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Abstract: Air pollution is a major problem in the everyday life of citizens, especially air pollution
in the transport domain. Ships play a significant role in coastal air pollution, in conjunction with
transport mobility in the broader area of ports. As such, ports should be monitored in order to assess
air pollution levels and act accordingly. In this paper, we obtain CO values from environmental
sensors that were installed in the broader area of the port of Igoumenitsa in Greece. Initially, we
analysed the CO values and we have identified some extreme values in the dataset that showed a
potential event. Thereafter, we separated the dataset into 6-h intervals and showed that we have
an extremely high rise in certain hours. We transformed the dataset to a moving average dataset,
with the objective being the reduction of the extremely high values. We utilised a machine-learning
algorithm, namely the univariate long short-term memory (LSTM) algorithm to provide the predicted
outcome of the time series from the port that has been collected. We performed experiments by using
100, 1000, and 7000 batches of data. We provided results on the model loss and the root-mean-square
error as well as the mean absolute error. We showed that with the case with batch number equals to
7000, the LSTM we achieved a good prediction outcome. The proposed method was compared with
the ARIMA model and the comparison results prove the merit of the approach.

Keywords: air quality; air pollution; neural network; CO; LSTM; moving average; ARIMA

1. Introduction

Air pollution is responsible for a plethora of diseases, including lung disease, chronic
respiratory disease, and stroke [1]. Prevention and control of air pollution is a primary
concern of governments and research institutions, due to the severity of the consequences.
In [2], studies of air pollution include the use of prediction systems and management
of prevention. The idea is to determine policy-making by studying pollution metrics
adequately and appropriately. Moreover, spatial characterisation of air pollution is of the
utmost importance [3].

Emissions in the transport domain constitute a huge factor in air quality. Specifically,
ship emissions including SOx, NOx, PM, and CO have a key impact on coastal atmospheric
pollution [4]. In particular, in terms of air quality in ports, ships play an important role in
the increase of air pollution. Because ships’ energy is coming from heavy fuel oil (HFO),
when they are docked in ports, activities such as refrigeration, cargo handling, and air-
conditioning come at the expense of energy spent and compromised air quality [5]. The
International Maritime Organisation (IMO) set some key guidelines for ship actions that
minimise the environmental pollution footprint [6]. Furthermore, it is thus imperative to
address all aspects of air pollution in ports, including that of external container trucks. In [7]
the authors state that external container trucks produce more pollution than cargo-related
equipment.

Ports occasionally reside close to residential areas. Depending on the season, the wind
may circulate and lead to pollution particles in the residential areas, which essentially
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increase air pollution. The same applies with fresh air [8]. Hence, we have to monitor the
air quality in the port because pollution can be evident and extended even to the residential
areas. As such, in order to be able to achieve reduced air pollution, it is necessary to have
the means to perform environmental monitoring as well as estimation [9], forecasting [10],
and prediction [11] in the port area. A number of studies are available, whereby monitoring
is taking place in port areas [12–15].

In conjunction with monitoring, machine-learning methods have been employed on
several occasions, in order to classify and predict the impact of emissions in ports and
nearby residential areas, as well as other parameters, such as truck-traffic volume and
freight transportation management, which will be presented in the most recent related
work.

Machine learning is a branch of artificial intelligence (AI) that provides systems the
capability to learn and improve from experience in an automated manner, without being
explicitly programmed. Machine learning deals with the implementation of computer
programs that can access data and use it to learn for themselves. One of the most well-
known machine-learning methods is the neural network. Neural networks [16] have been
used in a number of research works for atmospheric evaluation and ar quality [17–21]. Here
we use the LSTM networks [22], which is a good candidate for the prediction of the port’s
CO values. In particular, we use a univariate LSTM, which is a special kind of recurrent
neural network (RNN) [23] with additional features to memorize the sequence of data.

LSTM systems were outlined particularly to overcome the long-term dependency
issue confronted by repetitive neural systems (RNNs). LSTMs have input associations
which make them diverse to more conventional feedforward neural systems. This property
empowers LSTMs to handle whole arrangements of information (e.g., time arrangement)
without treating each point within the grouping freely, potentially holding valuable in-
formation about past data within the arrangement to assist with the handling of unused
information focuses. As a result, LSTMs are especially great at handling arrangements of
information such as content, discourse, and common time series.

In particular, the RNN structure resembles the hidden Markov model (HMM). The
main difference is the way that the parameters are calculated and created. One of the LSTM
advantages is the insensitivity to the gap length. RNN and HMM focus on the hidden
state before sequence. In the case that we wish to make a prediction of a sequence after
1000 intervals instead of 10, the model will forget the starting point; however, LSTM has
a memory to perform this task. A detailed description of the LSTM and an application
regarding field data forecasting can be found in [24]. In addition, the original LSTM is
very slightly not enough in explaining the relationship of the input and output of the
networks. In [25], to solve this problem, the attention-based mechanism is inserted into
LSTM. Moreover, in [26] local air pollution measurements close to main streets, which
reside on small Internet of Things (IoT) devices in combination with artificial intelligence
algorithms were used for prediction of PM10 and PM2.5 concentration. Another work based
on the ARIMA model is in [27], whereby the trend analysis as well forecast of PM2.5 in
Fuzhou, China has been undertaken.

In this paper, we collect data from a set of environmental sensors, which form a
wireless environmental sensor located in the broader area of the port of Igoumenitsa in
Greece. The station measures the most important pollutants including the CO in the port.
We analyse the CO measurements at 6-h intervals for the entire dataset. We show that
there exists an abnormal rise in values. Thereafter, we transform the dataset to a moving
average values dataset, in order to reduce extremely high values. The moving average
is a popular method by which to transform a dataset to a smoother problem, in terms
of the values used for the prediction phase. Moving average smoothing is a naive and
effective technique in time series forecasting. It can be used for data preparation, feature
engineering, and even directly for making predictions. Importantly, we utilise machine
learning and especially LSTM to show the predicted outcome of the collected values from
the port by using different batches of the procedure.
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The main contributions of this paper are the following.

• We produce a dataset whereby the CO is measured at a fixed period of time, in order
to utilise it in the LSTM and ARIMA models.

• We devise an LSTM model for values prediction, and we show that the results are
close to the actual values when the batch number is 7000.

• We perform a comparison with the ARIMA model, and show that the LSTM accom-
plishes similar results to the ARIMA, with the ARIMA being better in the forecasting.

The remainder of this paper is as follows: Section 2 gives the related work, Section 3
provides details about the wireless station used, Section 4 provides the data description,
Section 5 gives the method used for the prediction of the CO, Section 6 presents the results
of the algorithms, and Section 7 provides the conclusions of this work.

2. Related Work

This section essentially summarises similar works that utilised ML models to accom-
plish air pollution monitoring in ports and surrounding areas. A number of cases have
been identified that show the necessity of the monitoring procedure in this particular part
of a city because ports often reside within city limits and can contribute to air pollution.
Truck traffic is also given because in large ports it can be a source of pollution due to the
fact that they load and unload in the port, often carrying containers and other goods. In
the future, data from trucks will be added to the proposed forecasting model to provide a
multivariate approach of CO pollution prediction.

In [28], the authors suggest the use of wireless sensors to perform air pollution moni-
toring. In addition, the system is given prediction capabilities, which consider conditions
of the local climate within a city. An investigation is undertaken which shows that there is
a difference in measurements of the microclimate at a street level, which imposes a change
in the prediction accuracy. Thus, the sensors are equipped with mini low-power artificial
neural networks (ANN)s, which are trained from their local environment, rather than doing
so from a base station.

In [29] the authors have used a machine-learning (ML) model, in order to proceed
with the prediction of air quality in the city of Barcelona. To this end, weather and pollutant
concentrations were gathered by the use of networks in the area of the city. The tool which
is described has been proven to exhibit better performance than the CALIOPE Urban v1.0
platform, with respect to predictive capabilities of local NO2 concentration levels. This
paper proposed the utilisation of metrics including the mean squared and absolute errors
to show the predictive accuracy. For the dataset that was used and for all stations and
pollutants, the best performance was shown to be accomplished by using the gradient
boosting machine (GBM). In terms of the importance of pollution factors, the research
showed that one of the least important predictors was the number of cruise ships in the
port, among the work-week day, precipitation, and relative humidity. The most important
factors that impacted the pollutant level variability were the time of the year, the time of
day, and the intensity of the road traffic. The ML tool also has been used to distinguish and
calculate the air-quality level with respect to the overall port activity and due to cruise liners.
This task took place using the difference between the observed and predicted pollutant
concentrations for several difference values with respect to the actual number of vessels.
Results have shown that the liners’ contributions to the worsened air quality around the
port of Barcelona is limited compared to that of the overall port operation.

In [30], the authors present a research work, which aims to show the reduction of
unclean production of CO2 emissions of the crane of the port and contributed to clean air
gains. Towards achieving this, they studied the Casablanca port of Morocco, and utilised
its data regarding the daily energy of eleven RTG cranes that have been collected for a
period of two years. The energy consumption has been performed by analysing the data by
using a machine-learning tool, namely the regression analysis statistical method, in order to
discover the factors impacting the production as well as the degree of the impact. Thereafter
the authors treated the factors of high impact by introducing inexpensive strategies towards
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large investments for clean air. Finally, the authors showed a significant reduction of energy
consumption and the reduction of a quite large amount of CO2 emissions per year for the
port of Casablanca.

In [31] the authors provide a complete review of the state-of-the-art ML models and
their applications to a number of cases of international freight transportation management
(IFTM). Initially, the ML methods are described regarding their functionality. Thereafter, an
overview is given about the manner that ML methods are employed, adapted, and applied
to different areas of IFTM. These areas include demand forecasting, vehicle trajectory,
procedure and asset maintenance, as well as on-time performance prediction. In addition,
ML models require data sources in order to be developed. As such, these data sources are
investigated towards devising ML models.

In [32] the authors describe two kernel-based supervised ML models for daily truck
traffic in port terminals. The Gaussian processes (GP) and ε-support vector machines are
considered. This work emphasises the comparison of the aforementioned methods with
the multilayer feedforward neural network (MLFNN) model, extensively utilised in prior
research works, in order to see the difference in their performance. The model production is
accomplished by using the data from Bayport and Barbours Cut container terminals at the
port of Houston. The mobility of the trucks is generated during import and export activities
at the two terminals. These are examined as different entities; thus, producing four datasets,
in order to proceed with the model comparison. When using all four datasets, the two ML
models, perform well. Moreover, their prediction outcome exhibits a good comparison with
the MLFNN model. Regarding the technical aspects of the ML models, the GP and ε-SVM
models require less effort in model fitting compared to the MLFNN model. The authors
claim that they have good candidates, in order to substitute the MLFNN in port-generated
truck-traffic predictions.

3. Wireless Environmental Station

The requirements of the wireless environmental station (WES) essentially constitutes
it as a global system for mobile communications-based (GSM) multi-sensor device, used
to obtain measurements of pollutants as well as other factors such as the environmental
conditions of the monitored area. In particular, the WES should include a power supply
and the options to include solar panels, GSM modules, and batteries of NP7-12 (6 batteries)
as well as NCR 18650B (30 batteries) types. The environmental sensors available can
measure CO, NO, NO2, O3, PM1.0, PM2.5, and PM10. The environmental sensors include
the temperature, relative humidity, pressure, wind direction, and wind speed. Hence, we
selected the RAMP SENSIT devices [33], which cover the requirements. In Figure 1, the
parts comprising the internal mechanism of the SENSIT device can be seen.

The concept was to deploy a device to the port area of Igoumenitsa, in order to
investigate pollution as well as environmental parameters. In Figure 2 we can see the
SENSIT device deployed on a building in the port of Igoumenitsa. The collected data is
transmitted to a server, where it is processedand the comma-separated value (csv) file is
produced. This file is then processed to be presented in a Web-GIS application, which is a
real-time application, showing the parameters in the port area.

Note that the deployment of such a device is a pilot for the deployment of more
devices near the port area, in order to monitor the parameters in the broader area of the
port, including residential areas, because the port resides very close to the city. As such, a
comparison and correlation between the measured parameters can give us the necessary
information to indicate whether the port’s activities essentially impose pollution on the
city of Igoumenitsa. Here we will show that we can use a state-of-the-art machine-learning
method to show that we can predict parameters coming from the measured data.
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Figure 1. Parts of the environmental station.

Figure 2. Deployed device in the greater area of the port of Igoumentitsa.

4. Data Description

Initially, the CO values of the complete dataset have been plotted, in order to determine
whether a large deviation in the data will be noticed. In Figure 3, we can see some extreme
values that lead to a rapid increase in the CO values. Here we see measurements that
exceed the 80,000 value, whereas almost the entire dataset is within the range of 0 and 6000.
Particularly, there are 81 records that exceed the value 6000 and 67 values over 10,000. In
addition, 23 values are over the value of 60,000. Note that the first 17 and the last 6 of them
are consecutive. In Figure 4, we can see the deviation of the values, which shows a rapid
increase and a more gradual decrease to what we describe as smaller values. What we
see is a rapid increase with a small number of values and a smoother decrease. This may
indicate the presence of the event.
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Figure 3. The CO data collected from the entire dataset—full time.
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Figure 4. Sample of rapid increase and gradual decrease.

Moreover, the dataset included a few negative values, which also constituted a prob-
lem, and we removed them. Thereafter we split the dataset into 6-h intervals, in order to
identify when the extreme values occurred. As we can see in Figure 5, the values between
00:00–06:00 form the upper limit of the values that do not exceed the value 1500, and greater
values are not observed. The values of the measurements seem to have a meaningful dif-
ference because the increase and decrease of the values appear to be within an acceptable
range.
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Figure 5. The CO data collected between 00:00–06:00.

Here we present the values in the time window between 00:00–06:00 and 06:00–12:00,
and we omit the remaining two subsets. The reason is that we only wish to show the
extreme rise in the values. In particular, in Figure 6 the values exhibit some extreme rise,
which the authors attribute to a sudden event. In particular, we see individual values
that exceed 80,000 for the times 06:00–12:00. The point of the aforementioned plots was
to show that there were extremely high values for some hourly readings in the port. The
aforementioned finding requires further investigation, such that the reason for the increase
of values needs to be identified.

Figure 6. The CO data collected between 06:00–12:00.

5. Time Series Prediction Using LSTM and ARIMA

The LSTM is a good candidate for the time series prediction. Initially, we will provide
the reader with a background on recurrent neural networks in order to gain a compact
understanding [34]. Note that we omit the description of the artificial neural networks,
which are the basis of RNNs.

5.1. Recurrent Neural Networks

The RNN is a particular type of neural network, whereby essentially the past steps
observed in a sequence are used to predict the next step in the sequence. In particular, the
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RNN proceeds with observations from a sequence and learns from the prior stages, in order
to predict future trends. Earlier stages have to be remembered, in order to guess the next
steps. Here the hidden layers play the role of storage of the information captured in the
early stages of the data reading. The same task is undertaken for each sequence element,
with the specialty of encapsulating information obtained earlier to forecast data that have
not been seen before in the sequence. The primary drawback with a typical RNN is that
these networks remember only a small number of earlier steps in the sequence; thus, they
are not appropriate for remembering longer sequences of data.

5.2. LSTM

The drawbacks of RNNs are overcome with the use of LSTMs. Essentially, an LSTM is a
type of RNN, which includes additional features, in order to have memory on the sequence
of the data. An LSTM is a set of system modules, wherein the streams of the data are
obtained and stored. The modules appear to be similar to a transport line, which connects
out of one module to a different one accommodating data from precedent and amassing
them for the current one. The utilisation of gates in one system module enforces data to be
disposed of, filtered, or integrated for the next modules. Thus, the gates predicated on the
sigmoidal neural network layer sanction the system modules, to sanction the data to go
through or get disposed of.

Three types of gates are used in an LSTM with the target of controlling each system
module’s state:

• Forget gate, which produces a number between 0 and 1, where 1 is used to completely
keep the information from the previous timestamp, and 0 implies to completely ignore
it.

• Memory gate selects the new data that needs to be stored in the system module.
Initially, the input door layer selects the values to be altered. Thereafter, a layer makes
a vector of new potential values which could be added to a state.

• Output gate presents the decision on what will be output by each system module. The
output value will be based on the state of the system module in conjunction with the
filtered and newly added data.

In this paper, we used a univariate LSTM with three batch numbers, namely 100, 1000, and
7000, to test and locate the best generalisation.

Evaluation Metrics

Here we utilise the root-mean-square error (RMSE) metric and the minimum absolute
error (MAE) metric to evaluate our approach. Note that the RMSE is given in (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)2 (1)

The MAE is given in (2):

MAE =
1
N

N

∑
i=1
|x̂i − xi| (2)

In both cases, N is the total number of observations, xi is the actual value, and x̂i is the
predicted value for the ith observation.

5.3. ARIMA

The autoregressive integrated moving average (ARIMA) [35] model is used for time
series analysis and forecasting future points in the series, or for better understanding of
the data. Some of the advantages of the ARIMA model are that it uses an online learning
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environment, sample sizes are storage cost- independent, and parameter estimation can be
performed online in a scalable and efficient way.

On the downside, the ARIMA model has a subjective process, the reliability of the
selected model can depend on the skill and experience of the predictor, there are a number
of restrictions on the parameters, and from the class of possible models. Determining the
right model can be difficult.

6. Experimental Results

We used the tool in [36], which we modified, in order to run our experiments. Because
we have seen that the dataset had some large values, a dataset was constructed, which
comprised values of a moving average of 10 values, which essentially made the dataset
smaller by 10 values, because we did not consider the first 10 values. In this way, we aimed
to reduce the difference between the extreme values and smooth the dataset. The LSTM
has 100 neurons in the first hidden layer and 1 neuron in the output layer for predicting
CO (parts per million (ppm)) pollution. The input shape is 1 time step with 60 features.
Moreover, the train set is 0.8× the length of the dataset and the remaining is the test set.
The choice of the parameters has been done experimentally, by performing a series of
experiments that showed that the performance is reasonable with the current configuration.
For robustness, it is known that LSTMs are robust against the problems of long-term
dependency.

We performed the Dickey–Fuller test [37] to check the stationarity of the data. We
obtained the values that Table 1 presents. We can see that the test statistic value is smaller
than any critical value. Moreover, the p-value is smaller than the significant level of 0.05;
hence, the time series is stationary.

We run the univariate LSTM for three batch numbers, namely 100, 1000, and 7000. We
trained the LSTM in 100 epochs. We noticed that when the batch number is equal to 100 and
1000, there is a deviation from the actual values as can be observed in Figures 7 and 8. In
Figure 9, with the batch number equal to 7000, the reader can see that the prediction values
are very close to the actual values. This may be an indication of a better generalisation, a
sweet spot for the entire dataset. The results from the 100 and 1000 values batch, show the
results that are poorer; thus we may convey that we do not have an adequate generalisation.
Figures 10–12 illustrate the train and test loss for the three cases. An it can be observed, the
larger the batch number the smoother the curves and the smaller the loss numbers, as seen
in Figures 10–12.

Table 1. Dickey-Fuller Test Results.

Metric Value

Test Statistic −12.2965
p-value 0.0000

Lags Used 12.0000
Critical Value (1 %) −3.4322
Critical Value (5%) −2.8624
Critical Value (10%) −2.5672
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Figure 7. Predicted and actual values with batch number = 100.
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Figure 8. Predicted and actual values with batch number = 1000.
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Figure 9. Predicted and actual values with batch number = 7000.
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Figure 10. Train and test loss with batch number = 100.
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Figure 11. Train and test loss with batch number = 1000.
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Figure 12. Train and test loss with batch number = 7000.

Moreover, we provide the RMSE and MAE for the train and test of the three cases
as they can be seen in Table 2. We can see that train RMSE for the batch equal to 100 is
significantly high as opposed to the batch number 1000 and 7000. On the other hand, the
train MAE, test MAE, and test RMSE are higher with the batch number equal to 1000 than
the batch number equal to 100. The best numbers are accomplished with the batch size
equal to 7000. The results shown in the Table 2 show that the experiments with the batch
number equal to 7000 exhibit better accuracy than the experiments with the 100 and 1000
values, and the deviation from the actual values. Hence, we see that these interpretations
are better when using the 7000 values batch. The RMSE also needs to be less than the MAE
by definition, which is also the case in our experiments. This is because the errors are
squared before they are averaged, the RMSE gives a relatively high weight to large errors.
This means the RMSE is most useful when large errors are particularly undesirable.

Table 2. MAE and RMSE for batch number 100, 1000 and 7000.

Number of Batches

100 1000 7000

Train MAE 57.21248041152757 60.34714927690382 10.869020548775927
Train RMSE 135.27171651469044 108.08156944244062 87.87709345147564
Test MAE 49.284213431742664 70.8143694844377 4.640554866524584
Test RMSE 52.16111599740313 74.90565143407075 7.078313259118829

Thereafter we compared the LSTM approach with the well-known ARIMA model.
An ARIMA (1,1,0) model if fitted. This sets the lag value to 1 for autoregression and to
speed up the prediction, uses a difference order of 1 to make the time series stationary, and
uses a moving average model of 0. The forecast function is encapsulated, which performs
a one-step forecast by using the model. We split the dataset to a train and test dataset
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with 80% and 20% data points respectively. The train set was used to fit the model and
generate a prediction for every element on the test part of the dataset. For the ARIMA
rolling forecast, we manually inspect all observations in a list, namely history, which is
fed with the training data and to which new observations are appended for each iteration.
The results of the comparison between the LSTM and the ARIMA is shown in Figure 13.
Here, it can be seen that the ARIMA model predictions are very close to the actual values.
However, the LSTM does not perform very badly, being close to the actual values as well.
For this problem, the ARIMA model seems to be better; however, in future work, the two
models will be evaluated to multivariate problems.

The ARIMA model [26] works quite well with the PM concentrations and the predicted
values are close to the actual values, which verifies our results. Moreover, the LSTM, in
this work [24], works quite well in predicting the value that is under investigation. The
reader can check the value error percentage, which is indeed quite good. This also verifies
the results of our paper because the LSTM does perform significantly well when predicting
the CO values.
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Figure 13. LSTM and ARIMA comparison with actual values.

7. Conclusions

In this paper, we addressed the issue of air quality in the broader area of the port of
Igoumenitsa in Greece. Many studies have been done for environmental monitoring [38]
especially for coastal areas and [39] and many approaches have been proposed to provide
environmental risk management in seaports [40] because they are areas of particular interest.
We use the data gathered at a wireless environmental sensors system, which is installed
in the Port of Igoumenitsa, Greece. Here, we selected the CO measurements to perform a
prediction by using a machine-learning model. Specifically, we used a univariate LSTM,
to predict future values with respect to the actual ones. Our work comprised the use
of the univariate LSTM with different batch numbers, namely 100, 1000, and 7000. We
showed that batch number 7000 exhibited the best results of RMSE and MAE, concerning
the train and test loss. Moreover, the prediction was much closer than the other two cases.
Furthermore, we compared the LSTM with the ARIMA model and showed that the ARIMA
exhibited better prediction while the LSTM performed quite well as well.

For future work, we aim to use a bidirectional LSTM for comparison and a multivariate
approach, to include a number of the other environmental parameters available from
the environmental wireless station. Furthermore, because we maintain another station
proximate to the premises of the university branch, which resides a few kilometers from the
port, we aim to compare the readings from the two stations to visually perceive patterns.
Lastly, our objective is to coalesce the two stations into a multivariate model. Moreover, we
will use the dataset without the smoothing procedure, to indicate potential drawbacks in
the prediction. We aim to encapsulate the works in [41,42] to platforms of limited resources.
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