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Abstract

The complexity of technical systems requires increasingly advanced fault diagnosis methods to ensure safety and reliability

during operation. Particularly in domains where maintenance constitutes an extensive portion of the entire operation cost,

efficient and effective failure identification holds the potential to provide large economic value. Abduction offers an

intuitive concept for diagnostic reasoning relying on the notion of logical entailment. Nevertheless, abductive reasoning is

an intractable problem and computing solutions for instances of reasonable size and complexity persists to pose a challenge.

In this paper, we investigate algorithm selection as a mechanism to predict the “best” performing technique for a specific

abduction scenario within the framework of model-based diagnosis. Based on a set of structural attributes extracted from the

system models, our meta-approach trains a machine learning classifier that forecasts the most runtime efficient abduction

technique given a new diagnosis problem. To assess the predictor’s selection capabilities and the suitability of the meta-

approach in general, we conducted an empirical analysis featuring seven abductive reasoning approaches. The results

obtained indicate that applying algorithm selection is competitive in comparison to always choosing a single abductive

reasoning method.

Keywords Abductive reasoning · Model-based diagnosis · Algorithm selection

1 Introduction

Abduction is reasoning toward the “best” explanations for

a set of encountered observations. While the most prevalent

application area is diagnosis, where abduction is an intuitive

methodology for deriving root causes, its usage ranges

from test case generation [41] over text interpretation [49]

to human behavior interpretation [14]. In regard to fault

localization, model-based approaches have been developed

for decades. These techniques aim at identifying failures

from a description of the system under diagnosis and

the detected abnormal behavior [8, 53]. The traditional

consistency-based method exploits a formalization of the
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correct behavior that in conjunction with a symptom leads

to inconsistencies. These inconsistencies are then used

to derive explanations. In contrast, the abductive model-

based diagnosis version depends on logical entailment, i.e.,

given the system description a diagnosis has to entail the

observations. Additional restrictions, such as minimality,

characterize the admissible solutions. Originally, abductive

model-based approaches consider solely representations of

the faulty system behavior. Such failure knowledge can be

expressed as Horn theories [5].

All model-based techniques depend on the quality of

the underlying representation to adequately capture the

system’s behavior and structure. Besides being expressive

enough to formalize the artifact’s characteristics, the model

should allow for efficient diagnostic reasoning to be suitable

in a practical application. Ideally, the system description

allows additional support of the decision making process

by (1) including probabilities to allow a prioritization, (2)

by enabling probe selection recommendations to refine the

diagnoses, and/or (3) by taking into account costs and other

factors for suggesting repair or replacement activities [4].

Other approaches extend the model-based diagnosis frame-

work with capabilities to handle uncertainties often encoun-

tered in practice [27, 38]. From a practical point of view, it
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is essential to construct an appropriate system description

as the quality of the entire diagnostic process relies on the

model’s suitability in regard to the domain; yet, generation

of appropriate diagnostic models is often associated with a

large initial effort. To facilitate the integration of diagnosis

tools in existing work processes, research has focused on

automatically extracting Horn diagnosis models from fail-

ure assessments used in practice, such as Failure Mode and

Effect Analysis (FMEA) [31, 62]. While this method elim-

inates or reduces the manual model creation, the generated

system description is only as good as its source.

Let us consider a simple example from the wind turbine

domain, where maintenance costs account for a large

portion of the life time expenditure of the installations. The

gearbox is a vital component converting the rotor’s low-

speed power to high speed power for the generator. Hence,

failures in the gearbox contribute to a great extend to system

downtimes. Gearbox lubrication plays an essential role in

retaining a healthy system state by protecting the gears and

bearings from excessive wear and overheating. A failing

oil filter promotes contamination, which in conjunction

with excessive oil temperature affects the lubricant film of

the subcomponents. Overheating of the oil is caused by

damages to the oil cooler. An insufficient lubrication of the

gearbox may also be rooted in a broken oil pump, which

leads to a decrease in oil pressure and thus a reduced oil flow

through the gearbox. Obviously, this type of information

can easily be formalized as a set of propositional Horn

clauses. Suppose an inadequate lubrication of the gearbox

has been detected. The goal of diagnosis is to determine

the root causes of the observed symptom. For this diagnosis

problem there are two possible explanations: either the oil

filter is broken and there are cracks and leaks in the cooling

component or the oil pump has been damaged.

Abduction for propositional Horn theories is an NP-

complete problem that grows exponentially in the size

of the model [10]. Even though there are practical

examples of NP-complete problems that can be solved

quite efficiently [2], usually there is no universally “best”

algorithm operating well on all problem instances. Choosing

the computation method in regard to the particular example

at hand can provide better performance results [34].

Algorithm selection aims at solving exactly this issue by

identifying the “best performing” procedure for a specific

instance [54]. The approach requires (1) a portfolio of

algorithms to choose from, (2) empirical performance data

of the algorithms on representative problems, and (3) a

set of problem features that are used to get a notion of

the difficulty of a problem instance [20]. To determine the

most suitable routine for a distinct example, a predictor

is constructed taking into account the empirical data and

the feature vector of the representative problem cases

[34, 57].

Given the complexity results of abduction and the

successful application of the portfolio approach in the

domain of SAT [64], graph coloring [46], and tree-

decomposition [44], algorithm selection represents an

interesting strategy to compute abductive diagnoses. Hence,

we investigate algorithm selection as a means to efficiently

compute explanations in the context of propositional

Horn abduction. Horn models possess certain structural

properties, which we utilize as features in order to classify

diagnosis problems in regard to the most runtime efficient

algorithm. We embedded this selection process within a

meta-algorithm that generates the structural metrics for a

given diagnosis problem, categorizes it on a previously

trained predictor, and computes the diagnoses using the

selected abduction approach. The foundations for this work

have been laid previously; first, we have applied a portfolio

approach to abduction based on bijunctive Horn models,

i.e., theories where the clauses solely contain a single

negative literal representing a cause and single positive

literal representing a symptom [30, 32]. Hence, in this work

we extend the underlying representation to Horn clauses.

Second, in Koitz and Wotawa [33], we have compared

the performance of consequence finding and proof-tree

completion methods in the context of propositional Horn

clause abduction. We rely on the empirical performance data

we have obtained from this previous research as an input to

construct the predictor for our algorithm selection approach,

test the resulting selection accuracy, and determine the

overall performance of the meta-approach in comparison to

the other abduction procedures.

This paper is structured as follows. In the upcoming

sections, we give an overview of related literature and

describe the basic definitions of abductive model-based

diagnosis for propositional Horn theories. Section 4 focuses

on the attributes we can extract from the Horn models and

details our meta-approach. Before concluding the paper, we

provide an empirical analysis comparing the meta-approach

to consistently choosing a single abduction method.

2 Related research

There are various methods for extracting abductive diag-

noses, such as the parsimonious set-covering theory [52]

or probabilistic approaches [50]. In logic-based abduction

there are two formulations of the problem directly con-

nected to the relation between diagnoses, observations,

and the background knowledge: consequence finding [40]

and proof-tree completion [42]. (1) In consequence find-

ing explanations are derived deductively by re-formulating

abduction as the search for logical consequences. Two well

known consequence finding techniques are the Assumption-

based Truth Maintenance System (ATMS) [6], deriving
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consequences from propositional Horn theories, and Skip-

ping Ordered Linear (SOL) resolution allowing to extract

logical consequences of interest for full clausal first-order

theories [23]. (2) Proof-tree completion rewrites the diag-

nosis problem in such a way that refutations correspond to

solutions [42]. Hence, any conflict extracting method can be

utilized, e.g., Minimal Unsatisfiable Subsets (MUSes) com-

putation of logical formulae [37]. Many MUS enumeration

algorithms refrain from computing the unsatisfiable cores

directly, but exploit its hitting set dual Minimal Correc-

tion Subsets (MCSes). For instance, Liffiton and Sakallah

[37] present the CAMUS algorithm utilizing this hitting set

duality to produce MUSes by first computing all MCSes.

Abduction has also been introduced to logic pro-

gramming, where additional integrity constraints and

distinguished predicates restrict the admissible solution

space [25]. Besides specific tools such as the A-

System [26], abductive logic programming (ALP) can

be realized using Answer Set Programming (ASP) [56].

Recently, Saikko et al. [55] have proposed the derivation of

one minimal-cost abductive explanations through implicit

hitting set computation based on a combination of an Integer

Programming and a SAT solver. An implementation of their

iterative approach outperforms a state-of-the-art ASP solver

with an encoding of propositional abduction. Ignatiev, Mor-

gado, and Marques-Silva [22] report on an improvement

of this method by deriving the hitting sets via a MaxSAT

solver.

Even though there exist certain subsets of logics

where abductive inference is tractable, abduction for

the general case is hard for the second level of the

polynomial hierarchy [10]. Algorithm selection has resulted

in significant performance improvements on various AI

problems [34]. First formalized by Rice [54], algorithm

selection aims at identifying the “best performing” approach

for a specific problem instance. To determine the most

suitable routine for a distinct example, a predictor is

constructed taking into account the empirical data and

the feature vector of representative problem cases [57].

Instead of creating a single classifier to chose a method,

Leyton-Brown et al. [36] train an empirical hardness model

for each algorithm within the portfolio to forecast each

technique’s performance on the instance and execute the

one predicted superior. While there are approaches that

manually create models for the predictor [59], most of

the time a machine learning classifier is exploited that

categorizes a new problem instance at hand as one of the

methods in the portfolio. Static portfolio approaches have

a finite and fixed set of algorithms to chose from ( though

there exist approaches where the number of algorithms in

the portfolio is based on the training data [63]), while a

dynamic portfolio is built online and may be constructed of

algorithmic blocks.

Generally, there are various strategies in the field of

algorithm selection, for instance, in regard to the selection

(a single algorithm used to solve the entire problem or

interleaved/parallel execution of various approaches), the

number of models built ( a single one to predict the “best”

method or one per approach in the portfolio), and the

time of choosing the algorithm (at the beginning or several

times during search). The interested reader is referred to

Kotthoff [34], who provides a comprehensive overview of

different algorithm selection techniques.

At the intersection of abduction and algorithm selection,

there is the work by Guo and Hsu [16] . The authors

propose algorithm selection in the context of deriving the

most probable explanation (MPE) in probabilistic inference.

Differencing from other work on algorithm selection,

the authors first use classification to determine whether

the problem is solvable and then either use clique-tree

propagation to derive the exact solution or apply a second

classifier to identify the “best” approximation procedure.

While not directly usable for abductive reasoning, Malitsky

et al. [39] apply the portfolio approach to enumerate

MCSes, which can be exploited to derive explanations

based on their hitting set duals [28]. Instead of choosing a

single solver for the current problem instance, the authors

use a technique that switches between various enumeration

procedures multiple times. After a fixed timeout the next

solver is used for computing the remaining solutions.

The decision for the proceeding solver is computed on

demand and to ensure already computed solutions are not

derived again, blocking clauses are added whenever a new

enumeration procedure is chosen.

3 Preliminaries

In essence, abductive inference allows the derivation of

plausible explanations for a given set of observations.

Logic-based abduction provides an intuitive notion of this

type of reasoning: a set of abducible propositions is an

explanation or diagnosis for an observed symptom in case

the observation is a consistent logical consequence of the

diagnosis and background theory. A conclusion φ is said

to be a logical consequence of a set of premises ψ , if and

only if for any interpretation in which ψ holds φ is also

true. We write this relation as ψ |= φ and say ψ entails

φ. An abductive diagnosis or explanation is composed of a

set of abducible propositions taken from a sub-vocabulary

of the representation language. In the context of fault

identification, these propositions are usually abnormality

assumptions about components, while in medical diagnosis

correspond to diseases.

Similar to Friedrich, Gottlob, and Nejdl [11] we focus

on Horn abduction and define a propositional knowledge
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base (KB) that formalizes a propositional Horn theory

Th over a finite set of propositional variables A. A Horn

clause is defined as a disjunction of literals featuring at

most one positive literal and can be described by a rule,

i.e., {¬a1, . . . , ¬an, an+1} can be written as a1 ∧ . . . ∧

an → an+1. A clause without any negated propositions,

i.e., {p}, characterizes a fact. Many diagnostic reasoning

engines restrict the model to Horn clause sentences, which

are usually expressive enough in the context of fault

identification to convey the necessary relations [5]. As the

complexity of logic-based abduction is connected to the

characteristics of the underlying model [3, 48] restricting

the input language to Horn clauses is beneficial from a

computation point of view. In particular, while abduction

for general propositional theories is located in the second

level of the polynomial hierarchy, for Horn clauses the

complexity is mitigated to the first level [10]. A model or

knowledge base is formally defined as a tuple (A,Hyp,Th),

where the set Hyp contains all hypotheses, i.e., abducible

variables.

Definition 1 (Knowledge Base (KB)) A knowledge base

(KB) is a tuple (A,Hyp,Th) where A denotes the set of

propositional variables, Hyp ⊆ A the set of hypotheses, and

Th the set of Horn clause sentences over A.

A Propositional Horn Clause Abduction Problem

(PHCAP) is characterized by a KB and a set of observations

for which root causes are to be derived. In our definition,

observations may only be a conjunction of propositions and

not an arbitrary logical sentence.

Abduction within the logic-based framework is defined via

derivability and consistency, i.e., the observed manifestation

must be derivable from Th augmented with the diagnosis �,

while �∪Th is consistent. In addition, a solution to a PHCAP

must consist of propositions from the set of hypotheses.

Definition 2 (Propositional Horn Clause Abduction

Problem (PHCAP)) Given a KB(A,Hyp,Th) and a set of

observations Obs ⊆ A, the tuple (A,Hyp,Th,Obs) forms a

Propositional Horn Clause Abduction Problem (PHCAP).

Definition 3 (Diagnosis; Solution of a PHCAP) Given a

PHCAP (A,Hyp,Th,Obs). A set � ⊆ Hyp is a solution iff �

∪ Th |= Obs and � ∪ Th �|= ⊥.

Since generally the goal of abduction is to derive

the “best” explanations, some preference criteria must be

present to characterize the notion of optimality. A common

principle is to only consider subset-minimal diagnoses.

Especially in practical applications explanation supersets

provide no additional information useful in a real-world

context. Thus, we define �-Set as the set containing all

parsimonious explanations.

Definition 4 (Parsimonious Diagnosis) A solution � is

parsimonious or minimal iff no set �′ ⊂ � is a solution.

Example 1 In the introduction we have discussed the

example of gearbox lubrication in the industrial wind

turbine domain, where damages to the cooling component

lead to oil overheating. This overheating in conjunction

with a broken oil filter alters the lubricant’s condition

and hence negatively affects gearbox lubrication. Moreover,

a malfunctioning pump triggers a reduced pressure and

subsequently influences the dispensation of fluid throughout

the system. These circumstances can be easily described by

the following KB:

A =

{

Broken filter, Cooler leaks,

Cooler cracks, Damaged pump, reduced pressure, poor lubrication, overheating

}

Hyp =
{

Broken filter, Cooler leaks, Cooler cracks, Damaged pump,
}

Th =

⎧

⎨

⎩

Broken filter ∧ overheating → poor lubrication,

Cooler leaks ∧ Cooler cracks → overheating,

Damaged pump → reduced pressure, reduced pressure → poor lubrication

⎫

⎬

⎭
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Presume we determine there is an insufficient greasing of

the gearbox, i.e., Obs = {poor lubrication}. Given the

theory Th and Obs, we can determine two parsimonious

explanations; (1) either leaks and cracks in the cooler

cause the oil to overheat in addition to a filter failure or

the oil pump is damaged, i.e., �-Set = {{Broken filter,

Cooler leaks, Cooler cracks}, {Damaged pump}}.

By rewriting the relations between the theory, a

diagnosis, and the observations, we can reformulate the

abduction problem in two different fashions [33]: proof-

tree completion [42] and consequence finding [40]. In the

former, abduction is described as the search for a refutation

proof consisting of abducible propositions, i.e., � ∪ Th ∪

{¬Obs} |= ⊥, where {¬Obs} is the disjunction containing a

negation of each observation, i.e.,
∨

oi∈Obs ¬oi . To extract

explanations, the derived conflicts have to be propositions

from Hyp and again no inconsistency may arise from the

solutions. In the latter, abductive explanations are obtained

in a deductive manner. By further recasting the conditions

stated in Definition 3, we can construct Th ∪ {¬Obs} |=

{¬�}, where {¬�} =
∨

δj ∈� ¬δj . In this scenario, we seek

the consistent logical consequences of the theory and the

negated observations comprising negations of hypotheses,

which constitute the diagnoses.

4 Algorithm selection for abductive
model-based diagnosis

In practice, we observe that different approaches perform

noticeably better on certain problem instances than others.

Yet, often no single solver computes solutions optimally

on every example [36, 39, 64]. The objective of algorithm

selection is to identify the most appropriate method

out of a portfolio of techniques for a given problem

instance in regard to a certain performance metric [54].

A common target is to select the method minimizing

the overall computation time. However, other measures

such as accuracy or simplicity of solutions may be

applied. To chose the appropriate algorithm a mapping

between features characterizing a problem instance and the

preferable method to solve it is necessary. This mapping

between the algorithms and the problem attributes requires

empirical performance data on representative samples of all

approaches within the portfolio. On basis of the features

extracted and the execution records, a predictor is built

which should forecast the “best” algorithm on the instance

at hand given the problem’s attributes. To achieve this, the

predictor has to be able to uncover aspects of the problem

which influence the performance of the methods. Rice [54]

advocates for the use of features inherent to the problems

within the problem space to ensure an accurate selection. In

order to be beneficial running the predictor may not be more

expensive than solving the problem itself [34].

4.1 Structural features

Some intuitive measures of the complexity of a diagnosis

problem are the number of abducible variables, i.e.,

hypotheses, the number of manifestations, i.e., propositions

from A \ Hyp, and connections within the theory. As the

models we are studying consist of Horn clauses, we can

easily define their structural properties based on various

graph representations. In the simplest case, the theory is

characterized as a directed graph G = (V , E), where V

is the set of vertices and E constitutes the set of directed

edges. The nodes of the graph represent the propositional

variables, while the edges are determined by the theory. For

each clause a1 ∧ . . . ∧ an → an+1 there exists a set of

edges, such that ∀ai ∈ {a1, . . . , an} : (ai, an+1) ∈ A, i.e.,

for each proposition in a clause’s body, there is a directed

edge from the proposition’s node to the node representing

the clause’s head. Considering the graph representations of

the model, we can extract certain characteristics of their

structure, which we subsequently use within the algorithm

selection process. Note that we do not account for the

logical connectives of the Horn clauses’ bodies in G.

Similarly to Peng and Reggia’s [52] set-covering theory,

we define two sets in regard to knowledge about the

relations in the Horn theory: effects(pi) and causes(pi).

The first contains variables inferred by pi . That is,

assuming a cause-effect relation between propositions, the

set comprises all effects or manifestations of pi . The latter

holds the variables which directly trigger the proposition pi ,

i.e., the causes of pi .

4.1.1 Outdegree and indegree

Based on the directed graph, we can compute for each vertex

representing a hypothesis its outdegree. This specifies the

number of variables affected by said proposition. Similarly,

we record the indegree of each node, i.e. the number of

propositional variables inferring the variable. Collected over

the entire model these measures provide an intuitive metric

of the basic magnitude of the theory and the connectedness

of G.

4.1.2 Covering and overlap

Several propositions may be covered by the same cause.

On basis of this we can define a direct covering metric for



Applying algorithm selection to abductive diagnostic reasoning 3981

each pair of propositions as the ratio between the number of

common effects and the total number of symptoms induced

by the propositions:

covering(pi, pj ) =
|effects(pi) ∩ effects(pj )|

|effects(pi) ∪ effects(pj )|

In a similar manner, we define the overlap of two effects

as their common sources in relation to all their causes:

overlap(pi, pj ) =
|causes(pi) ∩ causes(pj )|

|causes(pi) ∪ causes(pj )|

Additionally, based on the directed graph we compute a

label for each vertex v, which contains all hypotheses said

node is (directly and indirectly) caused by:

label(v) =

{

{v} if v ∈ Hyp
⋃

(x,v)∈E

label(x) otherwise

Note that we do not contemplate the connectives of the

variables, hence, a label in our case is a simple set. Given the

definition of a label, we define an overlap based on labels:

overlaplabel(pi, pj ) =
|label(pi) ∩ label(pj )|

|label(pi) ∪ label(pj )|

While overlap only takes into account the direct causes

of a proposition, overlaplabel uses the information of all

predecessors of a node. By collecting these measures for any

pair of hypotheses or effects, we can compute a value over

the entire model.

4.1.3 Independent diagnosis subproblem

Whenever there exist several subproblems in our theory

we refer to them as independent diagnosis subproblems.

If several subproblems exist, G is disconnected and each

independent diagnosis subproblem itself is a connected

subgraph.

4.1.4 Path length

Another measure of connectedness within the model is the

minimal path length between any two nodes in G. Yet, we

only consider paths between nodes which are causing some

other proposition. Therefore, we construct an undirected

graph, where we only consider propositions as nodes, which

are causing other propositions. An edge is created between

two propositions, in case they are directly causing the same

effect. In particular, we measure the length of the minimal

path between these nodes.

4.1.5 Kolmogorov complexity

A simple encoding-based measure on a graph is its

Kolmogorov complexity, which defines a value equal to

the length of the word necessary to encode the graph. A

straightforward approach in this context is to compute the

complexity based on the adjacency matrix of the undirected

graph [45]. Therefore, we simply replace the directed edges

of G with undirected ones, create a String representation

of the adjacency matrix and based on this derive the

Kolmogorov complexity.

4.1.6 Observation dependent metrics

Since not only the topology of the model is of interest,

but also the structure of the current diagnosis problem,

we measure indegree, overlap and overlaplabel among the

elements of Obs as well as the number of diagnosis

subproblems involving variables of Obs, in case several

exist.

Example 2 For describing the features, we will use the Horn

clause model with Th = {e1 ∧ H1 → e2, e1 ∧ H1 →

e3, H2 → e3, H2 → e4, e3 → e4, H3 → e5} as an

example. Figure 1a shows G created on basis of the model.

The labels are as follows:

v H1 H2 H3 e1 e2 e3 e4 e5

label(v) H1 H2 H3 ∅ H1 H1, H2 H1, H2 H3

For instance, we can extract outdegree(H1) = 2,

indegree(e2) = 2, covering(H1, H2) = 1
3
, overlap(e3, e4)

= 1
4

and overlaplabel(e3, e4) = 1. We also have two

independent diagnosis subproblems, namely one including

H1, H2, e1, e2, e3 and e4 and the other one consisting of

H3 and e5. To compute the path length between nodes

functioning as causes, we construct the graph in Fig. 1b.

Based on the undirected graph, we can see for instance that

path(H1, e3) = 2.

4.2 Meta-approach

There are two possible variations of algorithm selection;

either one algorithm of the portfolio is to be selected

based on a single predictor or there is a predictor for each

H1

e2

H2

H3

e3

e4

e5

e1

(a) Directed graph

H1 H2 e3

e1 H5

(b) Undirect graph of cause nodes

Fig. 1 Feature graphs Example 2
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approach within the portfolio estimating the performance

of each algorithm and choosing the method with the best

result [20, 34]. For our meta-technique, we consider the first

variant, where we train a single classifier for all abductive

reasoning methods to select a single approach for execution.

We use a 1-of n portfolio [64], i.e., we chose one of the n

algorithms in our portfolio and invoke it in order to solve

our current diagnosis problem. The portfolio consists of the

seven abductive reasoning methods, which we describe in

Section 5.1. Our performance objective is to choose the

approach with the least runtime.

Within the context of abductive diagnosis our meta-

approach can be split into two stages: the online and

the offline phase. In the offline step, the empirical data

on computation times of the various abductive reasoning

approaches is collected. On basis of the metrics and the

runtime information a machine learning classifier is trained.

Furthermore, in the model-based diagnosis scenario the

system description has to be available before the actual

diagnosis computation; thus, the majority of features can

be computed offline on the diagnosis model. Only a

portion of attributes, namely those associated with the set

of observations, has to be derived online.1 Figure 2 lists

all features extracted from the models, with the Instance

1In the case of general abductive reasoning it might not be the case

that partial information of the theory is already available, hence, all

attributes have to computed online

specific/Observation dependent constituting the attributes

computed online.

Algorithm METAB describes the online portion of the

meta-approach, which is executed whenever new diagnosis

problem is applied. The procedure takes the PHCAP, the

offline-trained machine learning classifier, and the already

computed metrics of the diagnosis model as input. Online

we have to collect the current PHCAP’s instance-based

features such as |Obs| or the number of independent

diagnosis subproblems comprising the current observations.

Based on the online and offline generated attributes we

supply the feature vector φ with the measurements of the

current diagnosis problem. While Hutter et al. [21] state

that the feature extraction method should be highly efficient,

in our framework only the computation of a subset of

these attributes has to be performed online, namely the

computation of the instance specific metrics. By providing

all features to the machine learning algorithm, we in turn

retrieve a predicted best abduction method α out of our

portfolio for this specific scenario based on the trained

classifier and the instance’s features. Subsequently, we

instantiate the diagnosis engine with the corresponding

abduction method as well as abduction problem and

compute the set of abductive diagnoses, i.e., � − Set .

5 Evaluation

In this section, we evaluate the feasibility of our meta-appr-

oach based on the an empirical study we have conducted

previously [33]. This foregoing evaluation has compara-

tively analyzed conflict-driven and consequence finding

techniques for abductive reasoning based on two bench-

marks; one set of experiments utilizes examples stemming

from practice, while the other encompasses artificially gen-

erated diagnosis problems. The objectives of the evaluation

in this paper are two-fold; on the one hand, we aim at assess-

ing the quality of the structural attributes to train a machine

learning classifier to forecast the most efficient algorithm

in regard to its runtime for a specific PHCAP instance. On

the other hand, we want to determine the overall efficiency

of the meta-approach in comparison to consistently using a

single abductive diagnosis techniques in the portfolio.

In the upcoming subsections, we first report on the

abductive reasoning methods utilized in the previous study

which function as the algorithms for our portfolio in

this paper. Second, in Section 5.2 we describe the two

different types of sample sets we have utilized and then

report on the empirical performance data we extracted

from this previous study which we subsequently utilize

to determine the quality of our meta-approach. A more

detailed description of the algorithms, their implementation,

the benchmarks, and the runtime data obtained can

be found in Koitz and Wotawa [33]. In Section 5.4,
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Fig. 2 Features Logic model specific:

1. Number of hypotheses

2. Number of effects, i.e., propositions in A Hyp

3. Number of causal relations, i.e., clauses in the

theory

Directed Graph:

4-6. Outdegree of hypothesis nodes: maximum,

average, standard deviation

7-9. Indegree of effect nodes: maximum, average,

standard deviation

10-12. Covering: maximum, average, standard de-

viation

13-15. Overlap: maximum, average, standard de-

viation

16-17. Overlap with labels: maximum, average,

standard deviation

18. Number of independent diagnosis subproblems

19. Average size of independent diagnosis sub-

problems

Undirected Graph:

20. Shortest path between causes: maximum, av-

erage, standard deviation

21. Kolmogorov complexity based on adjacency

matrix

Instance specific/Observation dependent:

22. Number of observations

23-25. Indegree current observation nodes: maxi-

mum, average, standard deviation

26-28. Overlap current observation: maximum,

average, standard deviation

29-31. Overlap with labels current observation:

maximum, average, standard deviation

32. Number of independent diagnosis subproblems

including current observations

we give an overview of the evaluation set-up for the

meta-approach and subsequently present the results of this

evaluation.

5.1 Portfolio

In this subsection, we give a short description of each

abductive reasoning method as well as details on the

implementations used in the empirical evaluation. For a

more in depth discussion we refer to our previous work [33].

5.1.1 Abduction with the ATMS

As discussed in the preliminaries, explanations can be

derived via consequence finding; this type of reasoning

infers logical consequences from a background theory while

restricting solutions to a target language referred to as

a production field [40]. The production field specifies

the conditions applying to the clauses generated, e.g.,

their cardinality or literals admissible. The ATMS is a

reasoner for propositional Horn clauses, allowing to derive

logical consequences given a query w.r.t. the underlying

background theory [35, 42]. The constructed consequences

only contain assumptions, i.e., hypotheses. Coupled with a

problem solver, the ATMS determines the belief of data,

while the problem solver performs the inference steps.

Internally, the ATMS constructs a directed graph in which

propositions are represented as nodes and the edges are

based on the relations between the variables. Each node

stores a label that contains all hypotheses allowing to infer

the node. de Kleer [7] provides an algorithm that ensures

the labels are sound, complete, minimal, and consistent.

Given a PHCAP and an ATMS that has already processed

the background theory, one simply has to add a clause

o1∧o2∧. . .∧. . . on → explain, where o1, o2, . . . , on ∈ Obs

and explain /∈ A. The label of the node explain then contains

all subset minimal sets of hypotheses which are consistent

with the theory and allow to infer the observations; hence,

the label of explain holds all parsimonious diagnoses. We

realized the ATMS2 within Java and refer to the approach as

ATMS within our experiments.

5.1.2 Abduction as consequence finding via SOL-resolution

Inoue [23] proposes SOL-resolution as a sound and com-

plete strategy to derive subset minimal logical consequences

belonging to the production field. By defining an addi-

tional skip rule, SOL-resolution bypasses literals belonging

to the production field instead of resolving them. To obtain

abductive explanations as logical consequences using SOL-

resolution, the background theory has to be extended by

the negation of observations, i.e., a clause
∨

oi∈Obs ¬oi is

added to the knowledge base. The production field con-

tains the negation of the hypotheses, i.e., ∀h ∈ Hyp : ¬h,

to ensure only abducibles are considered in the deriva-

tion. After the computation, hypotheses contained within

the consequences, have to be converted back their positive

counterpart to obtain abductive diagnoses. In our evalua-

tion, we exploit the consequence finding tool SOLAR3 [47],

which is a Java implementation of SOL-resolution within

the framework of tableau calculus for first order full clausal

theories. Consequence finding with SOLAR is denoted CF

within the evaluation.

5.1.3 Conflict-driven search via HS-DAG

In proof-tree completion-style abduction, contradictions

appear given the background theory and the negated

observations. These conflicts constitute the explanations.

2Note this is an unfocused version of the ATMS restricted to Horn

clauses.
3Used version: SOLAR 2 (Build 315)
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Reiter [53] has developed an approach to derive diagno-

sis within the consistency-based framework via conflicts

arising from the manifestation contradicting the normal

system behavior. The method exploits the hitting set rela-

tion between conflicts and consistency-based diagnoses.4

Reiter’s technique operates on a tree who’s nodes are either

labeled by a conflict, which is returned by an external the-

orem prover, or constitute a minimal hitting set, i.e., a

consistency-based diagnosis. The tree structure implicitly

removes already computed refutations and their supersets

from further consideration. Greiner et al. [15] later corrected

shortcomings of the algorithm description in regard to non-

minimal contradictions and developed Hitting Set Directed

Acyclic Graph (HS-DAG) utilizing a directed acyclic graph

instead of a tree.

In the case of abductive diagnoses, we are interested

in the conflicts generated by the theorem prover which

should only encompass elements of Hyp. Hence, in our

evaluation we use the publicly available Java diagnosis

engine jdiagengine5 [51] that implements a conflict-

driven search via HS-DAG coupled with an incremental

assumption-based linear time Horn clause theorem prover

(LTUR) [43]. Since the refutations returned by LTUR

are not guaranteed to be minimal, the returned conflicts

may not correspond to the parsimonious explanations we

seek to obtain. We propose two solutions to this issue:

(1) Simply recording all contradictions while constructing

the entire HS-DAG and afterwards removing all conflict

supersets ensures all remaining refutations correspond to the

parsimonious diagnoses. We refer to this implementation as

HS-DAG within our empirical study. (2) Another option is

to minimize conflicts right after they have been returned by

the theorem prover by employing a minimization procedure

such as QuickXplain [24]. In the set-up HS-DAGQX we

minimize the refutations computed by LTUR right away

before continuing to construct the tree. For this purpose,

we implemented an assumption-based QuickXplain in Java.

QuickXplain itself depends on a theorem prover, which in

our case is another instance of jdiagengine’s assumption-

based LTUR.

5.1.4 Conflict-driven search via power set exploration

Conflicts are known as MUSes or unsatisfiable cores within

the area of infeasibility analysis. A Minimal Unsatisfiable

Subset (MUS) is a set of clauses that cannot be satisfied

simultaneously, while every proper subset of an MUS is

satisfiable [37]. Liffiton et al. [37] suggests to compute

4Note here that consistency-based diagnoses are not equivalent to

abductive explanations, as the required relations between solutions and

observations are based only on consistency instead of entailment.
5www.ist.tugraz.at/modremas/index.html

MUSes by traversing the power set of clauses encoded as

a Boolean formula. This Boolean formula characterizes the

already explored parts of the lattice.

The computation starts with a seed, i.e., a set of clauses

from the unexplored region of the power set; in case the

seed is unsatisfiable it is reduced to an MUS, i.e., the

lattice is descended until a minimal set of unsatisfiable

clauses is reached. Afterwards the encoding of the lattice

is augmented in such a way that the MUS and all of its

supersets are marked as already processed. In case the seed

is satisfiable it is expanded until a maximal set of satisfiable

clauses, a Maximal Satisfiable Subset (MSS), is found.

Again the power set encoding is adapted to update the

already investigated portions of the lattice. Once there are

no more unexplored regions, all MUSes, i.e., conflicts, have

been uncovered. Arif et al. [1] present a version favoring

unsatisfiable seeds by computing maximal models of the

map, i.e., the maximum number of literals is true without

violating a clause. This extension renders the ascending of

the lattice in case the seed is satisfiable unnecessary.

We have implemented the general approach proposed by

Liffiton et al. [37] in Java. To favor unsatisfiable cores early

on in the computation, we implemented Arif et al. ’s [1]

method to find maximal model seeds. In addition, we

use the SAT solver SAT4J6 [9] in order to determine the

satisfiability of the Boolean formula representing the map.

For our first set-up XPLorer we implemented the insertion-

based MUS extraction algorithm as suggested by Arif et

al. [1] using jdiagengine’s incremental assumption-based

LTUR. In the second set-up XPLorerQX, we take advantage

of the fact that each unsatisfiable seed already constitutes a

conflict and the MUS extraction merely reduces it toward a

minimal contradiction; hence, we can apply the assumption-

based QuickXplain Java implementation to minimize the

unsatisfiable seed to an MUS, i.e., an abductive explanation.

5.1.5 Abduction under stable model semantics

In ASP, abduction is framed as the search for stable models

of a logic program representation of the problem [13]. The

resulting stable models, i.e., answer sets, then constitute

the abductive explanations. We use an encoding of

propositional abduction by Saikko et al. [55]7 in conjunction

with the C++ ASP solver clingo 4.5.48 [12]. To enumerate

all subset minimal answer sets, we adapt the encoding

by removing the optimization criteria and call the solver

with --heuristic=Domain, --enum-mod=domRec,

and--dom-mod=5,16. These parameters ensure the

6www.sat4j.org/
7www.cs.helsinki.fi/group/coreo/abhs/
8www.potassco.org/clingo/

www.ist.tugraz.at/modremas/index.html
www.sat4j.org/
www.cs.helsinki.fi/group/coreo/abhs/
www.potassco.org/clingo/
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Table 1 Sample statistics [33]

Artificial Samples FMEA Samples

MIN MAX AVG MED MIN MAX AVG MED

|Hyp| 10 504 275.07 320.00 3 90 26.16 20.00

|A\Hyp| 6 6,466 1,903.23 1,668.00 5 83 26.60 21.00

|Th| 10 7,186 2,950.10 2,731.00 12 298 70.59 37.00

|Obs| 1 5 2.86 3.00 1 29 10.79 10.00

|�| 1 50 2.76 1.00 1 2,288 67.98 6.00

computation of subset minimal answer sets. We denote this

approach ASP in the evaluation.

5.2 Benchmarks

We exploit two sample sets for our evaluation: (1) an

artificially created set of PHCAPs (Artificial Samples) and

(2) diagnosis problems constructed based on real system

failure assessments characterizing component faults and

their manifestations (FMEA Samples). In Table 1 we report

on the characteristics of the generated abduction problems.

Figure 3 shows the principle structure of the artificial

examples as an And-or-graph, where Hi ∈ Hyp and ej ∈

A\Hyp. Each rule’s body encompasses elements of A, while

the head may only contain literals from A\Hyp. The samples

were built based on several parameters: n sets the minimal

number of negative literals in the clause, r determines

how many clauses are generated with the same set of

negative literals, o fixates the maximum overlap between

positive literals of different clauses, and k determines the

maximum number of observations, which are randomly

selected from A \ Hyp and for simplicity only comprise

positive observations. We obtained 166 PHCAPs invoked

with n=1, r=o=15, and k=5. FMEA is a reliability analysis

tool that records possible component faults and their effects

on the system behavior and function [18]. Thus, these

assessments provide information suitable for constructing

an abductive diagnosis model [62]. For the evaluation, we

H1

e1

H2

e2

o

r

Fig. 3 Artificial example structure [33]

use twelve FMEAs encompassing failure knowledge of dif-

ferent technical systems (e.g., electrical circuits, a connector

system by Ford, Focal Plane Unit of the Heterodyne Instru-

ment for the Far Infrared built for the Herschel Space Obser-

vatory, the Anticoincidence Detector mounted on the Large

Area Telescope of the Fermi Gamma-ray Space Telescope,

printed circuit boards, the Maritim IT Standard, as well as

components, such as rectifier, inverter, transformer, main bea-

ring, and backup components of an industrial wind turbine)

and compile them into abductive knowledge bases. The com-

pilation procedure, as described by Wotawa [62], matches

each row within the FMEA table to a set of bijunctive Horn

clauses. Each clause represents the cause-effect relation

between a fault mode and one of its manifestations. These

FMEA-based models, thus, only contain implications from

a single fault to a single effect. Thus contrast the artificial

examples, which can have several levels of depth.

To construct the 213 diagnosis problems, we randomly

chose observations from the set of failure effects described

in the assessment. In contrast to the artificial examples,

the FMEA models only comprise bijunctive definite Horn

clauses, i.e., each clause features a single hypothesis in the

body and a proposition from A \ Hyp as head.

5.3 Empirical performance data

To generate the performance data necessary for constructing

a classifier for our meta-approach, we obtained execution

time data for all algorithms contained in our portfolio

on both benchmarks. Each algorithm was invoked ten

times on each PHCAP with the aim to compute all

parsimonious diagnoses. In case the execution on a PHCAP

was not finished after twenty minutes, the computation was

interrupted. Timed out executions are penalized with θ =

40minutes. Figure 4a and b depict the number of samples

solved for growing cumulative log runtime.

Given the data we can determine that the two most promi-

sing techniques based on the benchmarks are ATMS and

HS-DAGQX. Both methods solve a reasonable amount of

samples within the given time frame and our data shows that

ATMS on average is the most efficient approach, while HS-

DAGQX computes diagnoses faster for more instances. Espe-

cially on FMEA Samples, we can observe that the ATMS is

the superior approach. Even though the methods using gen-

eral solvers, i.e., CF and ASP, are around two orders of mag-

nitude slower than the best Horn reasoner, they show a con-

sistent performance by being able to compute explanations

for most samples within the given runtime allowance.

5.4 Meta experiment Set-up

METAB itself is implemented in Java. To create the predictor

based on the features, we exploit the Waikato Environment
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Fig. 4 Numbers of diagnosis samples solved over time [33]

for Knowledge Analysis (WEKA) library [17] which

provides a vast variety of machine learning algorithms. For

each PHCAP execution we collect the metrics listed in

Fig. 2 to gather our attributes for prediction. The feature

vector itself holds one more nominal value: the class

attribute. It corresponds to the algorithm’s name that has

solved the diagnosis problem the fastest in the experiments

conducted previously [33]. Hence, this last attribute is to

be predicted. To evaluate the classification accuracy based

on the features, we randomly split each benchmark into

a training set comprising 80 % of the data and a test set

holding the remaining 20 % of examples. Due to dividing

samples arbitrarily, it is not warranted that each PHCAP is

represented in equal measures within the test set. Hence,

it may also occur that the test set comprises samples

particularly suitable for a certain approach.

To determine an appropriate machine learning method,

we performed model selection via 10-fold cross-validation

on the training data for several classification algorithms

available in WEKA. Based on the accuracy results obtained

we chose to use the random subspace method [19] in

combination with WEKA’s decision tree with reduced-error

pruning (REP Tree) for Artificial Samples. In the random

subspace method, subsets of components of the feature

vector are selected pseudorandomly and a decision tree

is generated based solely on the chosen attributes. The

resulting classifier then depends on several decision trees

constructed in this manner, i.e., a decision forest. For FMEA

Samples we decided on WEKA’s decision table majority

classifier, which also relies on a suitable subset of features

to build the decision table.

5.5 Results

Table 2 depicts all classification statistics based on (1) the

10-fold cross-validation on the training data and (2) the

evaluation on the test set. Utilizing the random subspace

method we reach between 66.39 % and 67.17 % correctly

labeled samples. A PHCAP is labeled correctly in case

the predicted algorithm was the most efficient on the

problem instance in our empirical performance data. For

the FMEA Samples we receive slightly better results with

more diagnosis problems (between 76.76 % and 77.79 %)

classified correctly.

Ideally, we could improve upon the accuracy results. A

common strategy to enhance classification precision is to

adapt the feature vector. In this respect, we explore WEKA’s

attribute selection in order to determine whether we could

remove certain features while achieving the same or better

prediction quality. Since the number and composition of

the reduced feature set depends highly on the performed

selection process, we conducted some informal evaluations

to decide on the leading method. In the end, we chose to

rank attributes in the artificial case due to their information

gain in consideration of the class feature and in case of

the FMEA Samples based on a subset of features that are

statistically relevant to the class attribute (Relief Feature

Selection). Using these methods we could diminish the

set of features to fifteen and twenty-one in case of the

artificial and FMEA examples, respectively.9 As reported

in Table 3 the results improved from 67.17 % to 69.58 %

and 76.76 % to 78.41 % on the test sets. Table 4 lists

the selected attributes according to their rank. While the

suggested feature sets diverge, there are certain attributes

9Of course the attribute to predict, i.e., the most efficient algorithm,

remains in the feature vector.
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Table 2 Classification Statistics

Artificial Samples FMEA Samples

Classifier Random Subspace Decision Table

Method with REP Tree

Cross Validation [10-fold] |Data Set| 1660 2130

Total Training Time [in ms] 114 604

Total Test Time [in ms] 29 58

Correctly Classified Instances 1102 (66.39 %) 1657 (77.79 %)

Incorrectly Classified Instances 558 (33.61 %) 473 (22.21 %)

Mean Absolute Error 0.17 0.16

Train and Test [80 %,20 %] |Train| 1328 1704

|Test| 332 426

Total Training Time [in ms] 114 604

Total Test Time [in ms] 29 58

Correctly Classified Instances 223 (67.17 %) 327 (76.76 %)

Incorrectly Classified Instances 109 (32.83 %) 99 (23.24 %)

Mean Absolute Error 0.18 0.16

which seemingly are important in both benchmarks, namely

the metrics which characterize the basic composition of the

theory, e.g., overlap and indegree.

The confusion matrices in Table 5a and b give a deeper

insight into the number of correctly and wrongly labeled

instances of the test set based on the attribute selected

classifiers. Each column of the matrix reports on the

number of instances labeled a certain algorithm, while the

rows represent the number of PHCAPs the algorithm was

superior to the other approaches. For example, Table 5a

shows that HS-DAG was predicted as the most efficient

method 191 of 332 times, while it actually performed the

best on 169 samples. Hence, on 22 samples the classifier

incorrectly selected HS-DAG. In 33 cases, the instance was

mislabeled as HS-DAGQX though HS-DAG would have been

the best suited candidate. For 35 examples the situation

was the other way around. This is due to both approaches

experiencing a similar runtime behavior for most samples

(as is also apparent from Fig. 4).

Table 6 reports on the binary classification measures

for each approach on the test set. The best results in each

column are emphasized. Precision denotes the proportion of

cases correctly labeled an approach to all the samples the

algorithm was selected as the abduction method, whereas

Recall is the ratio of samples correctly predicted to instances

where the approach is actually the fastest. The F1-Score

is a combined metric based on the weighted average of

Precision and Recall [58]. Considering for example the

Table 3 Attribute selected classification statistics

Artificial Samples FMEA Samples

Classifier Random Subspace Decision Table

Method with REP Tree

Attribute Selection Evaluator Information Gain Relief Feature Selection

Cross Validation [10-fold] |Data Set| 1660 2130

Total Training Time [in ms] 114 604

Total Test Time [in ms] 29 58

Correctly Classified Instances 1093 (65.84 %) 1655 (77.70 %)

Incorrectly Classified Instances 567 (34.16 %) 475 (22.30 %)

Mean Absolute Error 0.17 0.16

Train and Test [80 %,20 %] |Train| 1328 1704

|Test| 332 426

Total Training Time [in ms] 53 650

Total Test Time [in ms] 26 97

Correctly Classified Instances 231 (69.58 %) 334 (78.41 % )

Incorrectly Classified Instances 101 (30.42 %) 92 (21.59 %)

Mean Absolute Error 0.17 0.16
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Table 4 Selected attributes

Artificial Samples FMEA Samples

1 Covering: standard deviation Number of observations

2 Overlap with labels: standard deviation Overlap current observation with label: maximum

3 Overlap with labels: average Overlap current observation with label: standard deviation

4 Indegree current observation nodes: average Overlap current observation: maximum

5 Outdegree of hypothesis nodes: standard deviation Number of independent diagnosis subproblems

including current observations

6 Indegree current observation nodes: standard deviation Indegree current observation nodes: maximum

7 Overlap current observation: maximum Indegree current observation nodes: standard deviation

8 Overlap current observation with label: average Overlap current observation: standard deviation

9 Overlap current observation: average Shortest path: standard deviation

10 Indegree of effect nodes: average Indegree of effect nodes: maximum

11 Outdegree of hypothesis nodes: average Number of hypotheses

12 Indegree current observation nodes: maximum Shortest path: maximum

13 Indegree of effect nodes: standard deviation Indegree of effect nodes: standard deviation

14 Overlap current observation: standard deviation Kolmogorov complexity

15 Covering: average Number of causal relations

16 Number of effects

17 Overlap: standard deviation

18 Overlap with labels: standard deviation

19 Number of independent diagnosis subproblems

20 Overlap current observation: average

21 Indegree current observation nodes: average

Table 5 Confusion matrices. The rows represent the actual number of instances labeled as the class, while the columns show the number of

predicted instances

Predicted

ATMS CF HS-DAG HS-DAGQX XPLorer XPLorerQX ASP Total

(a) Artificial Samples

Actual ATMS 12 0 16 8 0 0 0 36

CF 0 0 0 0 0 0 0 0

HS-DAG 0 0 136 33 0 0 0 169

HS-DAGQX 1 0 35 83 0 0 0 119

XPLorer 0 0 3 3 0 0 0 6

XPLorerQX 0 0 1 1 0 0 0 2

ASP 0 0 0 0 0 0 0 0

Total 13 0 191 128 0 0 0 332

(b) FMEA Samples

Actual ATMS 216 1 10 17 0 0 0 244

CF 1 2 0 0 1 0 0 4

HS-DAG 24 0 32 14 0 0 0 70

HS-DAGQX 16 0 8 84 0 0 0 108

XPLorer 0 0 0 0 0 0 0 0

XPLorerQX 0 0 0 0 0 0 0 0

ASP 0 0 0 0 0 0 0 0

Total 257 3 50 115 1 0 0 426

The bold value indicates the number of correctly predicted instances
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Table 6 Classifier performance

measures Precision Recall F1-Score Accuracy Specificity AUROC

(a) Artificial Samples

ATMS 0.92 0.33 0.49 0.92 1.00 0.85

CF 0.00 0.00 0.00 1.00 1.00 −

HS-DAG 0.71 0.80 0.76 0.77 0.66 0.81

HS-DAGQX 0.65 0.70 0.67 0.76 0.79 0.82

XPLorer 0.00 0.00 0.00 0.98 1.00 0.98

XPLorerQX 0.00 0.00 0.00 0.99 1.00 0.55

ASP 0.00 0.00 0.00 1.00 1.00 −

(b) FMEA Samples

ATMS 0.84 0.89 0.86 0.83 0.77 0.91

CF 0.60 0.50 0.57 0.99 1.00 0.99

HS-DAG 0.64 0.46 0.53 0.87 0.95 0.88

HS-DAGQX 0.73 0.78 0.75 0.87 0.90 0.92

XPLorer 0.00 0.00 0.00 1.00 1.00 −

XPLorerQX 0.00 0.00 0.00 1.00 1.00 −

ASP 0.00 0.00 0.00 1.00 1.00 −

The bold numbers indicate the best value

ATMS in Artificial Samples, we can see that the Precision

value is close to the best value of 1, since it was only once

selected incorrectly. However, the Recall value is rather

disappointing due to various samples where ATMS were

in fact the fastest method, but was not identified as such

by the classifier. This trade-off is also apparent in the F1-

Score, which hence is only 0.49. In contrast in the FMEA

Samples, Precision and Recall values are good and hence

also the F1-Score for ATMS is promising. Other common

measures in multi-class classification are Accuracy, i.e., the

overall effectiveness of a classifier, Specificity, i.e., how

well negative labels are classified, and the area under the

receiver operating characteristic curve (AUROC), i.e., the

ability of the predictor to avoid false labeling [58, 61].

From the contingency tables is apparent that HS-DAG,

HS-DAGQX and ATMS are the best performing approaches

with some variations between the sample sets. A premature

analysis of these results would suggest that applying for ins-

tance HS-DAG to every artificial instance would yield the

optimal runtime for most problems. However, based on the

entire set of problems, i.e. test and training, HS-DAG is not

the most efficient approach as its computation time is notably

larger on several instances than other algorithms. Thus, we

propose to use our meta-approach METAB which we subse-

quently compare to always using a single diagnosis method.

METAB’s overall runtime is determined by (1) the

computation of the online metrics, (2) the time it takes to

create the feature vector, supply it to the classifier, and
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Table 7 Runtime results of the meta-approach in comparison to ATMS and HS-DAGQX

Artificial Samples FMEA Samples

MetAB ATMS HS-DAGQX MetAB ATMS HS-DAGQX

MIN 0.32 0.34 0.22 0.48 0.33 0.25

MAX 4,940.16 170,838.66 2,400,000 2,400,000.23 2,400,000 2,400,000

AVG 28.16 226.28 10,269.27 6,963.16 14,239.04 124,552.12

MED 7.38 19.91 8.13 1.04 0.91 1.39

SD 271.09 4,529.92 148,023.42 117,443.57 174,655.60 531,157.15

The bold numbers indicate the best value

predict the “best” algorithm, and (3) the diagnosis time

of the suggested abduction procedure. In regard to the

feasibility of the meta-approach, we like to refer back to a

particular characteristic of model-based diagnosis, namely

the availability of the system description offline. As the

model has to be present before the computation of the

diagnoses, it allows us to extract most of the metrics utilized

in the algorithm selection offline. On average we have

observed an offline feature computation time of around

52,868.39 ms for the artificial instances and 165.85 ms for

the FMEA benchmark.10 The online computation of the

features, which are inherent to the specific instance of the

PHCAP, is negligible (on average < 0.1 ms). Based on

the total classification time on the test set, we approximate

that the prediction for a single instance on average below

0.5 ms. The third factor, the diagnosis time, is much

dependent on the predictive capabilities of the classifier.

A known drawback of this type of algorithm selection

approach, where a single method is chosen and executed on

the instance, is that in case the prediction is incorrect the

meta-approach might be rather inefficient [34].

Figure 5a and b depict the distributions of the log

runtimes of the abductive reasoning algorithms on the test

sets. In addition to the seven abduction methods, we have

included on the one hand our meta approach MetAB and

on the other hand an optimal algorithm selection approach

MetABOpt. For MetABOpt we assume a classifier that labels

each diagnosis problem correctly and thus computes the

explanations with the approach requiring the minimal

runtime. MetABOpt’s computation time thus consists of the

collection of the online metrics, the classification, and

the diagnosis using the fastest approach. For the artificial

examples, MetAB and MetABOpt show the best average

and median runtime results, with an average percentage

difference between them of 15.30 %. However, In case

of the FMEA examples, ATMS provides the best median

results on the test set followed by MetABOpt and MetAB.

This is unsurprising given the dominance of ATMS on

10The computation effort for the offline metrics can be quite extensive

given the structure of the model, due to constructing and traversing the

graph.

FMEA Samples. On average, yet, ATMS is slower than

MetABOpt and MetAB. The average percentage difference

between MetABOpt and MetAB is 10.93 %.

Table 7 lists the runtime results of MetAB in comparison

to ATMS and HS-DAGQX. From the table we can observe that

for the FMEA examples the classifier at least once chose an

algorithm which cannot compute the diagnoses within the

given time frame, hence, the maximum runtime corresponds to

the penality of θ = 40 minutes plus the classification time.

For a more in-depth comparison of METAB to the other

diagnosis methods, we provide various runtime scatterplots

in Figs. 6 and 7. The x and y values characterize the

penalized log runtimes of the corresponding algorithm

pair, while each data point represents one sample run.

For instance, in Fig. 6b, we compare MetAB to ATMS on

the artificial samples. Points above the diagonal represent

executions where ATMS was more efficient than MetAB,

while points below the line indicate samples where MetAB

was superior. The dashed lines mark the penalized runtime,

i.e., every execution exceeding the runtime limit is located

on the dashed lines. As apparent from Figs. 6a and 7a, MetAB

performs not as good as the ideal approach MetABOpt.

Nevertheless, given the classification accuracy most data

points are on the diagonal or close to it confirming that the

selected algorithm is either the fastest or among the best

solvers for the PHCAP. For the FMEA examples, we can see

that on one instance, MetAB choses an algorithm exceeding

the time limit hence featuring a penalized runtime. From

the remaining plots, we can conclude that while on some

PHCAPs the meta-approach cannot compete with always

choosing a single algorithm, the bulk of data points is

usually located below the diagonal suggesting the benefit

of MetAB even when an ideal prediction is not possible.

In these cases, where the Figs. 6a and 7a show that while

on the artificial samples MetAB shows convincing runtime

results, the same cannot be stated for the FMEA examples.

As the models only feature bijunctive Horn clauses the

computation of the online features requires around the same

time as the diagnosis itself. Hence, MetAB’s prediction

only causes computational overhead. Further the scatter

plots indicate that while consequence finding using SOLAR
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does not provide efficient runtimes, it is a dependable

approach computing diagnoses for all PHCAPs constructed

on top of the FMEAs. Both general reasoners, SOLAR

and clingo, are not specialized Horn abduction solvers, but

designed for first-order clausal theories and normal as well

as disjunctive logic programs, respectively. Therefore, CF

and ASP are around two orders of magnitude slower than

MetAB. However, as both approaches perform consistently
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and compute explanations for most samples within the given

runtime allowance, we conclude that off-the-shelf tools can

very well function as suitable abduction engines despite not

being competitive in regard to runtime.

To evaluate the efficiency of our meta-approach in

comparison to always choosing a single approach, we

determine whether the median difference between MetAB

and the best performing approaches on the corresponding

sample set is significant. Since dealing with non-normal

runtime distributions and under the assumption that the

observations are independent and identically distributed,

we apply the one-tailed Wilcoxon Signed-Rank Test [60].

Suppose paired runtime data (x1, y1), (x2, y2), . . . , (xn, yn)

from MetAB and the compared abduction approach,

respectively. We propose hypothesis H0 : mX ≤ mY , stating

a median difference of zero between pairs of observations.

For FMEA Samples, we compared MetAB and ATMS and

formulate our alternative hypothesis as H1 : mX > mY .

Given the one-tailed test for α = 0.05, we reject H0,

i.e., stating a significant difference between MetAB and

ATMS. This indicates that on simple examples such as the

one’s generated based on FMEAs, choosing the ATMS as

abduction procedure is advantageous on the test data. In

regard to the artificial examples, we compared the meta-

approach to HS-DAG and HS-DAGQX with H1 : mX <

mY . In both cases, we accept the null hypothesis since

the Wilcoxon signed-rank test determined an insignificant

improvement of MetAB in comparison to the hitting set

approaches.

6 Conclusion

Algorithm selection has been proposed as a way to deal

with the issue that given different problem instances there

is no universally superior approach computing solutions

efficient for all samples, but the performance of a certain

method highly depends on the underlying characteristics

of the problem instance. Abductive diagnosis represents a

novel application area of the portfolio approach. Utilizing

a machine learning classifier and structural attributes of

the Horn theories, we have developed a meta-approach to

abductive model-based diagnosis that aims at predicting

the most suitable method for a diagnosis problem on a

case-by-case basis. Algorithm selection can be particularly

useful in the context of model-based diagnosis, since the

structural features of the underlying system description can

be computed mostly offline and only the dynamic portion

depending on the observations have to be derived during

computation.

We evaluated the algorithm selection method within

an empirical set-up based on seven abductive reasoning

methods and two benchmarks. Subsequently, we compared

abduction via the meta-approach to always choosing a

single abductive reasoning mechanism. The accuracy of

our algorithm selection technique is satisfactory and MetAB

is in fact on average more efficient than choosing a

single abductive reasoning approach on both sample sets.

Hence, based on our benchmarks we can advocate for

the benefit of using a portfolio method for abduction.

While on average the fastest, our meta-approach cannot

outperform all other abduction techniques on median on

the simple diagnosis problems stemming from FMEAs.

These models are characterized by bijunctive Horn clauses,

where the meta-approach’s set-up effort might not justify

the runtime improvements. Possibly on larger models,

we could observe a better performance of MetAB in

comparison to ATMS, which is known to have difficultly

propagating label values given larger more interconnected

theories.

Thus, adapting and extending the benchmarks used for

evaluation might provide improved runtime results for

our portfolio approach. Even though we have applied a

simple attribute selection, a deeper analysis of negligible or

combinable features would definitely improve the technique

since choosing the incorrect method can be an expensive

mistake within our set-up. In addition, removing some

of the attributes would decrease the computational effort

especially in regard to the offline features, which may take

a long time to derive depending on the problem structure.

There may be situations where certain instances are

inherently difficult and thus require an extensive amount

of time on any technique (including the meta-approach). In

these situations, switching between computation methods

may provide better results than a simple algorithm selection.

This would be particularly interesting if approaches favor

certain kinds of explanations and would produce those

efficiently early on in the calculation. Then, by switching

between the abduction methods and adding constraints that

ensure previously derived diagnoses are not considered

again, we may be able to improve the computation even

further. However, it would remain to determine to what

extend the selection of the next approach and the switching

would increase the computation time to decide if this

approach is beneficial.
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Fréchette A, Hoos H, Hutter F, Leyton-Brown K, Tierney K et al

(2016) ASLib: a benchmark library for algorithm selection. Artif

Intell 237:41–58

3. Bylander T, Allemang D, Tanner MC, Josephson JR (1991) The

computational complexity of abduction. Artif Intell 49(1-3):25–

60
4. Console L, Dressier O (1999) Model-based diagnosis in the real

world: lessons learned and challenges remaining. In: Proceedings

of the 16th international joint conference on artificial intelligence

- volume 2, IJCAI’99, pp 1393–1400

5. Console L, Torasso P (1991) A spectrum of logical definitions of

model-based diagnosis. Comput Intell 7(3):133–141

6. De Kleer J (1986) An assumption-based model-based diagnosis.

Artif Intell 28(2):127–162
7. De Kleer J (1986) Problem solving with the AModel-based

diagnosis. Artif Intell 28(2):197–224

8. De Kleer J, Williams BC (1987) Diagnosing multiple faults. Artif

Intell 32(1):97–130
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