
Applying Associative Retrieval Techniques to Alleviate
the Sparsity Problem in Collaborative Filtering

Item Type Journal Article (Paginated)

Authors Huang, Zan; Chen, Hsinchun; Zeng, Daniel

Citation Applying Associative Retrieval Techniques to Alleviate the
Sparsity Problem in Collaborative Filtering 2004-01, 22(1):116-142
ACM Transactions on Information Systems

Publisher ACM

Journal ACM Transactions on Information Systems

Download date 23/08/2022 14:14:22

Link to Item http://hdl.handle.net/10150/105493

http://hdl.handle.net/10150/105493

Applying Associative Retrieval Techniques
to Alleviate the Sparsity Problem
in Collaborative Filtering

ZAN HUANG, HSINCHUN CHEN, and DANIEL ZENG
The University of Arizona

Recommender systems are being widely applied in many application settings to suggest products,
services, and information items to potential consumers. Collaborative filtering, the most success-
ful recommendation approach, makes recommendations based on past transactions and feedback
from consumers sharing similar interests. A major problem limiting the usefulness of collaborative
filtering is the sparsity problem, which refers to a situation in which transactional or feedback
data is sparse and insufficient to identify similarities in consumer interests. In this article, we pro-
pose to deal with this sparsity problem by applying an associative retrieval framework and related
spreading activation algorithms to explore transitive associations among consumers through their
past transactions and feedback. Such transitive associations are a valuable source of information
to help infer consumer interests and can be explored to deal with the sparsity problem. To evalu-
ate the effectiveness of our approach, we have conducted an experimental study using a data set
from an online bookstore. We experimented with three spreading activation algorithms including
a constrained Leaky Capacitor algorithm, a branch-and-bound serial symbolic search algorithm,
and a Hopfield net parallel relaxation search algorithm. These algorithms were compared with
several collaborative filtering approaches that do not consider the transitive associations: a simple
graph search approach, two variations of the user-based approach, and an item-based approach.
Our experimental results indicate that spreading activation-based approaches significantly out-
performed the other collaborative filtering methods as measured by recommendation precision,
recall, the F-measure, and the rank score. We also observed the over-activation effect of the spread-
ing activation approach, that is, incorporating transitive associations with past transactional data
that is not sparse may “dilute” the data used to infer user preferences and lead to degradation in
recommendation performance.

This research was supported in part by the following grants: NSF Digital Library Initiative-II,
“High-Performance Digital Library Systems: From Information Retrieval to Knowledge Man-
agement,” IIS-9817473, April 1999–March 2002, and NSF Information Technology Research,
“Developing a Collaborative Information and Knowledge Management Infrastructure,” IIS-
0114011, September 2001–August 2004. D. Zeng is also affiliated with the Key Lab of Complex
Systems and Intelligence Science, Chinese Academy of Sciences (CAS), Beijing, and was supported
in part by a grant for open research projects (ORP-0303) from CAS.
Authors’ address: Department of Management Information Systems, University of Arizona, Room
430, McClelland Hall, 1130 East Helen Street, Tucson, AZ 85721, email: {zhuang,hchen,zeng}@
eller.arizona.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1046-8188/04/0100-0116 $5.00

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004, Pages 116–142.

Associative Retrieval Techniques for the Sparsity Problem • 117

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine systems—
human information processing; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—information filtering; relevance feedback; retrieval models

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Recommender system, collaborative filtering, sparsity problem,
associative retrieval, spreading activation

1. INTRODUCTION

Recommendation as a social process plays an important role in many appli-
cations for consumers, because it is overly expensive for every consumer to
learn about all possible alternatives independently. Depending on the specific
application setting, a consumer might be a buyer (e.g., in online shopping), an
information seeker (e.g., in information retrieval), or an organization searching
for certain expertise. In addition, recommendation as a personalized market-
ing mechanism has recently attracted significant industry interest (e.g., online
shopping and advertising).

Recommender systems have been developed to automate the recommenda-
tion process. Examples of research prototypes of recommender systems are:
PHOAKS [Terveen et al. 1997], Syskills and Webert [Pazzani and Billsus 1997],
Fab [Balabanovic and Shoham 1997], and GroupLens [Konstan et al. 1997;
Sarwar et al. 1998]. These systems recommend various types of Web resources,
online news, movies, among others, to potentially interested parties. Large-
scale commercial applications of the recommender systems can be found at
many e-commerce sites, such as Amazon, CDNow, Drugstore, and MovieFinder.
These commercial systems recommend products to potential consumers based
on previous transactions and feedback. They are becoming part of the stan-
dard e-business technology that can enhance e-commerce sales by convert-
ing browsers to buyers, increasing cross-selling, and building customer loyalty
[Schafer et al. 2001].

One of the most commonly-used and successful recommendation approaches
is the collaborative filtering approach. [Hill et al. 1995; Resnick et al. 1994;
Shardanand and Maes 1995]. When predicting the potential interests of a given
consumer, such an approach first identifies a set of similar consumers based on
past transaction and product feedback information and then makes a prediction
based on the observed behavior of these similar consumers. Despite its wide
spread adoption, collaborative filtering suffers from several major limitations
including sparsity, system scalability, and synonymy [Sarwar et al. 2000a].

In this article, we focus on the sparsity problem, which refers to the lack
of prior transactional and feedback data that makes it difficult and unreliable
to predict which consumers are similar to a given consumer. For instance, the
recommender systems used by online bookstores use past purchasing history
to group consumers and then make recommendations to an individual con-
sumer based on what the other consumers in the same group have purchased.
When such systems have access only to a small number of past transaction
records (relative to the total numbers of the books and consumers), however,

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

118 • Z. Huang et al.

determining which consumers are similar to each other and what their interests
are becomes fundamentally difficult.

This article presents a novel approach to dealing with the sparsity prob-
lem in the context of collaborative filtering. In our approach, collaborative
filtering is studied in bipartite graphs. One set of nodes represents prod-
ucts, services, and information items for potential consumption. The other
set represents consumers or users. The transactions and feedback are mod-
eled as links connecting nodes between these two sets. Under this graph-
based framework, we apply associative retrieval techniques, including several
spreading activation algorithms, to explicitly generate transitive associations,
which in turn are used in collaborative filtering. Initial experimental results
indicate that this associative retrieval-based approach can significantly im-
prove the effectiveness of a collaborative filtering system when sparsity is an
issue.

The remainder of the paper is organized as follows. Section 2 surveys ex-
isting work on collaborative filtering and discusses the sparsity problem in
detail. Section 3 summarizes our associative retrieval-based approach to deal-
ing with the sparsity problem. Section 3.1 introduces associative retrieval and
relevant graph-based models of collaborative filtering. Section 3.2 presents in
detail the general design of our proposed collaborative filtering approach based
on associative retrieval. Section 3.3 introduces the spreading activation algo-
rithm that provides the computational mechanism used to explore the tran-
sitive associations under our framework. The specific research questions that
we aim to address are summarized in Section 3.4. Section 4 provides details of
the spreading activation algorithms examined in our study. Section 5 presents
an experimental study designed to answer the research questions raised in
Section 3.4 concerning the effectiveness of our approach and summarizes ex-
perimental findings. We conclude the article in Section 6 by summarizing our
research contributions and pointing out future directions.

2. COLLABORATIVE FILTERING AND THE SPARSITY PROBLEM

In this section, we briefly survey previous research and system development
on collaborative filtering and introduce the sparsity problem, which has been
identified as one of the major technical challenges hindering the further devel-
opment and adoption of collaborative filtering systems.

2.1 Collaborative Filtering

Collaborative filtering generates personalized recommendations by aggregating
the experiences of similar users in the system. Conceptually, this approach
automates the process of “word of mouth” recommendation. One key aspect of
collaborative filtering is the identification of consumers or users similar to the
one who needs a recommendation. Cluster models, Bayesian Network models,
and specialized association-rule algorithms, among other techniques, have been
used for this identification purpose [Breese et al. 1998; Lin et al. 2002]. Based
on similar consumers or neighbors, methods such as the most frequent item
approach [Sarwar et al. 2000a] can then be used to generate recommendations.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 119

Collaborative filtering has been the most successful recommendation system
approach to date [Sarwar et al. 2000a] and has been widely applied in various
applications [Burke 2000; Claypool et al. 1999; Mobasher et al. 2000; Nasraoui
et al. 1999; Pazzani 1999; Sarwar et al. 1998]. Despite its success in many ap-
plication settings, the collaborative filtering approach nevertheless has been
reported to have several major limitations including the sparsity, scalability,
and synonymy problems [Sarwar et al. 2000b]. The sparsity problem occurs
when transactional or feedback data is sparse and insufficient for identifying
neighbors and it is a major issue limiting the quality of recommendations and
the applicability of collaborative filtering in general. Our study focused on de-
veloping an effective approach to making high-quality recommendations even
when sufficient data is unavailable. The next section will discuss the sparsity
problem in detail.

2.2 The Sparsity Problem

In collaborative filtering systems, users or consumers are typically represented
by the items they have purchased or rated. For example, in an online bookstore
selling 2 million books, each consumer is represented by a Boolean feature vec-
tor of 2 million elements. The value for each element is determined by whether
this consumer has purchased the corresponding book in past transactions. Typ-
ically the value of 1 indicates that such a purchase had occurred and 0 indicates
that no such purchase has occurred. When multiple consumers are concerned,
a matrix composed of all vectors representing these consumers can be used
to capture past transactions. We call this matrix the consumer–product inter-
action matrix. The general term “interaction” is used to refer to this matrix
as opposed to the more specific “purchasing” or “transaction” because there are
other types of relations such as explicit and implicit ratings between consumers
and products for general recommender systems.

We now introduce some notation to be used throughout the article. We use C
to denote the set of consumers and P the set of items. We denote the consumer–
product interaction matrix by a |C| × |P | matrix A = (aij), such that

aij =
{

1, if user i purchased item j ,
0, otherwise.

(1)

Note that, in our study, we focused on actual transactions that occurred,
so aij is binary. In other recommendation scenarios such as those that involve
ratings, aij can take other categorical or continuous values (e.g., 5-level rating
scales and probabilities of interest).

In many large-scale applications such as major e-commerce websites, both
the number of items, |P |, and the number of consumers, |C|, are large. In such
cases, even when many transactions have been recorded, the consumer–product
interaction matrix can still be extremely sparse, that is, there are very few ele-
ments in A whose value is 1. This problem, commonly referred to as the sparsity
problem, has a major negative impact on the effectiveness of a collaborative fil-
tering approach. Because of sparsity, it is highly probable that the similarity (or
correlation) between two given users is zero, rendering collaborative filtering

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

120 • Z. Huang et al.

useless [Billsus and Pazzani 1998]. Even for pairs of users that are positively
correlated, such correlation measures may not be reliable.

The cold-start problem further illustrates the importance of addressing the
sparsity problem. The cold-start problem refers to the situation in which a new
user or item has just entered the system [Schein et al. 2002]. Collaborative
filtering cannot generate useful recommendations for the new user because of
the lack of sufficient previous ratings or purchases. Similarly, when a new item
enters the system, it is unlikely that collaborative filtering systems will recom-
mend it to many users because very few users have yet rated or purchased this
item. Conceptually, the cold-start problem can be viewed as a special instance
of the sparsity problem, where most elements in certain rows or columns of the
consumer–product interaction matrix A are 0.

Many researchers have attempted to alleviate the sparsity problem. Sarwar
et al. [2001] proposed an item-based approach to addressing both the scalability
and sparsity problems. Based on the transactional or feedback data, items that
are similar to those purchased by the target user in the past are identified
and then recommended. Item similarities are computed as the correlations
between the corresponding column (item) vectors. It is reported that in certain
applications this item-based approach achieved better recommendation quality
than the user-based approach, the predominant approach used in recommender
systems, which relies on correlations between row (user) vectors.

Another proposed approach, dimensionality reduction, aims to reduce the
dimensionality of the consumer–product interaction matrix directly. A simple
strategy is to form clusters of items or users and then use these clusters as
basic units in making recommendations. More advanced techniques can be ap-
plied to achieve dimensionality reduction. Examples are statistical techniques
such as Principle Component Analysis (PCA) [Goldberg et al. 2001] and infor-
mation retrieval techniques such as Latent Semantic Indexing (LSI) [Billsus
and Pazzani 1998; Sarwar et al. 2000b]. Empirical studies indicate that di-
mensionality reduction can improve recommendation quality significantly in
some applications, but performs poorly in others [Sarwar et al. 2000b]. The
dimensionality reduction approach addresses the sparsity problem by remov-
ing unrepresentative or insignificant consumers or products to condense the
consumer–product interaction matrix. However, potentially useful information
might be lost during this reduction process. This may partially explain the
mixed results reported on the performance of dimensionality reduction-based
collaborative filtering approaches.

Researchers have also attempted to combine collaborative filtering with
content-based recommendation approaches to alleviate the sparsity problem
[Balabanovic and Shoham 1997; Basu et al. 1998; Condliff et al. 1999; Good
et al. 1999; Huang et al. 2002; Pazzani 1999; Sarwar et al. 1998]. Such an ap-
proach considers not only past consumer–product interactions but also similar-
ities between products or items directly derived from their intrinsic properties
or attributes. We refer to this approach as the hybrid approach. Most previous
studies using the hybrid approach have demonstrated significant improvement
in recommendation quality over the user-based approaches discussed above.
However, the hybrid approach requires additional information regarding the

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 121

products and a metric to compute meaningful similarities among them. In prac-
tice, such product information may be difficult or expensive to acquire and a
related similarity metric may not be readily available.

Our research dealt with the sparsity problem under a different framework.
Instead of reducing the dimension of the consumer–product interaction matrix
A (thus, making it less sparse), we proposed to explore the transitive inter-
actions between consumers and items to augment the matrix A and make it
meaningfully “dense” for recommendation purposes. The intuition behind tran-
sitive interactions can be explained by the following example. Suppose users
c1 and c2 bought book p1 and users c2 and c3 bought book p2. Standard col-
laborative filtering approaches that do not consider transitive interactions will
associate c1 with c2 and also c2 with c3 but not c1 with c3. An approach that
incorporates transitive interactions, however, will recognize the associative re-
lationship between c1 and c3 and will insert such transitive interactions into
the consumer–product interaction matrix A for recommendations.

Our research focuses on developing a computational approach to exploring
transitive user and item similarities to address the sparsity problem in the con-
text of collaborative filtering. The next section presents our general modeling
framework and discusses existing research related to the computation and ap-
plication of transitive associations in Information Retrieval and Recommender
Systems.

3. MODELING RECOMMENDATION AS AN ASSOCIATIVE
RETRIEVAL PROBLEM

3.1 Associative Retrieval and Graph-Based Models

The potential value of transitive associations has been recognized by re-
searchers working in the field of recommender systems [Billsus and Pazzani
1998; Sarwar et al. 2000b]. The exploration of transitive associations in the
context of recommender systems is typically carried out in a graph-based rec-
ommendation model for two reasons. First, a graph or network-based model
is easy to interpret and provides a natural and general framework for many
different types of applications including recommender systems. Second, a rich
set of graph-based algorithms is readily applicable when the recommendation
task is formulated as a graph-theoretic problem.

Below, we briefly survey three representative graph-based models that ex-
plore transitive relationships. Aggarwal et al. [1999] introduced a recommen-
dation model based on a directed graph of users. In their model, a directed link
starting from user c1 and ending at user c2 signifies that c2’s behavior is strongly
predictive of c1’s behavior. Recommendations are made by exploring short (in-
dicating strong predictability) paths joining multiple users. Mirza [2001] and
Mirza et al. [2003] proposed a social network graph of users to provide recom-
mendations. Links in this social network graph are induced by hammock jumps
(defined between two users who have agreed ratings on at least a given num-
ber of items). Both Aggarwal’s and Mirza’s models emphasize using the graph
of users and only employ user associations to explore transitive associations.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

122 • Z. Huang et al.

In our previous research, we developed another graph-based model for collab-
orative filtering [Huang et al. 2003] which includes both users and items in
the graph. This model was intended to capture additional types of inputs and
recommendation approaches in a unified framework.

The above graph-based models provide the basic representational and mod-
eling framework for our research on the sparsity problem and enable us to
draw an analogy between recommender systems and associative retrieval sys-
tems. This analogy, in turn, suggests that the sparsity problem can potentially
be dealt with effectively using computational methods, in particular, spread-
ing activation algorithms, which have been successfully applied in associative
retrieval.

In this section, we discuss in detail how the recommendation task can be
formulated as an associative retrieval problem and how spreading activation
algorithms can be used to explore useful transitive associations and thus help
to solve the sparsity problem. We conclude this section by presenting research
questions designed to evaluate the idea of applying spreading activation algo-
rithms in the context of recommender systems.

3.2 Collaborative Filtering as Associative Retrieval

Associative information retrieval has its origin in statistical studies of associ-
ations among terms and documents in a text collection. The basic idea behind
associative retrieval is to build a graph or network model of documents and
index terms and queries, and then to explore the transitive associations among
terms and documents using this graph model to improve the quality of infor-
mation retrieval. For example, the generalized vector space model [Wong et al.
1985] represents a document by a vector of its similarities to all other docu-
ments in the corpus. The associations (similarities) among documents, defined
as transitive associations through common index terms, are constructed and di-
rectly used to support information retrieval. A number of techniques have been
proposed to construct and utilize such networks of associations in informa-
tion retrieval. Examples of these techniques are various statistical approaches
[Crouch and Yang 1992], neural networks [Jung and Raghavan 1990], genetic
algorithms [Gordon 1988], and spreading activation approaches [Cohen and
Kjeldsen 1987; Salton and Buckley 1988].

The similarity between associative retrieval and collaborative filtering has
been recognized by some recent studies [Soboroff and Nicholas 2000]. In asso-
ciative retrieval, documents are represented by index terms. At the same time,
the semantics of an index term can also be represented by the set of documents
that contain it. Similarly, in collaborative filtering, users’ preferences can be
represented by the items and their interactions with the items. The intrinsic
features of an item can also be represented by the users and their interactions
with it.

The following example illustrates the idea of exploring transitive associa-
tions in recommender systems. Using the notation developed in Section 2.2,
the past transactions can be represented in the following consumer–product
interaction matrix.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 123

Fig. 1. A simple example for transitive associations in collaborative filtering.

p1 p2 p3 p4

c1
c2
c3

0 1 0 1
0 1 1 1
1 0 1 0

 (2)

Note that, in our work, we assume that the only information available to the
recommender system is the above matrix. Hence, the graph shown in Figure 1
is a bipartite graph. (In a bipartite graph, nodes are divided into two distinctive
sets. Links between pairs of nodes from different node sets are admissible, while
links between nodes from the same node set are not allowed.)

Suppose the recommender system needs to recommend products for con-
sumer c1. The standard collaborative filtering algorithm will make commenda-
tions based on the similarities between c1 and other consumers (c2 and c3). The
similarity between c1 and c2 is obvious because of previous common purchases
(p2 and p4). As a result, p3 is recommended to c1 because c2 has purchased it.
No strong similarity can be found between c1 and c3. Therefore, p1, which has
been purchased by c3, will not be recommended to c1.

The above recommendation approach can be easily implemented in a graph-
based model by computing the associations between product nodes and cus-
tomer nodes. In our context, the association between two nodes is determined by
the existence and length of the path(s) connecting them. Standard collaborative
filtering approaches, including both the user-based and item-based approaches,
consider only paths with length equal to 3. For instance, the association between
c1 and p3 is determined by all paths of length 3 connecting c1 and p3. It is easy to
see from Figure 1 that there exist two paths connecting c1 and p3: c1—p2—c2—
p3 and c1—p4—c2—p3. This strong association leads to the recommendation of
p3 to c1. Association between c1 and p1 does not exist because no path of length
3 exists. Intuitively, the higher the number of distinctive paths connecting a
product node to a consumer node, the higher the association between these two
nodes. The product therefore is more likely to be recommended to the consumer.

Extending the above approach to explore and incorporate transitive associ-
ations is straightforward in a graph-based model. By considering paths whose

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

124 • Z. Huang et al.

length exceeds 3, the model will be able to explore transitive associations. For
instance, two paths connecting c1 and p1 of length 5 exist: c1—p2—c2—p3—c3—
p1 and c1—p4—c2—p3—c3—p1. Thus, p1 could also be recommended to c1 when
transitive associations are taken into consideration in the recommendation.

We now present the main steps of a new collaborative filtering approach we
have developed that explicitly takes transitive associations into consideration
to tackle the sparsity problem.

Our approach takes as input the consumer–product interaction matrix A.The
equivalent bipartite graph is then constructed. Recommendations are made
based on the associations computed for pairs of consumer nodes and item nodes.
Given a consumer node ct and an item node pj , the association between them
a(ct , pj) is defined as the sum of the weights of all distinctive paths connecting
ct and pj . In this calculation, only paths whose length is less than or equal to the
maximum allowable length M will be considered. The limit M is a parameter
that the designer of the recommender system can control (e.g., M = 3 is common
for many approaches, e.g., Breese et al. [1998], Resnick et al. [1994] and Sarwar
et al. [2001]). It is easy to see that M has to be an odd number because transitive
associations are represented in a bipartite graph. For a given path of length x
(x ≤ M), the weight of the path is computed as αx , where α is a constant between
0 and 1 ensuring that longer paths have lesser impact. The particular value for
α can be determined by the system designer based on the characteristics of the
underlying application domain. In applications where transitive associations
can be a strong predictor of consumer interests, α should take a value close to
1; whereas in applications where transitive associations tend to convey little
information, α should take a value close to 0. We use the example shown in
Figure 1 to illustrate the above computation. When M is set to 3 (i.e., stan-
dard collaborative filtering), a(c1, p3) = 0.53 + 0.53 = 0.25, and a(c1, p1) = 0.
When M is 5, a(c1, p3) = 0.53 + 0.53 = 0.25, and a(c1, p1) = 0.55 + 0.55 =
0.0625.

For consumer ct , the above association computation is repeated for all items
pj ∈ P . The items in P are then sorted into decreasing order according to a(ct ,
pj). The first k items (excluding the items that ct has purchased in the past) of
this sorted list are then recommended to ct .

We now describe the above process using the matrix notation introduced in
Section 2.2. Given the consumer–product interaction matrix A, the path weight
parameter α, and the maximum allowable path length M , the transitive asso-
ciations between products and consumers are given in the matrix AM

α defined
in (3).

AM
α =

{
αA, if M = 1,

α2 A · AT · AM−2
α , if M = 3, 5, 7, . . .

(3)

In the above numerical example where A is given in (2) and α equals 0.5, the
transitive associations for M = 3, and M = 5 are given as follows.

A3
0.5 =

0 0.5 0.25 0.5
0.125 0.625 0.5 0.625
0.25 0.125 0.375 0.125

 ,

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 125

A5
0.5 =

0.0625 0.5625 0.375 0.5625
0.15625 0.75 0.59375 0.75
0.15625 0.21875 0.3125 0.21875

 .

One key challenge of implementing the above approach is that computing
A∗ requires extensive computing resources, especially when there are many
consumer and product nodes (as is typical of large e-commerce sites) and when
M is large. This consideration motivated our work on applying associative re-
trieval and related spreading activation algorithms to perform the association
computation. The next subsection presents this associative retrieval-based rec-
ommender approach.

3.3 Spreading Activation as Graph Search

Spreading activation techniques have been applied to associative retrieval both
as a human cognition and information processing model [Collins and Loftus
1975] and as a computational mechanism to speed up the exploration process
of networks of associations. Spreading activation techniques have also been ap-
plied recently to explore different types of networks, including the Web, citation
networks, and content similarity networks [Bollen et al. 1999; Crestani and Lee
2000; Pirolli et al. 1996]. In our study, we emphasized the use of spreading acti-
vation as a computational method to efficiently explore transitive associations
among consumers and products in collaborative filtering.

In general, as a graph-exploring approach, spreading activation first acti-
vates a selected subset of nodes in a given graph as starting nodes and then
follows the links to iteratively activate the nodes that can be reached directly
from the nodes that are already active. We use the simple example described in
Section 3.2 to illustrate this iterative process. In our example, node c1, which
corresponds to the target customer who needs recommendations, is the start-
ing node of the spreading activation process and is first activated. After the
first iteration, the directly linked nodes, p2 and p4, are activated. At the second
iteration, all three active nodes, c1, p2, and p4, activate their direct neighbors.
Thus the activation levels of p2 and p4 are updated and an additional node, c2,
is activated. This activation process iterates and the activation level spreads
gradually from the starting node to directly or indirectly connected nodes, in-
cluding the item node p1.

Under unconstrained implementation of spreading activation, all reachable
nodes will eventually be activated with certain activation level. In other spread-
ing activation schemes, this activation-spreading process continues until cer-
tain predetermined criteria are met. Salton and Buckley [1988] described and
evaluated using various spreading activation techniques in information re-
trieval as a means of expanding the search vocabulary and complementing
retrieved documents. The constrained spreading activation method proposed
by Cohen and Kjeldsen [1987] aims to improve computational efficiency while
maintaining exploration performance by constraining the activation process
in each of the activating-spreading steps such that only a subset of the ac-
tive nodes are activated. Chen and Dhar [Chen and Dhar 1991] proposed a

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

126 • Z. Huang et al.

branch-and-bound search algorithm for spreading activation, which treats
spreading activation as a variant of the state space traversal process. Chen
et al. [1993] and Chen and Ng [1995] later introduced another spreading acti-
vation algorithm using Hopfield net. This neural network-based approach acti-
vates nodes in parallel and terminates the spreading process when the network
reaches a stable state. Both the branch-and-bound and Hopfield net approaches
have been applied in concept exploration within large network-based concept
spaces [Chen et al. 1993; Chen and Ng 1995].

In the next section, we present the specific research questions raised by
applying spreading activation techniques to collaborative filtering.

3.4 Research Questions

The central theme of our research is to apply spreading activation techniques to
alleviate the sparsity problem in recommender systems. We aim to investigate
how much improvement in recommendation quality can be achieved by apply-
ing spreading activation techniques to explore transitive associations among
users and items in a collaborative filtering system. We also aim to gain under-
standing of the behavior of recommender systems that make use of transitive
associations, relative to the amount of transaction data made available to these
systems. Intuitively, when the consumer–product interaction matrix is sparse,
the spreading activation-based approach is expected to outperform the collab-
orative filtering approaches that do not use transitive associations because of
the useful and otherwise unavailable information contained in such transitive
associations. When the matrix becomes very dense (i.e., when plenty of transac-
tion data become available), however, we expect that transitive associations will
have limited or even negative impact on the performance of the recommender
systems.

For existing collaborative filtering approaches that do not explore transitive
associations (we refer to them as standard collaborative filtering), the denser
the consumer–product matrix, the higher the overall recommendation quality
[Sarwar et al. 2000b]. For spreading activation-based approaches, however, su-
perimposing transitive associations on a consumer–product graph that is not
sparse may “dilute” the data used to infer user preferences. We refer to this prob-
lem as the “over-activation” problem and investigated it empirically. Figure 2
illustrates the expected performance of different kinds of collaborative filtering
approaches when the density of the consumer–product graph varies.

In addition, we were interested in exploring the relative advantages and
weaknesses of various types of spreading activation algorithms with regard to
the quality of the recommendations generated and of computation efficiency.
The next section contains a detailed discussion of these issues.

4. ASSOCIATIVE RETRIEVAL AND SPREADING ACTIVATION

We studied three representative spreading activation algorithms in our re-
search: (a) a constrained spreading activation algorithm based on the Leaky
Capacitor Model (LCM) [Anderson 1983], (b) a branch-and-bound serial, sym-
bolic search algorithm (BNB), and (c) a Hopfield net parallel relaxation search

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 127

Fig. 2. Sparsity and over-activation effects in collaborative filtering.

algorithm (Hopfield). This section summarizes these algorithms and discusses
related implementation issues.

4.1 Constrained Leaky Capacitor Model (LCM)

Using the Leaky Capacitor Model (thereafter the LCM algorithm) proposed by
Anderson [1983], consumers and products are viewed as generic nodes. An as-
sociation matrix, denoted by R, is defined below to capture associations among
these nodes.

R(r × r) =
(

I (|P | × |P |) AT (|C| × |P |)
A(|P | × |C|) I (|C| × |C|)

)
. (4)

In this definition, |P| denotes the number of products, |C| the number of con-
sumers, r = |P| + |C|, and A(|P| × |C|) represents the consumer–product inter-
action matrix. R is the adjacency matrix for the bipartite graph corresponding
to the consumer–product interaction matrix A. Because item-similarity and
consumer-similarity links are absent in the graph model, the corresponding
item and consumer associations are represented with identity matrices. The
main steps of the implemented constrained LCM algorithm are summarized as
follows:

—Initialization. A starting node vector V is created to represent the target
user. This vector contains r elements, of which only the one corresponding to
the target user is assigned the value of 1. All other elements are assigned a
value of 0. An activation vector D is created to capture the activation levels
of all the nodes in the model. All elements in D(0) are initialized to 0.

—Activation and Activation Level Computation. During iteration t, the algo-
rithm computes the activation vector D(t) as

D(t) = V + M ′D(t − 1), M = (1 − γ)I + αR, (5)

where (1 – γ) specifies the speed of decay in the activation level of the ac-
tive nodes, and α describes the efficiency with which the nodes convert the

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

128 • Z. Huang et al.

activation received from the directly linked active nodes to their own activa-
tion levels. Only a fixed number of nodes with the highest activation levels
keep their activation levels in A(t). All other elements of A(t) are reset to
value 0. The control parameters γ and α were heuristically set to 0.2 and 0.8
in our experiments, after observing several algorithm runs.

—Stopping Condition. The algorithm terminates after a fixed number of itera-
tions. This limit on iterations is set to 10 in the current implementation. The
top 50 item nodes that have the highest activation levels in the activation
vector of the final stage A(10) and that have not been previously purchased
form the recommendation for the targeted consumer.

4.2 Branch-and-Bound Algorithm

Our implementation of the branch-and-bound algorithm (thereafter the BNB
algorithm) follows that used in Chen and Ng [1995], originally developed in
the context of concept exploration. Our implementation starts with a user node
corresponding to the target user. Neighboring nodes, that is, item nodes that
correspond with the target user’s previous purchases, are then activated. The
activated nodes are put into a priority queue based on their activation levels
and high-priority nodes are used to activate their neighbors. The main steps of
the implemented branch-and-bound algorithm are summarized as follows:

—Initialization. The node corresponding with the target user is initialized to
have the activation level of 1. All other nodes are initialized with level 0.
A priority queue, Qpriority, is created with only the target user node as its
initial member. An initially empty output queue, Qoutput, is created to store
activated nodes.

—Activation and Activation Level Computation. During each iteration, the algo-
rithm removes the front node from Qpriority (this node has the highest level of
activation), activates its neighboring nodes, and then computes these neigh-
bors’ activation level as µ j (t + 1) = µi(t) × tij, where µi(t) represents the
activation level of the front node removed from Qpriority, tij represents the
weight of the link connecting the front node with a neighboring node (we as-
signed each link a weight of 0.5 in the current implementation), and µ j (t +1)
represents the newly computed activation level for this neighboring node. Ac-
tivated nodes that have not been recorded earlier in Qoutput are inserted into
the output queue. If they already exist in Qoutput, their activation level will
be increased by µ j (t + 1).

—Stopping Condition. The above activation process is repeated for a fixed num-
ber of times before the algorithm ends and outputs the top 50 item nodes from
Qoutput. In our experiments we heuristically set the limit on the number of
the iterations to 70.

4.3 Hopfield Net Algorithm

The Hopfield net algorithm (thereafter the Hopfield algorithm) performs a par-
allel relaxation search to support spreading activation. In our context, the graph
model of collaborative filtering maps to interconnected neurons and synapses

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 129

in the Hopfield net with neurons representing users and items and synapses
representing interaction between users and items. The implemented Hopfield
net activation algorithm is described as follows:

—Initialization. The user node corresponding to the target user is initialized
to have the activation level 1. All other nodes are initialized with level 0.

—Activation and Activation Level Computation. As in the LCM algorithm, a
fixed number of nodes with highest activation levels are activated. The acti-
vation level for each node is computed as

µ j (t + 1) = fs

[
n−1∑
i=0

tijµi (t)

]
, 0 ≤ j ≤ n − 1, (6)

where fs is the continuous SIGMOID transformation function [Knight 1990]
as

fs (x) = 1
1 + exp((θ1 − x)/θ2)

, (7)

µ j (t +1) is the activation level of node j at iteration t +1, and tij is the weight
of the link connecting node i to node j (similar to the branch-and-bound
algorithm, we assigned each link a weight of 0.5). In accordance with (6), each
newly activated node computes its activation level based on the summation of
the products of its neighbors’ activation level and their synapses. The control
parameters θ1 and θ2 of the SIGMOID function were heuristically set to 10
and 0.8 in our experiments.

—Stopping Condition. The above process is repeated until condition (8) is sat-
isfied indicating that there is no significant change between the last two
iterations. ∑

j

µ j (t + 1) −
∑

j

µ j (t) < ε × t. (8)

In this condition, ε is a small positive number. Note that the allowable
changes are proportional to the number of iterations performed to speed
up the convergence. As in all other approaches, top item nodes that have the
highest activation level in the final state of the network are recommended
after removing items already purchased by the target user.

5. AN EXPERIMENTAL STUDY

We conducted an experiment using data from an online bookstore to evaluate
the effectiveness of transitive association-based collaborative filtering and an-
swer the research questions discussed in Section 3.4. In this section, we first
describe the experimental data and present the evaluation design and per-
formance measures used in our study. We then summarize our experimental
findings.

5.1 Experiment Data

A major Chinese online bookstore (www.books.com.tw) provided us with data
covering a portion of five years of recent transactions. This data set corresponds

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

130 • Z. Huang et al.

to a graph with 9,695 book nodes, 2,000 customer nodes, and 18,771 links
(transactions).

5.2 Evaluation Design and Measurement

To evaluate the performance of different recommendation methods, we adopted
a holdout testing approach similar to those used in Aggarwal et al. [1999] and
Sarwar et al. [2000a]. For each target consumer, we retrieved the entire set of
previously purchased items and sorted them into chronological order by pur-
chase date. The first half of these items was treated as “past” purchases to
serve as input to be fed into different methods to generate recommendations.
For comparison purposes, the second half of these items were treated as “future”
purchases of the customer and hidden from the recommender system.

In our study, we use precision, recall, F-measure, and rank score as defined
in (9), (10), (11), and (14) respectively, to measure the effectiveness of a given
recommendation approach. The first three measures are widely accepted in
information retrieval and recommender system research [Billsus and Pazzani
1998; Sarwar et al. 2000a].

Precision = Number of recommended books that match with future purchases
Total number of recommended books

,

(9)

Recall = Number of recommended books that match with future purchases
Total number of books in future purchases

,

(10)

F ′ = 2 × Precision × Recall + ε2

Precision + Recall + ε
, ε → 0. (11)1

Because the algorithms in our study generate recommendations as a ranked
list, we also adopted the rank scoring metric in our study [Breese et al. 1998].
In this metric, the expected utility of a ranked list of book recommendations
(sorted by index j) for user i is defined as:

Ri =
∑

j

p(i, j)
2(j−1)/(h−1) (12)

where p(i, j) =
{

1, if item j is in user i’s future purchase list,
0, otherwise.

(13)

The parameter h is the viewing halflife (the rank of the book on the list
such that there is a 50% chance the user will review that book), which was
set to 10 in our experiments. The rank scoring measure is based on the notion

1We modified the standard formulation of the F-measure by adding small number ε and ε2 to the
denominator and nominator respectively. This modification will assure valid values of F′-measure
when precision or recall is equal to zero, in which case the F′-measure will be ε ∼ 0. When preci-
sion and recall take nonzero values, the modified F-measure (F′) will be very close to the original
F-measure.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 131

that each successive item in a list is less likely to be viewed by the user with
an exponential decay. The final recommendation utility score over all the test
customers is:

R = 100
∑

i Ri∑
i Rmax

i
, (14)

where Rmax
i is the maximum achievable utility if all future purchases of user i

had been at the top of the ranked list. In our experiments, we set the number of
recommendations for all collaborative filtering approaches studied to 50. Thus,
the recommendation list contained exactly 50 books.

To measure the degree of sparsity of the consumer–product interaction ma-
trix, we used the following graph density definition in (15).

Graph density = Number of actual links present in the graph
Number of possible links in the graph

. (15)

In our experimental study, we experimented with the following 4 approaches
that represent the extant collaborative filtering approaches that do not explore
transitive associations.

—3-Hop. The 3-hop algorithm is a simple graph-based collaborative filtering
algorithm that makes recommendations based on paths with length 3 as
illustrated in Section 3.2.

—User-Based (Correlation). This approach calculates the Person correlation
coefficients between the users and then recommends items based on the pur-
chases of customers that are highly correlated with the target customer.2

—User-Based (Vector Similarity). This approach calculates user similarities
using the vector similarity function and then recommends items based on
the purchases of customers that are similar to the target customer.2

—Item-Based. This approach calculates item similarities instead of user simi-
larities based on the transactional data and then recommends items that are
similar to the target customer’s previous purchases. In our study, we applied
the vector similarity function to calculate the item similarities.3

The 3-hop approach is the simplest of the graph-based approaches and func-
tions as the comparison baseline. We decided to compare spreading-activation-
based approaches with the User-based (Correlation) and User-based (Vector
Similarity) approaches because in previous studies [Breese et al. 1998], they
had been shown to deliver excellent performance for general recommendation
tasks. The item-based approach [Sarwar et al. 2001] was chosen as represen-
tative of approaches specifically designed to deal with the sparsity problem.
This approach has been shown to perform better than other methods in certain
applications [Karypis 2001; Sarwar et al. 2001].

We experimented with three different spreading activation algorithms in-
cluding the LCM, BNB and Hopfield algorithms introduced in Section 4. When
comparing with other collaborative filtering algorithms, we chose the Hopfield

2Specific algorithm implementation followed that in [Breese et al. 1998].
3Specific algorithm implementation followed that in [Sarwar et al. 2001].

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

132 • Z. Huang et al.

Table I. Experimental Results for H1

Algorithm Precision Recall F′-measure Utility score
Hopfield 0.0266 0.1519 0.0407 7.94
3-hop 0.0155 0.0705 0.0230 3.51
User-based (Correlation) 0.0181 0.1064 0.0279 4.57
User-based (Vector Similarity) 0.0187 0.1089 0.0288 4.56
Item-based 0.0082 0.0516 0.0126 0.65

algorithm in our study as representative of the spreading activation approach
because of its consistently excellent performance in our experimental study as
well as in other applications.

In our study, the following three sets of specific hypotheses were tested.

H1. Spreading activation-based collaborative filtering can achieve higher
recommendation quality than the 3-hop, User-based (Correlation), User-based
(Vector Similarity), and Item-based approaches.

H2. Spreading activation-based collaborative filtering can achieve higher
recommendation quality than the 3-hop, User-based (Correlation), User-based
(Vector Similarity), and Item-based approaches for new users (the cold-start
problem).

H3. The recommendation quality of spreading activation-based collabora-
tive filtering decreases when the density of user–item interactions is beyond a
certain level (the over-activation effect).

5.3 Experiment Procedures and Results

In this section, we summarize the experimental results related to the three
research hypotheses presented in Section 5.2.

5.3.1 The Sparsity Problem. For evaluation purposes, we chose 287
customers as target customers who needed recommendations. These were
customers who had been involved in the most recent 2,500 transactions (out
of the total 18,771 transactions in the available data set) and had purchased
at least three books in previous transactions (excluding the most recent 2,500
transactions). We applied the collaborative filtering approaches under study, in-
cluding the Hopfield, 3-hop, User-based (Correlation), User-based (Vector Sim-
ilarity) and Item-based approaches, to make recommendations for these 287
customers. The performance measures were then collected and summarized
in Table I. In this study, we used a pairwise t-test for comparison statistics.
To save space, we adopt the following convention to indicate statistical signif-
icance. In the following result tables, a performance measure x in boldface is
significantly different (at the 99% confidence level) from the measure that is the
largest among the measures that are smaller than x. A performance measure
in regular font is not significantly different from the next largest measure.

We present in Table I the recommendation quality of various recommenda-
tion algorithms.4 The results clearly indicate that spreading activation-based

4We reported results of the collaborative filtering algorithms that did not incorporate the inverse
user frequency and inverse item frequency information to assign weights to the users and items.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 133

Table II. Experimental Results for H2

Algorithm Precision Recall F′-measure Utility score
Hopfield 0.0054 0.1122 0.0102 9.78
3-hop 0.0017 0.0315 0.0031 2.36
User-based (Correlation) 0.0027 0.0525 0.0051 3.86
User-based (Vector Similarity) 0.0027 0.0525 0.0051 3.86
Item-based 0.0014 0.0282 0.0027 0.43

collaborative filtering (the Hopfield approach) outperformed other collabora-
tive filtering approaches significantly on all three measures of recommendation
quality. On average, when the Hopfield algorithm presents a list of 50 recom-
mendations, one of these books will be purchased. The average number of the
books that a customer will purchase in the future is about 7, 15% of which
(1 book) is from the recommended list. This provides strong evidence that
spreading activation can effectively alleviate the sparsity problem in the col-
laborative filtering systems.

The results also show that the two user-based collaborative filtering algo-
rithms (using vector similarity and correlation functions) achieved similar per-
formance in our data set. Their performances fell between those of the 3-hop
algorithm and the Hopfield algorithm but were much closer to the 3-hop algo-
rithm results.

The item-based approach performed poorly in our experiment. We suspect
that this was related to the characteristics of our data set, in which the num-
ber of items (9,695) was much larger than the number of users (2,000), and
the user-item interaction matrix was relatively sparse (with graph density of
0.000256). As a result, it was more difficult to form item neighborhoods than
user neighborhoods. However with a different type of dataset in which the num-
ber of items is small and the number of users is large, the item-based approach
should have better performance, as reported in the literature [Karypis 2001;
Sarwar et al. 2001].

5.3.2 The Cold-Start Problem. To evaluate the performance of various col-
laborative filtering methods for cold-start recommendations, we selected 254
customers as target users who had purchased fewer than five books. Of these
customers, 26 also appeared in the sample of 287 customers for testing H1. The
Hopfield, 3-hop, User-based (Correlation), User-based (Vector similarity) and
Item-based algorithms were then applied to make recommendations for these
new users. Generating high-quality recommendations for new users is a special
challenge of the sparsity problem because of lack of information.

Related experimental results are summarized in Table II, indicating that the
Hopfield algorithm achieved significantly higher precision, recall, F′-measure,
and rank score than other algorithms for new users. This finding confirms
hypothesis H2.

When comparing Table I and Table II, we found that recommendation preci-
sion and recall for new users were consistently lower than those for other users

Our experiments showed that the inverse user frequency or inverse item frequency information
had little effect on the recommendation performance measures in our dataset.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

134 • Z. Huang et al.

Table III. Recommendation Recall for Regular Users and New Users

Regular Decrease t-test
Algorithm users New users Decrease Percentage p-value
Hopfield 0.1568 0.1122 0.0446 28.44% 0.0060
3-hop 0.0728 0.0315 0.0413 56.73% 0.0001
User-based (Correlation) 0.1064 0.0525 0.0539 50.66% 0.0002
User-based (Vector Similarity) 0.1089 0.0525 0.0564 51.79% 0.0000
Item-based 0.0516 0.0282 0.0234 45.35% 0.0318

Table IV. Characteristics of the Graphs of Varying Degree of Sparsity

Average degree Standard deviation Average Standard
Number of customer of customer node degree of deviation of book

Graph of links Density node degree book node node degree
G1 4278 0.000031 1.607 4.378 0.124 0.422
G2 6382 0.000047 2.152 5.603 0.235 0.667
G3 9690 0.000071 3.011 7.182 0.409 1.069
G4 12952 0.000095 3.868 9.253 0.580 1.621
G5 16256 0.000119 4.732 11.106 0.750 2.095
G6 19376 0.000142 5.595 13.057 0.915 2.231
G7 21494 0.000157 6.189 14.569 1.026 2.321
G8 25526 0.000187 7.279 16.619 1.228 4.649
G9 28692 0.000210 8.120 17.831 1.386 4.921

G10 31826 0.000233 8.950 18.431 1.540 5.042
G11 35038 0.000256 9.805 19.358 1.700 5.143

(we call them regular users). We further observed that the Hopfield net collabo-
rative filtering achieved comparable recommendation recalls for new users and
regular users, while the 3-hop algorithm exhibited much wider differences. To
gain more insight, we computed the decrease percentage (defined as decrease
in recall divided by the recall for regular users) for each individual algorithm
and conducted a two-sample t-test to test the significance of recall difference
between new users and regular users under the five collaborative filtering algo-
rithms we studied. Table III summarizes the comparison results. The decrease
in recall for new users using the Hopfield algorithm was much less than those
of the 3-hop and user-based algorithms.

5.3.3 Over-Activation Effect. To test hypothesis H3, we evaluated the qual-
ity of recommendations by the spreading activation algorithms, employing a
series of user-item interaction graphs with varying density levels. Performing
this test posed many challenges since it is difficult to find data sets having the
varying degrees of sparsity we required. In our experiment, we manipulated
the consumer–product interaction data to obtain graphs with different sparsity
levels using a time-based approach.

In this time-based approach, we filtered links by the transaction time that
had been recorded as part of the input data. In essence, this approach took a
series of “snapshots” of purchase transactions at different times. The holdout
test experiment procedure was then conducted on this series of transaction
data. Recommendation precision, recall, and F′ measure were computed for all
287 sample consumers using different graph settings. Table IV summarizes

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 135

Fig. 3. Over-activation effect (G1–G11).

the density levels and topological characteristics [Albert and Barabasi 2002]
of the graphs with which we experimented. In total, 11 graphs of vary-
ing degrees of sparsity corresponding to consumer–product interaction ma-
trices were constructed based on purchase history information. The number
of purchase links ranged from 4,278 (G1) to 35,038 (G11, with all the pur-
chase information present). Note that Graph G11 was used in testing H1 and
H2.

We present in Figure 3 the recommendation quality, using the F′ measure, of
the 3-hop, LCM, BNB, Hopfield, and user-based (vector similarity) algorithms
under different graphs we have obtained. We only report the results for the
vector similarity based algorithm because the correlation-based algorithm de-
livers very similar results. Figure 3 presents the results for G1–G11 described
above. We include in Figure 4 less sparse graphs that were enhanced by artifi-
cially added associations between items based on their intrinsic features (e.g.,
the books’ prices, subject areas, and keywords).5 As such, the results shown
in Figure 4 need to be assessed with caution since they may reflect the mixed
effects of over-activation and the use of item associations [Balabanovic and
Shoham 1997; Sarwar et al. 1998]. In our future work, we plan to use different
recommendation datasets (e.g., the movie rating datasets) to construct graphs
with varying density levels based only on the transaction/rating information
to show the over-activation effect. Because the user-based algorithms are not
able to utilize the associations between items, the curve for the user-based
(similarity function) algorithm maintains the same level of performance after
G11.

5When these new associations were added, the graph was no longer a bipartite graph. This does
not have an impact on the spreading activation algorithms. The different graphs were formed by
using decreasing thresholds for selecting item similarities to form association links.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

136 • Z. Huang et al.

Fig. 4. Over-activation effect (with graphs enhanced by item associations).

Overall, all three spreading activation algorithms consistently outperformed
the 3-hop algorithm. The conclusions we have drawn based on the Hopfield
algorithm also hold true for the LCM and BNB algorithms.

In Figure 3, we observe weak over-activation effects of the spreading acti-
vation algorithms in our experiment. The recommendation quality of spread-
ing activation-based collaborative filtering increased faster than that of the
standard collaborative filtering approach because the transactional data ac-
cumulates during the initial deployment phase of the recommender system.
The recommendation quality more or less peaks (with noticeable degradations)
when the consumer–product interaction matrix becomes relatively dense (see
G8–G11). In Figure 4, the three algorithms show some noticeable differences in
performance when the underlying graph is dense. For instance, LCM shows a
more significant over-activation effect, resulting in the deterioration of the rec-
ommendation quality. We notice in Figure 4 that there are some improvements
in the performance of the algorithms before the overall downward trends start.
This may be explained by the benefit of including content similarity information
[Balabanovic and Shoham 1997; Sarwar et al. 1998]. As more content informa-
tion is added, it seems that the over-activation effect starts to overshadow the
benefit of using additional information.

5.4 Computational Issues with Spreading Activation Algorithms

In this section, we focus on computation aspects of the spreading activation
algorithms. We first examine the impact of control parameter settings of the
three spreading activation algorithms. We then compare the computational
efficiency of these algorithms.

5.4.1 Sensitivity of Control Parameters. In the experiments reported in
the previous section, the control parameters of various implemented spreading

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 137

activation algorithms were set heuristically. In this section, we study the sen-
sitivity of these control parameters.

LCM Algorithm

We have assessed the effects of α, γ , and the number of iterations of the LCM algo-
rithm. These parameters were set to 0.8, 0.2, and 10, respectively, in our experimental
study. When assessing the sensitivity of individual control parameters, we fixed the
other two at the values used in the experiment and varied the target parameter. We
observe that the average F′ measures of the LCM algorithm ranged from 0.03878 to
0.04107 when the three control parameters were varied. In general, the LCM algorithm
was not sensitive to control parameter settings.

BNB Algorithm

The key control parameter for the BNB algorithm was the number of iterations al-
lowed. Our results showed that this parameter had certain effect on the recommenda-
tion quality. With the number of iterations varied between 20 and 100, the average F′

measure varied between 0.03118 and 0.03817. We also observe that the gain in rec-
ommendation quality decreased as the number of iterations increased. Difference in
recommendation quality was small between 70 and 100 iterations.

Hopfield Algorithm

We varied θ1 and θ2 of the SIGMOID function in the Hopfield algorithm in our experi-
ment. In general, the recommendation quality was not sensitive to these two parameters.
The average F′ measure ranged from 0.04004 to 0.04129 when the two control parame-
ters were varied. We also varied the ε parameter in the stopping condition between 0.01
and 0.1 and did not observe any changes in the F′ measure.

5.4.2 Computational Efficiency Analysis. We present in Figure 7 the av-
erage running times needed to generate recommendations for one customer
using spreading activation algorithms. We observe that spreading activa-
tion algorithms required longer computation time to generate recommen-
dations than the standard collaborative filtering, due to the computation
needed to explore transitive associations. Among the three spreading acti-
vation algorithms, Hopfield was the most efficient, followed by LCM. BNB
was the most computationally expensive approach. Overall, when the den-
sity of the consumer–product interaction matrix increases, we observe that
the computation time of the spreading activation approaches increase al-
most linearly. In our current implementation, we used database stored pro-
cedures in MS SQL for fast prototyping. Under this implementation, all
approaches returned recommendations within approximately 2 seconds for
the sparse consumer–product interaction matrix. Note that significant reduc-
tion in computing time is possible using more efficient programming envi-
ronments. For instance, our initial computational experiment showed that
a Python-based implementation using a sparse matrix library achieved a
speed-up factor between 10 and 50. In addition, for most e-commerce appli-
cations, users’ purchase profiles change slowly and recommendations could be
computed offline to avoid computational bottlenecks at the recommendation
engine.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

138 • Z. Huang et al.

Fig. 5. Computational efficiency analysis of spreading activation algorithms.

For comparison purposes, we also plotted the computation time of an un-
constrained implementation of the Leaky Capacitor Model (Figure 5). The first
density level (0.000256) in Figure 5 corresponds to G11, the graph with the com-
plete purchase information. All other density levels correspond to graphs that
contained synthesized item association information. We observe that the un-
constrained algorithm required much more computation time than any of three
spreading activation algorithms. This provides computational justification for
applying spreading activation algorithms to efficiently explore transitive asso-
ciations. (We observed that the unconstrained LCM algorithm did not achieve
significant improvement in recommendation quality when compared with the
three spreading activation algorithms implemented.)

6. SUMMARY AND FUTURE WORK

In this research, we aimed to alleviate the sparsity problem in collaborative
filtering systems. We modeled the recommendation problem as an associa-
tive retrieval problem. Spreading activation algorithms developed in the as-
sociative information retrieval literature were applied to efficiently explore
transitive associations. The effectiveness of this approach was evaluated ex-
perimentally using data from an online bookstore. Experimental results indi-
cated that (a) spreading activation-based collaborative filtering achieved signif-
icantly better recommendation quality than the standard collaborative filtering
approaches that do not take into consideration transitive associations, and (b)
spreading activation-based approaches can effectively alleviate the cold-start
problem by generating high-quality recommendations for new users. We also ob-
served the over-activation effect of the spreading activation-based approaches,
that is, superimposing transitive associations to a consumer–product graph
that is not sparse may “dilute” the data used to infer user preferences.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 139

We are currently extending the research reported in this paper in the follow-
ing areas.

—We are using additional data sets with different characteristics to compare
the performances of the spreading activation algorithms with other collab-
orative filtering algorithms studied in this article. For instance, our initial
experimental results on the MillionMovie data set, where the consumer–
product interaction matrix is much denser than that in the online bookstore
data set in this study, showed that the item-based approach achieved the
best performance, followed by the user-based approaches. The spreading ac-
tivation algorithm performed slightly worse than the user-based approaches.
This result provides further evidence of the over-activation effect and indi-
cates the importance of specific characteristics of the data set and their im-
pact on the selection of an appropriate collaborative filtering approach. Our
future research is aimed at gaining a comprehensive understanding of the
applicability and effectiveness of the spreading activation-based collabora-
tive filtering approach.

—We are in the process of comparing and combining the spreading activation
algorithms with the hybrid recommendation approaches. By including item
and user associations based on content-related information (e.g., book con-
tent, customer demographics, etc.), the spreading activation algorithms can
be directly applied to generate hybrid recommendations. Our initial exper-
imental results showed that the spreading activation-based hybrid recom-
mendation performed significantly better than all the other approaches.

—We are also working on incorporating inverse user frequency and inverse
item frequency into our spreading activation framework. By assigning these
as weights to the nodes in the graph model, we may improve the recom-
mendation quality of the spreading activation algorithms and to some extent
alleviate the over-activation effect.

—Lastly, we are extending the spreading activation framework so it can deal
with systems having feedback that take multiple values (e.g., ratings) in
addition to binary transactional data. We will then directly compare our ap-
proach with Aggarwal’s and Mirza’s graph-theoretical approaches. We are
also extending our framework to incorporate the users’ feedback on the rec-
ommendations to further improve the quality of the recommendation using
the spreading activation approach.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their detailed and constructive
comments on the two earlier versions of this article. We would also like to ac-
knowledge books.com.tw for providing us with the dataset and their assistance
during the project.

REFERENCES

AGGARWAL, C. C., WOLF, J. L., WU, K.-L., AND YU, P. S. 1999. Horting hatches an egg: A new graph-
theoretic approach to collaborative filtering. In Proceedings of the 5th ACM SIGKDD Conference

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

140 • Z. Huang et al.

on Knowledge Discovery and Data Mining (KDD’99) (San Diego, Calif.). ACM, New York, 201–
212.

ALBERT, R. AND BARABASI, A.-L. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys.
74, 47–97.

ANDERSON, J. R. 1983. A spreading activation theory of memory. J. Verb. Learn. Verb. Behav. 22,
261–295.

BALABANOVIC, M. AND SHOHAM, Y. 1997. FAB: Content-based, collaborative recommendation. Com-
mun. ACM 40, 3, 66–72.

BASU, C., HIRSH, H., AND COHEN, W. 1998. Recommendation as classification: Using social and
content-based information in recommendation. In Proceedings of the 15th National Conference
on Artificial Intelligence, 714–720.

BILLSUS, D. AND PAZZANI, M. J. 1998. Learning collaborative information filters. In Proceedings of
the 15th International Conference on Machine Learning, 46–54.

BOLLEN, J., VANDESOMPEL, H., AND ROCHA, L. M. 1999. Mining associative relations from website
logs and their application to context-dependent retrieval using spreading activation. In Proceed-
ings of the Workshop on Organizing Web Space (WOWS). ACM Digital Libraries 99.

BREESE, J. S., HECKERMAN, D., AND KADIE, C. 1998. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial In-
telligence (Madison, Wisc.). Morgan-Kaufmann, Reading, Mass. 43–52.

BURKE, R. 2000. Semantic ratings and heuristic similarity for collaborative filtering. In Proceed-
ings of the 17th National Conference on Artificial Intelligence.

CHEN, H. AND DHAR, V. 1991. Cognitive process as a basis for intelligent retrieval systems design.
Information Processing and Management 27, 5, 405–432.

CHEN, H., LYNCH, K. J., BASU, K., AND NG, D. T. 1993. Generating, integrating, and activating
thesauri for concept-based document retrieval. IEEE Exp., Spec. Series Artif. Intell. Text-based
Inf. Systems 8, 2, 25–34.

CHEN, H. AND NG, D. T. 1995. An algorithmic approach to concept exploration in a large knowledge
network (automatic thesaurus consultation): Symbolic branch-and-bound search vs. Connection-
ist Hopfield net activation. J. ASIS 46, 5, 348–369.

CLAYPOOL, M., GOKHALE, A., MIRANDA, T., MURNIKOV, P., NETES, D., AND SARTIN, M. 1999. Combining
content-based and collaborative filters in an online newspaper. In Proceedings of the ACM SIGIR
Workshop on Recommender Systems. ACM, New York.

COHEN, P. R. AND KJELDSEN, R. 1987. Information retrieval by constrained spreading activation
in semantic networks. Information Processing and Management 23, 4, 255–268.

COLLINS, A. M. AND LOFTUS, E. F. 1975. A spreading activation theory of semantic processing.
Psych. Rev. 82, 6, 407–428.

CONDLIFF, M. K., LEWIS, D. D., MADIGAN, D., AND POSSE, C. 1999. Bayesian mixed-effects models for
recommender systems. In Proceedings of the ACM SIGIR Workshop on Recommender Systems.
ACM, New York.

CRESTANI, F. AND LEE, P. L. 2000. Searching the web by constrained spreading activation. Inf.
Proc. Manage. 36, 585–605.

CROUCH, C. AND YANG, B. 1992. Experiments in automatic statistical thesaurus construction. In
Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, (Copenhagen, Denmark). ACM, New York, 77–88.

GOLDBERG, K., ROEDER, T., GUPTA, D., AND PERKINS, C. 2001. Eigentaste: A constant time collabo-
rative filtering algorithm. Inf. Ret. 4, 2, 133–151.

GOOD, N., SCHAFER, J., KONSTAN, J., BORCHERS, A., SARWAR, B., HERLOCKER, J., AND RIEDL, J. 1999.
Combining collaborative filtering with personal agents for better recommendations. In Proceed-
ings of the 16th National Conference on Artificial Intelligence, 439–446.

GORDON, M. 1988. Probabilistic and genetic algorithm for document retrieval. Commun. ACM
31, 10, 1208–1218.

HILL, W., STEAD, L., ROSENSTEIN, M., AND FURNAS, G. 1995. Recommending and evaluating choices
in a virtual community of use. In Proceedings of the ACM CHI’95 Conference on Human Factors
in Computing Systems. ACM, New York, 194–201.

HUANG, Z., CHUNG, W., AND CHEN, H. 2003. A graph model for e-commerce recommender systems.
J. ASIST, in press.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

Associative Retrieval Techniques for the Sparsity Problem • 141

HUANG, Z., CHUNG, W., ONG, T.-H., AND CHEN, H. 2002. A graph-based recommender system for
digital library. In Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries
(Portland, Ore.). ACM, New York, 65–73.

JUNG, G. AND RAGHAVAN, V. 1990. Connectionist learning in constructing thesaurus-like knowledge
structure. In Proceedings of the AAAI Spring Symposium on Text-based Intelligent Systems.

KARYPIS, G. 2001. Evaluation of item-based top-n recommendation algorithms. In Proceedings of
the 10th International Conference on Information and Knowledge Management (CIKM) (Atlanta,
Ga.).

KNIGHT, K. 1990. Connectionist ideas and algorithms. Commun. ACM 33, 11, 59–74.
KONSTAN, J. A., MILLER, B. N., MALTZ, D., HERLOCKER, J. L., GORDON, L. R., AND RIEDL, J. 1997. Group-

Lens: Applying collaborative filtering to Usenet news. Commun. ACM 40, 3, 77–87.
LIN, W., ALVAREZ, S. A., AND RUIZ, C. 2002. Efficient adaptive-support association rule mining for

recommender systems. Data Mining Knowl. Disc. 6, 1, 83–105.
MIRZA, B. J. 2001. Jumping connections: A graph-theoretic model for recommender sys-

tems. Computer Science Department, Virginia Polytechnic Institute and state university,
(http://scholar.lib.vt.edu/theses/available/etd-02282001-175040/unrestricted/etd.pdf).

MIRZA, B. J., KELLER, B. J., AND RAMAKRISHNAN, N. 2003. Studying recommendation algorithms by
graph analysis. J. Intel. Inf. Syst. 20, 2, 131–160.

MOBASHER, B. H., DAI, T. L., NAKAGAWA, M., SUN, Y., AND WILTSHIRE, J. 2000. Discovery of aggregate
usage profiles for web personalization. In Proceedings of the Workshop on Web Mining for E-
Commerce—Challenges and Opportunities.

NASRAOUI, O., FRIGUI, H., JOSHI, A., AND KRISHNAPURAM, R. 1999. Mining web access logs using
relational competitive fuzzy clustering. In Proceedings of the 8th International Fuzzy Systems
Association World Congress—IFSA 99.

PAZZANI, M. 1999. A framework for collaborative, content-based and demographic filtering. Artif.
Intel. Rev. 13, 5–6, 393–408.

PAZZANI, M. AND BILLSUS, D. 1997. Learning and revising user profiles: The identification of in-
teresting web sites. Mach. Learn. 27, 3, 313–331.

PIROLLI, P., PITKOW, J., AND RAO, R. 1996. Silk from a sow’s ear: Extracting usable structures from
the web. In Proceedings of the ACM CHI 96 Conference on Human Factors in Computing Systems.
118–125.

RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTROM, P., AND RIEDL, J. 1994. GroupLens: An open ar-
chitecture for collaborative filtering of NetNews. In Proceedings of the ACM CSCW’94 Conference
on Computer-Supported Cooperative Work. ACM, New York, 175–186.

SALTON, G. AND BUCKLEY, C. 1988. On the use of spreading activation methods in automatic in-
formation. In Proceedings of the 11th ACM SIGIR International Conference on Research and
Development in Information Retrieval. ACM, New York, 147–160.

SARWAR, B., KARYPIS, G., KONSTAN, J., AND REIDL, J. 2000a. Analysis of recommendation algorithms
for e-commerce. In Proceedings of the ACM Conference on Electronic Commerce. ACM, New York,
158–167.

SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. 2000b. Application of dimensionality reduction
in recommender systems: A case study. In Proceedings of the WebKDD Workshop at the ACM
SIGKKD. ACM, New York.

SARWAR, B., KONSTAN, J., BORCHERS, A., HERLOCKER, J., MILLER, B., AND RIEDL, J. 1998. Using filtering
agents to improve prediction quality in the GroupLens research collaborative filtering system.
In Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW). ACM,
New York, 345–354.

SARWAR, B. M., KARYPIS, G., KONSTAN, J. A., AND RIEDL, J. T. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International World Wide Web Conference.
285–295.

SCHAFER, J., KONSTAN, J., AND RIEDL, J. 2001. E-commerce recommendation applications. Data
Min. Knowl. Disc. 5, 1–2, 115–153.

SCHEIN, A. I., POPESCUL, A., UNGER, L. H., AND PENNOCK, D. M. 2002. Methods and metrics for cold-
start recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2002). (Tampere, Finland), 253–
260.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

142 • Z. Huang et al.

SHARDANAND, U. AND MAES, P. 1995. Social information filtering: Algorithms for automating “word
of mouth”. In Proceedings of the ACM CHI’95 Conference on Human Factors in Computing Sys-
tems. ACM, New York, 210–217.

SOBOROFF, I. AND NICHOLAS, C. 2000. Collaborative filtering and the generalized vector space
model. In Proceedings of the 23rd Annual International Conference on Research and Develop-
ment in Information Retrieval (Athens, Greece). 351–353.

TERVEEN, L., HILL, W., AMENTO, B., MCDONALD, D., AND CRETER, J. 1997. PHOAKS: A system for
sharing recommendations. Commun. ACM 40, 3, 59–62.

WONG, S. K. M., ZIARKO, W., AND WONG, P. C. N. 1985. Generalized vector spaces model in in-
formation retrieval. In Proceedings of the 8th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, New York, 18–25.

Received January 2003; revised June 2003 and September 2003; accepted September 2003

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.

