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Abstract: Ecological security patterns composed of ecological sources and corridors provide an

effective approach to conserving natural ecosystems. Although the direction of ecological

corridors have been identified in previous studies, the precise range remains unknown. To

address this crucial gap, ant colony algorithm and kernel density estimation were applied to

identify the range and restoration points of ecological corridors, which is important for natural

conservation and ecological restoration. In this case study of Beijing City, ecological sources

were identified based on habitat importance and landscape connectivity. The results showed that,

in total 3119.65 km2 of ecological land had been extracted as ecological sources, which were

mainly located in the northern, northwestern and northeastern mountainous areas. The identified

key ecological corridor covered an area of 198.86 km2, with 567.30 km2 for potential ecological

corridors, both connecting the ecological sources. 34 key points were also identified with priority

in restoring ecological corridors.
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1 Introduction

Although urbanization is considered as the most important driving factor for economic

development, it also results in nonnegligible eco-environmental issues (He et al., 2014; Li et al.,

2011; Peng et al., 2017; Kong et al., 2017). Sustainable development refers to the integrity and

balance of the development sustainability in economic, social, and environmental dimensions.

Thus, ensuring ecological security and sustainability has become nowadays an important

challenge for regional sustainable development, resulting in a rapidly growing interest in

identifying ecological security patterns as an effective natural conservation approach. As

ecological security patterns are based on the interactions between landscape patterns and

ecological functions as well as processes, they are crucial for the provisioning of ecosystem

services and thus the maintaining of ecological sustainability (Su et al., 2016; Teng et al., 2011).

Generally speaking, ecological security patterns can characterize current integrity and health

status of natural ecosystems as well as long-term potential in biodiversity conservation and

landscape ecological restoration (Yu 1996). In contrast to other similar concepts, such as urban

growth boundary (Long et al., 2013) and planetary boundary (Rockström et al., 2009) which

are both based on ecological thresholds, the ecological security patterns are theoretically based

on the principles of landscape ecology, and are focused on spatial or functional connectivity

among important patches, in view of corridors.

In identifying ecological security patterns, there are mainly two steps, i.e. identifying

ecological sources, and ecological corridors. In details, composed of important natural habitat

patches, there are two methods to identify ecological sources. One is to directly select nature

reserves, scenic spots and large patches of ecological land (Aminzadeh and Khansefid 2010;

Vergnes et al., 2013), and the other is to develop an assessment system based on habitat

importance and landscape connectivity (Lin et al., 2017; Mandle et al., 2016; Pierik et al.,

2016). Comparatively speaking, the latter is more accepted due to its focusing on quantification

and functionality. Although there are many methods to identify ecological corridors (Rouget et
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al., 2006; Parks et al., 2013; Bhowmik et al., 2015; Brás et al., 2013), the minimum

cumulative resistance (MCR) model is the most widely applied because it can simulate the

process of ecological flow with considering landscape heterogeneity and connectivity (Hepcan

and Özkan, 2011; Wang et al., 2008). However, MCR model can effectively delineate the

direction of ecological corridors, but cannot provide any information about the range of

ecological corridors (Zhang et al., 2017b). The strategic points are also not focused on, while

they are important for maintaining and improving ecological corridors in the context of urban

planning.

The ant colony algorithm, proposed by Colorni et al. (1991), can simulate the process that

ants detect the optimal routes between their nests and nearby food resources (Bonabeau et al.,

2000). More precisely, when ants are looking for optimal routes, they will leave the pheromone

along the way to satisfy the demand for building continuous pathways (Li and Chan 2007;

Zhang et al., 2017a). As the pheromone diffuses in space, it provides a quantitative support to

spatially identify the range in which the information flow takes place. Through the guidance of

pheromone, a positive feedback mechanism is formed between ants, which improves the

calculating robustness (Dorigo et al., 1996). As to the application, ant colony algorithm was

firstly used to successfully solve the Travelling Salesman Problem (Dorigo et al., 1997). In

recent years, ant colony algorithm had been gradually applied across different fields of research,

including groundwater depth monitoring (Li et al., 2007), food production network protection

(Golding et al., 2017), and the optimization of irrigation scheduling (Nguyen et al., 201). Hence,

the application of ant colony algorithm might be helpful in identifying the range of ecological

corridors.

Along with ecological land loss and natural habitat degradation in Beijing City due to rapid

urban expansion, such ecosystem services as net primary productivity (NPP) and carbon storage

capacity decreased considerably (Peng et al., 2016; He et al., 2016). Composed of key

ecological patches and corridors determining regional ecological process and thus sustainability,

ecological security patterns have been regarded as one of the win-win approaches to coordinate
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urbanization and natural conservation. Thus, taking Beijing City as a case study area, ant colony

algorithm was applied to identify ecological security patterns in megacities. In this case study of

Beijing City, ecological sources were identified by combining assessments of habitat importance

with landscape connectivity. More specifically, the aims were to identify ecological sources

combining habitat importance assessment and landscape connectivity assessment, to determine

spatial direction ecological corridors using MCR model, and to identify the range as well as

associated key points of ecological corridors with the application of ant colony algorithm and

kernel density estimation.

2 Materials and Methods

2.1 Study area and data source

The study area, Beijing City (115°25′-117°30 E, 39°28′-41°05′N), covers an area of 

16410.54 km2, and is divided into 16 districts (i.e. Dongcheng, Xicheng, Haidian, Chaoyang,

Fengtai, Mentougou, Shijingshan, Fangshan, Tongzhou, Shunyi, Changping, Daxing, Huairou,

Pinggu, Yanqing, and Miyun) (Fig. 1). The west, north and northeast of Beijing City are

characterized by mountainous terrain, covering 62% of the total area, whereas the remaining 38%

is located in the North China Plain, mainly covering the southeastern part of the study area (Fig.

1). The population growth in Beijing City has been remarkable over recent years. As a

consequence it has become one of the largest cities globally. More precisely, the number of

permanent residents has grown rapidly from c. 13 million in 2000 to more than 21 million in

2015. Urban impervious surface area has gradually occupied green space and expanded from the

edge of town to the surrounding countryside (Wang et al., 2014). As a result, there are serious

conflicts between limiting natural capital provision and increasing social demanding for

ecosystem services (Peng et al., 2015).
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Fig.1 Geographical location and elevation of Beijing City

Six main datasets were used in this study: (1) Land use and land cover (LULC) data were

retrieved from the database of global surface coverage at a spatial resolution of 30 m

(http://www.globeland30.org); (2) Road network data collected from Open Street Map

(http://www.openstreetmap.org/); (3) ASTER GDEMV2 data obtained from USGS Earth

Explorer website at a spatial resolution of 30 m (https://earthexplorer.usgs.gov/); (4) MODIS

raster data products downloaded from NASA-USGS platform (https://lpdaac.usgs.gov/),

representing (i) evapotranspiration, (ii) normalized difference vegetation index (NDVI), and (iii)

leaf-area index (LAI) data, which were resampled to 30m×30m pixels;(5) Meteorological

station data covering Beijing City, Tianjin City, and Hebei Province obtained from China’s

meteorological data sharing service system (http://data.cma.cn/), including the data of (i) daily

precipitation, and (ii) daily average wind speed. The precipitation data was interpolated using

spline function to convert point data into raster data with 30m×30m pixels;(6) Global
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near-surface PM2.5 concentrations averaged raster data of 2010 provided by the Atmospheric

Composition Analysis Group platform (http://fizz.phys.dal.,ca/~atmos/martin/), which was

calculated using an optimal estimation model based on MODIS aerosol data with geographic

weighted regression correction based on PM2.5 surface detection data.

2.2 Methods

The overall methodological framework followed in this study can be divided into two parts (Fig.

2). Firstly, it is to quantify habitat importance in view of ecosystem services, and to measure

landscape connectivity, which were subsequently followed by the identification of ecological

sources through combining habitat importance and landscape connectivity. Secondly, the MCR,

colony algorithm and kernel density estimation are successively applied to identify key

ecological corridor, potential ecological corridors, and key restoration points of ecological

corridors. More precisely, MCR was used to determine the basic spatial direction of ecological

corridors, whereas ant colony algorithm allowed the identification of the range of ecological

corridors. And the kernel density estimation was applied post processing, in order to determine

the range and extract key restoration points of the identified ecological corridors.

Fig.2Methodological framework (blue boxes = source data; green boxes = calculation processes,

yellow boxes = identification results; information in bold = software packages or models /

methods)
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2.2.1 Ecological source identification based on habitat importance and landscape

connectivity

As the main component of ecological security patterns, ecological sources refer to the most

important patches determining both the provisioning of regional ecosystem services and the

maintaining of ecological processes in the landscape. Hence, ecological sources can be identified

based on habitat importance and landscape connectivity. In the past decades, urbanization in

Beijing City had resulted in a series of negative ecological effects such as habitat loss, water

shortage, soil erosion, and air pollution (Asgarian et al., 2015; Jenerette et al., 2010; Wu et al.,

2013). Facing with these ecological issues, four corresponding ecosystem services were

considered to assess habitat importance, i.e. the services of habitat maintenance, water yield, soil

retention, and PM2.5 removal. Habitat importance was quantified through overlaying the

normalized four ecosystem services with equal weights. For ecosystem services and habitat

importance, five levels were divided using natural break method. Furthermore, landscape

connectivity could be measured using the index of probability of connectivity (PC) across the

region (Carranza et al., 2012). Subsequently, the normalized habitat importance and landscape

connectivity with equal weights were combined to quantify protection importance. Quantile

classification method was applied to divide protection importance into five levels, with the

highest level of very important identified as ecological sources.

Habitat maintenance. High habitat quality can provide good habitat conditions, and thus

increases biodiversity. Habitat quality module of InVEST was usually used to quantify the

service of habitat maintenance (Cotter et al., 2017, Lin et al., 2017). Within this module,

construction land including urban and rural settlements, mining sites, roads and railways, all

characterized by significant human activities, was regarded as threat sources, whereas other land

use types were set as ecological land. More precisely, three key factors were needed, i.e. (i)

distance to the threat sources, (ii) weight of threat sources effects, and (iii) the sensitivity of

associated ecological land. The specific parameters for these key factors were adopted from
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previous studies (i.e. Sharp et al. 2018 and Polasky et al. 2011).

Water yield. Due to the suitability across a wide range of regions and environments as well

as spatial-temporal scales (Jia et al., 2014), water balance method has been widely used to assess

the service of water yield. In this study, water yield is defined as the difference between

precipitation and evapotranspiration as follows:

Q = P - E (1)

Where Q is annual water yield, P is annual total precipitation, and E is annual total

evapotranspiration, using MODIS 2010 yearly composite product.

Soil retention. Due to essential role in retaining to vegetation growth, soil is one of the key

elements of terrestrial ecosystems. However, soil is susceptible to human activities, which may

lead to the change of soil quality and quantity soil through a wide range of environmental threats

such as soil erosion and degradation. Thus, soil retention is an important ecosystem service to be

considered in assessing habitat importance. The Revised Universal Soil Loss Equation (RUSLE)

was applied to assess soil retention (Van Oost et al., 2000), which was as follows:

(1 )A = R K LS - C P× × × × (2)

Where A is annual soil retention, R is rainfall erosivity factor, K is soil erodibility factor, LS is

slope length and steepness factor, P is conservation practices factor, and C is vegetation coverage

factor (Chen and Zha 2016; Rozos et al., 2013).

PM2.5 removal. Air pollution in Beijing City, especially the concentration of air fine

particulate matter (PM2.5) has increased significantly over recent years. As a result, vegetation

reduction of PM2.5 is one of the most important ecosystem services. In this study, the PM2.5

vegetation reduction model proposed by Nowak et al. (2013) was used, which was applicable in

non-rainfall days.

I = F A T (1 - R)× × × (3)

dF = V C 3600× × (4)

Where I is PM2.5 removal, A is leaf surface area, T is assessment period, R is PM2.5 resuspension
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rate, F is PM2.5 removal flux, Vd is deposition velocity of PM2.5, and C is PM2.5 concentration. R

and Vd are directly related to wind speed (Nowak et al., 2013).

Landscape connectivity. Landscape connectivity can promote or limit wildlife’s movement

or ecological processes between patches, and thus reflect the importance of different patches

within a given landscape. In this study, the index of Probability of Connectivity (PC) was used to

measure landscape connectivity (Carranza et al., 2012; Peng et al., 2018). By using the PC

calculation model of Saura et al. (2009), the probability of landscape connectivity index,

expressed as a figure between 0 and 1, was obtained, indicating the chance of connectivity

between the patches as a function of distance. More precisely, for all the patches of ecological

land, the effect on the overall landscape connectivity of a single patch is calculated by comparing

PC index before and after the removal of the patch, which is shown as follows:

0 0

2

n n
*

i j ij

i= j=

L

a a P

I =
A

∑∑
(5)

( ) 100
removeI - I

dI % =
I

× (6)

Where n is the number of ecological patches, ia and ja are the area of patch i and patch j, LA is

the area of the overall landscape, *

ijP is the probability of movement between patch i and patch j,

I is the overall landscape connectivity index, Iremove is the overall landscape connectivity index

after removal of the assessing patch, and dI(%) is the relative importance of the assessing patch

to landscape connectivity. The higher the value of dI(%), the more important that specific patch

is for the overall landscape connectivity. ArcGIS 10.x plug-in “Conefore Inputs” as well as the

“Conefore Sensinode 2.2” software were used for calculating the importance of ecological

patches in landscape connectivity.

2.2.2 Ecological corridor identification based on MCR, ant colony algorithm and kernel

density estimation

The ant colony algorithm is often used to conduct the path-finding analysis with the process
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in which ants communicate by leaving synthetic pheromone when seeking from their nests to

food resources (Zhang et al., 2017a). In this context, it is necessary to recognize that the various

pixels are spatially interconnected in order to overcome the following typical computational

issues in ant colony algorithm: (1) If each ant’s movement is completely random, it can easily

happen that one ant goes into an infinite loop in local optimal solution; (2) “No data” pixels may

decrease the efficiency of ant colony algorithm to a large extent; and (3) As the active space of

pheromone is discrete, it can be hard to determine the ecological corridors’ borders.

To solve the three above-mentioned issues, this study proposed a methodological

improvement to the algorithm’s traditional modus operandi, through dividing the ecological

corridor identification procedure into the following three main steps: (1) Data preparation,

including the construction of ecological resistance surface based on land use types; (2) Ant

colony path-finding, including the identification of the basic spatial direction of ecological

corridors based on MCR, as well as building the pixels direction control layer based on the

Euclidean space distance method for running the ant colony algorithm; (3) Data postprocessing,

i.e. (i) analyzing spatial range of ecological corridors based on ant colony pheromone residues,

(ii) extracting the range and key restoration points of ecological corridors with the application of

kernel density estimation, and thus (iii) constructing ecological security patterns across the

region.

Data preparation. The ecological resistance surface, as used in many studies, represents the

resistance to the movement of different species in space (Gao et al., 2017; Zhang et al., 2017b).

In this study, construction land was set to have the highest ecological resistance coefficient, with

the lowest for forest land. In details, the resistance coefficients of forest land, orchard, grassland,

water body, cultivated land, unused land, country road, main road, railway, and other

construction land, were set as 1, 3, 7, 15, 20, 50, 70, 90, 90 and 100, respectively (e.g. Peng et

al., 2018). In the ant colony algorithm, the ecological resistance, as being presented in the

resistance surface, was considered as the distance that the ant needed to travel so as to reach a

given pixel from the starting pixel. Hence, the pixel with the highest resistance was considered to
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be the farthest from the ant.

Ant colony path-finding. By means of MCR, the basic direction of corridors between two

patches of ecological sources in a region was determined. This will be the first general spatial

orientation of the ecological corridor. Subsequently, multiple buffer zones with different radius

from the first direction line were considered as search area, in order to conduct the ant colony

path-finding. The Euclidean distance to the direction lines of ecological corridor were then

calculated within the buffer zones. The direction of each spatial pixel with the same Euclidean

distance was oriented parallel to the ecological corridors’ orientation. More precisely, the

direction code in this study was based on the location of the eight neighboring pixels in a 3×3

pixel cluster. The latter allowed to direct the ants into the next pixel, supposing that the angle

between the ant’s direction in the current pixel and that in the next pixel must be less than or

equal to 90°. The direction layer could ensure the ants did not go into an infinite loop when

searching for the optimal route. Then probabilistic transition rule, local updating rule, and global

updating rule, were applied to let each ant move between source points, i.e. geometric center of

ecological source patches, over a range of connecting pixels across the whole region. In each

iteration, 10 ants were set to start the path-finding algorithm. A maximum of 60,000 iterations

were considered. However, a global optimal solution was identified whenever 100 ants were able

to reach the end-point, or the optimal solution had not been updated during the latest 200

iterations.

Data postprocessing. The results of ant colony path-finding are characterized with spatial

distribution of the ant’s pheromone, which in turn will be used to construct the density surface

for the whole region using the method of kernel density estimation. Kernel density estimation is

one of the most commonly used non-parametric estimation methods used in probability theory in

order to make an estimation of unknown probability density functions (Brunsdon, 1995; Shi,

2010). More specifically, the Rosenblatt-Parzen kernel estimation was used in this study

(Brunsdon, 1995, eq. (7) & (8)):

n

i=1

1
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nh
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Where �∧(�) is the estimated value of the probability density, h (h> 0) is the bandwidth, s is the
distance from the point x to the sample point Xi , i.e. | |is x X= - , n is the number of sample points,

and ( , )k s h is the kernel function, usually using the Gaussian-Kernel-Function.

More precisely, the kernel density surface was obtained through conducting

variable-bandwidth kernel density estimation. All the kernel density values, except from 0, were

classified into nine categories using the quantile classification method. Comparing spatial

characteristics of the kernel density surface and the ecological resistance surface, the

reclassification threshold of kernel density surface was obtained which made the identified

ecological corridors could not only reflect the range and direction changes in the resistance

surface, but also maintain the connectivity between ecological source patches. Finally, the areas

with kernel density higher than the threshold were identified to be part of ecological corridors.

3 Results

3.1 Habitat importance

Spatial distribution of habitat maintenance service across the whole region was shown in

Fig. 3a. In general, habitat quality gradually increased as it moved away from the central urban

area, which was characterized as the ascending service importance from urban center to

urban-rural fringe and thus to rural center. There were also threatening sources in rural areas, but

their negative impacts might be limited. Because of their relatively discrete distribution, the

extent and range of the threatening to biodiversity in the surrounding habitats were far less than

those in urban areas.

Water yield service was mapped, as shown in Fig. 3b. It was obvious that water yield in

Shijingshan District was mostly at the lowest level (over 98% of the total area) similar in

Chaoyang District, Fengtai District and Haidian District. However, Tongzhou District had
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relatively high water yield, with the important level and very important level accounting for

59.70% and 23.47% of total area respectively. In contrast, Pinggu District and Shunyi District

were mostly occupied with the level of very important, with the highest 94.10% of area

proportion for Pinggu District.

Fig. 3c showed spatial distribution of soil retention service in the study area. It could be

found that the districts of Mentougou, Pinggu, Miyun, Huairou, and Yanqing, all far away from

Beijing’s city center, had the highest area proportion of the level of very important. Especially in

Mentougou District, it was characterized with the highest importance in Beijing City, with the

level of very important and important accounting for 8.88% and 25.15% of the total area,

respectively. In the districts of Fangshan, Changping, and Shijingshan, soil retention was

relatively low, with the lowest level of very unimportance covering 50-75% of the total area. For

the other districts, it was over 85%, or even 100%.

Fig. 3d mapped the service of PM2.5 removal. The districts near the city center were

generally characterized by the level of very unimportant, accounting for more than 60% of the

total area, such as Haidian District, Shijingshan District, Fengtai District, and Chaoyang District.

In the districts with flat area, such as Daxing District, Tongzhou District and Shunyi District, the

level of unimportant accounted for about 70% of the total area, although they were not near the

city center. However, in the mountain districts, i.e. the districts of Pinggu, Changping, Huairou,

Mentougou, Miyun, and Yanqing, accumulated area proportion of the levels of important and

very important was all over 30%.

Fig.3 Spatial distribution of ecosystem services in Beijing City
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3.2 Ecological sources

Through overlaying the importance of ecosystem services, an overall habitat importance

map could be obtained (Fig. 4a). It could be found that the moderate importance levels i.e.

unimportant level, general level, and important level, covered large areas of the districts of

Shunyi, Changping and Tongzhou, with about 30% for area proportion of each level. The level of

very important was mostly distributed in Pinggu District, Miyun District and Huairou District,

accounting for c. 89.70% of the importance level.

Fig. 4b showed spatial pattern of landscape connectivity of ecological land patches across

Beijing City. The large ecological land patches located in Yanqing District and Changping

District, connecting the northern part of mountainous areas with its western part, had the most

importance of landscape in view of the whole study area. Miyun District and Pinggu District

were also concentrated with high landscape connectivity patches. In contrast, the ecological land

patches located in the south of Beijing City and the surroundings of the city center were much

smaller and often isolated, resulting in relatively low landscape connectivity.

As illustrated in Fig. 4c, spatial pattern of ecological land protection importance in the study area

was characterized as high in the north, moderate in the southwest, and low in the central, east and

south. In the city center (i.e. Dongcheng District, Xicheng District, Shijingshan District,

Chaoyang District, Fengtai District and Haidian District), the ecological land protection

importance were very low, while in mountainous areas it changed to moderate or high level.

Furthermore, in the districts of Daxing, Tongzhou, Shunyi, Fangshan and Mentougou, ecological

land protection importance were dominated by the levels of unimportant and general, with the

accumulated area proportion over 50%, and the level of very important for less than 5%. In

contrast, Pinggu District and Miyum District had the highest ecological land protection

importance, with the level of very important accounting for 67.35% and 54.04% of the total area,

respectively. Both districts occupied 58.34% of the highest level in the study area.
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Fig.4 Spatial distribution of habitat importance, landscape connectivity, and protection

importance of ecological land in Beijing City

Patches characterized with the highest level of ecological land protection importance, i.e. the

level of very important, were identified as ecological sources in Beijing City. As shown in Fig.4c,

more than a third of ecological sources were concentrated in Miyun District, covering an area of

1191.66 km2. Pinggu District and Huairou District ranked the second and third, with the area of

628.38 km2 and 597.70 km2, respectively. They were followed by Yanqing District and

Changping District, accounting for about 8% of the total ecological sources. Although they were

also mountainous districts, Mentougou District and Fangshan District were more affected by

human activities due to relatively close to the city center, each occupied less than 3% of the

ecological sources. In sum, there were 3119.65 km2 ecological sources in Beijing City, which

were mainly distributed in the northeastern, northern and northwestern mountainous areas, while

there were also sparsely distribution in the southwestern.

3.3 Ecological corridors and restoration points

The geometric centers of each patch of ecological sources, were extracted as ecological

source points. Then, the direction lines of ecological corridors were identified based on the

resistance surface using the tool boxes of Cost Distance, Cost Back Link, and Cost Path in

ArcGIS 10.3 software (Fig. 5A). Moreover, the Buffer tool was applied to build up buffer zones

with a radius of 900 m around the direction line of each ecological corridor, which corresponded

with the search zones of the ant colony algorithm. Through applying the Euclidean Distance tool
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in ArcGIS 10.3 software, an Euclidean distance layer was constructed and reclassified into 31

categories (category codes from 0 to 30), with about 30 m difference between the two adjacent

categories (Fig. 5B). Following the ant colony algorithm based methodological approach, the

pixel direction information was obtained. Subsequently, the pixels characterized by very low

pheromone were removed, and the pixels with the higher and the highest pheromone were

merged, through setting the threshold in reclassification process. As a result, spatial pattern of

pheromone at pixel scale was obtained, as shown in Fig. 5C. The pheromone pixels were then

transformed into vector points in ArcGIS and the kernel density estimation tool was used for the

analysis of variable-bandwidth kernel density estimation. Finally, the kernel density surface was

divided into 9 categories by quantile, as shown in Fig. 5D.

Fig.5 Ecological corridors identification process: (A) Identification of the direction lines of
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ecological corridors; (B) Reclassification of the Euclidean distance of ecological corridors’

direction lines (Part of sample); (C) Detailed examples of spatial distribution of pheromone; (D)

Detailed examples of kernel density categories

As to spatial distribution of pheromone, its relationship with spatial patterns of ecological

resistance could be further explored in two different areas. Firstly, in the areas with local

resistance patches having high fragmentation and clear heterogeneity (see Fig. 5C-a), it was

notable that low resistance matrix was cut off directly by high resistance patches. Furthermore,

points characterized by high pheromone often connected two low resistance patches following a

narrow path situated in-between two high resistance patches. Secondly, in the areas that local

resistance patches were relatively continuous and homogeneous (see Fig. 5C-b and Fig. 5C-d),

spatial pattern of pheromone showed that before reaching high resistance patches, the pheromone

points had been clearly compressed towards nearby low resistance patches. That was to say, the

high pheromone points, representing the path that artificial ants would most probably follow,

mainly appeared in the region with low resistance.

The kernel density surface showed that there were distinct differences among kernel density

categories. Moreover, the highest three categories of kernel density surface could not only

maintain their connectivity to a certain extent, but also show robust in behaving spatial

morphological changes along the direction line of ecological corridor, such as the range and axial

offset. Therefore, the highest three categories of kernel density surface, i.e. the categories of 7, 8,

and 9, could be selected to map the range of ecological corridors. In addition, in view of spatial

distribution, mutation points or discontinuity points of different kernel density category appeared

mainly as a result of high resistance patches cutting off the ecological corridors. These points

were vital to moving efficiency in the ecological corridor, highly affected by human activities.

Hence, defined as key restoration points, they were considered to be the key points in restoring

ecological corridors.

In details, the most eastern ecological source point of all the five ecological source points
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were selected as the start point, with the most southwestern ecological source point for the end

point. The total cumulative resistance of each ecological corridor’s direction line, as being

identified by MCR model, was considered as the total path length between two ecological source

points. This information was used to apply the ant colony algorithm in order to identify the range

and key restoration points of ecological corridors. Moreover, all the ecological corridors were

distinguished into two categories. One was key ecological corridor, which was defined as the one

with the lowest total cumulative resistance while connecting all ecological source points. All the

other ecological corridors were defined as potential ecological corridor. Eventually, ecological

security patterns in Beijing City, composed of ecological sources, key ecological corridor,

potential ecological corridors, and key restoration points, were identified (Fig. 6).

In sum, the total area of key ecological corridor was 198.86 km2, with 567.30 km2 for

potential ecological corridors. The majority of key ecological corridor, except for a small part in

Miyun District, was closely surrounded by potential ecological corridors. The total area of

potential ecological corridors was quite higher than that of key ecological corridor, because of

rather larger range of the former. 34 ecological restoration points were also identified, mainly

located at the intersections between ecological corridors and roads or isolated high resistance

patches. Furthermore, spatial morphological characteristics of ecological corridors’ range were

quite different in the study area, especially between northwestern and northeastern parts. For

example, the range of ecological corridors changed frequently in northeastern mountainous areas,

with diverse directions of ecological corridors, because of unused land induced forest land

fragmentation, and low limitation in ant colony path-finding resulting from low human

disturbance. In contrast, there was only one ecological corridor with relative wider range in

northwestern mountainous areas, connecting the northern mountains with the western mountains.

This might be due to the relative small but aggregated forest land distributed between the city

center and Yanqing District.
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Fig.6 Ecological security patterns in Beijing City

4 Discussion

Identifying and maintaining ecological security patterns is vital to guarantee the integrity of

ecosystem structure and processes at regional scale. Previous studies focused on ecological

importance quantification and thus identifying spatial range of ecological sources, and the

direction of ecological corridors. In this study, an approach integrating the methods of MCR, ant

colony algorithm and kernel density estimation, was proposed to identify ecological security

patterns with the spatial range of ecological sources and corridors, as well as key restoration

points.

More specifically, the first advantage of the proposed approach, as compared to previous

studies, is the identification of spatial range of ecological corridors as a result of combining the
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ant colony algorithm, with the kernel density estimation method. In previous studies, the range of

ecological corridors were mostly determined through referring to the movement radius of target

animals (Harrison et al., 1992; Lima et al., 1999). However, an important methodological

limitation is the fact that this radius is regional and species dependency and it is hard to adjust

when it is concerned with different region or species (Nathan et al., 2008; Zeller et al., 2014).

In this study, this limitation was overcome by conducting a variable-bandwidth kernel density

estimation in order to convert a discrete pheromone layer into a relatively smooth kernel density

layer, which in turn, led to determine spatial range of the identified ecological corridors.

The second advantage of the proposed approach is to deliver a more complete ecological

security patterns at regional scale, which were composed of not only ecological sources and

corridors, but also key points for restoring ecological corridors. The identification of key

restoration points may indicate the paradigm transformation of ecological security patterns study,

i.e. from patch-corridor paradigm (representing by ecological sources and corridors) to

patch-corridor-point paradigm (characterizing by ecological sources, corridors, and restoration

points).

There were also some methodological disadvantages in this study. Firstly, ecological sources

were identified according to the importance of ecosystem services and landscape connectivity.

However, all the calculation was based on current status, without considering possible changes in

the near future, especially ecosystem degradation due to human interferences in the urbanization

(Peng et al., 2018). Moreover, in identifying spatial range of ecological corridors through

combining the ant colony algorithm with kernel density estimation, the following two main

issues should be further focused during data processing: (i) inaccuracy in the direction of local

pixels to constrain the ant colony in an attempt to search for the optimal solution within the

global solution space, and (ii) time efficiency in finding out the optimal solution due to the large

spatial extent of input data. To address both issues, it is suggested to improve the direction

organization of raster data and find out a more efficient machine learning algorithm.
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5 Conclusions

In this study, using GIS technology and spatial analysis models, important patches of

ecological sources across Beijing City were identified according to habitat importance and

landscape connectivity. Moreover, MCR, ant colony algorithm and kernel density estimation

were integrated to identify spatial range and key restoration points of ecological corridors. Our

results showed that the ecological sources were mainly located in the north, northwestern and

northeastern part, with ecological corridors distributed along these ecological sources. In the

northwestern part of the study area, ecological corridors were wide and fluent. However, in the

northeastern there were diverse ecological corridors with changing range. Among all the

identified ecological restoration points, the majority was located in the key ecological corridor.

As both the ranges of ecological sources and corridors have been spatially identified, the

protection of ecological security patterns can effectively enhance regional biodiversity and better

protect endangered species. And the identified key restoration points can point out the priority

area of ecological restoration. Therefore, the ant colony algorithm based approach proposed in

this study can effectively identify ecological security patterns in megacities, with the detailed

results serving as the spatial guideline for natural conservation and ecological restoration in

urban planning of Beijing City.
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