
P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set
of Receivers

MARC ANDRIES
University of Antwerp
LUCA CABIBBO
Università di Roma Tre
JAN PAREDAENS
University of Antwerp
and
JAN VAN DEN BUSSCHE
Limburgs Universitair Centrum

In the context of object databases, we study the application of an update method to a collection of
receivers rather than to a single one. The obvious strategy of applying the update to the receivers
one after the other, in some arbitrary order, brings up the problem of order independence. On a
very general level, we investigate how update behavior can be analyzed in terms of certain schema
annotations, called colorings. We are able to characterize those colorings that always describe order-
independent updates. We also consider a more specific model of update methods implemented in the
relational algebra. Order-independence of such algebraic methods is undecidable in general, but
decidable if the expressions used are positive. Finally, we consider an alternative parallel strategy
for set-oriented application of algebraic update methods and compare and relate it to the sequential
strategy.

Categories and Subject Descriptors: H.2 [Information Systems]: Database Management

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Database update, order independence, parallel update, rela-
tional algebra, schema coloring

An extended abstract of a preliminary version of this article was presented at the 14th ACM
Symposium on Principles of Database Systems, San Jose, 1995.
Authors’ addresses: M. Andries, Universiteitsplein 1, 2610 Wilrijk, Belgium; L. Cabibbo, Via della
Vasca Navale 79, 00146 Roma, Italy, cabibbo@dia.uniroma3.it; J. Paredaens, Universiteitsplein 1,
2610 Wilrijk, Belgium, jan.paredaens@uia.ua.ac.be; J. Van den Bussche, Limburgs Universitair
Centrum, 3590 Diepenbeek, Belgium, jan.vandenbussche@luc.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the frist page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc, 1515
Broadway, New York, NY 10036 USA, fax +1(212) 869-0481, or permissions@acm.org.
C© 2001 ACM 0362-5915/01/0300–0001 $5.00

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001, Pages 1–40.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

2 • M. Andries et al.

1. INTRODUCTION

In object systems, update procedures are provided by methods, which are ap-
plied to a receiver consisting of a receiving object and some argument objects.
Since methods may call other methods, an update method applied to a certain
receiver may not only update the properties of the receiving object, but may
also have side effects. Hence, at the most general level, we can define an up-
date method as a computable function mapping a given object base instance
and a receiver to some new object base instance.

Database systems deal with whole collections of data at a time. Hence, in
the context of object databases, it is important to be able to apply an update
method to a collection of receivers rather than to a single one. For example,
given a method to change the salary of an employee, we sometimes want to
change the salaries of a whole group of employees. The purpose of the present
article is to initiate a study of various strategies for set-oriented application of
update methods.

One obvious such strategy is to apply the update to the receivers one after
the other, in some arbitrary order. This sequential application immediately
brings up the problem of order independence: is the outcome of the sequential
application independent of the order chosen? We consider three notions of order-
independence: absolute order independence on all possible sets of receivers;
key-order independence on sets of receivers not containing a same receiving
object twice with different arguments; and query-order independence on sets of
receivers produced by some given query. The assumptions made by key-order
independence and query-order independence are often true in practice.

On a very general level, we investigate how update behavior can be analyzed
with respect to order independence in terms of certain schema annotations,
which “color” each class and property name by indicating whether the update
creates, deletes, or uses information of this type. While it is not difficult to
formalize what it means for an update to create or delete information of a certain
type, it is much less obvious how the semantics of “using information” can be
axiomatized. We have studied two possible such axiomatizations, and were able
to show in both cases that the colorings that describe order-independent updates
are precisely those that are “simple,” in a sense to be made precise. This captures
the intuition that the update does not perform potentially conflicting actions.
Curiously, it will turn out that the two “axiomatizations of use” we propose are
each other’s dual, in the sense that the first favors inflationary updates while
the second favors deflationary ones.

On a more specific level, we consider update methods implemented in the re-
lational algebra, using a framework inspired by the algebraic model for access-
ing object-oriented databases proposed by Hull and Su [1989]. Methods in this
framework can only update properties of the receiving objects. We observe that
order independence of algebraic updates is undecidable in general, but it be-
comes decidable if only positive expressions are used. Specifically, we establish
mutual reductions between the problem of testing for order independence of an
algebraic update and the problem of testing equivalence of relational algebra ex-
pressions under certain dependencies implied by the relational representation

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 3

of object databases. The latter problem is shown decidable for positive expres-
sions by combining classical techniques from relational database theory. We
also present a sufficient condition for key-order independence that explains
many practical cases.

Apart from the sequential strategy for set-oriented application, we also con-
sider a natural alternative in the algebraic framework. This strategy is parallel
in that it instantiates the parameter in the method, which normally stands for a
single receiver, by the whole set of receivers at once. In this approach, order inde-
pendence is automatically guaranteed. Hence, it is interesting to ask whether
every order-independent algebraic update method can be “parallelized,” i.e.,
whether for each such method M there exists another method M ′ such that
each sequential application of M yields the same result as the corresponding
parallel application of M ′. By observing that sequential application can express
transitive closure and parity, we answer this question negatively. Nevertheless,
in the important special case of key order-independence, parallelization is al-
ways possible; we actually show that for key order-independent updates the
sequential and the parallel semantics coincide.

Our work relates to a lot of other work reported in the literature on database
query and update languages. Recently, Laasch and Scholl [1993] studied order
independence of updates expressed as sequences of generic operations such
as insert, delete, and modify, in the context of object-oriented databases. They
argued that the problem directly links to issues in concurrency control, and
proposed to disallow the use of potentially conflicting operations within an
update sequence so as to guarantee order independence.

But also less recently, researchers have pointed at the intricacies involved
in set-oriented application of updates. Most notably, Aho and Ullman [1979]
considered sequential and parallel execution strategies for looping constructs
of the form for each t in R do in database manipulation languages that are
closely analogous to the sequential and parallel strategies we consider in the
present article. They questioned the appropriateness of the sequential strategy,
however, since sequential application is (of course) not always guaranteed to
be order independent. More subtly, Chandra [1981] proposed the study of when
and how for-each loops can be given a deterministic semantics, in the context of a
programming language based on relational algebra and relational assignment,
as an interesting research issue. We like to think of our work as first steps in
this direction.

It should be noted that for-each loops have also been used as a potentially
nondeterministic construct, e.g., in the work of Qian [1991] or in the language
SETL [Schwartz et al. 1986]. In this respect it is also interesting to note that the
parallel strategy as a means to provide an alternative deterministic semantics
to such constructs is very similar in spirit to the “relationally computable”
semantics of a rule in a nondeterministic rule-triggering system introduced by
Simon and de Maindreville [1988].

To conclude, we must point out that different, “coarser grained” parallel inter-
pretations of for-each loops than the one we have considered up to now also have
received considerable attention in the literature. Abiteboul and Vianu [1990]
defined a parallel semantics for applying an update to a set of receivers which

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

4 • M. Andries et al.

first computes the different effects of the update applied to each receiver sepa-
rately and then combines the obtained results by taking the union. This combi-
nation approach is comparable to that of structural recursion [Breazu-Tannen
and Subrahmanyam 1991; Breazu-Tannen et al. 1992] where the different re-
sults of a function parameterized by the elements of a set are collected using a
commutative and associative accumulation operator. Abiteboul and Vianu gave
evidence that as combination operator, a simple union is in principle sufficient.
Nevertheless, the study of combination operators more sophisticated than union
and their relationship to the other semantics is, in our opinion, an interesting
issue for further research. One which seems to be well-behaved is the operator
combining the output databases D1, . . . , Dn for the different receivers on some
input database D as

⋂
i Di ∪

⋃
i(Di − D).

After this introduction, the remainder of our article is organized as follows.
In Section 2, we introduce the simple object database model we will be working
in and define the concept of update method in this context. In Section 3, we
introduce the notion of sequential application and the associated notions of
order independence. Section 4 contains the axiomatic framework for studying
update behavior and order independence, and Section 5 contains the algebraic
framework. In Section 6 we discuss parallel application. We conclude the paper
with a discussion of the practical ramifications of our results.

2. UPDATE METHODS ON OBJECT DATABASES

In this section we present the basic definitions concerning databases and update
methods.

It is customary in object-based models to depict a database schema as a
graph. Thereto, we assume the existence of disjoint sets of class names and
property names, and define:1

Definition 2.1. An object-base schema is a finite, edge-labeled, directed
graph. The nodes of the graph are class names, and the edges are triples
(B, e, C), where B and C are nodes and the edge label e is a property name.
Different edges must have different labels. If (B, e, C) is an edge in the schema,
we call e a property of B of type C.

An object-base instance can now be defined as a graph consisting of objects
and property-links, whose structure is constrained by some object-base schema.
So we assume that for each class name C there is a universe of objects of type
C such that different class names have disjoint universes. For an arbitrary
schema S, we then define:

Definition 2.2. An instance of S is a finite, labeled, directed graph. The
nodes of the graph are objects. Each node o is labeled by its type λ(o), which
must be a class name of S. The edges are triples (o, e, p), where o and p are
nodes and the edge label e is a property name of S such that (λ(o), e, λ(p)) is an
edge of S.

1Many of our results also hold for a more involved object data models featuring inheritance and a
distinction between single- and multivalued properties [Cabibbo 1996].

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 5

Fig. 1. An object-base instance.

The set of all objects in an instance labeled by the same class name C is called
the class C.

Example 2.3. We use Ullman’s well-known example schema containing
class names Drinker, Bar, and Beer, with Drinker having properties ‘frequents’
and ‘likes’ of types Bar and Beer, respectively, and Bar having property ‘serves’
of type Beer. An instance of this schema is shown in Figure 1. In this and
subsequent figures, objects of some type C are denoted as C1, C2, and so on.

We now turn to update methods. An update method has a signature,
specifying the types (class names) of the receiving object and the argument
objects and a behavior, which for the time being we define simply as some com-
putable update of the object base instance. Formally, we have the three following
definitions:

Definition 2.4. A method signature σ over schema S is a nonempty tuple of
class names in S. The first element of the signature is called the receiving class
of σ ; the remaining positions in σ comprise the argument classes.

Definition 2.5. Given a method signature σ = [C0, . . . , Ck] over S and an
instance I of S, a receiver over I of type σ is a tuple of the form [o0, . . . , ok],
where o0, . . . , ok are objects in I of types C0, . . . , Ck , respectively. The first object
o0 is called the receiving object; the remaining tuple o1, . . . , ok comprises the
arguments of the receiver.

Definition 2.6. Given a method signature σ over S, an update method M
of type σ is a computable function which, when given an instance I of S and a
receiver t over I of type σ , yields an instance M (I, t) of S.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

6 • M. Andries et al.

Fig. 2. Example instance I .

Fig. 3. The instance add bar (I, [Drinker1, Bar3]), where update method add bar is defined in
Example 2.7 and instance I is shown in Figure 2.

Example 2.7. On our example schema, consider the following two updates
of type [Drinker, Bar]: add bar, which adds the argument bar to those fre-
quented by the receiving drinker, and favorite bar, which removes all edges
from the receiving drinker to bars currently frequented, and adds a single new
one to the argument bar.

To illustrate these update methods, consider the simple instance I in
Figure 2, consisting of a single drinker and three bars (two of which are
frequented by the drinker). For simplicity, we have left out any beers from
this example. Then add bar(I, [Drinker1, Bar3]) is shown in Figure 3 and
favorite bar(I, [Drinker1, Bar1]) is shown in Figure 4.

3. SEQUENTIAL APPLICATION

In this short section, we introduce the sequential application of an update
method to a set of receivers, as well as three different notions of order inde-
pendence of an update. In what follows, we fix a schema S, a signature σ over
S, and an update method M of type σ .

We can apply an update method to a sequence, not a set, of receivers in the
obvious way. So if I is an instance and s = t1, . . . , tn is a sequence of distinct
receivers, M (I, s) equals I if n = 0, and equals M (M (I, t1), t2, . . . , tn) if n > 0,
provided the value of this expression is well-defined (this may fail if, e.g., t2 is
not a receiver over M (I, t1)).

Sequential application to a set of receivers may now be defined formally as
follows:

Definition 3.1. Given an instance I and a set T of receivers, we say that
M is order independent on (I, T) if for any two sequential enumerations s and
s′ of T , we have that M (I, s) = M (I, s′).2 In this case we define the sequential

2If M (I, s) is undefined for some s, then it must be undefined for every other s′.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 7

Fig. 4. The instance favorite bar (I,[Drinker1, Bar1]), where update method favorite bar is defined
in Example 2.7 and instance I is shown in Figure 2.

Fig. 5. The instance favorite bar (I,[Drinker1, Bar1], [Drinker1, Bar2]), where I is shown in
Figure 2.

application Mseq(I, T) of M on (I, T) as M (I, s) for an arbitrary sequential
enumeration s.

The above definition leads to three global notions of order independence:

(1) Absolute order independence: If M is order independent on any pair (I, T)
then M is called order independent.

(2) Key-order independence: Call a set of receivers T a key set if, viewing T as
a relation, the first column (holding the receiving objects) is a key for T . If
M is order independent on any pair (I, T) where in T is a key set, then M
is called key-order independent.

(3) Query-order independence: Finally, let Q be a function that maps each
instance I to a set Q(I) of receivers. If M is order independent on (I, Q(I))
for any I , then M is called Q-order independent.

Example 3.2. The update add bar from the previous example is clearly or-
der independent, but favorite bar is not. Indeed, continuing Example 2.7,

favorite bar(I, [Drinker1, Bar1], [Drinker1, Bar2])

is shown in Figure 5, while

favorite bar(I, [Drinker1, Bar2], [Drinker1, Bar1])

equals simply favorite bar(I, [Drinker1, Bar1]) already shown in Figure 4.
However, favorite bar is key-order independent, and hence also Q-order in-

dependent for any query Q producing a list of drinkers and bars with a unique
favorite bar for each drinker. Such a query might, for example, retrieve for each
drinker the bar serving all beers that drinker likes, if unique and existing.

If we define update methods as general computable functions, as we did,
all of the notions of order independence defined above are undecidable, by
Rice’s theorem [Hopcroft and Ullman 1979]. We will later show however that
order independence is decidable for more restricted kinds of methods. Thereto,

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

8 • M. Andries et al.

we rely on the following lemma, which is quite obvious once we recall that
any permutation can be written as a composition of transpositions of adjacent
elements.

LEMMA 3.3. Method M is order independent if and only if M is order inde-
pendent on any pair (I, T) where T consists of two elements.

This lemma also holds for key-order independence: we then have to consider
sets T consisting of two elements with different receiving objects. However, the
lemma fails in the case of query-order independence; we will come back to this
issue at then end of Section 5.

4. SCHEMA COLORINGS

In this section we present the beginnings of a theory of schema colorings. Such
colorings, which could be provided by the programmer or be inferred from the
specification, describe the behavior of an update by annotating each type of
information in the schema with a subset of the letters c, d, or u, thereby indi-
cating whether the update creates, deletes, or uses information of this type. The
main difficulty we encounter here is to formalize what it means for an update
to “use” information of a certain type. We investigate two possible definitions,
and in both cases characterize those colorings that describe order-independent
updates.

In what follows, we fix a schema S and a method signature over S.

4.1 Preliminaries

Since schemas and instances are graphs, it is useful to introduce the following
terminology:

Definition 4.1. An item of a graph is either a node or an edge of that graph.

Consequently, a graph can be identified with the set of its items.
It is not difficult to formalize what it means for an update to create or delete

information of a certain type:

Definition 4.2. Let X be a schema item. An update method M is said to
create information of type X if there exists an instance I and a receiver t over
I such that M (I, t) contains an item labeled X that is not in I .

Dually, M deletes information of type X if there exists and instance I and a
receiver t over I such that I contains an item labeled X that is not in M (I, t).

In order to define what it means for an update to use information of a certain
type, we introduce the following auxiliary notion:

Definition 4.3. A partial instance is a subset of some instance (viewed as
the set of its items).

So a partial instance is an instance from which some items have been removed.
Partial instances are different from instances, in that they may contain “dan-
gling edges”: a node may be removed without removing all its incident edges.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 9

The operator G eliminates all dangling edges from a partial instance:

Definition 4.4. Let J be a partial instance. Then G(J) equals the largest
instance contained in J .

Note that, by viewing a partial instance as a set of items, we can apply set-
theoretic operations such as union and difference to partial instances.

We also need:

Definition 4.5. Let X be a set of schema items and I be an instance of S.
The restriction of I to X is the partial instance obtained by removing from I all
items whose label is not in X , and is denoted by I |X .

To end this preliminary section, we introduce the notion of schema coloring
formally:

Definition 4.6. A coloring of schema S is a function κ assigning to each item
in S a subset of {u, c, d}.
For some schema item X , if κ(X) contains u then we say that X is colored u by
κ (and similarly for the other colors).

Note that we can compare colorings according to the subset ordering in the
canonical way, i.e., κ ⊆ κ ′ if κ(X) ⊆ κ ′(X) for all schema items X .

4.2 Inflationary Colorings3

We now introduce our first proposed axiomatization of use. Informally, it ex-
presses the intuition that when we want to update an instance, we can, as well,
update only the part of the instance used by the update and add the part not
used afterwards. Formally:

Definition 4.7. Let M be an update method and let X be a set of schema
items such that if an edge is in X , then so are its incident nodes and such that
each class name in M ’s signature is inX . Then M is said to use only information
of type X if for any instance I and receiver t over I ,

M (I, t) = G(M (I |X , t) ∪ (I − I |X)).

The conditions on X are necessary to guarantee that I |X is always an instance
and that t is in it, so that the expression M (I |X , t) makes sense.

By the following theorem, we can associate to each update method a unique
coloring that describes its behavior.

THEOREM 4.8. For each update method M there exists a unique minimal
coloring such that the following conditions are satisfied:

(1) If M creates information of type X , then X is colored c.
(2) If M deletes information of type X , then X is colored d.
(3) If U is the set of items in S colored u, then M uses only information of

type U .

3The title of this subsection will become clear later.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

10 • M. Andries et al.

(4) Each class name in the method signature is colored u.

(5) If an edge in S is colored u, then so are its incident nodes.

PROOF. Note that the “full” coloring that assigns all colors to all items sat-
isfies the conditions of the definition. Note also that the lattice of subsets of the
colors {u, c, d} can be canonically extended to a lattice of colorings. Hence, it
suffices to show that if κ1 and κ2 are colorings satisfying the conditions of the
theorem, then so is κ1 ∩ κ2.

Thereto, put κ = κ1 ∩ κ2. For i = 1, 2, let Ui be the set of items in S colored u
by κi and let U be the set of items colored u by κ. Note that for any instance I ,
(I |U1)|U2 = IU . Since κ1 and κ2 satisfy condition 3, we have

M (I, t) = G(M(
I |U1 , t

) ∪ (I − I |U1

))
(1)

= G(M(
I |U2 , t

) ∪ (I − I |U2

))
. (2)

It is straightforward to check that κ satisfies conditions 1, 2, 4, and 5. We can
therefore concentrate on condition 3:

M (I, t) = G(M (I |U , t) ∪ (I − I |U)).

By applying Eqs. (1) and (2) in succession, we obtain

M (I, t) = G(M(
I |U1 , t

) ∪ (I − I |U1

))
= G(G(M((

I |U1

)|U2 , t
) ∪ (I |U1 −

(
I |U1

)|U2

)) ∪ (I − I |U1

))
= G(G(M (I |U , t) ∪ (I |U1 − I |U

)) ∪ (I − I |U1

))
To prove that the graph denoted by the last expression above equals

G(M (I |U , t) ∪ (I − I |U)),

we consider the nodes and edges separately.
For the nodes, the equality follows readily once we observe that the nodes in

(I |U1 − I |U) ∪ (I − I |U1) are precisely those of I − I |U :

G
(
G
(
M (I |U , t) ∪ (I |U1 − I |U

)) ∪ (I − I |U1

))
= M (I |U , t) ∪ (I |U1 − I |U

) ∪ (I − I |U1

)
= M (I |U , t) ∪ (I − I |U)
= G(M (I |U , t) ∪ (I − I |U))

For the edges, the crux of the proof is to establish the following equivalence:
an edge e together with its incident nodes n and m belong to

G
(
M (I |U , t) ∪ (I |U1 − I |U

)) ∪ (I − I |U1

)
if and only if e, n, and m simply belong to

M (I |U , t) ∪ (I |U1 − I |U
) ∪ (I − I |U1

)
.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 11

Indeed, using this equivalence we can deduce:

e ∈ G(G(M (I |U , t) ∪ (I |U1 − I |U
)) ∪ (I − I |U1

))
⇔ e, n, m ∈ G(M (I |U , t) ∪ (I |U1 − I |U

)) ∪ (I − I |U1

)
⇔ e, n, m ∈ M (I |U , t) ∪ (I |U1 − I |U

) ∪ (I − I |U1

)
⇔ e, n, m ∈ M (I |U , t) ∪ (I − I |U)
⇔ e ∈ G(M (I |U , t) ∪ (I − I |U)).

To prove the needed equivalence, the only-if direction of this equivalence
is trivial. To show the if-direction, we can concentrate on the case e ∈ (I |U1 −
I |U). Indeed, the other cases are trivial: M (I |U , t) is already an instance, so the
operator G has no effect on it, and (I− I |U1) is outside the scope of the application
of G altogether. In particular, e ∈ I |U1 and hence n, m ∈ I |U1 since κ1 satisfies
condition 5. As a consequence, n and m are not in (I − I |U1), and hence must
belong to M (I |U , t) ∪ (I |U1 − I |U). We can therefore conclude that e, n, and m
belong to G(M (I |U , t) ∪ (IU1 − I |U)), as had to be shown.

In conclusion, the intersection of all colorings of S satisfying the conditions
of the theorem is the unique minimal coloring stated in the theorem.

The unique coloring associated to an update M by Theorem 4.8 is simply re-
ferred as the minimal coloring of M . The minimal coloring is clearly a semantic
property of an update; it is undecidable whether a given coloring is the minimal
coloring of a given method.

A consequence of our axiomatization of “use” is that updates whose minimal
coloring is “simple” are inflationary.4 More precisely, we have the following
definition and proposition:

Definition 4.9. A coloring is called simple if each item has at most one color.

PROPOSITION 4.10. Let M be an update method. If the minimal coloring of
M is simple, then M is inflationary, i.e., I ⊆ M (I, t) for each instance I and
receiver t over I .

PROOF. Let the minimal coloring of M be κ. We prove the following technical
lemma:

LEMMA 4.11. If a node in the schema is colored d by κ, then it is also colored
u. If an edge is colored d by κ, then either it is also colored u or one of its incident
nodes is colored d.

This lemma clearly implies the proposition to be proven: if κ is simple, it cannot
color anything d, and hence M will never delete any information, i.e., M is
inflationary.

To establish the truth of the lemma, let U be the set of items in S colored u.
The proof of the first statement is straightforward: if X is a node in the schema
colored d, then the minimality of κ implies the existence of an instance I and
a receiver t such that I contains an object n of type X that is not in M (I, t). If

4Whence the title of the present subsection.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

12 • M. Andries et al.

X cannot will be in I − I |U , and hence in G(M (I |U , t) ∪ (I − I |U)), which equals
M (I, t) by condition 3 of Theorem 4.8; a contradiction.

To prove the second statement, assume there is an edge in S, labeled e, that
is colored d but not u. Then there exists an instance I and a receiver t such
that I contains an edge x = (n, e, m) not in M (I, t). Since e is assumed not in
U , x is in I − I |U , and hence in M (I |U , t)∪ (I − I |U). We must show that at least
one of the labels λ(n) and λ(m) of n and m is colored d. Assume the contrary;
then n and m belong to M (I, t) and thus to M (I |U , t) ∪ (I − I |U). Hence, x is in
G(M (I |U , t) ∪ (I − I |U) = M (I, t); a contradiction.

The intuition behind Lemma 4.11 is that by deleting a node, we have im-
plicitly used it as well; this implication is a logical consequence of the way we
axiomatized “use” in Definition 4.7. The same implication holds for edges, ex-
cept that for edges there is one exception in which we can delete an edge without
using it: if a node is deleted, then of course its incident edges must be deleted as
well (otherwise the result would not be a proper graph), and such “automatic”
deletions of edges are not considered uses by Definition 4.7.

Lemma 4.11 specifies in fact a necessary condition for a coloring to be “sound”
in the following sense:

Definition 4.12. A coloring is called sound if it is the minimal coloring of
some update method.

It is then natural to ask what exactly are the conditions for a coloring to be
sound. We can prove the following characterization:

PROPOSITION 4.13. A coloring is sound if and only if it has the following prop-
erties:

(1) If a node in the schema is colored d by κ, then it is also colored u. If an edge
is colored d by κ, then either it is also colored u or one of its incident nodes
is colored d.

(2) If an edge is colored c, then its incident nodes are colored u or c.
(3) If a node B is colored d, then, for each incident edge (B, e, C) or (C, e, B) in

the schema that is neither colored d nor u, C is colored u.
(4) At least one node is colored u.
(5) If an edge is colored u, then so are its incident nodes.

PROOF. For the only-if direction, consider the minimal coloring of some up-
date method M . Property 1 has already been proven in Lemma 4.11; properties
4 and 5 are clear.

To see property 2, consider a schema edge (A, e, B) colored c. Then there
exists an instance I and a receiver t such that M (I, t) contains an edge x =
(n, e, m) not in I , with n and m objects of type A and B, respectively. Since x is
in M (I, t), it is also in G(M (I |U , t)∪ (I − I |U)), and hence in M (I |U , t)∪ (I − I |U).
But x is not in I , so x is in M (I |U , t). Hence, n and m must also be in M (I |U , t).
If A is not colored u, then n is clearly not in I |U . If A is not colored c either,
then n cannot be in M (I |U , t) either; a contradiction. We conclude that A must
be colored u or c. An identical reasoning applies to B.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 13

The proof of necessity for property 3 is a little bit more involved. Suppose B is
a schema node colored d and suppose, for the sake of arriving at a contradiction,
that an incident schema edge (B, e, C) exists that is neither colored d nor u,
and such that C is not colored u.5 Note that C 6= B because B is colored u
(by property 1, since it is colored d). There exists an instance I and a receiver
t such that n is in I − M (I, t) for some node n of type B. Note that, since B is
colored u, n is also in I |U − M (I |U , t).

Observe that there can be no e-labeled edges incident to n in I . Indeed, such
an edge would not be in M (I, t) (since n is not), which is impossible because e is
not colored d. Moreover, there can be no C-labeled nodes in I . Suppose such a
node m is present. Then consider the instance I ′ obtained from I by adding the
edge (n, e, m). By the previous observation, we know that n ∈ M (I ′, t). However,
since e is not colored u, I ′U = IU , whence n 6∈ M (I ′U , t) = M (IU , t). By the “axiom
of use” M (I ′, t) = G(M (I ′U , t)∪(I ′−I ′U), n is thus not in M (I ′, t) (but we know it is).

Now consider the instance I ′ obtained from I by adding an object m of type
C (we just observed that I does not contain such objects). By the previous
observation, we know that n ∈ M (I ′, t). However, since C is not colored u,
I ′U = IU , whence n 6∈ M (I ′U , t) = M (IU , t). Again by the axiom of use we conclude
that n 6∈ M (I ′, t); a contradiction.

For the if-direction, let κ be a coloring having the properties of the proposi-
tion. Note that by these properties, κ(X) for any schema node X cannot be {d }
or {c, d }. We can construct an update method having κ as its minimal coloring,
as follows. The signature of the method may be arbitrarily fixed as long as all
its elements are colored u. Regardless of the particular receiver to which it is
applied, the update performed by the method is the following:

— For each node X in the schema, fix distinct objects oX
c , oX

d , and oX
u of type

X , and perform the following action depending on the value of κ(X):
(1) {c}: Add oX

c .
(2) {c, u}: Test if oX

u is present; if so, add oX
c .

(3) {d, u}: Provisionally delete oX
d . By this we mean that oX

d and all its
incident edges are removed on condition that the following two tests
fail for each schema edge (X , e, Y) or (Y , e, X) incident to X :
— if e is not colored d but is colored u, test for the presence of any edges

labeled e incident to oX
d .

— If e is neither colored d nor u, test for the presence of any Y -labeled
nodes (note that by property 3, such nodes are colored u).

(4) {c, d, u}: Here we perform both actions of the cases {c, u} and {d, u}.
— For each edge X = (A, e, B) in the schema, fix distinct objects oe

1 and oe
3 of

type A, and oe
2 and oe

4 of type B, and perform the following action, depending
on the value of κ(X):
(1) {c}: Provisionally create the edge (oe

3, e, oe
4). By this we mean that the

edge is added, as well as oe
3 and oe

4 if not yet present, except when A is
not colored c and oe

3 is not yet present, or B is not colored c, and oe
4 is

not yet present; in that case we do nothing.

5The case of a schema edge (C, e, B) is completely analogous.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

14 • M. Andries et al.

(2) {d}: In this case we know that at least A or B is colored d. If A is colored
d, provisionally delete oe

1; else, provisionally delete oe
3.

(3) {c, d}: Here we perform both actions of the cases {c} and {d}.
(4) {c, u}: Test if (oe

1, e, oe
2) is present; if so, provisionally create the edge

(oe
3, e, oe

4).
(5) {d, u}: Remove the edge (oe

1, e, oe
2).

(6) {c, d, u}: Here we perform both actions of the cases {c} and {d , u}.
— For each schema node X with κ(X) = {u}, we have not yet prescribed an

action. If some of the actions described so far that have to be performed
test for the presence of certain objects of type X , we do nothing extra.
Otherwise, test for the presence of oX

u ; if not present, go into an infinite loop.
— Also for each scheme edge (A, e, B) with κ(e) = {u}, we have not yet prescribed

an action. If some of the actions described so far that have to be performed
test for the presence of certain edges of type e, we do nothing extra. Other-
wise, test for the presence of (oe

1, e, oe
2); if not present, go into an infinite loop.

Let us verify that the conditions of Theorem 4.8 are satisfied by M and κ.
Conditions 1 and 2 are clear: M never creates (deletes) information of any type
unless that type is colored c (d). Condition 4 is equally clear, and condition 5
is a given property of κ. These remains condition 3, for which we have to verify
that M (I, t) = G(M (I |U , t) ∪ (I − I |U)). We verify both inclusions.

For the inclusion from left to right, consider first a node n of type X in
M (I, t). We make the following case analysis:

— n does not equal oX
c , oX

d , or oX
u , and neither oe

i for some edge label e and
i ∈ {1, . . . , 4}. In this case the inclusion is clear: n was already in I because
M never adds a node like n; if n is not in I − IU , it is in I |U , and thus in
M (I |U , t) because M never removes a node like n.

— n = oX
c . If n was already in I , the inclusion is again clear: if n is not in

I − I |U , it is in I |U and thus in M (IU , t) because M never removes oX
c . If

n is not in I , then X must be colored c, and we distinguish between the
following two possibilities for the value of κ(X):

— {c}: Then oX
c is always added, and hence is in M (I |U , t). There is, however,

one possible caveat: M (I |U , t) might have gone into an infinite loop
because some node or edge x is not present in I |U (cf., the last two items
in the description of M ’s behavior). However, this is not the case, because
M (I, t) did terminate, so x is present in I ; but then x is also present in
I |U because we have taken care in the definition of the behavior of M to
test for the presence of items only if they are of a type colored u.6

— {c, u} or {c, d, u}: Then oX
c has only been added because oX

u is in I .
However, then oX

u is also in I |U , and hence n is in M (I |U , t) as well.

6The same possible caveat applies to various other places in this part of the proof; the reason why
it does not pose a problem is always the same.

Strictly, we should also account for the case where M (I, t) does not terminate. But then again
this will be due to the absence of a certain node or edge, which will then certainly be absent in I |U
as well; hence M (I |U , t) will not terminate either in this case.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 15

— n = oX
d . Then n was already in I because M never adds oX

d . If X is not
colored d, the inclusion is again clear. If X is colored d (whence also u),
the presence of n in M (I, t) implies the presence in I of one of the following
two possibilities:

— An edge, incident to n, not labeled d but labeled u. This edge will also be
present in I |U , and hence n will also be in M (I |U , t).

— A node labeled u. Again this node will also be present in I |U , so that n is
also in M (IU , t).

— n = oX
u . Then n was already in I , since M never adds oX

u . Hence, if n is not
in I − I |U , it is in I |U and thus also in M (IU , t), since M never deletes oX

u .
— n = oe

1 or oe
2 for some label e of a schema edge (A, e, B). These cases are

analogous to the case n = oX
d .

— n = oe
3 or oe

4. These cases are analogous to the case n = oX
c .

Continuing our verification of containment from left to right, consider now
an edge x in M (I, t), of type (A, e, B). We make the following case analysis:

— x = (oe
3, e, oe

4). If e is not colored c, x plays no special role for M, and the
inclusion is clear. So now assume e is colored c. If A and B are colored c, x
is always added by M , and the inclusion is trivial. If A (B) is not colored c,
then it must be colored u by property 2. If x was already in I , the inclusion
is again clear because M never deletes x, oe

3, or oe
4. If x was not in I , its

creation has succeeded because oe
3 (oe

4) is already in I . But then oe
3 (oe

4) is
also in I |U , so that x will also be in M (I |U , t).

— x is incident to oe
1 or oe

2. Then x only plays a role in M when κ(e) is {d} or
{c, d}, and A (B) is colored d and x is incident to oe

1 (oe
2). In that case, x has

not been deleted because the provisional deletion of oe
1 (oe

2) did nothing. In
an earlier case, n = oX

d , we saw that then the provisional deletion will not
do anything when working on I |U . Hence x is also in M (I |U , t).

— x is incident to oX
d for some class name X . This case is analogous to the

previous one.
— All other kinds of edges x will neither be added not deleted by M, so for

them the inclusion is clear.

For the inclusion from right to left, we can argue as follows. First, we already
noted earlier that if M (I |U , t) does not terminate, then neither does M (I, t).
Furthermore, if an item that plays a special role in M ’s behavior is present in
M (I |U , t), it has been added or it has not been deleted. Since the decisions made
by M to add or to delete are based entirely on tests involving items colored u, the
outcomes of these tests will be the same, regardless whether M is applied to I |U
or to I . Hence, M (I |U , t) is contained in M (I, t). Finally, I− I |U is also contained
in M (I, t), since items not colored u are never deleted by M. The only exception
are edges labeled d but not u; but such edges are only deleted by M because
their incident nodes are deleted. Hence, the G operator will remove these edges.

To conclude the proof, we must argue that κ is indeed minimal for M. By
inspecting M ’s behavior, we see that the color u cannot be omitted from κ(X)
for schema items X for which M performs tests on the presence of items

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

16 • M. Andries et al.

of type X . Indeed, the outcome of these tests would become negative, and
certain deletions or additions made in M (I, t) would not be made in M (I |U , t),
violating condition 3 of Theorem 4.8. Similarly, for schema items X colored {u}
but not involved in such tests, M goes into an infinite loop in the absence of
certain items of type X ; by removing the color u, M (IU , t) would not terminate
in cases where M (I, t) would. Finally, the colors c and d clearly cannot be
omitted either, as M creates (deletes) information of the types colored c (d).

Properties 2 and 3 of Proposition 4.13 are quite intuitive. Property 2 states
that one cannot create an edge without checking first for each incident node
that it is already present (in this case the node is used), except when we create
the node at the same time. Property 3 expresses that you cannot delete a node
without deleting its incident edges; if we want to avoid deleting edges, we must
delete the node only if a test for the presence of incident edges fails. But testing
for the presence of incident edges implies that we use them; if we want to avoid
this usage, we can more drastically test whether there are any C-nodes at all
(in this case C is used), and do the deletion only if this test fails.

Let us now return to our original motivation: order independence. The col-
orings describing order-independent updates can be characterized as follows.

THEOREM 4.14. Let κ be a sound coloring. All update methods having κ as
their minimal coloring are order independent if and only if κ is simple.

PROOF. For the if-implication, let M be an update method having κ as its
minimal coloring. By Proposition 4.10, M is inflationary,

I ⊆ M (I, t) (3)

for any instance I and receiver t. Furthermore,

I |U = M (I, t)|U . (4)

Indeed, Eq. (3) implies I |U ⊆ M (I, t)|U , and this inclusion cannot be strict since
any information in M (I, t) but not in I is colored c, and thus not u because κ
is simple.

We now use these two observations to prove that M is order independent.
By Lemma 3.3 it is sufficient to show that M (M (I, t), t ′) = M (I, t) ∪M (I, t ′) =
M (M (I, t ′), t) for any pair {t, t ′} of receivers. We can deduce:

M (M (I, t), t ′)
= G(M (M (I, t)|U , t ′) ∪ (M (I, t)− M (I, t)|U))
= G(M (I |U , t ′) ∪ (M (I, t)− I |U))
= G(M (I |U , t ′) ∪ M (I, t))
= M (I |U , t ′) ∪ M (I, t)
= M (I |U , t ′) ∪ (I − I |U) ∪ M (I, t)
= G(M (I |U , t ′) ∪ (I − I |U)) ∪ M (I, t)
= M (I, t ′) ∪ M (I, t).

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 17

For the only-if direction, assume κ is not simple. The soundness of κ can be
used to deduce that at least there is a node R colored (1) {u, d}, (2) {u, c, d}, or
(3) {u, c}, or an edge (R, a, A) colored (4) {u, d}, (5) {u, c, d}, or (6) {u, c}. For each
of these cases we give a method of type [R, A] that is not order independent,
having κ as its minimal coloring. We start with the method associated with κ
according to the proof of Proposition 4.13. We then adapt this method to one of
the six possible cases, as follows:

(1) If there are exactly two objects of type R, delete the receiving object.
To see that this update is not order independent, apply it to instance {n, m},
where n and m are objects of type R, and the set of receivers {n, m}×{n, m}.

(2) As in the previous case, but if the test fails add two new objects to class R.
To see that this update is not order independent, use the same instance and
set of receivers as in the previous case.

(3) If there are not exactly two objects of type R, do nothing. Otherwise, if the
receiving object is equal to some fixed object, add two new objects to class
R; otherwise, add only one.
To see that this update is not order independent, use the same instance and
set of receivers as in the previous case.

(4) If there is an edge with label a between receiving and argument object,
delete all other a-edges.
To see that this update is not order independent, apply it to an instance of
the form R

a−→ A
a←− R on the set of receivers {[n, m] | (n, a, m) ∈ I}.

(5) As in the previous case, but if the test fails add an a-edge between receiving
and argument object and delete all other a-edges.
To see that this update is not order independent, use the same instance and
set of receivers as in the previous case.

(6) If there are no a-edges, add one between receiving and argument object.
To see that this update is not order independent, apply it to an instance of
the form R A R on the set of receivers {[n, m] | n of type R, m of type A}.

Example 4.15. Recall the example schema (Example 2.3). To illustrate The-
orem 4.14, consider the update method of type [Drinker] that adds to the bars
frequented by the receiving drinker all those serving a beer he likes. The min-
imal coloring of this method assigns {u} to the nodes Drinker, Bar, and Beer
and the edges labeled ‘likes’ and ‘serves,’ and assigns {c} to the edge labeled
‘frequents’. This coloring is simple, and the method is indeed inflationary and
order independent.

4.3 Deflationary Colorings

We have also investigated an alternative axiomatization of use, which we
present next. Informally, it expresses the intuition that items of information
that are needed by the update cannot be removed without changing the result
of the update. Formally:

Definition 4.16. Let X be a set of items in the schema S. A method M is
said to use only information of type X if for any instance I , any receiver t over

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

18 • M. Andries et al.

I , and any item x in I whose label is not in X , M (G(I − {x}), t) = G(M (I, t) −
{x}).

Notice how conceptually different the above definition is from our first Defi-
nition 4.7. In a sense, the first definition is more global while the second is more
local. The two definitions are also formally different, as shown in the following
example. In a sense, the two definitions are each other’s dual in the way they
treat deletion and creation of information.

Example 4.17. Consider the method that deletes all objects of a certain class
X . If this method uses only information of type X according to Definition 4.7,
X must be in X , but this is not true under Definition 4.16.

On the other hand, consider the method that always adds some fixed object
of type X . Now it is according to Definition 4.16 that X must be in X , but no
longer under Definition 4.7.

It turns out that one can repeat the entire development of the previous section
under the new Definition 4.16. First, we have:

THEOREM 4.18. Exactly the same statement of Theorem 4.8 also holds when
the meaning of the term “use” is that of Definition 4.16.

We omit the proof; it is along the same lines as that of Theorem 4.8, but tech-
nically easier. For the remainder of this section, the meaning of “use” in formal
propositions, theorems, and proofs is always that of the new Definition 4.16.

We also prove the verbatim analog of Theorem 4.14, and again formulate a
soundness criterion. The curious duality alluded to above will have as an effect
that simple colorings under the new definition describe deflationary rather than
inflationary updates.

The following proposition is the analog of Proposition 4.10. While for the
old axiomatization of “use”, we see in Lemma 4.11 that, roughly, we cannot
delete information without using it, we now see in Lemma 4.20 that for the
new axiomatization, we cannot create information without using it. Indeed, the
statement of Lemma 4.20 is exactly that of Lemma 4.11 with ‘d’ replaced by ‘c’.
This formalizes the duality already alluded to in Example 4.17.

PROPOSITION 4.19. Let M be an update method. If the minimal coloring of M
(as given by Theorem 4.18) is simple, then M is deflationary, i.e., M (I, t) ⊆ I
for each instance I and receiver t over I .

PROOF. The proof is technically quite different from that of Proposition 4.10.
Let the minimal coloring of M be κ. We prove the following technical lemma:

LEMMA 4.20. If a node in the schema is colored c by κ, then it is also colored
u. If an edge is colored c by κ, then either it is also colored u or one of its incident
nodes is colored c.

This lemma clearly implies the proposition is proven: if κ is simple, it cannot
color anything c, and hence M will never create any information, i.e., M is
deflationary.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 19

To prove the first statement of the lemma, assume X is a node in S colored
c but not u. The minimality of κ implies the existence of an instance I and a
receiver t such that M (I, t) contains an object n of type X that is not in I . Since
X is assumed not colored u, we have

M (G(Ī − {n̄}), t̄) = G(M (Ī , t̄)− {n̄})
for any instance Ī , node n̄ labeled X in Ī , and receiver t̄ over Ī . Applying this
to I ′ := I ∪ {n}, n, and t, we obtain

M (I, t) = G(M (I ′, t)− {n}).
But M (I, t) contains n, while the right-hand side of the equation clearly does
not; a contradiction.

To prove the second statement, assume there is an edge in S, labeled e, that
is colored c but not u. Then there exists an instance I and a receiver t such that
M (I, t) contains an edge x = (n, e, m) that is not in I . Since e is not colored u,
we have M (G(Ī − {x̄}), t̄) = G(M (Ī , t̄)− {x̄}) for any instance Ī , edge x̄ labeled e
in Ī , and receiver t̄ on Ī . Applying this to I ′ := I ∪ {n, m, x}, x, and t, we obtain
M (I ∪ {n, m}, t) = G(M (I ′, t) − {x}). If n and m were in I , then the left-hand
side of this equation would equal M (I, t), which contains x, while x is obviously
not contained in the right-hand side of the equation. Consequently, either n or
m is not in I . But since these nodes are in M (I, t), one of their labels must be
colored c.

If the duality were perfect, we would now expect the soundness criterion
under the new axiomatization of use to be the soundness criterion under the
previous axiomatization (Proposition 4.13), where we replaced the first property
(from Lemma 4.11) with the property in the dual, Lemma 4.20. However, the
duality is not perfect. The point is that Lemma 4.20 already provides a weak
form of property 2 required by Proposition 4.13; and it turns out that the latter
property itself is no longer necessary. This is shown by the following example.

Example 4.21. Consider a schema with two class names A and B and a
property e of A of type B. Consider the coloring assigning {u, c} to A, {c} to e,
and ∅ to B. This coloring is not sound under Definition 4.7 (it does not satisfy
property 2 from Proposition 4.13), but it is sound under Definition 4.16. Indeed,
as we can verify, it is the minimal coloring of the update that checks to see if
some fixed object nA of type A is already present; if not, it adds nA, together
with edges to all B-nodes present. Definition 4.7 considers these B-nodes to be
used by the update, but Definition 4.16, by its more “local” nature, does not.

As a new soundness criterion, we get:

PROPOSITION 4.22. A coloring is sound if and only if it has the following prop-
erties:

(1) If a node in the schema is colored c by κ, then it is also colored u. If an edge
is colored c by κ, then either it is also colored u or one of its incident nodes
is colored c.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

20 • M. Andries et al.

(2) If a node is colored d, then all its incident edges are colored u or c, or the
other node incident to such an edge is colored u.

(3) At least one node is colored u.
(4) If an edge is colored u, then so are its incident nodes.

The proof of the only-if direction has already been given for the first property
in Lemma 4.20; it is clear for the last two properties, and is analogous to the
proof of Proposition 4.13 for the remaining property (which is identical in both
propositions). The proof of the if-direction requires no new ideas beyond those
of the proof of the if-direction of Proposition 4.13; the only extra complication
is for edges colored c; these are dealt with as shown in Example 4.21.

We can conclude this section with the verbatim analog of Theorem 4.14:

THEOREM 4.23. Let κ be a sound coloring. All update methods having κ as
their minimal coloring are order independent, if and only if κ is simple.

PROOF. The only-if implication is proven analogously to Theorem 4.14. As-
sume κ is not simple. Then, by Proposition 4.22, we only have to consider the
same six possibilities as in the proof of Theorem 4.14, namely of a node or an
edge colored {u, c}, {u, d}, or {u, c, d}. The same six examples used in that proof
also apply to the present setting. Again, these methods have to be adapted to
the colors of other items in the scheme. Thereto, we merely have to replace the
case of a node colored c by that of a node colored d in the obvious way.

For the if-implication, let M be an update having κ as its minimal coloring.
By Lemma 3.3, it is sufficient to show that M (M (I, t), t ′) = M (M (I, t ′), t) for
any pair {t, t ′} of receivers. Let {x1, . . . , xn} be the set of all items of the partial
instance I −M (I, t). The labels of all these items and edges are colored d, and
therefore not u because κ is simple. Hence, M (G(I−{x1}), t ′) = G(M (I, t ′)−{x1}).
Subtracting {x2} from both sides followed by applying G yields

G(M (G(I − {x}), t ′)− {x2}) = G(G(M (I, t ′)− {x1})− {x2}),
and thus

M (G(I − {x1, x2}), t ′) = G(M (I, t ′)− {x1, x2}).
We can repeat this reasoning for all other items xi (2 < i ≤ n), and eventually
results in

M (G(I − (I − M (I, t))), t ′) = G(M (I, t ′)− (I − M (I, t ′))),

which can be rewritten as

M (M (I, t), t ′) = M (I, t) ∩ M (I, t ′).

Hence, by symmetry, M (M (I, t), t ′) = M (M (I, t ′), t), had to be proven.

4.4 A Conclusion on Colorings

The specification of update behavior on a language-independent level is a notori-
ously difficult problem. Our results in this section show that it is not impossible

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 21

to solve when the updates have a uniform behavior (i.e., are inflationary or de-
flationary). We would also like to make clear that we do not intend to claim that
colorings based on only three kinds of update behavior (creation, deletion, and
usage) are rich enough for specification. Indeed, although we find our results
rather satisfying from a theoretical point of view, their practical usefulness re-
mains limited (but see Section 7 for some practical implications). A study of
schema annotations, which can distinguish more kinds of update behavior, is a
challenging and interesting issue for further research.

5. A MODEL OF ALGEBRAIC UPDATE METHODS

In this section we consider a more specific framework of update methods im-
plemented in the relational algebra, inspired by the algebraic model of object-
oriented database access introduced by Hull and Su [1989].

5.1 Preliminaries

It is well-known (e.g., Lyngbaek and Vianu [1987] Hull and Su [1989]; Hull and
Yoshikawa [1990]) that object-base schemas and instances can be viewed natu-
rally as relational database schemas and instances. Formally, assume that all
class names and property names are attribute names. Following the standard
convention, we omit the set braces from relation schemes, writing {A, B, C}
simply as ABC. Now consider a given object-base schema S. The relational
database schema corresponding to S contains for each class name C in S the
unary relation scheme C. The domain 1C of C is the universe of all objects of
type C. Furthermore, for each edge (C, a, B) in S, there is a binary relation
scheme Ca; the domain 1a of a is 1B. As integrity constraints, the schema
contains inclusion dependencies Ca[C] ⊆ C[C] and Ca[a] ⊆ B[B] for each edge
(C, a, B) in S. Note that every relational instance of this schema will also sat-
isfy the disjointness dependencies C[C] ∩ C′[C′] = ∅ for each pair of different
class names C and C′, since we agreed in Section 2 that different class names
have disjoint universes of objects.

The following proposition is clear:

PROPOSITION 5.1. The object-base instances of S correspond precisely to the
relational database instances of the relational database schema corresponding
to S.

Henceforth, we blur the distinction between an object-base schema or instance
and its relational representation.

We can now use the relational algebra to derive relations from object-base
instances. The algebra we use is the standard one [Ullman 1988], consisting of
the binary operators union (∪), difference (−), Cartesian product (×), and the
unary operators equality selection (σA=B), projection (πA1,..., Ap), and renaming
(ρA→B). We also use a weaker algebra, called the “positive” algebra:

Definition 5.2. The positive algebra consists of the operators union, Carte-
sian product, equality selection, projection and renaming, plus the nonequality
selection (σA6=B).

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

22 • M. Andries et al.

Note that the positive algebra does not include the difference operator.
Following standard practice, we use natural joins (1) and theta-joins (1

θ
) as

abbreviations of the well-known combinations of Cartesian product, selection,
and renaming.

It is well-known [Abiteboul et al. 1995] that equivalence (or satisfiability)
of arbitrary relational algebra expressions is undecidable. However, the stan-
dard interpretation of “equivalence” is that two expressions over some schema
are equivalent if they have the same value on every possible instance of that
schema, disregarding any integrity constraint on instances that may be present.
In our setting, such integrity constraints are indeed present: as explained above,
object-base instances satisfy certain inclusion and disjointness dependencies.
We regard two expressions as equivalent if they have the same value on every
object-base instance; we are not interested in relational instances that do not
represent an object-base instance.

The preceding discussion motivates the following lemma. It implies that
equivalence over object-base instances is undecidable as well.

LEMMA 5.3. Testing equivalence of relational algebra expressions over arbi-
trary relational instances can be reduced to testing equivalence over object-base
instances.

PROOF. Let S be an object-base schema and let R = AB be a classical binary
relation scheme where A and B are attribute names with the same infinite
domain D. Consider the standard finite satisfiability problem: given a relational
algebra expression E over R, does there exist a relation instance r such that
E(r) 6= ∅? We reduce this problem to satisfiability over object-base instances of
S. Since E1 and E2 are equivalent if and only if (E1 − E2) ∪ (E2 − E1) is not
satisfiable, this reduction suffices to prove the lemma.

We first show how a binary relation can be represented by an object-base
instance. Assume S contains class names C and D and edges (C, A, D) and
(C, B, D).7 A relation r = {(a1, b1), . . . , (an, bn)} can be represented by an object-
base instance I of S where

— the nodes labeled D are {a1, . . . , an, b1, . . . , bn};
— the nodes labeled C are n abstract nodes {t1, . . . , tn};
— the edges are all those of the form (ti, A, ai) and (ti, B, bi) for i = 1, . . . , n.

In such an instance I , the expression πA,B(CA 1 CB) evaluates to r. Hence,
an expression E over R is satisfiable if and only if the expression E ′ over
S obtained from E by replacing each occurrence of R by πA,B(CA 1 CB) is
satisfiable.

5.2 Algebraic Update Methods

We are now ready to define our update methods algebraic model. We con-
sider methods that can only update the properties of the receiving object.

7The lemma can also be proven under the assumption of a single class name C and a single edge
(C, e, C).

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 23

They cannot remove existing objects or create new ones. The updates are per-
formed via a simple assignment statement, the right-hand side of this state-
ment being a relational algebra expression parameterized by the receiver of the
method.

Formally, we have the following definitions. We fix an object-base schema S
in what follows.

Definition 5.4

(1) Let σ = [C0, . . . , Ck] be a method signature. An update expression of type σ
is a unary relational algebra expression over the relation schemes in S and
the special unary relation schemes self and argi for 1 ≤ i ≤ k, where the
domain of self is 1C0 and the domain of argi is 1Ci for 1 ≤ i ≤ k.

(2) Let E be an update expression of type σ . Let I be an instance of S and let t =
[o0, . . . , ok] be a receiver of type σ over I . Then E(I, t) is defined as the result
of evaluating E on I , where the special relation self is interpreted as the
singleton {o0} containing the receiving object, and where argi is interpreted
as the singleton {oi} containing the ith argument, for 1 ≤ i ≤ k.

(3) Let a be a property of the receiving class C0. An algebraic update statement
on a of type σ is an expression of the form a := E, where E is an update
expression of type σ .

(4) An algebraic update method of type σ is a set of algebraic update statements
of type σ containing at most one update on each property.

(5) Finally, if M is an algebraic update method of type σ , I is an instance of
S, and t is a receiver of type σ over I , the result of applying M to (I, t) is
defined as the instance obtained from I by replacing, for each statement
a := E in M , all edges labeled a leaving the receiving object by edges to all
elements of E(I, t).

Example 5.5. In writing examples of algebraic methods, we abbreviate the
class and property names from our example schema by their first letter (Bar
and Beer are abbreviated as Ba and Be).

The method favorite bar of Example 2.7 can be implemented simply as f :=
arg1, and the method add bar as f := π f (self 1

self=D
Df) ∪ arg1. The method of

Example 4.15 can be implemented as

f := π f
(
self 1

self=D
Df
) ∪ πBa

(
self 1

self=D
Dl 1

l=s
Bas

)
.

In practice, syntactic sugar such as path expressions can be used to write alge-
braic update methods more concisely.

In order for M (I, t) to be a well-defined instance of S, each statement a := E
in M must respect the integrity constraints of S. More precisely, if B is the type
of property a, then we must have E(I, t) ⊆ B(I) for any instance I and receiver
t. Not surprisingly, in view of Lemma 5.3, this property of expressions E is
undecidable. However, by using “many-sorted” expressions, well-definedness
can be syntactically guaranteed, and this without loss of expressive power
[Van den Bussche and Cabibbo 1998]. Another, pragmatical, solution is to use

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

24 • M. Andries et al.

only expressions E of the form E ′ ∩ B. Hence, well-definedness does not really
pose a problem in practice.

Let us now turn to the issue of order independence of algebraic methods. Our
main result of this section is the following.

THEOREM 5.6. The problem of deciding equivalence between relational alge-
bra expressions (over arbitrary relational instances) is reducible to the problem
of deciding order independence of algebraic methods.

Conversely, method order independence is reducible to expression equivalence
under functional, inclusion, and disjointness dependencies.

PROOF. We first reduce expression equivalence to method order indepen-
dence. By Lemma 5.3, it suffices to reduce equivalence over object-base in-
stances to order independence.

Let S be an object-base schema and let E1 and E2 be two expressions over
S. Without loss of generality, we assume E1 and E2 to have the empty result
scheme. Augment S with a class name C having two properties a and b of type
C. The following update method M of type [C] is order independent if and only
if E1 and E2 are equivalent:

a := ∅;
b := if Ca = C × ρC→a(C)

then if E1 6= ∅ then self else ∅
else if E2 6= ∅ then self else ∅.

In proof, assume E1(I) is empty but E2(I) is not for some instance I . Let I ′ be
obtained from I by adding two objects o and o′ in class C with all 8 possible a-
and b-edges between them. Then in M (M (I ′, o), o′), there is no b-edge leaving
o, but in M (M (I ′, o′), o) there is. Hence, M is not order-independent.

Conversely, if E1 and E2 are equivalent, then the update to b simplifies to

b := if E1 6= ∅ then self else ∅,
which makes M order-independent, since E1 does not depend on C and its
properties.

We next reduce method order independence to expression equivalence. Let
M be an update method with receiving class C, containing update assignments
a := Ea, for each a ∈ A where A is some set of properties of C.

If I is an instance and the unary singleton relations self, arg1, . . . , argk to-
gether hold a receiver t, then the relation Ca in the instance M (I, t) can be
expressed as

πC,a
(
Ca 1

C 6=self
self

) ∪ ρself→C(self)× Ea.

Denote this expression by Ea[t]. Now denote by E ′a the expression obtained
from Ea[t] by replacing each occurrence of Cb, where b ∈ A, by Eb[t], and let
self ′, arg ′1, . . . , arg ′k together hold a second receiver t ′. Then the relation Ca in
the instance M (I, tt ′) can be expressed as

πC,a
(
Ea[t] 1

C 6=self ′
self ′

) ∪ ρself ′→C(self ′)× E ′a.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 25

Call this expression Ea[tt ′]. By reversing the process, we obtain an expression
Ea[t ′t].

By Lemma 3.3, M is order independent iff, for each a ∈ A, the expressions
Ea[tt ′] and Ea[t ′t] are equivalent. However, in testing the equivalence, care
must be taken.

Indeed, only object-base instances must be considered. This is dealt with
by imposing the inclusion and disjointness dependencies corresponding to the
object-base schema.

Moreover, only interpretations of the relations self, self ′, arg1, . . . , arg ′k must
be considered which assign them (i) at most one element; (ii) at least one
element; and (iii) different receivers t and t ′. Requirement (i) is dealt with
by imposing the functional dependencies self: ∅ → self and argi: ∅ → argi (and
similarly for self ′ and arg ′i). Requirements (ii) and (iii) are dealt with by mod-
ifying the expressions to yield the empty result if they are not satisfied. This
can be done by taking the Cartesian product with

π∅(self× arg1 × · · · × argk × self ′ × arg ′1 × · · · × arg ′k)×
k⋃

i=1

π∅
(
argi 1

argi 6=arg ′i
arg ′i

) ∪ π∅(self 1
self6=self ′

self ′
)
.

The first part of the above theorem implies the following undecidability re-
sults. In the next section, we use the second part of the theorem to obtain
decidability results in the special case of “positive” methods.

COROLLARY 5.7. The following problems are undecidable:

(1) Given an algebraic method M, is M order independent?
(2) Given an algebraic method M, is M key-order independent?
(3) Given a relational algebra query Q over the object-base schema and an

algebraic method M, is M Q-order independent?

PROOF. Problem 1 follows immediately from the first part of Theorem 5.6 and
the undecidability of equivalence of relational algebra expressions. The proof of
Theorem 5.6 shows that the reduction from expression equivalence to method
order independence also works for key-order independence. Hence, problem 2
follows as well. We leave it as an exercise for the reader to reduce order inde-
pendence to query-order independence. Problem 3 follows from this.

To conclude the present section, we present a sufficient condition for key-
order independence in the general case.

PROPOSITION 5.8. An algebraic method M is key-order independent if each of
its update expressions does not access the relations corresponding to the proper-
ties updated by M.

Instead of proving this proposition formally, which is straightforward, we note
that the condition is only sufficient for key-order independence, not for absolute
order independence. Indeed, the update a := arg satisfies the condition, but is
not order independent (only key-order independent).

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

26 • M. Andries et al.

Example 5.9. The method favorite bar satisfies the condition of Proposi-
tion 5.8 (see Example 5.5), and is indeed key-order independent. Observe that
add bar does not satisfy the condition (it both accesses and modifies rela-
tion Df) but is still order independent; this shows that the condition is only
sufficient.

PROPOSITION 5.8, trivial as it may be, covers many practical cases; more ex-
amples of its applicability are given in Section 7.

5.3 Positive Update Methods

An important special kind of algebraic method is the “positive” one:

Definition 5.10. An algebraic method is called positive if all relational al-
gebra expressions used in it are positive (in the sense of Definition 5.2).

Since positive algebra expressions always express monotone queries, positive
methods always express monotone updates, i.e., if I ⊆ J then M (I, t) ⊆ M (J, t).

The following example shows that positive methods can still delete
information.

Example 5.11. The method delete bar of type [D, Ba] which deletes the ar-
gument bar from those frequented by the receiving drinker is positive, as it can
be implemented as

f := π f
(
self 1

self=D
Df 1

f 6=arg
arg
)
.

Our main positive result concerning algebraic update methods is the
following:

THEOREM 5.12. Order independence and key-order independence of positive
algebraic methods are decidable.

PROOF. The proof is based on the following lemma, whose complete proof is
given in Appendix A.

LEMMA 5.13. Containment (whence also equivalence) of positive relational
algebra expressions under functional dependencies and full inclusion depen-
dencies is decidable.

The theorem is implied by this lemma and the reduction from order inde-
pendence to equivalence of relational algebra expressions given in the proof of
the second part of Theorem 5.6. To see this, note the following facts concerning
this reduction:

(1) The reduction preserves positivity: if the method to be checked for order in-
dependence is positive, then so are the generated expressions to be checked
for equivalence.

(2) The reduction can be readily adapted for key-order independence. It suffices
to omit, in the large final expression of the proof of Theorem 5.6, the term⋃k

i=1 π∅(argi 1argi 6=arg ′i arg ′i), so that the expressions to be evaluated become
empty from the moment the two receivers have the same receiving object.
(Recall that Lemma 3.3 also holds for key-order independence.)

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 27

(3) The dependencies involved in the reduction are covered by those mentioned
in Lemma 5.13. Hence, the lemma yields the decidability of order indepen-
dence and key-order independence.

It remains open whether the following problem is decidable:

Open problem. Given a positive relational algebra query Q over the object-base
schema and a positive algebraic method M , is M Q-order independent?

The reason our techniques fail to solve this problem is that they crucially
rely on Lemma 3.3, which fails for query-order independence. More precisely:

PROPOSITION 5.14. The following statement does not hold for every positive
algebra query Q and positive algebraic method M:

M is Q-order independent iff M is order independent on any pair
(I, T) where T is a two-element subset of Q(I).

In fact, none of the two implications (if and only if) holds in general.

PROOF. Consider a schema with a class name C having two properties a and
b of type C. We give counterexamples disproving the two implications.

We first disprove the if-direction. Consider the update M of type [C, C] delet-
ing the argument object from the a-properties of the receiving object, on con-
dition that relation Ca contains at least two tuples. We can express M as a
positive algebraic method as follows:

a := if #Ca ≥ 2 then πa
(
self 1

self=C
Ca 1

a 6=arg
arg
)

else ∅.

Furthermore, consider the query

Q := if #Ca ≥ 3 then Cb else ∅.
Note that a query of the form if #Ca ≥ 2 then E else ∅ (or #Ca ≥ 3) can indeed
be expressed positively; for example, the former as

π∅
(
πC(Ca) 1

C 6=C′
ρC→C′πC(Ca) ∪ πa(Ca) 1

a 6=a′
ρa→a′πa(Ca)

)× E.

Under these assumptions, it follows that M (I, t1t2) = M (I, t2t1) for any instance
I and pair of distinct receivers t1, t2 ∈ Q(I). Indeed, if Q(I) is nonempty, then
#Ca is at least 3. Hence, applying M to (I, t1) amounts to deleting t1 from Ca,
after which #Ca is still at least 2, so that applying M to (M (I, t1), t2) amounts
to deleting t2 from Ca. Clearly, this is equivalent to first deleting t2 and only
then t1, so that M (I, t1t2) = M (I, t2t1).

However, M is not Q-order independent. Indeed, consider an instance I
where relation Ca equals {(c1, a1), (c2, a2), (c3, α)} and Cb equals {(c1, a1), (c2, a2),
(c3, β)} with α 6= β. In M (I, (c1, a1)(c2, a2)(c3, β)), object c3 has no a-properties,
while in M (I, (c3, β)(c1, a1)(c2, a2)), it still has α as an a-property. Hence, these
two sequential applications differ.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

28 • M. Andries et al.

We next disprove the only-if direction. Consider the update M of type
[C, C, C], which assigns to a all the b-properties of the receiving object and
adds the first argument to the b-properties (the second argument is not used).
We can express M as a positive algebraic method as follows:

a := πb
(
self 1

self=C
Cb
)
;

b := πb
(
self 1

self=C
Cb
) ∪ arg1.

Consider furthermore the three-fold Cartesian product of C with itself as a
query Q .

Then M is Q-order independent. Indeed, if I contains less than two objects,
then Q(I) returns no more than one receiver, and the application is trivially
order independent. If I contains more than one object, applying M to (I, Q(I))
sequentially (regardless of order) will result in the instance in which every
object has all other objects as a- and b-properties.

However, there is an instance I and a pair of distinct receivers t1, t2 ∈ Q(I)
such that M (I, t1t2) 6= M (I, t2t1). Indeed, consider the instance I containing
two objects o1 and o2 having no a- or b-properties. Consider the following pair of
receivers t1, t2 ∈ Q(I): t1 = (o1, o1, o1) and t2 = (o1, o2, o1). In M (I, t1t2), relation
Ca equals {(o1, o1)}, while in M (I, t2t1) it equals {(o1, o2)}. Hence, M (I, t1t2) 6=
M (I, t2t1).

6. PARALLEL APPLICATION OF ALGEBRAIC UPDATE METHODS

In this section, remaining in the algebraic framework, we study an alternative,
“parallel” way of applying an update method to a set of receivers.

An update expression E occurring in an algebraic update method can access
the different components of the receiver using the special unary singleton re-
lations self and argi. However, suppose we prefer to store the entire receiver in
one single relation rec over the scheme self arg1 . . .argk . This is equivalent; it
suffices to substitute in E ‘self ’ with ‘πself (rec)’ and ‘argi ’ with ‘πargi

(rec).’
Using this relation rec suggests a natural semantics for applying the update

to a set of receivers: we instantiate rec not by a single receiver but by the whole
set at once. However, in order to do so in a sensible way, we must take care that
arguments belonging to different receiving objects are not mixed up. Thereto,
we keep a copy of the receiving object self throughout the evaluation of the
expression. So the simple substitutions described in the previous paragraph
will not do.

This motivates the following definition:

Definition 6.1. Let E be an update expression. Then par(E) is the relational
algebra expression over the relation schemes in the object-base schema plus the
relation scheme rec = self arg1 . . .argk obtained by modifying E as follows:

— Each relation scheme R occurring in E is replaced by πself (rec)× R;
— self is replaced by πself (rec), and each argi is replaced by πself, argi

(rec);

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 29

— each projection πA1,..., Ap is replaced by πself, A1,..., Ap ;
— each Cartesian product is modified in a natural join on the common attribute

self.

Note that the result scheme of par(E) is that of E to which the attribute self
is added. For instance, if C is the receiving class and the update expression E
is over a property a of type B of C, then the result scheme of par(E) is self a,
whose domains are C and B, respectively.

The result of applying a method M in parallel to an instance I and a set T
of receivers over I is now defined in the obvious way:

Definition 6.2.

(1) Let E be an update expression. Then par(E)(I, T) is defined as the result
of evaluating par(E) on I , where the relation rec is interpreted by T .

(2) The result of applying M in parallel to (I, T), denoted Mpar(I, T), is defined
as the instance obtained from I by replacing, for each statement a := E
in M and for each receiving object o0 occurring in T , all edges labeled a
leaving o0 by edges to all objects linked to o0 in par (E)(I, T).

The parallel semantics just defined coincides with the ordinary semantics in
the case of a single receiver, as stated in the following proposition. The proof is
straightforward.

PROPOSITION 6.3. For any algebraic update method M, instance I and re-
ceiver t, Mpar(I, {t}) = M (I, t).

The following example illustrates parallel application and contrasts it
against sequential application.

Example 6.4. Consider the scheme consisting of one class name C and two
edges labeled e and tc. Let M be the method of type [C, C] having the single
statement

tc := πe
(
self 1

self=C
Ce
) ∪ πe

(
self 1

self=C
Ctc 1

tc=C′
ρC→C′ (Ce)

)
.

This method is order independent. Let I be an instance containing only e-
edges, and let T be the set of receivers C × C. Then the sequential application
Mseq(I, T) computes the transitive closure of I in the tc-edges, while the parallel
application Mpar(I, T) simply duplicates each e-edge with a tc-edge. Indeed,
par(E) (E being the expression assigned to tc) equals

πself ,e

(
πself (rec) 1

self=self
self=C

(πself (rec)× Ce)
)

∪ πself, e

(
πself (rec) 1

self=self
self=C

(πself (rec)× Ctc) 1
self=self

tc=C′

ρC→C′ (πself (rec)× Ce)
)

,

which on an instance without tc-edges is equivalent to πself ,e(πself (rec) 1
self=C

Ce).

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

30 • M. Andries et al.

The above example suggests that parallel application is less powerful
than sequential application, since sequential application can express transitive
closure while parallel application, by definition, does not have more power than
the relational algebra (which cannot express transitive closure).8

When we restrict attention to key sets of receivers, however, parallel and
sequential application are equivalent, as stated by the following theorem.

THEOREM 6.5. If M is key-order independent, then Mseq(I, T) = Mpar(I, T)
for any instance I and key set of receivers T.

PROOF. Let E be an update expression occurring on the right-hand side of
one of the statements in M . We refer to Lemmas 6.6 and 6.7, stated and proven
below.

To see how the theorem follows from these lemmas, consider a statement
a := E in M , and assume that C is the receiving class. By Lemma 6.6, relation
Ca in Mseq(I, T) equals

Ca(I)− πCa

⋃
t∈T

({t(self)} 1
self=C

Ca(I)
) ∪ ρself→C

⋃
t∈T

{t(self)} × E(I, t),

which, by Lemma 6.7, equals relation Ca in Mpar(I, T).

LEMMA 6.6. If T = {t1, . . . , tn}, then for each i with 1 < i ≤ n,

E(M (I, t1 . . . ti−1), ti) = E(I, ti).

PROOF. Let a := E be the statement in M having E as its right-hand side
and let C be the receiving class. The objects to which the object ti(self) is linked
by a-edges in Mseq(I, T) are the same as those in M (I, ti) and in M (I, t1 . . . ti),
since T is a key set and M is key-order independent. In M (I, ti), they can be com-
puted as E(I, ti); in M (I, t1 . . . ti), they can be computed as E(M (I, t1 . . . ti−1), ti).
Hence, E(I, ti) = E(M (I, t1 . . . ti−1), ti) as had to be proven.

LEMMA 6.7. par (E)(I, T) = ⋃t∈T {t(self)} × E(I, t).

PROOF. A straightforward induction on the structure of E. By way of exam-
ple we show how the difference operator is handled.

par (E1 − E2)(I, T) = par (E1)(I, T)− par (E2)(I, T)

=
⋃
t∈T

{t(self)} × E1(I, t)−
⋃
t∈T

{t(self)} × E2(I, t)

=
⋃
t∈T

{t(self)} × (E1(I, t)− E2(I, t)).

The first equality holds by definition; the second by induction. To prove the
third, the inclusion from left to right is straightforward. For the inclusion from
right to left, let

s ∈
⋃
t∈T

{t(self)} × (E1(I, t)− E2(I, t)).

8With a similar technique, using sequential application we can also express the parity test, another
problem not solvable using the relational algebra [Abiteboul et al. 1995].

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 31

Then s = t0(self)×s0, with s0 ∈ E1(I, t0)−E2(I, t0), for some t0 ∈ T . So s is clearly
in
⋃

t∈T {t(self)} × E1(I, t0). Now assume s is also in
⋃

t∈T {t(self)} × E2(I, t0).
Then s0 ∈ E2(I, t ′0), for some t ′0 ∈ T with t ′0(self) = t0(self). But since T is a
key set, the latter can only hold when t ′0 = t0, which, implies s0 ∈ E2(I, t0); a
contradiction.

The parallel application of algebraic update methods can be implemented
much more efficiently than the sequential application. Indeed, the result of
the parallel application is defined in terms of one single relational algebra
expression per property to be updated; this expression can be optimized and
is then executed only once. This is not possible in the sequential application,
where the application to a set of n receivers results in the evaluation of n
separate relational algebra expressions. Hence, we believe Theorem 6.5 is an
interesting result.

7. PRACTICAL IMPLICATIONS

In this section, we show that our theory can be applied in a practical SQL
context and that it can explain a variety of update phenomena in that context.

We begin by noting that the object-based data model we have been using
can be applied very well in the classical relational setting as well. A tuple t
in some relation R can be interpreted as an object of type R. An attribute t.A
can then be interpreted as a property of t. We can also interpret a relation P
whose attributes include the primary key of relation R as a foreign key, as well
as the primary key of another relation S, as a property (R, P, S). So a tuple
(k1, k2) in P would be interpreted as an edge (t1, P, t2), where t1 is the tuple in
R identified by key k1 and t2 is the tuple in S identified by key k2.

Now consider a relation Employee(EmpId, Salary, Manager) holding infor-
mation about the salary and the manager of employees and a list Fire(Amount)
of amounts. Suppose we want to delete all employees whose salary occurs in
Fire. We can do this in two different ways:

(1) Using a standalone, set-oriented SQL statement:

delete from Employee where Salary in table Fire

(2) Using a cursor-based delete in programmed SQL:9

for each t in Employee do
if Salary in table Fire

delete t from Employee

These two solutions work in entirely different ways. The set-oriented statement,
in a first phase, identifies all tuples to be deleted; only in a second phase are
they effectively removed. The cursor-based update removes a tuple directly to
be deleted before inspecting the next one. Because the cursor-based update is
order independent, the two end results are the same.

9In this and the following examples we do not worry about the precise syntax for cursor manipu-
lation, and use an abstract syntax instead.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

32 • M. Andries et al.

We can readily see that the cursor-based update is order independent using
schema colorings (since we are deleting information we would use the deflation-
ary semantics of colorings). Indeed, the relation Employee from which we delete
is not used in the if-condition, so Employee has color {d}. No items other than
Employee objects are deleted, so no other schema item is colored d. Nothing at
all is created (inserted), so no schema item is colored c. Of course, some schema
elements are used, more specifically the class Fire, the property Salary, and
the the class D to represent the type of this property, so these items have color
{u}. We thus have a simple coloring, which guarantees order independence by
our Theorem 4.23.

An example in which Employee would be colored both d and u is when we
try a cursor-based update to delete all employees for which the salary of their
Manager occurs in Fire:

for each t in Employee do
if exists (select ∗

from Employee E1
where E1.EmpId =Manager and E1.Salary in table Fire)

delete t from Employee

We now delete from Employee, and at the same time use Employee information
in the if-condition of the update. The resulting double color for Employee means
we can no longer use Theorem 4.23 to conclude order independence; in fact, the
above update is order dependent, because an employee will not be deleted if his
manager was visited and deleted before him. The cursor-based solution is thus
wrong for this case.

In contrast, the set-oriented statement

delete from Employee
where exists (select ∗

from Employee E1
where E1.EmpId =Manager and E1.Salary in table Fire)

is still correct, as it will again first identify the employees to be deleted, and
only then remove them all together.10 In effect, this statement actually uses an
extremely simple underlying update that is trivially order independent: this
update merely removes its parameter t from relation Employee. The whole
point is that the complete set T of parameters is computed before the actual
deletions are applied. Thus we see that the set-oriented delete statement in
SQL is very nicely explained by our theory as the application of a trivial, order-
independent, removal update to a precomputed set of receivers.

Analogous examples can be given with insertions instead of deletions. Once
we move to modifications, however, we can no longer use our coloring frame-
work to analyze update behaviors, since modifications both delete and insert

10A referee pointed out that some of the earlier SQL implementations did not in fact follow this
two-phase semantics, using an order-dependent semantics equivalent to that of the cursor-based
deletion instead. We have tested the SQL implementation of two current (1998) DBMSs, and for-
tunately they no longer have this problem.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 33

at the same time, and our results on simple colorings apply to updates that are
either deletion-only (deflationary) or insertion-only (inflationary) only. Hence,
we move to the algebraic framework.

As a first example of a modification, consider again the relation Employee,
along with a relation NewSal(Old, New) specifying new salaries. Suppose we
want to give each employee a new salary as specified in NewSal. This can be
achieved by the standalone set-oriented update statement

update Employee (A)
set Salary = (select New

from NewSal
where Old = Salary)

or by the cursor-based update

for each t in Employee do (B)
update t
set Salary = (select New

from NewSal
where Old = Salary)

Both solutions are correct; in particular, the cursor-base update is key-order
independent. To see how this naturally falls out of our theory, in the algebraic
framework, we model this update as consisting of the following single algebraic
update statement working on a receiver [self, arg1]:

Salary := πNew
(
arg1 1

arg1 =Old
NewSal

)
(B′)

This update is then applied to the set of receivers {[t(EmpId), t(Salary)] | t ∈
Employee}. Note that this is a key set, and thus Proposition 5.8 can be applied
to guarantee order independence, since relation Employee (in which property
Salary is stored) does not occur in the expression on the right-hand side of the
statement.

An example of a cursor-based modification that is order dependent is when
we try to give each employee the new salary his manager would have gotten by
the previous update, as follows:

for each t in Employee (C)
update t
set Salary = (select New

from Employee E1, NewSal
where E1.Eid =Manager and Old = E1.Salary)

This solution is order dependent (and thus wrong) because we get different
end results for the new salary of some employee, depending on whether or not
we have already visited his manager. In the algebraic framework, this update
is now modeled by the following algebraic update statement applied to each
receiver [t(EmpId)] with t ∈ Employee:

Salary := πNew
(
self 1

self=EmpId
Employee 1

Salary=Old
NewSal

)
(C′)

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

34 • M. Andries et al.

Significantly, both algebraic updates (B′) and (C′) above are positive, and thus
the algorithmic procedure from our Theorem 5.12 is able to discriminate cor-
rectly between update (B) being order independent and update (C) being order
dependent.

Note that a correct, solution to the above-specified update problem is to use
the following set-oriented statement:

update Employee
set Salary = (select New

from Employee E1, NewSal
where E1.Eid =Manager and Old = E1.Salary)

This solution is correct, again because the changes are made only after all the
new salaries are computed.

In effect, the algebraic update statement underlying the above SQL state-
ment is extremely simple: it is simply Salary := arg1, which is trivially key-
order independent. The key set of receivers to which it is applied is computed
by the SQL query

select EmpId, New
from Employee, Employee E1, NewSal
where E1.Eid =Manager and Old = E1.Salary

Thus we see that the set-oriented update statement in SQL is explained very
nicely by our theory as the application of a trivial, key-order independent, mod-
ification update to a precomputed key set of receivers.

To conclude this section, we situate our parallel semantics for algebraic up-
dates within the SQL context. Recall updates (A) and (B) above. Both have the
same end result, but update (A) is much more efficient because it computes the
changes to be made in one global query, which can be optimized and executed
once. In contrast, update (B) performs a separate query for each individual
tuple. Now recall that update (B) is key-order independent. Our Theorem 6.5
states that we can equivalently use the parallel semantics. Now the nice ob-
servation is that this parallel semantics corresponds to update (A). To see this,
recall the algebraic update statement for (B):

Salary := πNew
(
arg1 1

arg1 =Old
NewSal

)
Then the parallel version of the expression on the right-hand side is

πself,New

(
πself,arg1

(rec) 1
self=self

arg1 =Old

(πself (rec)×NewSal)
)
.

Since, in this case, relation rec is nothing but the Employee relation, where
self corresponds to EmpId and arg1 to Salary, the above expression simplifies
to

πEmpId,New
(
Employee 1

Salary=Old
NewSal

)
,

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 35

or in SQL,

select EmpId, New
from Employee, NewSal
where Salary = Old

This is exactly the key set of receivers computed by update (A)!
Thus we see that our Theorem 6.5 provides a “code improvement” tool which,

given a cursor-based update program that is key-order independent and is
equivalent to a set-oriented update statement, can automatically find this state-
ment (which is much more efficient).

APPENDIX A

This section (included at the explicit request of one of the referees) is devoted
to the proof of Lemma 5.13, the main result needed to characterize decidability
of a number of problems in the context of positive update methods. Since pos-
itive expressions can be viewed as conjunctive queries extended with union
and nonequality, we consider a generalization of the classical problem of con-
tainment of conjunctive queries, with three different extensions: (i) union, (ii)
nonequality, and (iii) functional and full inclusion dependencies. Testing for
containment of conjunctive queries is well-known to be decidable [Chandra
and Merlin 1977; Aho et al. 1979], and extensions incorporating union [Sagiv
and Yannakakis 1980], selection for inequalities [Klug 1988], or the presence
of functional and inclusion dependencies [Johnson and Klug 1984] are equally
well-known. However, we need to prove that these generalizations can be com-
bined and that the comprehensive problem remains decidable. For more infor-
mation on relational database theory, we refer the reader to Abiteboul et al.
[1995].11

Before we proceed, we need to introduce some terminology and notation.
In what follows, we fix a relational scheme S = {R1, . . . , Rn}. We also fix a
finite set6 of functional and full inclusion dependencies, of the following forms.
Functional dependencies (fd) have the form Ri : X → A, where X is a set of
attributes and A is a single attribute. Full inclusion dependencies (ind) have
the form Ri[A1 . . . Ak] ⊆ R j [B1 . . . Bk], where R j is a k-ary relation, that is,
B1 . . . Bk is exactly the scheme of R j .

The notion of containment and equivalence, (denoted⊆ and≡, respectively) of
queries are as usual. For the set 6 of dependencies, we write ⊆6 (≡6) to denote
containment (equivalence) of queries under the set 6. We say that q ⊆6 q′ if
q(I) ⊆ q′(I) for every instance I that satisfies the dependencies in 6. Similarly,
q ≡6 q′ if q(I) = q′(I) for every instance I that satisfies 6.

Since we are interested in querying relational database schemas correspond-
ing to object-base schemas, we consider typed relational schemes and typed pos-
itive queries. Specifically, we assume that the database is defined with respect
to a number of disjoint domains, and that each attribute of each relation is

11A result similar to Lemma 5.13, supporting only a weak form of union but allowing a weak form of
negation, was presented by Chan [1992]. We believe that our approach based on classical database
theory techniques sheds new light on Chan’s results, which were proven using ad-hoc techniques.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

36 • M. Andries et al.

associated with a domain. In writing queries, variables are associated with do-
mains; variables of a domain1 can only occur in the positions for the attributes
of the same domain.

Positive expressions are defined as follows. For each domain 1, we assume
the existence of two pairwise disjoint sets V d

1 and V u
1 of distinguished and

undistinguished variables associated with 1. Moreover, we let V1 = V d
1 ∪ V u

1

and define on it a total order ¹ such that the variables in V d
1 always pre-

cede those in V u
1 . A conjunctive query q is specified by means of the functions

s, d , u, v, c, and n, as follows.

— s(q) is a finite tuple 〈x1 . . . xn〉 of distinct distinguished variables, called the
summary of q; we write d (q) to denote the set {x1, . . . , xn};

— u(q) is a finite set { y1, . . . , ym} of undistinguished (existentially quantified)
variables; we write v(q) to denote the set d (q) ∪ u(q);

— c(q) is a finite set of conjuncts, each conjunct a literal of the form R(z1, . . . , zh),
where R is a h-ary relation in S and, for each 1 ≤ i ≤ h, the variable zi is in
both v(q) and V1i , where 1i is the domain associated with the ith attribute
of R;

— n(q) is a finite set of nonequalities, each nonequality is of the form zi 6=
z j , where zi, zj are variables both in v(q) and in the same set V1 for a
domain 1.

Following Klug [1988], we say that q is an equality conjunctive query if n(q) = ∅
(no nonequalities in q). A positive query Q is a finite set of conjunctive queries
having the same summary, interpreted as the union of these queries. The func-
tions s, d , u, and v are extended in the natural way to positive queries.

The result of applying a conjunctive query q to an instance I , denoted q(I),
is defined as usual, referring here to “typed valuations.” A typed valuation θ for
q is a mapping from v(q) to values, with the condition that variables in V1 are
associated with values in the domain1. It is clear that a valuation contributes to
q(I) if and only if it allows satisfying the conjuncts in c(q) and the nonequalities
in n(q). We say that a valuation θ for q gets the tuple t = θ (s(q)) in q(I) if: (i) for
each conjunct R(z1, . . . , zh) ∈ c(q), it is the case that θ (z1, . . . , zh) ∈ I (R); and
(ii) for each zi 6= zj ∈ n(q), it is the case that θ (zi) 6= θ (zj). A similar terminology
and notation can be used for a positive query Q .

The problem of equivalence of two positive queries Q1, Q2 is easily reduced
to the problem of containment of a conjunctive query in a positive query. Indeed,
Q1 ≡6 Q2 if and only if Q1 ⊆6 Q2 and Q2 ⊆6 Q1. Moreover, if Q1 = q1

1∪. . .∪qk
1

(where each qi is conjunctive), then Q1 ⊆6 Q2 if and only if qi
1 ⊆6 Q2 for

1 ≤ i ≤ k. Hence we concentrate on this simpler problem.
First of all, we face the problem of union and nonequality.
The problem of testing containment of equality conjunctive queries was

solved by Chandra and Merlin [1977]. Their homomorphism theorem says that,
given two equality conjunctive queries q1, q2, it holds q1 ⊆ q2 if and only if there
is a homomorphism from q2 to q1; that is, a mapping ψ from v(q2) to v(q1) such
that ψ(c(q2)) ⊆ c(q1) and ψ(s(q2)) = s(q1). The intuition is that the conjuncts in
q1 can be seen as tuples in a “magic” canonical instance I1 where each variable

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 37

corresponds to some (distinct) constant and its summary to a “magic” tuple t1.
Then, q1 is contained in q2 if and only if t1 ∈ q2(I1).

As pointed out by Klug [1988], the homomorphism theorem fails with respect
to conjunctive queries with inequalities, since looking at a single canonical
instance does not provide a correct test for containment. However, containment
can still be decided by looking at a set of “representative” instances in place of
a single one. Here we develop the framework with respect to nonequalities (6=)
rather than inequalities (≤).

Consider a conjunctive query q and a valuation θ . We say that θ is nonequality
preserving for q if, for each zi 6= z j ∈ n(q), it is the case that θ (zi) 6= θ (z j). Then
two nonequality-preserving valuations θ1, θ2 for q are said to be equivalent if, for
each pair zi, z j of variables in v(q), it is the case that θ1(zi) = θ1(z j) if and only if
θ2(zi) = θ2(z j). By choosing an arbitrary representative from each equivalence
class, we obtain a set2q of representative nonequality-preserving valuations for
q. Note that, if n is the number of distinct variables in v(q), it is possible to define
the set 2q referring to just n distinct values from the corresponding domains.
Hence, only a finite number of different valuations have to be considered. Once
this set is chosen, the representative instances for q are the “magic” instances
given by θ (c(q)), one for each θ ∈2q . The representative set r(q) for q is the
following set of representative instance-tuple pairs:

r(q) = {(θ (c(q)), θ (s(q)) | θ ∈ 2q)}.
THEOREM A.1 (KLUG [1988]). Let q1, q2 be two conjunctive queries with

nonequalities. Then, q1 ⊆ q2 if and only if s ∈ q2(I) for each pair (I, s) in the
representative set r(q1) of q1.

The problem considered by the above theorem is decidable, since it requires
evaluating only a finite number of conjunctive queries.

Sagiv and Yannakakis [1980] considered the problem of testing containment
of equality positive queries (that is, unions of equality conjunctive queries),
proving that equality conjunctive queries are contained in a trivial way only,
that is, that an equality conjunctive query q is contained in an equality positive
query Q if and only if there is an equality conjunctive query q′ ∈ Q such that
q ⊆ q′. This implies that a single “magic” canonical instance suffices for testing
containment in this case. In the presence of inequalities as well, Klug [1988]
proved that this technique can be combined with that of the representative set.
Specifically, he proved that, given a conjunctive query q and a positive query Q ,
q ⊆ Q holds if and only if, for each pair (I, s) in the representative set r(q) of q,
there is a query q′ ∈ Q such that s∈q′(I). Again, the problem remains decidable.

We now consider the management of dependencies in this framework. The
technical tool we use is a typed chase process: the standard chase process [Maier
et al. 1979; Aho et al. 1979; Johnson and Klug 1984] accounts for functional
and inclusion dependencies, while a typed management of variables accounts
for the disjointness of domains. The process of chasing a query consists in suc-
cessive modifications to its conjuncts: intuitively, the canonical instance associ-
ated with the query is modified to “enforce” the satisfaction of the dependencies.
In the presence of nonequalities, a contradiction is sometimes reached (e.g., a

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

38 • M. Andries et al.

nonequality of the form z 6= z), meaning that the query is unsatisfiable over in-
stances satisfying the dependencies; this fact is denoted ⊥. The chase is based
on the successive applications of the following rules.

fd rule. Let σ = R : X → A be a functional dependency over R, and let
R(u), R(v) be conjuncts in c(q) such that u[X] = v[X] and u[A] 6= v[A].
Let x be the least variable in {u[A], v[A]} under the ordering ¹, and y be
the other one. Call θ the substitution that maps y to x and is the identity
elsewhere. The result of applying σ to R(u), R(v) in q is the query θ (q) if
x 6= y 6∈n(q), and ⊥ otherwise.

ind rule. Let σ = R[X] ⊆ S[Y] be a full inclusion dependency over R, let
R(u) be a conjunct in c(q), and suppose that c(q) does not contain the con-
junct S(v), where v = u[X]. The result of applying σ to R(u) in q is the
query q′ such that s(q′) = s(q), u(q′) = u(q), n(q′) = n(q), and c(q′) = c(q) ∪
{S(v)}.

We denote the result of chasing a conjunctive query q with respect to a set 6
of dependencies by chase6(q). It is worth noting that the chase process, with
respect to functional and full inclusion dependencies, always terminates. More-
over, the process satisfies the Church-Rosser property, meaning that the results
of different terminal chasing sequences are identical [Abiteboul et al. 1995]. Fi-
nally, we note that, given a valuation θ for a conjunctive query q, it is the case
that θ (c(chase6(q))) represents an instance that satisfies the dependencies in6.

Our main result, concerning the containment of a conjunctive query in a
positive query under a set of dependencies, relies on the two following lemmas.
Intuitively, we want to reduce the problem of containment constrained by a set of
dependencies to an unconstrained problem of containment, eventually referring
to chased queries. The following lemma specializes a result by Johnson and Klug
[1984] to functional and full inclusion dependencies, but also generalizes it to
conjunctive queries containing nonequalities.

LEMMA A.2. Let q be a conjunctive query and 6 be a set of functional and
full inclusion dependencies. Then, q ≡6 chase6(q).

PROOF. We proceed by induction on the length n of a terminal chasing
sequence on q with respect to6. In such a sequence, we denote by chasei

6(q) the
partial chase obtained after the ith application of a chase rule. We claim that,
for 1 ≤ i ≤ n, it is the case that chasei−1

6 (q) ≡6 chasei
6(q) (where chase0

6(q) = q
and chasen

6(q) = chase6(q)).
The induction hypothesis clearly holds for n = 0 (meaning chase6(q) = q).

Suppose it holds for chasei−1
6 (q). There are two cases, depending on whether the

ith chase rule application involved an fd or an ind.
Suppose it was the fd σ = R : X → A to R(u), R(v), with u[X] = v[X] and

u[A] 6= v[A]. Let x be the least variable in {u[A], v[A]} under the ordering¹ and
y be the other one. Call θ a substitution that maps y to x and is the identity
elsewhere. Then, if x 6= y ∈ n(chasei−1

6 (q)), then chasei
6(q) was the unsatisfiable

query ⊥, otherwise it was the query θ (chasei−1
6 (q)). In the former case, it can be

shown that chasei−1
6 (q) is unsatisfiable as well on instances that satisfy 6, and

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

Applying an Update Method to a Set of Receivers • 39

the equivalence holds. In the latter case, consider an instance I that satisfies
6 and a valuation ν that gets a tuple t in chasei−1

6 (q)(I). Then, since ν(u), ν(v) ∈
I (R) and I satisfies σ , it is also clearly the case that ν(θ (u)), ν(θ (v)) ∈ I (R), and
hence ν gets the tuple t in chasei

6(q)(I) as well. To prove the converse inclusion,
consider a valuation ν that gets a tuple t in chasei

6(q)(I); it is then clear that the
valuation ν ′ obtained from ν by also mapping y to ν(x) gets t in chasei−1

6 (q)(I).
On the other hand, suppose that the ith chase rule application involved

the ind σ = R[X] ⊆ S[Y] to R(u), and let v be the tuple over S such that
v[Y] = u[X]. In this case, chasei

6(q) has been obtained from chasei−1
6 (q) by

introducing the conjunct S(v). Now consider an instance I that satisfies 6 and
a valuation ν that gets a tuple t in chasei−1

6 (q)(I). Since ν(u) ∈ I (R) and I
satisfies σ , it is also clearly the case that ν(v) ∈ I (S), and hence ν gets t in
chasei

6(q)(I) as well. To prove the converse inclusion, consider a valuation ν

that gets a tuple t in chasei
6(q)(I); the same valuation ν can be used to get t in

chasei−1
6 (q)(I).

LEMMA A.3. Let q be a conjunctive query, Q a positive query, and 6 a set
of functional and full inclusion dependencies. Then, q ⊆6 Q if and only if
chase6(q) ⊆ Q.

PROOF. The if part follows from Lemma A.2. For the converse inclusion, by
Theorem A.1, it suffices to show that, for each pair (I, s) in the representative
set r(chase6(q)), it is the case that s ∈ Q(I). Consider the pair (Iν , sν) obtained
by a valuation ν ∈ 2chase6 (q). It is clear that Iν satisfies 6. By the assumption,
q(Iν) ⊆ Q(Iν), and hence sν ∈ Q(Iν).

Lemma 5.13 now follows. Indeed, Lemma A.3 suggests the reduction from the
problem of containing a conjunctive query q in a positive query Q under a set of
dependencies 6 to the problem of containing a conjunctive query in a positive
query. The latter problem is decidable by Theorem A.1. The observation that
chase6(q) is indeed computable, since 6 contains only a finite set of functional
dependencies and full inclusion dependencies [Abiteboul et al. 1995], concludes
the proof.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
ABITEBOUL, S. AND VIANU, V. 1990. Procedural languages for database queries and updates.

J. Comput. Syst. Sci. 41, 2, 181–229.
AHO, A., SAGIV, Y., AND ULLMAN, J. 1979. Equivalences among relational expressions. SIAM. Com-

put. 8, 2, 218–246.
AHO, A. AND ULLMAN, J. 1979. Universality of data retrieval languages. In Proceedings of the

Conference Record, 6th ACM Symposium on Principles of Programming Languages (1979), 110–
120.

BREAZU-TANNEN, V., BUNEMAN, P., AND NAQVI, S. 1992. Structural recursion as a query language. In
Database Programming Languages: Bulk Types and Persistent Data. P. Kanellakis and J. Schmidt
Eds., Morgan Kaufmann, 9–19.

BREAZU-TANNEN, V. AND SUBRAHMANYAM, R. 1991. Logical and computational aspects of program-
ming with sets/bags/lists. In Automata, Languages, and Programming, LNCS 510, Springer,
60–75.

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

P1: GLS/MBI/GES/LZK P2: LHE
CM008A-01 ACM-TRANSACTION August 29, 2001 12:12

40 • M. Andries et al.

CABIBBO, L. 1996. Querying and updating complex-object databases. Ph.D. thesis, Università di
Roma “La Sapienza.”

CHAN, E. 1992. Containment and minimization of positive conjunctive queries in OODB’s. In
Proceedings 11th ACM Symposium on Principles of Database Systems, 202–211.

CHANDRA, A. 1981. Programming primitives for database languages. In Proceedings of the Con-
ference Record, 8th ACM Symposium on Principles of Programming Languages, 50–62.

CHANDRA, A. AND MERLIN, P. 1977. Optimal implementation of conjunctive queries in relational
data bases. In Proceedings of the 9th ACM Symposium on the Theory of Computing, 77–90.

HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley.

HULL, R. AND SU, J. 1989. On accessing object-oriented databases: Expressive power, com-
plexity, and restrictions. In Proceedings of the 1989 ACM SIGMOD International Conference
on the Management of Data, J. Clifford, B. Lindsay, and D. Maier Eds. SIGMOD Rec. 18, 2
147–158.

HULL, R. AND YOSHIKAWA, M. 1990. ILOG: Declarative creation and manipulation of object identi-
fiers. In Proceedings of the 16th International Conference on Very Large Data Bases D. McLeod,
R. Sacks-Davis, and H. Schek Eds., 455–468. Morgan Kaufmann.

JOHNSON, D. AND KLUG, A. 1984. Testing containment of conjunctive queries under functional and
inclusion dependencies. J. Comput. Syst. Sci. 28, 167–189.

KLUG, A. 1988. On conjunctive queries containing inequalities. J. ACM 35, 1, 146–160.
LAASCH, C. AND SCHOLL, M. 1993. Deterministic semantics of set-oriented update sequences. In

Proceedings of the Ninth International Conference on Data Engineering, IEEE Computer Society
Press, 4–13.

LYNGBAEK, P. AND VIANU, V. 1987. Mapping a semantic database model to the relational model. In
Proceedings of the ACM SIGMOD 1987 Annual Conference, U. Dayal and I. Traiger Eds. SIGMOD
Rec. 16, 3 132–142.

MAIER, D., MENDELZON, A., AND SAGIV, Y. 1979. Testing implications of data dependencies. ACM
Trans. Database Syst. 4, 455–469.

QIAN, X. 1991. The expressive power of the bounded-iteration construct. Acta Informatica 28,
631–656.

SAGIV, Y. AND YANNAKAKIS, M. 1980. Equivalence among relational expressions with the union and
difference operators. J. ACM 27, 4, 633–655.

SCHWARTZ, J. ET AL. 1986. Programming with Sets: An Introduction to SETL, Springer.
SIMON, E. AND DE MAINDREVILLE, C. 1988. Deciding whether a production rule is relational com-

putable. In ICDT’88, LNCS 326 M. Gyssens, J. Paredaens, and D. Van Gucht Eds. Springer,
205–222.

ULLMAN, J. 1988. Principles of Database and Knowledge-Base Systems, Vol. I. Computer Science
Press.

VAN DEN BUSSCHE, J. AND CABIBBO, L. 1998. Converting untyped formulas into typed ones. Acta
Informatica 35, 8, 637–643.

Received November 1996; revised July 2000; accepted July 2000

ACM Transactions on Database Systems, Vol. 26, No. 1, March 2001.

