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Preface 

Commercial success of big data has led to speculation that big-data-like reasoning could partly 

replace theory-based approaches in science. Big data typically has been applied to “small 

problems”, well-structured cases characterized by repeated evaluation of predictions. Here, we 

show that in climate research, intermediate categories exist between classical domain science 

and big data, and that big-data elements have also been applied without the possibility of 

repeated evaluation. Big-data elements can be useful for climate research beyond small 

problems if combined with more traditional approaches based on domain-specific knowledge. 

The biggest potential for big-data elements, we argue, lies in socioeconomic climate research. 

Big data affects increasingly many aspects of our lives. The large volumes of data gathered and 

stored are the basis of the recommendations we receive when shopping online and the way in 

which we connect to people all over the world via social media 1. Naturally, this has led to 

debates about how increasing volumes of data and new analytic tools might impact scientific 

research. An emerging view is that largely theory-free data-driven models will supplant models 
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that explicitly start from theory 2,3. Big data could have a big potential in various scientific 

disciplines 4 including climate research 5,6, but it remains unclear what questions big data can 

potentially help to answer. The usefulness of big data and the associated epistemological shifts 

are of particular importance for climate research for three reasons. First, the already large 

volumes of current climate data are expected to increase further in both volume and complexity 

over the coming years and decades 7. Second, approaches typically associated with big data 

have already entered climate research5 (for examples see refs. 8–10). And third, climate models 

are rooted in scientific theory, which is one of the key reasons for confidence in their projections 

11. This makes climate research an interesting test case for the suggested shift from process-

based to largely theory-free modeling. 

A prevailing problem concerning big data is the fuzziness around the terminology. To date, there 

is no consensus definition of big data or related concepts such as data-intensive science, data-

driven science, and big-data science. Based on suggested definitions of these terms 12,13, we 

adopt a conception of big data that focuses on the characteristics of data and the tools used to 

analyze them. The data are often voluminous streams of partly unstructured and heterogeneous 

data (characterized by the so-called three Vs, volume, velocity, and variety) and can be noisy and 

uncertain compared to more standardized datasets (indicated by a fourth V, veracity) 14,15. The 

tools used to analyze them are machine learning and data mining, ranging from simple linear 

regression tools to complex non-linear models in deep learning 16,17. 

Small problems 

Many commercial problems are solved using pure big data approaches; a typical example is the 

problem of predicting online consumer preferences such as online book recommendations with 

pure big data, which use data on how customers react to different books. An algorithm analyzes 

these data and automatically identifies similar books. Both successful and unsuccessful 

recommendations inform future recommendations 1. The problem of recommending the right 
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books to the right customers constitutes a well-posed problem with a clear measure of success 

and fast evaluation of the predictions: the customer looks at the book or buys it. As wrong 

predictions are hard to avoid and contribute to improving the predictions, pure big data is usually 

applied when the impact or the probability of wrong predictions is small. Due to their narrow 

scope, their clear measure of success, the small impact of wrong predictions, and the repeated 

evaluation of the predictions, we refer to such problems as “small problems”, even if the statistical 

techniques may be complex and the computational and storage cost may be very large. The 

following set of conditions is necessary for reliably solving small problems with big data:  

1. The system is predictable for the questions of interest. 

2. Sufficient data is available for the initial training of the model. 

3. Sufficient new data is available to periodically evaluate the predictions against 

observations and make adjustments to the relationships if necessary. 

Condition 1 is necessary for any kind of reliable prediction. If book choices were fundamentally 

unpredictable, an algorithmic prediction could not outperform a random book recommendation. 

Condition 2 is necessary to identify and train an initial model for predicting a given variable of 

interest. In the case of online book recommendations, data engineers can employ a so-called 

“item-to-item” approach which uses individual books as the unit of comparison rather than other 

traditional recommender systems 18.  

While conditions 1 and 2 are not unique to our notion of “small problems”, condition 3 is. In small 

problems, the repeated evaluation of the predictions and the consequent adaptation has an 

important epistemic function as it allows to detect and correct relationships between variables 

that are not represented adequately. In the example of book recommendations, two books with a 

large shared readership today will not necessarily also be read by the same people in the future. 

Furthermore, new books are released for which no data is available. Thus, the predictions need 

continuous evaluation and adaptation.  
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The notion of small problems introduced here is closely related to the kind of problems solved by 

narrow (or weak) artificial intelligence 19. Note that characterizing a problem as a “small problem” 

does neither imply that it is unimportant, nor that it is easy to solve. In fact, building a well-

functioning machine learning model, the so-called training step, can be technically challenging in 

terms of data collection, preparation and storage, modeling, and computation. While we 

acknowledge the challenges associated with these issues 20,21, we do not elaborate on them here 

because our focus lies on making predictions for new cases using an already developed model, 

the so-called inference step. 

Also, some problems falling under our category of “small problems” can be very complex (such 

as speech recognition). Other big-data applications, such as personalized medicine, are not small 

problems because the impact of wrong predictions can be large. We will return to these cases in 

a later section. What is common to “small problems” is that their solutions have a clearly defined 

purpose, and that success can periodically be measured against new observations in order to 

evaluate and improve predictions. In many scientific applications, this is not possible because it is 

not clear what constitutes a successful prediction and because the time horizon is too long to wait 

for observational data to test the prediction. 

Contrasting domain science and big data  

In this section, we introduce a conceptual framework to better understand to what extent big-data 

elements have already been applied in climate research and to classify case studies. The 

framework components are introduced by contrasting, on the one hand, how scientists construct 

and use general circulation models (GCMs) to project future states of the climate system as an 

example of classical domain science, and, on the other hand, the case of online book 

recommendations, introduced in the previous section, as an example of pure big data. This 

comparison is also intended to resolve some confusion about the difference between big data 

and “lots of data” common among domain scientists who are experienced in handling large 
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volumes of data. 

Measurements: In classical domain science, the measurements assign numerical values to 

phenomena described by theory-based concepts. For example, cloud albedo values indicate the 

fraction of reflected radiation by clouds based on calibrated satellite readings. In most climate 

datasets, this operationalization is complex and involves modeling, hence domain-specific 

knowledge is required for domain-science measurements. This differs from online book 

recommendations. In this case, internet traces are analyzed that assess whether a customer has 

clicked on a given book recommendation and whether she has proceeded to actually buying the 

book. These features are engineered based on everyday reasoning, which is the foundation of 

measurements in pure big data. 

Datasets: Climate scientists use datasets to determine the initial conditions of variables of 

interest 22 and to determine the values of certain parameters whose values are insufficiently 

constrained by theoretical considerations 23, a process usually referred to as tuning or calibration. 

These datasets can be quite large in volume but they are fixed sets of data fitting into a pre-

defined structure, for example a relational table. In the case of online book recommendations, the 

datasets are used for identifying a suitable model structure as well as for training the model. 

Furthermore, since periodic evaluation of the predictions is needed to correct the relationships 

between variables if necessary, a flow of new data is required. Hence, in this case, a data stream 

is analyzed rather than a fixed set. The constant inflow of new data and its ongoing analysis is 

often referred to as its velocity, a typical characteristic associated with big data. Furthermore, in 

pure big data applications, the data are often partly unstructured. 

Models: In the case of climate model construction, the phenomena are described in terms of 

theory-based concepts, such as temperature, air pressure, and condensation. The relationships 

between these variables are whenever possible established from theory, for example from 

physical equations 24, although empirical parameterizations are necessary for certain processes. 
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For online book recommendations, the phenomena that are put into relation to each other are 

based on everyday language concepts, such as which of the recommended books a customer 

clicks on. The relationships between different books are automatically detected, typically by a 

machine learning algorithm, rather than imposed from theory. 

The three components of this framework also highlight differences between classical statistical 

approaches and pure big data. Classical statistical approaches usually handle fixed sets of 

theory-based measurements. Also, classical statistics makes strict assumptions regarding the 

distribution of the data or the residuals and hence the model. This is not the case in pure big 

data, where the data are more important. We do note, however, that there is some overlap 

between regression analysis and machine learning tools, and even more so when considering 

non-parametric statistical modeling 3. 

Big-data elements in climate research  

We applied our conceptual framework to categorize scientific studies from atmospheric science, 

climate science, and climate impact research. A total of 45 studies were reviewed that we 

obtained through the search terms “big data weather”, “big data climate”, “data mining weather”, 

“data mining climate”, “machine learning weather”, and “machine learning climate” in ISI web of 

science and Google Scholar, published between January 2006 and April 2017. However, the goal 

was to provide an overview of big-data elements in the climate science literature rather than a full 

review. Hence, we excluded weather-related technical applications such as data-driven 

forecasting of renewable energy production from wind or solar power, and weather and climate 

impacts on biodiversity and agriculture to contain the set of studies to a manageable size.  

Table 1 provides an overview of the categories and indicates which studies fall into the respective 

categories. In between the two extreme cases of classical domain science and pure big data, we 

identify four intermediate categories, each of which we present below using an illustrative case 
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study. 

Table 1: Categories of climate-related research employing big-data elements. Notable examples are listed in the 
last column. The top row corresponds to classical domain science, the bottom row to pure big data. 

  models datasets measurements examples 

constructing and 
using theory-
based models 

theory-based concepts 
and relationsa 

structured and fixed 
seta 

measurements of 
theory-based 
conceptsa 

  

identifying some 
model relations 
with machine 
learning 

theory-based 
concepts, some 
automatically detected 
correlationsb 

structured and fixed 
seta 

measurements of 
theory-based 
conceptsa 

8,25 

identifying all 
model relations 
with machine 
learning 
 

theory-based 
concepts, 
automatically detected 
correlationsc 

structured and fixed 
seta 

measurements of 
theory-based 
conceptsa 

10,26–57 

finding proxies 
for missing data 

theory-based concepts 
and relationsa 

structured and fixed 
seta 

measurements of 
theory-based 
concepts, some 
measurements based 
on everyday 
reasoningb 

58 

theory-structured 
big-data analysis 

partly everyday 
language concepts, 
partly automatically 
detected correlationsb 

partly unstructured 
data streamc 

measurements based 
on everyday 
reasoningc 

59,60 

big-data analysis everyday language 
concepts, 
automatically detected 
correlationsc 

partly unstructured 
data streamc 

measurements based 
on everyday 
reasoningc 

9,61–63 

         

  a use theory-based 
background 
knowledge 

b use only partially 
theory-based 
background 
knowledge 

c do not use theory-
based background 
knowledge 

  

    

 

Identifying some model relations with machine learning 

A study 25 exemplifying this category created a “hybrid general circulation model”. The 

parameterizations for longwave and shortwave radiation were replaced by a machine learning 
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emulator, namely artificial neural networks. This made the simulation process substantially more 

efficient without adversely affecting the model’s accuracy. While the datasets and the 

measurements correspond to classical domain science, the modeling partly depends on 

automatically detected correlations. The variables are, however, still theory-based concepts. 

Hence, the models lie in between classical domain science and pure big data. Another type of 

studies falling into this category uses machine learning for hypothesis creation as suggested by 

Caldwell et al 8.  

Identifying all model relations with machine learning 

This is the category to which we attributed most of the considered case studies. For example, 

one study 10 created real-time warm wind (“Foehn”) forecasting in the Swiss alps using a machine 

learning algorithm. Two types of forecasts were compared, one of them using 133 predictors from 

reanalysis datasets, the other one using the air pressure gradients between all surrounding 

stations, leading to approximately 2,500 predictors. Both approaches worked with a reasonable 

accuracy. In this category, while the measurements and the datasets correspond to classical 

domain science, the model is built entirely upon automatically detected correlations between the 

variables. Hence, the models lie between classical domain science and pure big data. Other 

examples for this category include the use of machine learning for downscaling of GCM results to 

a finer spatial or temporal scale 26,31,39,38; and for predicting climatic variables such as rainfall 33,40 

and drought 43. 

Finding proxies for missing data 

An example for this category is a study 58 which created an indicator to measure the vulnerability 

of European cities to different climate risks. Background knowledge suggested citizens’ 

awareness of climate change and climate-induced risks should be included, but no data existed. 

Thus, the authors used standardized frequency with which a city name in combination with the 

specific climate risks was searched for on Google as a proxy for this variable. The models and 
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datasets correspond to classical domain science because the model relies on domain-specific 

knowledge for the relations used to construct the indicator, and the datasets are fixed sets with a 

pre-defined structure. However, the measurements were partly based on everyday reasoning due 

to the inclusion of data from the Google search. 

Theory-structured big-data analysis 

An example for this category is a study 59 that sought to estimate impacts from Hurricane Sandy 

in 2012 in New York City using Twitter data but structured the data analysis according to a 

theoretical framework from human geography, focusing on territory, place, scale, and network. 

This analysis revealed that while there is a good correlation between hurricane impacts and 

changes in Twitter activity, this correlation is scale-dependent. The framework allowed the 

authors to take a critical look at big data for such analyses and also to embed their research into 

the body of existing literature from human geography. Studies in this category analyze streams of 

unstructured data and the measurements are based on everyday reasoning. The model relies on 

automatically detected correlations, but model construction is partly informed by domain-specific 

scientific knowledge. Other examples belonging to this category use new forms of data, e.g., from 

video cameras, in order to detect meteorological phenomena such as fog 60. 

Big-data analysis 

Few reviewed studies fall into the category of pure big data. An example is a further study linking 

Twitter data to impacts from Hurricane Sandy 9. Unlike the study in the previous section, it did not 

structure the analysis according to a theory-based framework but relied fully on automatically 

detected correlations between everyday-language concepts for the modeling. The study 

concludes that social media data might provide a useful tool for rapid post-disaster assessment of 

impacts due to the good correlation of changes in Twitter activity and hurricane impacts. Hence, 

in this study, the modeling was guided by everyday reasoning without appeal to scientific theory. 

Of course, the authors hypothesized in advance that social media activity and natural disaster 
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impacts might be correlated, but this is based on an everyday rather than a theory-based 

understanding of the system. 

General findings 

Some reviewed studies 64,65 relied on so-called crowdsourced weather information. 

Crowdsourcing refers to the process of collecting data from a large number of people 66. This is 

potentially relevant in the context of big data because crowdsourced data typically constitute 

streams of data with measurements based on everyday reasoning. However, these studies can 

still fall into different categories because the datasets could still be analyzed with different types 

of models. 

The reviewed studies reveal that big data enters scientific research with individual elements such 

as machine learning methods and new forms of data. While machine learning is already a well-

established tool in climate research, new forms of data such as crowdsourced weather data and 

social media data have rarely been used so far. Based on the studies evaluated, we identify two 

rationales for inclusion of big-data elements. First, they are included when a more theory-based 

modeling or data collection would have been too time-consuming, or computationally or 

financially expensive. Examples include studies that used machine learning to speed up the 

simulation of GCMs, or when missing data was proxied using big data, even if in principle it could 

also have been collected in a classical way. We refer to this as the rationale of efficiency. 

Second, big-data elements were used when the understanding of the target system prohibited a 

more theory-based modeling approach or measurement process. Examples include the 

application of machine learning to weather nowcasting, or the analysis of social media data for 

climate impact assessment studies, as it is unclear how social media activity relates to natural 

disaster damages. We refer to this as the epistemic rationale. Hence, big data can support an 

analysis when facing limitations in resources and/or limitations in scientific understanding. 

As noted above, we have not categorized data-driven studies dealing with weather-related 
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technical applications or analyzing climate impacts upon agriculture. We believe that including 

these studies would not change the insights gained from the overview provided above. For 

example, a study 67 assessing coffee production in a warmer climate has relied on data from 

Google Earth and used machine learning methods to identify suitable production locations. 

Hence, the study combines the categories “finding proxies for missing data” and “identifying all 

model relations with machine learning”. While our review contains no such a category, the study 

corroborates our findings about how big-data elements are used in research. Furthermore, the 

rationales are the same, proxy data are used for efficiency reasons, machine learning is used for 

efficiency and epistemic reasons 67.  

Further studies used machine learning to assess climate change impacts on the global 

distribution of selenium in soils 68 and for the prediction of power output from wind 69 and solar 

power 70 based on weather parameters. In these three studies, fixed sets of classical variables 

that were hypothesized to be relevant were related to the target variable using automatically 

detected correlations, meaning that they fall into the category “identifying all model relations with 

machine learning”.  

In conclusion, we believe that the sample of categorized studies is sufficiently broad to give an 

overview of how and why big-data elements are used in climate research. While some studies 

might fall into categories lying in-between those in Table 1, they are unlikely to yield major new 

insights. 

Conditions for adequacy 

There are numerous issues in climate research where researchers are confronted with limitations 

in either resources or scientific understanding of the target system, indicating potential for big-

data elements. However, most of the problems faced by climate researchers do not fall into the 

realm of “small problems” because repeated evaluation of predictions is not possible. The 
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reasons for this include the long lead times of climate predictions, for instance when using 

machine learning for downscaling climate model outputs 26–29,31,32,38,39, or the wide scope of the 

analyzed problems with unclear measures of success, as Shelton et al 59 demonstrate when 

using a theoretical framework in the analysis of social media activity and hurricane impacts. Yet, 

as our review of case studies has highlighted, big-data elements have been employed in climate 

research also when repeated evaluation was not possible. In these cases, confidence in the 

predictions is established not through constant evaluation of predictions against new data but by 

assuming that the identified relationships remain constant over the forecasting horizon, an 

assumption often only made implicitly. The adapted conditions for successfully applying big-data 

elements are as follows: 

1. The system is predictable for the questions of interest. 

2. Sufficient data is available to train the algorithm. 

3. The identified relationships between the variables remain sufficiently constant over the 

relevant configurations of the target system (a), or 

sufficient new data is available to periodically evaluate the predictions against observations 

and make adjustments to the relationships if necessary (b). 

 
These conditions are necessary for successfully applying big-data elements for predictions, and 

we assume that they are also jointly sufficient for this purpose. Big data can thus reliably be used 

beyond “small problems” if scientists have arguments in favor of condition 3a. This condition is 

quite straightforward and corresponds to an intuition many scientists have concerning statistical 

tools. Since there is no repeated evaluation, and hence no adaptation of the predictions, the 

identified relationships need to remain constant over the temporal and spatial horizon of interest. 

For machine learning algorithms, this is fairly obvious. The constancy assumption is, however, 

also crucial for other big-data elements, namely for new forms of data. Also, the constancy of the 

relationships identified do not affect the first and the second condition, as the target system still 

needs to be predictable, and sufficient data for fitting the algorithm is still needed.  
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The necessary condition for going beyond small problems has important epistemological 

implications. Contrary to the repeated evaluation (3b), the constancy assumption (3a) cannot be 

made based on the data. Rather, the constancy assumption relies on the relevant background 

knowledge about the target system. Scientists can appeal to notions of a system’s linearity or 

argue that the training dataset at hand covered sufficiently many states of the target system to 

assume that the relationship identified are of causal nature and hence remain constant 71, at least 

over configurations of the target system sufficiently similar to the ones covered by the training 

dataset. When applying big-data elements in such cases, background knowledge is crucial for 

ensuring robust measurements and reliable model results. Hence, in order to profit from the 

advantages of big-data elements, namely that they can help to handle limitations in resources 

and scientific understanding, an optimal path consists in combining theory and more classical 

scientific approaches with new data-science tools 4.  

Going beyond small problems 

Classical domain science can be applied beyond problems that require continuous evaluation of 

the predictions because the theory embedded into its measurements and models justifies 

extrapolations beyond the observed range. In pure big data however, each component is largely 

detached from domain-specific scientific theory. This makes it very difficult, and in many cases 

even impossible, to argue for the constancy assumption. Hence, pure big data is mainly 

applicable to what we have defined as “small problems”. However, our review of case studies 

shows that in climate research, big-data elements have been applied beyond “small” problems. 

Based on our considerations, this is justified when these elements are combined with theory-

based approaches, which helps to argue for the constancy of the identified relationships. But for 

which specific areas of climate research could big-data elements be useful? The two rationales 

identified above suggest that they can be useful whenever scientists face limitations in their 

resources or their understanding of the target system. The review of case studies shows that the 
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most common big-data element in climate research is machine learning used with standard 

climate data, but we believe that other interesting but yet unexploited applications for big-data 

elements exist. In the following, we speculate on where specifically we see the biggest potential. 

Analyzing increasing volumes of climate data 

The volume and complexity of data produced and stored are large and expected to further 

increase 7. Increasingly, scientists will face difficulties in analyzing these data following more 

traditional methodological pathways. Machine learning can help scientists to find patterns in large 

volumes of data from climate models or satellites and potentially to formulate hypotheses 8. 

However, this requires appropriate background knowledge to distinguish between potentially 

meaningful and meaningless patterns 72. This is especially true for datasets with a very large 

number of variables.  

Climate impact research 

As the drivers and physical consequences of climate change are better understood, researchers 

increasingly turn to socio-economic impacts of climate change. Big-data elements could prove 

useful in this area of research because for such target systems, there are no well-confirmed 

universal theories. Hence the ability to construct theory-based impact models is limited, but 

researchers still have some understanding of how the target system works. Pertinent background 

knowledge might be sufficient for making the constancy assumption regarding the identified 

relationships for certain timescales and spatial scales. 

There are different ways in which big-data elements could improve climate impact modeling. New 

forms of data are useful for calibrating impact models. Data from crowdsourcing and 

crowdsensing specifically collected for a given purpose might be useful as the constancy 

assumption can be justified by appealing to the user basis. An example for such a study would be 

the use of GPS data from phones to track where and how people move 61. Furthermore, machine 

learning might be a promising choice of method for assessing the impacts of extreme weather 



 
 
 

15 

events on technical and other complex systems. For instance, machine learning could be used to 

assess asset damages from severe weather events and extrapolate these results into future 

climatic regimes given that scientists have some understanding of the relationships between 

these variables and might hence be able to justify the constancy assumption in impact processes. 

Studies on asset damages from severe weather events typically use damage curves to link the 

weather parameters and the damages to exposed assets such as insured financial losses 73. 

Using machine learning instead of simpler damage curves could lead to a more fine-grained and 

more accurate analysis. While in such climate impact studies, adaptation measures can run 

contrary to the constancy assumption 74, the constancy assumption could still be fulfilled for the 

estimation of a ceteris paribus baseline scenario. 

Climate services 

Increasing volumes of climate data make it possible to provide more tailored information to users, 

often referred to as “climate services” 75. In order for climate scientists to deliver information that 

fits users’ needs, big-data elements could become increasingly important. There are several case 

studies employing machine learning for downscaling of GCM results to a more local scale. It has 

already been suggested that large volumes of climate data could improve climate services in this 

way 76. However, one could go one step further by combining these localized variables with user-

specific data and thus providing tailor-made climate services to users as is being developed in 

personalized medicine. For example, farmers’ decisions on specific farming practices depend on 

climatological variables. A useful climate service would be to partly automate this decision by 

considering a few key variables that can be predicted at the time of planting seeds. Such 

variables could be identified by combining climatological data with observed data at the farm level 

with machine learning. Decision trees can help to identify crop diseases in plants 77. Similarly, 

machine learning and a dense network of climate and weather data might render farming 

practices more efficient 78, and hence contribute to more climate-resilient agriculture (often 

labeled “climate-smart agriculture”, see ref 79). In such cases, the understanding of the target 
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system might justify the constancy assumption especially when the forecasting horizon is 

comparatively short. 

Small problems in climate research  

Finally, there is also room for solving relevant “small” problems in climate research, which neither 

implies that they are unimportant, nor that they are easy to solve. For instance, it has been 

suggested to compare forecasts from high-resolution models to observations when they become 

available and make corrections either to model output or to parameterizations in these models if 

necessary 80. This approach could be assisted by machine learning 81. This would essentially 

solve a small problem within the framework of a very complex problem.  

Conclusion 

In this article, we have reviewed case studies from climate research and shown that many 

categories exist between classical domain science and pure big data. While pure big data 

requires constant evaluation of the predictions, combining big-data elements with more classical 

theory-driven approaches can help to justify the constancy assumption that allows going beyond 

“small problems.” Hence, big-data elements can potentially be beneficial to overcome limitations 

in resources and scientific understanding in climate research but most likely not replace 

approaches based on theory and understanding. Many of the points raised in this article can be 

extended beyond climate research and transferred to research domains investigating complex 

phenomena with increasing volumes of stored data. Certain aspects of climate research make 

the use of big data particularly challenging, in particular the long forecasting lead times relative to 

the short periods for which data is available. However, we expect that the framework used here, 

as well as the rationales and conditions for using big data could be fruitfully used by other fields. 
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