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if (has-instruction(block-transfer» and

(shared-array(X)) and

(parallelize(L1)) and

(referenced-inex, Ll)) and

(irmerrnoS't-depends-on-loop(Ll, X. L2» and

(snb-depends-onex, X-sub, L2)) and

(N = sizeaf(X)) and

('minimal number of references to justify cost of block-transfer' = B) and

(N)B)

then

(apply('black transfer'ex-sub. L2))).

[Rule 3.f.2. ['memory access optimization']]

if (apply('block transfer' ex, L)) and

(parallelize(L)) and

('nested in'(LI, L)) and

(sub-depends-anex, X-sub, Ll))

then

(apply('black transfer'ex-sub, LI))).

[Rule 3.f.3. ['memory access optimization']]

if (apply('black transfer'ex, L))) and

('nested in'(L, LO))

then

('creare remporary array'(tmp, LO) and

('create statement'(S, block-transfer{X, nnp, sizeof(X)) and

('insen in front af'(S, L2)) and

(substitureex, tmp, L)).

[Rule 3.f.4. ['memory access optimization']]

if (S = ('black transfer'(A, L, N))) and

(shared(A)) and

(lacal(L)) and

(nested-in(S, LO)) and

(parallelized(LO)) and

('nat depends an'(A, LO)) and

('number ofprocessors'(p»

then

(create-loop(LL, l..P)) and

(add-SlIDl(LL, S)) and

(parallelized(LL)) and

('insen in fron, af'(LL, LO)).

[Rule 3.f.5. ['memory access optimization']]

if (S = ('black transfer'(L, A, N))) and

(sbared(A)) and

(lac:J1(L)) and
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(nested-in(S, 1.0)) and

(parallelized(LO)) and

('not depends on'(A, 1.0)) and

('number ofprocessors'(p»

then

(create-loop(LL, 1..P)) and

(add-sont(LL, S)) and

(parallelized(LL)) and

('append to'(LL, 1.0)).

[Rule 3.f.6. ['memory access optimization']]

if ('has cache') and

('mostly used array'(A, FOCUS))

then

('keep in cache'(A)).

[Rule 3.f.7. ['memory access optimization']]

if ('locality is imponant') and

('has local memory') and

('data accessing ratio of shared memory-local memory' > 2) and

(shared-array(A))

then

('allocate array A to the local memory of each processor').

[Rule 3.f.8, ['memory access optimization']]

if (has-local-memory)

('mostly used array'(A, FOCUS))

(shared-array(A))

(appears-in(A, S)) and

('in nested 100ps'(S, [1.1 .. Ln])) and

('not depends on 100ps'(A, LI))

then

('create unp'(onp, 1.1)) and

('create statement'(SI, (A:= unp))) and

('insert in front of'(SI, S)),

(substitute(A, onp, LI)).

[Rule 3.f.9. ['memory access optimization']]

if ('mostly used array'(A, FOCUS)) and

(shared(A)) and

(appears-in(A, S)) and

('in nested 100ps'(S, [1.1.. Ln])) and

('depends on 100ps'(A, LI))

then

(find the plausible loop order ORD with most inner loops that A depends on) and

('loop interchange'(LI, ORO)) and

(innennost-depends-on-loop(LI, X, 1.1.)) and
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('create tmp'(tmp, LL» and

('create statement'(SI, (A := tmp») and

('insert in front o['(SI, S» and

(substitute(A, tmp, LL».

[Rule 3.f.l0, ['memory access optimization']]

if ('has local memory') and

('mostly used array'(A, FOCUS» and

(shared(A» and

('not modified'(A» and

(cache-size(C) and

(sizeof(A)> C)

then

('create tmp'(tmp, FOCUS» and

(scalarize(A, tmp».

[Rule 3.f.ll. ['memory access optimization']]

if ('non-shared memory') and

(parallelized(L» and

(array(A» and

(appears-in(A, L» and

Cno inter task dependence exist'CA. L» and

(sub-depends-on(A, A-sub, L»

then

(allocate-local(A-sub, L».

[Rule 3.f.12, ['memory access optimization']]

if ('non-shared memory') and

(parallelized(L» and

(array(A» and

(appears-in(A. L» and

('has inter task dependence in'CA, L»

then

('pipelining references'(A, L».

[Rule 3.f.13, ['memory access optimization']]

if ('has vector register') and

('is a vector'(V) and

(appears-inCV, S» and

('in nested 100ps'(S, LList» and

(member(LL, LList» and

('not depends on'(A, LL»

then

('interchange loops to move LL into the innermost').

[Rule 3.f.14, ['memory access optimization']]

if ('has vector register')
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then

('vector register optimization dominates memory access optimization')
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