
BIG DATA MINING AND ANALYTICS

ISSN 2096-0654 03/06 pp181–195

Volume 3, Number 3, September 2020

DOI: 10.26599/BDMA.2020.9020003

C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Applying Big Data Based Deep Learning System to Intrusion Detection

Wei Zhong�, Ning Yu, and Chunyu Ai

Abstract: With vast amounts of data being generated daily and the ever increasing interconnectivity of the world’s

internet infrastructures, a machine learning based Intrusion Detection Systems (IDS) has become a vital component

to protect our economic and national security. Previous shallow learning and deep learning strategies adopt the

single learning model approach for intrusion detection. The single learning model approach may experience

problems to understand increasingly complicated data distribution of intrusion patterns. Particularly, the single deep

learning model may not be effective to capture unique patterns from intrusive attacks having a small number of

samples. In order to further enhance the performance of machine learning based IDS, we propose the Big Data

based Hierarchical Deep Learning System (BDHDLS). BDHDLS utilizes behavioral features and content features to

understand both network traffic characteristics and information stored in the payload. Each deep learning model in

the BDHDLS concentrates its efforts to learn the unique data distribution in one cluster. This strategy can increase

the detection rate of intrusive attacks as compared to the previous single learning model approaches. Based on

parallel training strategy and big data techniques, the model construction time of BDHDLS is reduced substantially

when multiple machines are deployed.

Key words: intrusion detection; deep learning; convolution neural network; fully connected feedforward neural

network; multi-level clustering algorithm

1 Introduction

With vast amounts of data being created every

day and the ever increasing interconnectivity of the

world’s internet infrastructures, more and more security

vulnerabilities in these infrastructures are discovered

by security experts every month[1]. These security

vulnerabilities create opportunities for cyber criminals to

intrude into these infrastructures and perform malicious

activities[2]. Consequently, cyber security experts and

� Wei Zhong and Chunyu Ai are with the Division of Math

and Computer Science, University of South Carolina Upstate,

Spartanburg, SC 29303, USA. E-mail: wzhong@uscupstate.edu;

aic@uscupstate.edu.

� Ning Yu is with the Department of Computing Sciences, State

University of New York College at Brockport, Brockport, NY

14420, USA. E-mail: nyu@brockport.edu.

�To whom correspondence should be addressed.

Manuscript received: 2020-03-08; revised: 2020-03-27;

accepted: 2020-03-30

designers need to develop various intrusion detection

systems to protect computers and networks from hackers

who may attack the network system and steal and/or

destroy financial, medical, or other valuable information

from databases[2].

The traditional Intrusion Detection System (IDS)

usually utilizes precise description such as rules or

signatures to monitor traffic[3]. The signature based

approach generally has a low false positive rate. Since

new intrusion techniques are being designed and

invented every day, experts need to frequently update the

database containing these rules and signatures, which is a

labor-intensive process. Sometimes it is very challenging

to develop appropriate signatures for more sophisticated

attacks which are evolved from previous attacks[3].

Besides traditional intrusion detection systems,

machine learning techniques have been explored by

researchers[4]. Compared with traditional intrusion

detection systems, machine learning techniques can

182 Big Data Mining and Analytics, September 2020, 3(3): 181–195

automatically reason about intrusive and benign samples

to fit the most appropriate detection model parameters.

Particularly, machine learning techniques can be used

to discover patterns of complex intrusive activities after

examining features represented by the network traffic[5].

In recent years, the large number of labeled samples,

powerful computational hardware, and breakthrough

in machine learning algorithms have triggered research

community to re-evaluate the significance of machine

learning techniques for intrusion detection[3–6]. The

shallow learning model and the deep learning model

are two main types of machine learning techniques for

intrusion detection systems[3, 4]. The shallow learning

model typically consists of less than three computational

layers[3]. Examples of the shallow learning model

include support vector machine, logistics regression,

and decision tree[7]. A single shallow learning model

is normally constructed on an entire dataset. A single

shallow learning model may encounter difficulty to

discover useful patterns from a large number of training

samples. Researchers have shown that there are mapping

functions that the shallow learning model cannot

learn[7]. In general, the shallow learning model has

not accomplished satisfactory performance for intrusion

detection since the shallow learning model is not

effective to take advantages of patterns offered by the

increasing number of samples.

In the past ten years, deep learning is one of the

most important technical breakthroughs in the artificial

intelligence field. In contrast to the shallow learning,

deep learning generally requires a large number of

neural layers[8, 9]. Deep learning has produced better

results than shallow learning models in the fields

of computer vision, speech recognition, automatic

machine translation, and finance[10, 11]. Advantages of

deep learning in other areas have inspired researchers

to apply deep learning to intrusion detection[12–15].

Conventionally, a single deep learning model is

constructed on the whole dataset. The single deep

learning model generally works very well when huge

amount of samples are available, such as computer

vision[10]. Under the situation where huge amount of

samples are not available, the single deep learning model

may have troubles[10]. For the intrusion detection task,

the single deep learning based approach may experience

problems to understand increasingly complicated data

distribution of intrusion samples. Particularly, the single

deep learning model may encounter difficulty to capture

unique patterns from the intrusive attacks having a small

number of samples.

To further enhance performance of a single shallow

learning model and a single deep learning model, we

propose a Big Data based Hierarchical Deep Learning

System (BDHDLS) that organizes multiple deep learning

models using the hierarchical tree structure. The

hierarchical tree structure is developed to partition

samples into multiple level clusters and each deep

learning model trained on related samples in one cluster

is adapted to study the unique data distribution for that

cluster. The construction of BDHDLS has five phases. In

the first phase, behavioral features and content features

are extracted and selected using big data techniques. In

the second phase, the entire dataset is partitioned into

one-level clusters by the parallel improved K-means

clustering approach. Samples in each cluster of the tree

generally display similar traffic patterns[4, 5]. In the third

phase, the hierarchical clustering process is carried out

for each one level cluster with low quality in parallel

to produce the cluster subtree. Then these subtrees

are combined to generate multiple-level hierarchical

trees of clusters. In other words, the entire dataset is

partitioned into multiple clusters in multiple levels. In

the fourth phase, the deep learning model is built for each

cluster in the hierarchical tree to learn the distinctive data

distribution pattern for that cluster. In the final phase,

decision values of deep learning models are merged to

make the final judgement about whether the test sample

is intrusive or not.

Feature extraction and selection have big impact

on performance of deep learning models. In our

proposed model, both behavioral features and content

features are adopted. Behavioral features and content

features are used to analyze traffic patterns in different

angles. Behavioral features describe network traffic

characteristics including source-destination ports/IP

addresses, various packets-level/flow-level statistics,

and durations of connections. The content features

describe the subtle patterns embedded into the payload

information[16]. Combining both types of features can

improve robustness of the learning algorithms. In

order to evaluate different approaches for building the

intrusion detection system, the performance of five

computational models is compared: (1) a single Decision

Tree (DT) built on the entire dataset; (2) a single Support

Vector Machine (SVM) built on the entire dataset; (3)

a single deep Convolutional Neural Network (CNN)

built on the entire dataset; (4) a single model (RNN-

CNN) combining Recurrent Neural Network (RNN) and

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 183

CNN built on the entire dataset; and (5) BDHDLS built

on the tree structure. SVM and DT are the shallow

learning architecture. CNN is based on the HAST-I

architecture described in Ref. [17]. CNN-RNN is based

on the HAST-II architecture described in Ref. [17]. CNN

and CNN-RNN extract content features from payloads

automatically. Both the combined 5 � 2 Cross Validation

(CV) F test[18] and the independent test are performed

to evaluate the performance of the intrusion detection

system. The evaluation metrics used in this work include

True Positive Rate (TPR) or detection rate, False Positive

Rate (FPR) or false alarm rate, and accuracy[3, 19].

Major contributions of this work include (1) utilization

of big data techniques called Apache Spark for feature

selection and clustering; (2) incorporation of both

behavioral and content-based features simultaneously

to improve prediction accuracy; and (3) adoption of

multiple deep learning models in the hierarchical tree

structure to learn unique traffic patterns for each intrusive

attack family.

The rest of the paper is organized as follows. Section

2 discusses the related works. Section 3 describes five

phases of BDHDLS. Section 4 explains the training

set, the testing set, evaluation metrics, and evaluation

methods. Section 5 presents the experimental results

and analysis. Finally, Section 6 concludes the paper and

points out the future work.

2 Related Work

Traditional signature-based approaches dominate

intrusion detection softwares since they achieve a low

false positive rate[2]. The signature-based approaches

can detect attacks by searching specific patterns

including a set of behavioral sequences in network

traffic or well-known malicious instructions in the

payload of packets[2]. Since the complexity of network

attacks continues to grow rapidly, constant updates of

the signature database are required. These updates are

generally labor intensive. As a result, the lag between

discovery of a new attack strategy and signature updates

can potentially result in failure of identifying new

network threats[1, 2]. Furthermore, the signature-based

approach may not discover attacks with slightly

modified payloads[1, 2].

In order to avoid potential weaknesses of traditional

signature-based approaches, researchers have employed

the shallow learning models having less than three

computational layers such as DT and SVM for intrusion

detection[2]. These shallow learning models generally

cannot further improve their performance with the

increasing number of training samples since the shallow

learning models struggle to explore a rich set of

patterns provided by a large number of training samples.

Since a deep learning model can keep boosting their

performance with more and more training samples as

compared to a shallow learning model[3], researchers

have experimented on a single deep learning model using

the whole dataset for intrusion detection[12–14, 20, 21].

Constructing a single learning model for a dataset

that combines samples from multiple types of intrusive

attacks has three disadvantages: (1) problem to learn

complicated data distribution; (2) difficulty to capture

patterns from intrusive attacks having a small number of

training samples; and (3) scalability. Firstly, each type of

intrusive attacks has distinctive characteristics, strategy,

and data distribution[2]. Additionally, the variety and

sophistication of intrusive attacks keep growing quickly

due to new attacking strategies that are created each

year[2]. As a result, combining different types of intrusive

attacks into one dataset can increase the complexity of

the entire dataset significantly and make the learning task

more challenging[2]. Secondly, some types of intrusive

attacks only have a small number of samples. After

merging these types of intrusive attacks having a small

number of training samples into the entire large dataset,

it is difficult for the deep learning model to learn patterns

of these intrusive attacks. Thirdly, constructing a single

deep learning model is not scalable to study patterns of

increasingly big intrusion detection datasets. Training

deep learning models with millions of samples may

require several weeks to complete[22]. The expensive

training cost may hamper efforts to explore different

deep learning architectures quickly so that researchers

can adjust detection strategies and techniques in order to

respond to new variants of attacks.

Choosing the appropriate set of features is another

critical issue for machine learning algorithms.

Behavioral features and content features are two

main types of features adopted by machine learning

based IDS[2]. These two types of features are used to

analyze the pattern of the intrusive activities in different

angles. The behavioral features focus on network

traffic characteristics, such as source-destination

ports/IP addresses, various packets-level/flow-level

statistics, and duration of collections. Various deep

neural networks were developed in recent literatures to

evaluate the network behaviors[23–32]. In the contrast,

content features are used to uncover patterns of

184 Big Data Mining and Analytics, September 2020, 3(3): 181–195

intrusions through the content of payloads in the traffic.

Deep examination of payloads may reveal valuable

information related to exploit methods, malicious

actions, or illegal commands[16]. Both behavioral feature

based approaches and content feature based approaches

have their advantages and disadvantages. Behavioral

feature based approaches may not discover all intrusive

activities since behavioral features only capture network

traffic characteristics. Content feature based approaches

are the powerful tools to recognize intrusive activities.

However, content feature based approaches may suffer

from payload obfuscation, which may be achieved by

polymorphism and metamorphism. In the meantime, it

is difficult for the attacker to obfuscate its behavioral

patterns[2]. Most of current researches use either

behavioral features or content features. To the best of

our knowledge, no research has combined behavioral

and content features systematically and intelligently.

For content feature extraction, the scalability is another

major issue. Since billions of candidate content features

can be extracted from payloads, big data techniques

are suitable to handle this overwhelming amount of

data[30, 33].

To overcome potential weaknesses of previous

approaches, we propose a BDHDLS for intrusion

detection. In the proposed BDHDLS, each deep learning

model in the tree structure is constructed on the data

subset for a particular group of intrusive attack families.

Hence, each model is specialized to study the data

distribution for a specific group of intrusive attacks

and all deep learning models in the hierarchical tree

cooperate to make the final decision. As compared to

previous approaches for intrusion detection, BDHDLS

has better chances to learn unique data distribution

patterns for each intrusive attack family. As compared

to previous approaches who only use either behavioral

features or content features, BDHDLS considers both

behavioral features and content features to enhance the

capability to understand increasingly complex intrusion

data distribution. In order to address IDS scalability

issues, BDHDLS adopts big data techniques to extract

features and parallel strategies to accomplish clustering

and model training.

This work is motivated by the multi-level deep

learning model for malware detection[34]. As compared

to malware detection, this work for intrusion detection

creates unique challenges and requires different

strategies to select useful features and build multi-level

clusters. Particularly, feature selection and clustering

process require utilization of big data techniques in order

to speed up the time and space intensive computational

process. In this work, selection of appropriate deep

learning architecture and its hyper parameter is highly

dependent on feature extraction from behavioral and

content characteristics from the network traffic. As

a result, the process of deep learning training and

parameter tuning in this work is quite different from

the model construction process for malware detection.

3 BDHDLS for Intrusion Detection

Construction of BDHDLS is divided into five phases:

Phase 1: Generating behavioral features and content

features using big data techniques; Phase 2: Partitioning

the dataset into multiple one-level clusters using Spark

based parallel improved K-means algorithm; Phase 3:

Generating multi-level cluster trees in parallel; Phase

4: Building the deep learning model for each cluster;

Phase 5: Merging decisions from deep learning models

in different clusters to classify samples as intrusive or

benign. The flow-chart to construct BDHDLS is shown

in Fig. 1.

3.1 Generation of behavioral features and content

features

Since different choices of features can impact

the performance of machine learning algorithms

significantly, feature generation and extraction are one of

the most important tasks for any machine learning model.

In this section, the process of producing behavioral

features and content features is discussed.

At first, behavioral features are generated after

analyzing network traffic. Behavioral features in this

work include the number of data bytes from source to

destination, various packets-level/flow-level statistics,

type of the protocol, and duration of collection[16]. In

other words, behavioral features are used to reflect

characteristics of network traffic patterns.

After generating behavioral features, content features

are extracted from payloads in order to uncover vital

information embedded into the payload, which is

the primary location for intruders to initiate a set

of malicious instructions, exploit methods, or illegal

commands[16]. In the first step of content feature

extraction, n-grams (n-byte sequences) are generated

by sliding an n-byte window. After payloads for all

samples in the whole dataset are processed, frequencies

of unique n-grams appearing in the benign samples

and intrusive samples are calculated, respectively. It

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 185

Fig. 1 Flow chart for building BDHDLS, where FC represents Full Connected feed forward neural network.

is generally inappropriate to use all byte n-gram features

extracted from payloads. When the classifier is trained

with the exponential number of such binary n-gram

features, the effectiveness of a classifier can be reduced

significantly since most of these features may be noisy,

redundant, or irrelevant. In order to avoid these problems,

candidate binary n-gram features need to be sorted based

on certain criterion so that a small subset of features

with the greatest discriminatory power can be selected

for model construction.

The information gain is used as the selection criterion

for important content features in this work since it is

one of the most effective feature selection measures

reported in literatures[2, 35]. In this work, the information

gain is utilized to measure the effectiveness of a feature

to classify the training data. If the training data is

split based on values of this feature, information gain

measures the expected reduction in entropy after the

split. The feature with higher information gain is more

effective to classify the samples. The information gain

can be defined as Eq. (1)[35]:

Gain.A/ D Info.D/ � InfoA.D/ (1)

where Info.D/ is the original information requirement

and InfoA.D/ is the new requirement after splitting on

the feature A. Info.D/ is defined as Eq. (2):

Info.D/ D �
pos

total
log2

pos

total
�

neg

total
log2

neg

total
(2)

where pos is the total number of positive (intrusive)

samples in I , total is the total number of samples in I ,

and neg is the total number of negative (benign) samples

in I . I represents the whole dataset in Eq. (2). InfoA.D/

is defined as Eq. (3):

InfoA.D/ D
X

v2.0;1/

totalv

total

�

�
posv

totalv
log2

posv

totalv
�

negv

totalv
log2

negv

totalv

�

(3)

The feature extraction and selection process can

be time consuming and space intensive for very

large datasets. In order to provide the efficient and

effective solution for feature selection, the Spark (in-

memory MapReduce) framework is utilized to perform

parallel tasks for byte n-gram extraction and selection

in the cluster of machines. The Spark (in-memory

MapReduce) framework can process large datasets in

parallel, distributing the workload across large clusters

of commodity machines.

Figure 2 shows major steps to extract important

content features using the Spark framework. Based on

the Spark framework, the training dataset samples are

evenly distributed among m nodes in the cluster. Byte

186 Big Data Mining and Analytics, September 2020, 3(3): 181–195

Fig. 2 Major steps to extract important content-based

features using the Spark framework.

n-grams are extracted from each training file in parallel,

using m nodes in the cloud cluster (Fig. 2, Step 1). For

example, byte 2-gram EE12 is observed once in one

positive (intrusive) sample in Node 1, and meanwhile

it is observed once in a negative (benign) sample in

Node 2. This is denoted by (EE12, C) and (EE12, �)

under Nodes 1 and 2, respectively, in Step 1 of Fig.

2. In Step 2 of Fig. 2, the in-memory MapReduce

program first aggregates labels of identical n-grams. As

a result, the aggregated pair for EE12 is (EE12, C;�).

The aggregated n-grams are distributed to reducers

in the m nodes of the cloud cluster. Each reducer

counts aggregated labels to obtain a positive count and

a negative count. The positive count shows how many

intrusive samples contain the particular feature. The

negative count shows how many benign samples contain

the particular feature. This is denoted by (EE12, 1, 1)

in Step 2 of Fig. 2. In Step 3 of Fig. 2, the in-memory

MapReduce program calculates the information gain of

each byte n-gram feature and sorts these byte n-gram

features based on the information gain. In Step 4 of

Fig. 2, the reduce phase selects the best feature based

on the information gain using one node while the map

phase does nothing. Each feature in a content feature set

is a binary feature. If the given content feature is present

in a sample, its value is 1; otherwise, its value is 0.

3.2 Generation of one-level clusters

After behavioral and content features are generated,

these features are used to produce one-level clusters

with the K-means algorithm. Initialization techniques

and scalability are two major issues for the traditional K-

means algorithms. Traditional K-means algorithms[36]

randomly select samples as initial cluster centers. This

strategy can result in distorted or improper partitions,

which may be deviated from globally optimal solutions.

For instance, a small number of clusters may capture a

large percentage of samples and remaining clusters may

gather a few number of samples due to random choice of

initial cluster centers. Traditional K-means algorithms

also face the challenge to process large number of

samples efficiently[36].

In order to tackle issues of random selection and

scalability, the parallel improved K-means clustering

using Apache Spark[37] is developed in this work.

The parallel K-means algorithm adopts the greedy

initialization techniques[38] to overcome weaknesses

of random initialization. The goal of the greedy

initialization technique is to choose proper initial

points, which can lead to the final clustering solution

representing the underlying data distribution more

accurately and consistently.

Each iteration of the parallel K-means clustering has

two phases: (1) the mapping phase and (2) reducing

phase. In the mapping phase, the closest centroid for each

sample located in different data partitions is computed

in parallel. Each data partition of the dataset is placed in

different machines. In the reducing phase, the centroid

for each cluster is recomputed after acquiring the partial

sum for the centroid from each data partition for one

cluster. This divide-and-conquer strategy can allow

the clustering algorithm to handle millions of samples

efficiently. The distance score between the sample and

the cluster center is defined as Eq. (4):

dist.x; c/ D

N
X

iD1

jFx.i/ � Fc.i/j (4)

where N is the number of features for each sample,

Fx.i/ is the value of the feature at index i for the sample

x, and Fc.i/ is the value of the feature at index i for the

centroid of the given cluster.

3.3 Generation of hierarchical based cluster tree

The goal of one-level clusters carried out by the

improved K-means clustering is to group samples with

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 187

similar patterns into the same cluster. Analysis of one-

level clustering demonstrates that some of these one-

level clusters have low quality. The quality of the cluster

is defined as Eq. (5):

Cluster Quality.%/ D max.Pbenign; Pintrusive/ (5)

where Pbenign is the percentage of benign samples in the

given cluster and Pintrusive is the percentage of samples

belonging to intrusive samples in the given cluster. For

example, if the percentage of benign samples in the given

cluster is 20% and the percentage of intrusive samples

in the same cluster is 80%, the quality of this cluster is

80%.

The parallel multi-level clustering is implemented

to find out the high quality subclusters from one-level

clusters having low quality. The parallel multi-level

clustering has 2 steps: (1) local discovery step and

(2) merging step. In the local discovery step, the

agglomerative hierarchical clustering[35] is performed on

each one-level clusters having low quality. During this

process, subclusters in these one-level clusters continue

to merge until the quality of the merged clusters drops

below the given threshold. At the end of the local

discovery step, a forest of cluster subtrees is created.

In the merging step, the root clusters of each subtree are

combined until the quality of the merged clusters drops

below the given threshold. In this work, the multi-level

tree structure is used to learn unique underlying data

distribution patterns of a particular sample subspace in

the given level of the tree.

3.4 Deep learning model training for each cluster

The hierarchical clustering algorithm can discover some

high-quality subclusters from one-level clusters. Since

it is difficult to accurately define the distance function

for calculating similarity between samples, the noisy

and irrelevant information can still be incorporated into

each cluster in the multi-level hierarchical tree structure.

These noisy and irrelevant information can considerably

decrease the effectiveness of the intrusion detection

system.

In order to improve the intrusion detection

performance of the hierarchical tree structure, the deep

learning model is trained for each cluster in the multi-

level cluster tree based on combination of behavioral

features and content features. Three different types of

deep learning models including FC, CNN, and RNN

are evaluated in order to select the best model for each

cluster in the multi-level cluster tree.

The deep FC has many layers of computational units

interconnected in a feed-forward fashion. FC is the most

general deep learning model to figure out transformation

functions. Since architecture of FC does not take the

structure of data into consideration, it may face difficulty

to handle data with special characteristics.

CNN focuses on determining spatial patterns of

traffic byte information from the payload, which can

be represented as the matrix of zeros and ones[17]. CNN

contains many convolutional and pooling layers, several

dense layers, and the softmax output layer[39]. Figure 3

illustrates the architecture of the deep CNN. Compared

to the regular deep fully connected network, the CNN has

two major characteristics: (1) sparsity of connection and

(2) weight sharing. These two characteristics allow CNN

to extract features from the raw data automatically. As

the computational layers go deeper and deeper, the CNN

can gradually combine simple features in the earlier

layers into more complex features in the later layers

after uncovering the relationship between neighboring

input feature vectors[39]. The CNN is particularly robust

against code obfuscation and instruction reordering in

the payload since CNN can find out lower-to-higher

order local features that are intrinsic for the functionality

of intrusive attacks.

RNN is the special type of neural network. Taking

sequential information into consideration, each output of

RNN depends on previous outputs. RNN is specifically

built to examine the sequence of payloads in one sample

in order to learn the sequential dependence[17]. Figure 4

illustrates the architecture of the deep RNN.

With combination of behavioral features and content

features, the deep learning model is designed to analyze

both patterns of network traffic characteristics and

distinctive information in the payload of the traffic

sample for each cluster. Each deep learning model can

concentrate on highly similar samples in each cluster

Fig. 3 Diagram for CNN.

x[t]x[1] x[2] x[t−1]

a[1]<0> LSTM

a[1]<1>

y<t>

LSTM

a[1]<2>

LSTM

a[1]<t−1>

LSTM

a[1]<t>

Sigmoid

…

…

Fig. 4 Diagram for RNN.

188 Big Data Mining and Analytics, September 2020, 3(3): 181–195

without being distracted by unrelated information from

other clusters. As a result, the learning efficiency for

each deep learning model can be enhanced.

The core of deep FC, CNN, and RNN is the function

mapping from the input vector to the output vector for a

large number of layers. The mapping function for each

layer of the deep learning model is defined as Eq. (6)[39]:

aiC1 D fi .Wi � ai C bi / (6)

where ai is the activation of the i-th layer, Wi is the

weight matrix for i-th layer, bi is the bias for i-th layer,

and fi is the activation function. The loss function is

used to measure the difference between the real output

and the predicted output. The loss function for all 3

types of neural networks is defined as Eq. (7)[39]:

Loss.y; Oy/ D �

M
X

iD1

Œyi log Oyi C .1 � yi / log Oyi � (7)

where yi is the true label for sample i , yi 2 0; 1 with

0 representing benign sample and 1 malware. Oyi is the

output of our deep learning model for sample i . M is

the size of one batch.

Based on the loss function, the cost function provides

important guidance about how to optimize parameters

of deep learning models. The cost function is defined as

Eq. (8):

J.w1; b1; : : :/ D
1

m

m
X

iD1

Loss.y.i/; Oy.i// (8)

where J.w1; b1; : : :/ represents the optimization cost in

respect of all weights and bias.

The formula to adjust the network parameters during

one iteration of gradient descent is defined as Eq. (9):

w D w � ˛
@Loss.y; Oy/

@w
(9)

where ˛ is the learning rate.

3.5 Decision fusion algorithm

The deep learning model’s decision function for the

cluster k to classify sample x as benign or intrusive is

expressed as Eq. (10):

fk.x/ D Sigmoid.Wk � yk C bk/ (10)

where yk is the “activation” of the last layer of the neural

network for the cluster k and Wk is the weight matrix

between the last layer and the output layer of neural

networks for cluster k. The decision value reveals how

confident the deep learning model predicts the sample

as benign or intrusive.

Deep learning models are constructed in different

clusters with quite different data distributions. In order

to compare classification values from different models

fairly and objectively, the classification value, fk.x/,

of the deep learning model is normalized using the

z-score[35]. This normalization process is necessary,

because decision functions of deep learning models

for different clusters are calculated from various high-

dimensional feature spaces formed by related samples

belonging to the same cluster[39]. The normalized

decision value of the cluster k for sample x is defined as

Eq. (11):

decision valuek.x/ D
fk.x/ � meank

ık

(11)

where meank is the mean classification values of the

deep learning model in cluster k and ık is the standard

deviation of classification values of the deep learning

model for the cluster k. Higher decision value shows

that the deep learning model is more confident to classify

a given sample.

Since the distance between the sample and the cluster

associated with this deep learning model can affect the

confidence level of the decision value, the deep learning

decision value for the cluster is weighted by the distance

between the sample and the cluster associated with the

deep learning model. The distance function is defined as

Eq. (12):

dist.k; x/ D

N
X

iD1

jFx.i/ � Fk.i/j (12)

where Fx.i/ is the value of features at index i for the

sample x and Fk.i/ is the value of features at index i for

the centroid of cluster k. The logistic function used to

smooth the distance between the sample x and cluster k

is defined as Eq. (13):

smooth dist.k; x/ D
1

1C e�dist.k;x/
(13)

where k is the cluster k and x is the given sample. As

a result, the weighted decision value for a sample x is

defined as Eq. (14):

 .k; x/ D decision valuek.x/ � smooth dist.k; x/

(14)

If the training accuracy of the deep learning models for

a given cluster falls below the given threshold, these

models will be excluded from the decision making

process since these models have low quality. Finally,

the highest weighted decision value is utilized to classify

samples. Figure 5 shows the detailed algorithm to build

BDHDLS.

4 Datasets and Experimental Setup

In this section, datasets for the combined 5 � 2 CV F test

and independent test are discussed first, then the details

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 189

Fig. 5 Five phases of BDHDLS.

of performance metrics and model configurations are

explained.

4.1 Datasets for combined 5 ��� 2 cross validation F

test and independent test

The dataset used to build the intrusion detection model

needs containing a comprehensive and extensive set

of intrusion with the complete profile of real-time

background traffic[16]. The dataset also needs providing

the raw data with the payload information. The raw

data with the payload information is very important for

providing a clear and complete information about how

intrusive attacks may affect the network and how the

servers can respond to such an intrusion[16]. The popular

public datasets such as NSL-KDD[40] and Kyoto2009[41]

do not contain raw traffic data. DARPA1998[42],

ISCX2012[16], and CICIDS2017[43] are only public

benchmark datasets containing raw traffic data with both

labeled benign and intrusive samples. Each sample in

this work is defined as one network flow, consisting of

multiple network packets communicated between 2 sides.

These traffic bytes from multiple packets are combined

to form one sample.

The DARPA1998 dataset consists of benign samples

and four types of intrusive samples including DoS, Probe,

U2R, and R2L[42]. The DARPA1998 dataset contains

3.5 million samples. The ISCX2012 dataset is the

public benchmark dataset which captures the complete

network interaction and payload information. It contains

various multi-stage attacks with realistic background

traffic[16]. The ISCX2012 dataset has 1.4 million benign

samples and around 41 000 intrusive samples. Four

types of intrusive samples in the ISCX2012 dataset

include BFSSH, DDos, HttpDos, and Infiltrating, which

is more realistic than the DARPA1998 dataset[16]. The

CICIDS2017 dataset is the latest dataset that contains

benign and intrusive samples. The type of intrusive

samples in the CICIDS2017 dataset include Botnet,

Web Attack XSS, Web Attack BF, Patator, Port Scan,

and Dos[43]. The CICIDS2017 dataset has 2.8 million

samples.

In this work, several computational models are tested

using these three datasets, respectively. For each dataset,

80% of samples are randomly selected for model training

and the combined 5 � 2 cross validation F test. The

remaining 20% of samples serve as the independent

testing set.

During data preprocessing, the pkt2flow tool[44] is

used to split raw pcap files into multiple network flows.

190 Big Data Mining and Analytics, September 2020, 3(3): 181–195

4.2 Performance evaluation metrics

True positive rate, false positive rate, and accuracy are

adopted to evaluate the performance of the intrusion

detection system. TPR is defined as Eq. (15)[45]:

TPR D
TP

TP C FN
(15)

where True Positive (TP) represents the number of

intrusive samples that are correctly recognized and

False Negative (FN) represents the number of intrusive

samples that are incorrectly recognized as benign

samples. TPR is also called the detection rate. FPR

is defined as Eq. (16)[45]:

FPR D
FP

FP C TN
(16)

where False Positive (FP) represents the number of

benign samples that are incorrectly recognized as

intrusive samples and True Negative (TN) represents the

number of benign samples that are correctly recognized.

FPR is also called the false alarm rate. The accuracy is

defined as Eq. (17):

Accuracy D
TP C TN

TP C FP C TN C FN
(17)

4.3 Model configuration for different clusters in

the subtree

In Table 1, model configurations of CNN are explained

in details. In Table 2, model configurations for FC are

represented. In Table 3, model configurations for RNN

are shown.

The cross-validation technique is used to choose the

Table 3 Model configurations of recurrent neural network.

Hyper parameter Depth Number of neurons

LSTM-1 1 128

LSTM-2 2 256

best model configuration. Leaky Relu is selected as

activation functions for all models. The dropout rate

is set to 0.1 to avoid overfitting. The combined 5 � 2

CV F test is adopted to choose the most suitable model

configuration for each cluster.

5 Experimental Result and Analysis

In this section, experimental results for the combined

5 � 2 CV F test and the independent test are reported for

three datasets.

5.1 Performance comparison of different feature

sets

At first, performance of different feature sets are

compared. Figure 6 compares TPR and accuracy (ACC)

for different feature sets in the ISCX2012 dataset.

Figure 7 compares FPR for different feature sets in

80

85

90

95

100

 Behavioral Content Both

Va
lu

e
(%

)

TPR ACC

Fig. 6 TPR and ACC for different feature sets in the

ISCX2012 dataset.

Table 1 Model configurations of convolutional neural network.

Model configuration 1 Model configuration 2 Model configuration 3

1 Conv layer (64 5 � 5 filters) 3 Conv layers (64 5 � 5 filters) 5 Conv layers (64 5 � 5 filters)

Max-pooling layer Max-pooling layer Max-pooling layer

1 Conv layer (128 5 � 5 filters) 3 Conv layers (128 5 � 5 filters) 5 Conv layers (128 5 � 5 filters)

Max-pooling layer Max-pooling layer Max-pooling layer

1 Conv layer (256 5 � 5 filters) 3 Conv layers (256 5 � 5 filters) 5 Conv layers (256 5 � 5 filters)

Max-pooling layer Max-pooling layer Max-pooling layer

1 FC layer (1024 neurons) 3 FC layers (1024 neurons) 5 FC layers (1024 neurons)

Sigmoid output layer Sigmoid output layer Sigmoid output layer

Table 2 Model configurations of FC.

Number of layers Number of neurons

8 [128, 128, 128, 128, 64, 64, 64, 64]

8 [64, 64, 64, 64, 128, 128, 128, 128]

12 [256, 256, 256, 256, 128, 128, 128, 128, 64, 64, 64, 64]

12 [64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256]

16 [256, 256, 256, 256, 128, 128, 128, 128, 64, 64, 64, 64, 32, 32, 32, 32]

16 [32, 32, 32, 32, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256]

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 191

0
0.02
0.04
0.06
0.08

Behavioral Content Both

FP
R

(%
)

Fig. 7 FPR for different feature sets in the ISCX2012

dataset.

the ISCX2012 dataset. Our results demonstrate that

combination of both behavioral features and content

features performs best. Comparison of different feature

sets in other two datasets shows similar trends.

5.2 Results for ISCX2012 dataset

In this section, the independent test results for the

ISCX2012 dataset are discussed. Then the statistical

analysis for the combined 5 � 2 CV F test for the

ISCX2012 dataset is performed.

5.2.1 Independent test results for ISCX2012

dataset

Figure 8 shows the number of samples for different

intrusive attacks in the ISCX2012 dataset.

In Fig. 9, TPR and ACC for the ISCX2012 dataset

were presented. In Fig. 10, false positive rate (false alarm

rate) for five models is compared. The implementation of

CNN is based on the HAST-I model and implementation

of CNN-RNN is based on the HAST-II model[17].

Compared with the CNN-RNN model, BDHDLS

improves TPR by 2.5 percentage points. The FPR of

0

4000

8000

12 000
16 000
20 000

HttpDos BFSSH Infiltrating DDoS

Nu
m

be
r o

f s
am

pl
es

Fig. 8 Number of samples of different intrusive attacks for

ISCX2012 dataset.

50

60

70

80

90

100

DT

SVM

CNN

CNN-RNN

BDHDLS

Va
lu

e
(%

)

TPR ACC

Fig. 9 TPR and ACC for ISCX2012 dataset.

0

0.1

0.2

0.3

DT SVM CNN CNN-RNN BDHDLS

FP
R

(%
)

Fig. 10 FPR for ISCX2012 dataset.

BDHDLS is comparable to other computational models.

Figures 9 and 10 also show that in general deep learning

models perform better than the shallow learning models.

As a result of hierarchical learning structure adoption,

the performance of BDHDLS is better than other single

deep learning approaches.

5.2.2 Statistical analysis of intrusion detection

performance for the 5 ��� 2 CV F test in the

ISCX2012 dataset

Besides the independent testing carried out in the testing

set, the combined 5 � 2 CV F test is performed in the

training set to determine whether the intrusion detection

performance improvement of BDHDLS over the other

four models in the ISCX2012 dataset is statistically

significant.

The p-value produced by the combined 5 � 2 CV

F test specifies the significant level at which the null

hypothesis that algorithms have the same error rate

can be rejected. Lower p-value usually implies a more

statistically significant improvement of BDHDLS over

the other four models. In this work, the significant

level for p-value is set to 1%, which is more rigorous

than 5% typically chosen by statistician. Table 4 shows

“p value by F test” when binary classification of five

computational models are performed. Experimental

results from Table 4 indicate that performance gains of

BDHDLS over the other four computational models in

terms of all evaluation metric are statistically significant.

5.3 Results for CICIDS2017 dataset

In this section, the independent test results for the

CICIDS2017 dataset are discussed. Then the statistical

analysis for the combined 5 � 2 CV F test for the

Table 4 “p value by F test” for binary classification in the

ISCX2012 dataset.
(%)

Model FPR TPR ACC

DT <0.1 <0.1 <0.1

SVM <0.1 <0.1 <0.1

CNN <0.1 0.2 0.7

RNN-CNN 0.8 0.3 0.9

BDHDLS N/A N/A N/A

192 Big Data Mining and Analytics, September 2020, 3(3): 181–195

CICIDS2017 dataset is conducted.

5.3.1 Independent test results for CICIDS2017

dataset

Figure 11 indicates that the number of samples for

different intrusive attacks in the CICIDS2017 dataset.

The following results are obtained from the

independent test dataset. In Fig. 12, TPR and ACC for

the independent testing in the CICIDS2017 dataset are

presented. In Fig. 13, the false positive rate (false alarm

rate) in the CICIDS2017 for five models is compared.

The BDHDLS improves the TPR by around 2 percentage

point as compared to CNN-RNN.

642 1487 1956 13 842

158 824

284 496

0

5

10

15

20

25

30

Web

attack

XSS

Web

attack

BF

Botnet Patator Port
Scan

Dos

Nu
m

be
r o

f s
am

pl
es

 (×
10

4)

Fig. 11 Number of samples for different intrusive attacks in

the CICIDS2017 dataset.

50

60

70

80

90

100

TPR ACC

DT

SVM

CNN

CNN-RNN

BDHDLS

Va
lu

e
(%

)

Fig. 12 TPR and ACC for CICIDS2017 dataset.

0

0.1

0.2

0.3

DT SVM CNN CNN-RNN BDHDLS

FP
R

(%
)

Fig. 13 FPR for CICIDS2017 dataset.

5.3.2 Statistical analysis of intrusion detection

performance for the 5 ��� 2 CV F test in the

CICIDS2017 dataset

Besides the independent testing carried out in the testing

set, the combined 5 � 2 CV F test is performed in the

training set to determine whether the intrusion detection

performance improvement of BDHDLS over the other

four models in the CICIDS2017 dataset is statistically

significant. Table 5 shows “p value by F test” when

binary classification of five computational models are

performed in the CICIDS2017 dataset. Experimental

results from Table 5 indicate that performance gains

of BDHDLS over the other four computational models

in terms of all evaluation metrics are statistically

significant.

5.4 Results for DARPA1998 dataset

In this section, the independent test results for the

DARPA1998 dataset are discussed. Figure 14 indicates

that the number of samples for different intrusive attacks

in the DARPA1998 dataset. U2R and R2L have the

fewest number of samples. The following results are

obtained from the independent test dataset. Figures 15

and 16 compare the binary classification performance of

four computational models for the DARPA1998 dataset.

RNN-CNN is not built for DARPA1998 dataset since the

number of packets for each sample is very small. The

Table 5 “p value by F test” for binary classification in the

CICIDS2017 dataset.
(%)

Model FPR TPR ACC

DT <0.1 <0.1 <0.1

SVM <0.1 <0.1 <0.1

CNN <0.1 <0.1 0.4

RNN-CNN 0.9 0.6 0.8

BDHDLS N/A N/A N/A

430 14 421
88 862

2 143 172

2

6

10

14

18

22

U2R R2L Probe DoS

Nu
m

be
r o

f s
am

pl
es

 (×
10

5)

--2

Fig. 14 Number of samples for different intrusive attacks in

the DARPA1998 dataset.

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 193

80

85

90

95

100

TPR ACC

DT

SVM

CNN

BDHDLS

Va
lu

e
(%

)

Fig. 15 TPR and ACC for DARPA1998 dataset.

0

0.5

1.0

DT SVM CNN BDHDLS

FP
R

(%
)

Fig. 16 FPR for the DARPA1998 dataset.

small number of packets per sample does not work well

for LSTM, which need learn the temporal information

of a long sequence of data. BDHDLS improves the

classification performance as compared to other three

computational models.

5.5 Construction time for BDHDLS when different

numbers of machines are used

Figure 17 indicates the average construction time (in

hours) of BDHDLS for 5 � 2 CV F test in the ISCX2012

dataset. The average construction time for BDHDLS is

12 hours when the 64 machines are used. The average

construction time for BDHDLS has been reduced

substantially when multiple machines are deployed.

6 Conclusion and Future Work

In this work, BDHDLS is proposed to focus its efforts on

learning distinctive data distribution of specific intrusive

attacks belonging to certain families. This strategy is

particularly effective to capture subtle data patterns for

intrusive attacks having a small number of samples.

10

15

20

25

30

0 20 40 60 80

Ti
m

e
 (

h
)

Number of machines

Fig. 17 Average construction time of BDHDLS for 5 � 2 CV

F test in the ISCX2012 dataset.

BDHDLS also adopts both behavioral features and

content features. Considering both behavioral features

and content features together allows BDHDLS to

analyze intrusive attack samples using both network

traffic characteristics and contents in the payload. This

tactics can boost the performance of IDS since previous

approaches never combine both types of features

together. Our study also shows that big data techniques

and parallel strategies for feature selection, clustering,

and training can reduce the model construction time

significantly. This allows researchers to iterate faster to

search the best model parameters for their computational

problems.

In this work, the simple decision fusion strategy is

used to combine the output of different deep learning

models in the cluster. This technique may not be

the optimal solution; therefore, advanced decision

fusion algorithms combining outputs from different

deep learning models in the tree can be experimented

in the near future. We plan to experiment on using

deep neural networks to merge decisions from different

models in the tree instead of defining merging strategies

by human experts. Since feature selection and adoption

has significant impacts on performance of deep learning

models, we also plan to incorporate new sets of

behavioral features into deep learning models in order

to enhance the performance. The fast techniques to

generate multi-level cluster tree also need to be explored

to further reduce the model construction. As compared

to the single deep learning approach, BDHDLS uses

much more computational resources in order to achieve

the performance gains. How to reduce the required

minimum computational resources in order to achieve

the similar performance gains will be studied in the near

future.

Acknowledgment

This work was partially supported by Research Initiative

for Summer Engagement (RISE) from the Office of

the Vice President for Research at University of South

Carolina.

References

[1] Homeland Security Council, National strategy for homeland

security, https://www.dhs.gov/xlibrary/assets/nat strat

homelandsecurity 2007.pdf, 2007.

[2] S. Dua and X Du, Data Mining and Machine Learning in

Cybersecurity. Boston, MA, USA: Auerbach Publications,

194 Big Data Mining and Analytics, September 2020, 3(3): 181–195

2011.

[3] K. Kim and M. E. Aminanto, Deep learning in intrusion

detection perspective: Overview and further challenges, in

Proc. 2017 Int. Workshop on Big Data and Information

Security (IWBIS), Jakarta, Indonesia, 2017, pp. 5–10.

[4] A. L. Buczak and E. Guven, A survey of data mining

and machine learning methods for cyber security intrusion

detection, IEEE Commun. Surv. Tutor., vol. 18, no. 2, pp.

1153–1176, 2016.

[5] C. A. Catania and C. G. Garino, Automatic network

intrusion detection: Current techniques and open issues,

Comput. Electr. Eng., vol. 38, no. 5, pp. 1062–1072, 2012.

[6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F.

Ciompi, M. Ghafoorian, J. A. W. M. Van Der Laak, B. Van

Ginneken, and C. I. Sánchez, A survey on deep learning

in medical image analysis, Med. Image Anal., vol. 42, pp.

60–88, 2017.

[7] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R.

Atkinson, Shallow and deep networks intrusion detection

system: A taxonomy and survey, arXiv preprint arXiv:

1701.02145, 2017.

[8] B. Chandra and R. K. Sharma, Deep learning with adaptive

learning rate using laplacian score, Exp. Syst. Appl., vol. 63,

pp. 1–7, 2016.

[9] Y. C. Li, X. Q. Nie, and R. Huang, Web spam classification

method based on deep belief networks, Exp. Syst. Appl., vol.

96, pp. 261–270, 2018.

[10] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature,

vol. 521, no. 7553, pp. 436–444, 2015.

[11] M. Papakostas and T. Giannakopoulos, Speech-music

discrimination using deep visual feature extractors, Exp.

Syst. Appl., vol. 114, pp. 334–344, 2018.

[12] Y. Yu, J. Long, and Z. P. Cai, Network intrusion detection

through stacking dilated convolutional autoencoders, Secur.

Commun. Networks, vol. 2017, p. 4184196, 2017.

[13] T. T. H. Le, J. Kim, and H. Kim, An effective intrusion

detection classifier using long short-term memory with

gradient descent optimization, in Proc. 2017 Int. Conf.

Platform Technology and Service (PlatCon), Busan, South

Korea, 2017, pp. 1–6.

[14] A. F. M. Agarap, A neural network architecture combining

gated recurrent unit (GRU) and support vector machine

(SVM) for intrusion detection in network traffic data, in

Proc. 10th Int. Conf. Machine Learning and Computing,

Macau, China, 2018, pp. 26–30.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet

classification with deep convolutional neural networks,

in Proc. 25th Int. Conf. Neural Information Processing

Systems, Lake Tahoe, NV, USA, 2012, pp. 1097–1105.

[16] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,

Toward developing a systematic approach to generate

benchmark datasets for intrusion detection, Comput. Secur.,

vol. 31, no. 3, pp. 357–374, 2012.

[17] W. Wang, Y. Q. Sheng, J. L. Wang, X. W. Zeng, X. Z. Ye, Y.

Z. Huang, and M. Zhu, HAST-IDS: Learning hierarchical

spatial-temporal features using deep neural networks to

improve intrusion detection, IEEE Access, vol. 6, pp. 1792–

1806, 2017.

[18] E. Alpaydm, Combined 5 � 2 cv F test for comparing

supervised classification learning algorithms, Neural

Comput., vol. 11, no. 8, pp. 1885–1892, 1999.
[19] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H.

Nielsen, Assessing the accuracy of prediction algorithms

for classification: An overview, Bioinformatics, vol. 16, no.

5, pp. 412–424, 2000.
[20] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, A deep

learning approach to network intrusion detection, IEEE

Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 41–50,

2018.
[21] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis,

Network anomaly detection with the restricted boltzmann

machine, Neurocomputing, vol. 122, pp. 13–23, 2013.
[22] J. Schmidhuber, Deep learning in neural networks: An

overview, Neural Networks, vol. 61, pp. 85–117, 2015.
[23] R. Vinayakumar, M. Alazab, K. P. Soman, P.

Poornachandran, A. Al-Nemrat, and S. Venkatraman, Deep

learning approach for intelligent intrusion detection system,

IEEE Access, vol. 7, pp. 41525–41550, 2019.
[24] S. M. Kasongo and Y. X. Sun, A deep learning method

with filter based feature engineering for wireless intrusion

detection system, IEEE Access, vol. 7, pp. 38597–38607,

2019.
[25] P. Nagar, H. K. Menaria, and M. Tiwari, Novel approach of

intrusion detection classification deeplearning using SVM,

presented at First International Conference on Sustainable

Technologies for Computational Intelligence, Singapore,

2020, pp. 365–381.
[26] M. Akter, G. D. Dip, M. S. Mira, M. A. Hamid, and M.

Mridha, Construing attacks of internet of things (IoT) and a

prehensile intrusion detection system for anomaly detection

using deep learning approach, presented at International

Conference on Innovative Computing and Communications:

Proceedings of ICICC 2019, Singapore, 2020, pp. 427–438.
[27] Z. Q. Liu, M. U. D. Ghulam, Y. Zhu, X. L. Yan, L. F. Wang,

Z. J. Jiang, and J. C. Luo, Deep learning approach for ids,

presented at Fourth International Congress on Information

and Communication Technology: ICICT 2019, Singapore,

2020, pp. 471–479.
[28] C. Sekhar and K. V. Rao, A study: Machine learning and

deep learning approaches for intrusion detection system,

presented at Int. Conf. Computer Networks and Inventive

Communication Technologies, Coimbatore, India, 2019, pp.

845–849.
[29] G. Nguyen, S. Dlugolinsky, V. Tran, and A. L. Garcı́a,

Deep learning for proactive network monitoring and security

protection, IEEE Access, vol. 8, pp. 19696–19716, 2020.
[30] A. Abusitta, M. Bellaiche, M. Dagenais, and T. Halabi,

A deep learning approach for proactive multi-cloud

cooperative intrusion detection system, Future Generation

Comput. Syst., vol. 98, pp. 308–318, 2019.
[31] A. Liu and B. Sun, An intrusion detection system based

on a quantitative model of interaction mode between ports,

IEEE Access, vol. 7, pp. 161725–161740, 2019.

[32] T. Aldwairi, D. Perera, and M. A. Novotny, An evaluation

of the performance of restricted boltzmann machines as a

model for anomaly network intrusion detection, Comput.

Networks, vol. 144, pp. 111–119, 2018.

Wei Zhong et al.: Applying Big Data Based Deep Learning System to Intrusion Detection 195

[33] C. Alliance, Big data analytics for security intelligence,

https://downloads.cloudsecurityalliance.org/initiatives/bdwg/

Big Data Analytics for Security Intelligence.pdf, 2013.

[34] W. Zhong and F. Gu, A multi-level deep learning system for

malware detection, Exp. Syst. Appl., vol. 133, pp. 151–162,

2019.

[35] J. W. Han and M. Kamber, Data Mining: Concepts and

Techniques. San Francisco, CA, USA: Elsevier, 2011.

[36] S. K. Gupta, K. S. Rao, and V. Bhatnagar, K-means

clustering algorithm for categorical attributes, in Proc. 1st

Int. Conf. Data Warehousing and Knowledge Discovery,

Berlin, Germany: Springer, 1999, pp. 203–208.

[37] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout

in Action. Shelter Island, NY, USA: Manning Publications,

2011.

[38] W. Zhong, G. Altun, R. Harrison, P. C. Tai, and Y. Pan,

Improved K-means clustering algorithm for exploring local

protein sequence motifs representing common structural

property, IEEE Trans. Nanobioscience, vol. 4, no. 3, pp.

255–265, 2005.

[39] L. D. Gibert, Convolutional neural networks for malware

classification, Master dissertation, Universitat Politècnica

de Catalunya, Tarragona, Spain, 2016.

[40] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A

detailed analysis of the KDD CUP 99 data set, in

Proc. 2009 IEEE Symp. Computational Intelligence for

Security and Defense Applications, Ottawa, Canada, 2009,

pp. 1–6.

[41] J. Song, H. Takakura, and Y. Okabe, Description of Kyoto

University benchmark data, http://www.takakura.com/

Kyoto data/BenchmarkData-Description-v5.pdf, 2006.

[42] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K.

R. Kendall, S. E. Webster, and M. A. Zissman, Results

of the DARPA 1998 offline intrusion detection evaluation,

presented at Recent Advances in Intrusion Detection: 4th

International Symposium, New York, NY, USA, 1999, pp.

829–835.

[43] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, Toward

generating a new intrusion detection dataset and intrusion

traffic characterization, in Proc. 4th Int. Conf. Information

Systems Security and Privacy (ICISSP), Funchal, Portugal,

2018, pp. 108–116.

[44] X. Chen, A simple utility to classify packets into flows,

https://github.com/caesar0301/pkt2flow, 2017.

[45] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,

Network anomaly detection: Methods, systems and tools,

IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 303–336,

2014.

Wei Zhong received the PhD degree

in computer science from Georgia State

University, USA, in 2006. He is a full

professor in the Division of Math and

Computer Science, University of South

Carolina Upstate. He is an elected fellow

of International Society of Intelligent

Biological Medicine. He is also the IEEE

senior member. His research interests include deep learning, data

mining, bioinformatics, and high performance computing.

Ning Yu currently is an assistant professor

at the State University of New York

College at Brockport, USA. He earned

the PhD degree in computer science

from Georgia State University in 2016

and has published more than 20 papers

in prestigious journals, such as IEEE

Transactions, BMC Bioinformatics, and

PLOS One. His current research focuses on big data analytics,

deep learning, network and information security, information

processing, and high performance computing.

Chunyu Ai received the BS and MS

degrees in computer science from

Heilongjiang University, China in 2001

and 2004, respectively, and the PhD degree

in computer science from Georgia State

University, USA in 2010. She is currently

an associate professor in the Division of

Math and Computer Science, University of

South Carolina Upstate. Her research interests include wireless

sensor networks, data management, machine learning, and social

networks.

