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Applying cognitive training to target executive functions
during early development

Sam V. Wass

Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK

Developmental psychopathology is increasingly recognizing the importance of distinguishing causal
processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symp-
toms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered
development may be more effective than waiting until outcomes are established and then trying to
reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and
behavioral plasticity may be greatest at very early stages of development. I also describe correlational
evidence suggesting that, across a number of conditions, early emerging individual differences in
attentional control and working memory may play a role in mediating later-developing differences in
academic and other forms of learning. I review the currently small number of studies that applied
direct and indirect cognitive training targeted at young individuals and discuss methodological
challenges associated with targeting this age group. I also discuss a number of ways in which
early, targeted cognitive training may be used to help us understand the developmental mechanisms
subserving typical and atypical cognitive development.

Keywords: Cognitive training; Attentional control; Working memory; Infant; Toddler;
Early intervention; At-risk; Preventative intervention.

A number of authors in recent years have advocated the desirability of early interventions
(Bryck & Fisher, 2012; Heckman, 2006; Shonkoff & Levitt, 2010; Sonuga-Barke &
Halperin, 2011). Several studies have suggested, for example, that teacher- and parent-
mediated interventions providing increased social and educational provision for young
children from low socioeconomic status backgrounds are more effective the earlier the
training is applied (Campbell et al., 2008; Olds, Sadler, & Kitzman, 2007). Similarly,
clinician-, parent-, and teacher-mediated programs are currently being set up to assess the
impact of intervening early in disrupted development for individuals at high risk of
developing conditions such as attention deficit/hyperactivity disorder (ADHD; Sonuga-
Barke & Halperin, 2011) and Autism Spectrum Disorders (ASD; Wallace & Rogers, 2010).
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Parallel to clinician-, parent-, and teacher-mediated interventions (that tend to be
cognitively heterogeneous in nature), a separate research field exists that examines the effect
of applying cognitive training targeted at particular, prespecified cognitive domains. Within
this field, there appears to be surprisingly little appreciation of the importance of the develop-
mental perspective. Cognitive training is administered to individuals throughout the lifespan
with the majority of new studies in this area targeting older individuals (e.g., Brehmer et al.,
2012; Richmond,Morrison, Chein,&Olson, 2011;Wang, Chang,& Su, 2011). Of studies that
have applied cognitive training to children, the majority have targeted children in the 8–
12 years age range (Holmes,Gathercole,&Dunning, 2009;Klingberg et al., 2005),with only a
small number of studies targeting children of a younger age (e.g., 4–6 years: Rueda, Rothbart,
McCandliss, Saccomanno, & Posner, 2005; 4 years: Thorell, Lindqvist, Nutley, Bohlin, &
Klingberg, 2009) or during infancy (Wass, Porayska-Pomsta, & Johnson, 2011).

In Section 1 of this review, I outline a priori arguments suggesting the importance of
understanding the very early stages of development in both typical and atypical populations. In
Section 2, I evaluate evidence from longitudinal studies of high-risk and atypical populations,
including individuals born preterm, with genetic disorders, from low socioeconomic-status
backgrounds, and at familial risk of ASD and ADHD. I conclude that, across a number of
populations, there is correlational evidence suggesting that early emerging deficits in atten-
tional control and working memory may be important in mediating later-emerging deficits in
other areas. In Section 3, I review the currently small number of studies that have applied
cognitive training to young individuals and discussmethodological issues involved in applying
targeted training at these populations. I discuss a number of avenues for futurework in this area.

WHY IS EARLY DEVELOPMENT IMPORTANT?

Evidence from neuroimaging, computational modelling, and animal studies is increas-
ingly revealing neural development as a dynamic and interactive process (Johnson, 2010;
Quartz & Sejnowski, 1997). For example, research investigating the effect of brain lesions
early in development suggests that early disruption can either be compensated for (Stiles,
Reilly, Paul, &Moses, 2005) or can lead to cascade-like patterns of systemic disruption across
other, nonlesioned parts of the system due to the disruption of normal interactive maturational
processes (Johnson, Halit, Grice, & Karmiloff-Smith, 2002; Spencer-Smith et al., 2011).

A similar picture has emerged from work using functional imaging. Early in
development, functional cortical activation patterns are relatively unlocalized and undif-
ferentiated: Specific tasks evoke larger functional activation patterns, and cortical areas
are relatively less specialized (Bell & Wolfe, 2007; Cohen Kadosh & Johnson, 2007;
Redcay, Haist, & Courchesne, 2008). Neural maturation involves the increasing localiza-
tion and specialization of neural circuitry (Durston et al., 2006; Fair et al., 2008, 2010).
Research using neuroimaging and computational modelling has suggested that these
processes arise, at least in part, as the emergent property of competition and cooperation
between brain areas (Johnson, 2010; Kelly et al., 2009); atypical development shows
activation patterns becoming progressively more abnormal over developmental time due
to the disruption of normal maturational processes (Johnson et al., 2002; Oliver, Johnson,
M. H., Karmiloff-Smith, A., & Pennington, 2000; however, see Shaw et al., 2008).

Over recent years similar arguments have also been advanced in favor of studying how
behavior develops over time at the systemic level (see Smith & Sheya, 2011). These
approaches emphasize the importance of studying not just the end-state of cognition but
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also the developmental pathways by which the end-state has been arrived at (Cornish,
Sudhalter, & Turk, 2004; Cornish, Scerif, & Karmiloff-Smith, 2007; Karmiloff-Smith,
1998, 2007). Thus, rather than viewing disorders in terms of static neuropsychological deficits
(“intact” vs. “impaired” cognitive modules), we should instead seek to develop longitudinal,
developmentally plausible models of disease causation (Karmiloff-Smith, 1998, 2009). For
example, research with individuals with Williams syndrome has suggested that early devel-
oping atypicalities in eye movement control at the microtemporal (subsecond) scale may lead
to subsequently impaired learning across other domains including social communication and
number perception (Brown et al., 2003; Karmiloff-Smith et al., 2012). Research in typical
development is similarly suggesting that many tools for early learning, such as gaze following
and other forms of joint attention, may emerge as learnt behaviors, with later attainments
building on foundations that are laid down early in development (Corkum & Moore, 1998;
Mareschal et al., 2007; Triesch, Teuscher, Deak, & Carlson, 2006). This suggests the vital
importance of researching the very early stages of cognitive development.

THE SPECIAL ROLE OF ATTENTIONAL CONTROL/WORKING MEMORY IN
MEDIATING EARLY LEARNING

Amongst these dynamic approaches to studying development, two particular cogni-
tive faculties have received particular attention: These are attentional control, defined as “an
individual’s ability to choose what they pay attention to and what they ignore” and working
memory, the “maintenance of task-relevant information in mind for brief periods of time to
guide behaviour” (Gazzaley & Nobre, 2012, p. 129). These two faculties are thought to
have substantially overlapping neural correlates (Duncan & Owen, 2000; Munakata et al.,
2011), particularly early in development (Astle & Scerif, 2009; Scherf, Longhi, Cole,
Karmiloff-Smith, & Cornish, 2006; Shing, Lindenberger, Diamond, Li, & Davidson,
2010; Velanova, Wheeler, & Luna, 2008). Attentional control in particular has been
discussed as a “hub” cognitive domain, gating subsequent skill acquisition in other areas
(Cornish, Cole, et al., 2012; Cornish, Scerif, & Karmiloff-Smith, 2012; Scerif, 2010). The
ability to regulate and direct attention releases a child from the constraints of only
responding to environmental events and means they are able actively to guide their attention
toward the information-rich areas key for learning (Ruff & Rothbart, 1996; Scerif, 2010).

Longitudinal neuroimaging studies suggest that cortical maturation follows a non-
uniform trajectory, with certain areas (occipital, parietal) becoming relatively mature at an
age when other areas (frontal) are relatively immature (e.g., Gogtay et al., 2004).
Similarly, behavioral research has suggested that attentional control and working memory
are relatively late-maturing relative to other cognitive faculties (e.g., Davidson, Amso,
Anderson, & Diamond, 2006; Johnson, 2010). Some researchers have even suggested that
these faculties may be absent during the first year of life and only begin to emerge at
around the 12-month age range (Colombo & Cheatham, 2006; however, see Gilmore &
Johnson, 1995; Johnson, 1995; Johnson, Posner, & Rothbart, 1991).

Rose, Feldman, and Jankowski, (2012) administered a battery assessing memory,
processing speed, and attention in a cohort of individuals at 7, 12, 24, and 36 months and, in
the same individuals, measured working memory, inhibition, and shifting at 11 years. They
found that memory when assessed during infancy and toddlerhood predicted working
memory performance at 11 years; they also found that processing speed (psychomotor
reaction time) predicted performance on assessments of shifting and working memory at
11 years (Rose et al., 2012; see also Rose, Feldman, Jankowski, & Van Rossem, 2008).

EARLY COGNITIVE TRAINING 3
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Rose, Feldman, and Jankowski, (2009) administered a battery of nonverbal “informa-
tion processing” assessments (including memory, attention, processing speed, and representa-
tional competence) in typically developing infants at 12 months and assessed language in the
same individuals at 12 and 36months. They found that some (but not all) of their information-
processing measures (memory and representational competence, but not attention and proces-
sing speed) correlated with language performance at 12 months and predicted subsequent
language performance at 36 months, independent of birth status (see also Dixon & Smith,
2008; Kannass & Oakes, 2008; Snyder & Munakata, 2011). Comparable findings have been
reported in infants and toddlers with Autism Spectrum Disorders (Bopp, Mirenda, & Zumbo,
2009), as well as using similar longitudinal tracking studies with older children (Dice &
Schwanenflugel, 2012; Gathercole, Alloway, Willis, & Adams, 2006; Kegel & Bus, 2012).

A number of groups have also used techniques such as Structural Equation Modelling
(SEM) to explore possible mediators between early development and longer term cognitive
outcomes in clinical populations, such as infants born preterm (Rose, Feldman, & Jankowski,
2005; Voigt, Pietz, Pauen, Kliegel, & Reuner, 2012; Weindrich, Jennen-Steinmetz, Laucht, &
Schmidt, 2003). Voigt and colleagues found that deficits in effortful control (assessed using a
behavioral battery and the Early Child Behavior Questionnaire at 24 months) partially
mediated deficits in other cognitive outcomes in early preterm but not in late preterm infants
(Voigt et al., 2012). Rose and colleagues administered a battery of assessments to preterm and
full-term infants at 7 months, 12 months, and 2–3 years and identified two “elementary”
factors that appeared to mediate the more complex factors (Rose et al., 2008). The first of
these elementary factors was labeled “attention” (defined from peak look duration and shift
rate during a habituation task) and the second was “speed” (defined as the number of trials
required to reach criterion in a face familiarization test). Subsequent work from this group has
tracked individuals through to 11 years; SEM conducted on these data suggested a cascade of
effects, in which prematurity influences processed speed, which then influences executive
function (EF), which in turn influences academic achievement (Rose, Feldman, & Jankowski,
2011; Feldman, & Jankowski, et al., 2011).

Research has also suggested that early developing deficits in attentional control/working
memory (WM) may play a role in disrupting learning in individuals with genetic disorders
such as Williams Syndrome (WS), Down Syndrome (DS), and Fragile X Syndrome (FXS).
Cornish and colleagues administered assessments of attentional control on three occasions
over 24 months to a group of 4- to 10-year-old individuals with FXS syndrome, as well as
tracking the development of autistic symptomatology, hyperactivity/inattention, and other
nonverbal cognitive indices. They found that attentional markers in the visual and auditory
modality correlated longitudinallywith later assessments of intellectual abilities and classroom
behavior, whereas auditory markers correlated longitudinally with later autistic symptomatol-
ogy (Cornish, Cole, et al., 2012; Cornish, Scerif, et al., 2012; Scerif, Longhi, Cole, Karmiloff-
Smith, & Cornish, 2012). In earlier work, the same group has also identified early-developing
abnormalities in attentional control in 3- to 55-month-old individuals with FXS and WS and
documented differences in the developmental trajectories of the deficits observed across
different conditions (Cornish et al., 2007; see also Breckenridge, Atkinson, & Braddick,
2012; Brown et al., 2003; Scerif, Cornish, Wilding, Driver, & Karmiloff-Smith, 2004).

Due to the problems inherent in identifying prediagnosis individuals, similar investiga-
tions into pathogenic mechanisms in the early development of ADHD and ASD are compara-
tively more limited. Lawson and Ruff (2004) found that ratings of focused attention in 7-
month-old infants during free play with toys correlated with maternal ratings on ADHD rating
scales at 4–5 years, as well as with cognitive abilities at 2, 3, and 4–5 years (see also Auerbach,
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Atzaba-Poria, Berger, & Landau, 2004; Friedman, Watamura, & Robertson, 2005; Nigg,
2006). Holmboe and colleagues administered a task in which 9- to 10-month-old infants at
high familial risk of ASD were required selectively to inhibit their looks to a peripherally
occurring distractor and found that a subset showed difficulty disengaging attention, as well as
less selective inhibition (Holmboe et al., 2010). Webb and colleagues reported group differ-
ences in 18- to 30-month-olds with more severe ASD symptoms during a habituation protocol
(longer peak look and more time required to habituate) that were present for social and
nonsocial stimuli but markedly stronger for social stimuli (Webb et al., 2010). Several groups
have also reported problems with disengaging visual attention under competition but not
noncompetition conditions in individuals with or at risk of ASD (Elsabbagh et al., 2009;
Landry&Bryson, 2004), although these findings are not reported universally and appear to be
contingent on the exact nature of the visual stimulus that is used (Chawarska, Volkmar, &
Klin, 2010; Kikuchi et al., 2011). Systematic longitudinal mediation studies in this area are,
however, lacking.

Summary—The Shortcomings of Correlational Findings

Across a range of disorders within both typical and atypical development, research
has suggested that individual differences in early AC/WM, along with the related domain
of processing speed, correlate with subsequent learning abilities in a range of different
domains. These findings suggest that these domains may play a role in mediating
subsequent learning. However, it is vital to recognize that all of the findings reported
above are correlational and, therefore, are insufficient demonstrations of causal relation-
ships. Even techniques such as Structural Equation Modelling are vulnerable to the
possibility that confounding variables have not been included in the model.

Willoughby and colleagues, for example, examined the well-replicated finding that the
performance of older children on EF tasks relates to later academic learning (Willoughby,
Kupersmidt, Voegler-Lee, & Bryant, 2011). Their analyses replicated the commonly found
relationship, even after including an earlier measure of academic achievement as a covariate;
however, when they used a different technique, fixed effects analysis, which capitalizes on
repeated measures data to control for time stable measured and unmeasured covariates, the
observed relationships disappeared. The authors interpreted this as suggesting that the well-
replicated association between EF abilities and academic achievement may be spurious
(Willoughby et al., 2011). A conclusive investigation of how two domains are causally linked
requires an experimental study to establish a counterfactual dependence between two: If we
can demonstrate how training “x” improves “y,” then we have taken a significant step toward
demonstrating how “x” is causally implicated in “y.” Thus, in addition to applied goals,
training techniques have considerable potential to address questions motivated by “basic
science” of how interactions subsist between cognitive domains over developmental time.

APPLYING COGNITIVE TRAINING DURING EARLY DEVELOPMENT

Despite the evidence reviewed above, only a small number of studies have provided
targeted cognitive training aimed at individuals early in development (see Table 1).

Researchers working with infants face a unique problem of identifying a means by
which the individual can interact with a computerized training paradigm, since fine motor
skills are poor in this age range (Aslin, 2007). One solution is to use eye-gaze control as
the means by which the infant interacts with the training by using eyetrackers to design

EARLY COGNITIVE TRAINING 5
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Table 1 Summary of training studies included in the review.

Authors Year
Description of
participants

Age of
participants Nature of training

Amount of
training Control N trained Pre- and Posttests

Wass et al. 2011 Typically
developing
(TD)

11-month-olds Mixed Attention/
WM (eye-gaze
contingent)

4 training sessions
(variable
length)—
average of 77
(SD = 19.1)
mins training
administered in
total

Watched infant-
friendly
animations and
videos for a
matched
program of
sessions

21 Cognitive flexibility (y);
processing speed (y);
sustained attention (y);
working memory (n);
spontaneous orienting
during free play (s)

Kloo and Perner 2003 TD 3- to 5-year-
olds

Cognitive
Flexibility—
Card sorting
task (similar to
Wisconsin
Task).

2 sessions (15
mins per
session) over 2
weeks (30 mins
total)

Group trained at
number
conservation
tasks or relative
clauses

14 False belief (y); switching
(card-sorting) (y)

Bergman Nutley et al.
(WM group)

2011 TD 4- to 4.5-year-
olds

WM—
visuospatial
(Cogmed)

25 sessions (15
mins per
session) over
5–7 weeks (375
mins total)

Received
nonadaptive
training
(combined
NVR and WM)

24 Working memory/
short-term memory (y);
reasoning (fluid
intelligence (Gf) latent
variable) (n)

Bergman Nutley et al.
(NVR group)

2011 TD 4- to 4.5-year-
olds

Computerized
nonverbal
reasoning
(NVR) training
based on three
tests from the
Leiter Battery

25 sessions (15
mins per
session) over
5–7 weeks (375
mins total)

Received
nonadaptive
training
(combined
NVR and WM)

25 Working memory/
short-term memory (n);
reasoning (Gf latent
variable) (y)

Thorell et al.
(inhibition group)

2009 TD 4- to 5-year-
olds

Inhibition (variant
of Go/No-Go)

25 sessions - 5
weeks of 15
mins per school
day (375 mins
total)

Active group
played
commercially
available
computer
games; passive
group only took
part in pre- and
posttesting

17 Selective attention
(Stroop) (n); visual WM
(Wechsler/span board) (n);
sustained attention
(Continuous performance
task (CPT) (n);
reasoning (Wechsler) (n);
inhibition (Go/No-Go) (n)

(Continued )
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Table 1 (Continued).

Authors Year
Description of
participants

Age of
participants Nature of training

Amount of
training Control N trained Pre- and Posttests

Thorell et al. (WM
group)

2009 TD 4- to 5-year-
olds

WM—
visuospatial
(Cogmed)

25 sessions: 5
weeks of 15
mins per school
day (375 mins
total)

Active group
played
commercially
available
computer
games; passive
group only took
part in pre- and
posttesting

17 Selective attention
(Stroop) (n);
visual WM (Wechsler/
span board) (y);
sustained attention
(CPT) (y);
reasoning (Wechsler) (n);
inhibition (Go/No-Go) (s)

Rueda et al. 2005 TD 4-year-olds
and 6-year-
olds
(separate
groups)

Mixed Attention
—tracking an
object;
anticipation;
stimulus
discrimination;
inhibibitory
control

5 sessions (45
mins per
session, spread
out over 2 to 3
weeks) (225
mins total)

Brought into the
lab for the same
no. of sessions,
watched
children’s
videos

24 four-year-
olds (18 for
ANT);
twelve 6-
year-olds

Executive attention
(Attention Network Tests
(ANT) conflict) (y);
alerting attention (ANT)
(n); orienting attention
(ANT) (n); reasoning
(Kaufman-Brief
Intelligence
Test (K-BIT)) (s);
general behavior
(Childhood Behavior
Questionnaire) (n)

Rueda, Checa, and
Cómbita

2012 TD 5.5-year-olds Mixed Attention
—tracking an
object;
anticipation;
stimulus
discrimination;
inhibibitory
control

10 sessions (45
mins per
session) over 5
weeks (450
mins total)

Brought into the
lab for the same
no. of sessions,
watched
children’s
videos

18 Reasoning (K-BIT) (s);
Attention (ANT, all
subcomponents) (n);
gambling task (n);
Delay of gratification (s)

Note. In the final column, “Pre- and Posttests,” “y” indicates that a significant training improvement was observed relative to controls, “s” indicates that some training improvement was
observed (either p < .1 on the core measure or significant improvement at some but not all subcomponents), and “n” indicates no training improvement was observed.
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training stimuli that change contingent on where on the screen the infant was looking.
Using this interface, Wass et al. (2011) administered a battery of tasks targeting inter-
ference resolution, inhibition, task switching, and working memory for objects embedded
in scenes of varying complexity to typically developing 11-month-old infants. Seventy-
seven minutes of training were administered over four visits spread over 2 weeks; the
effect of training was assessed relative to a control group who attended a matched number
of ersatz training visits. Immediately posttraining, increased cognitive control and sus-
tained attention were observed (Wass et al., 2011); attentional disengagement and saccadic
reaction time latencies were reduced following training, and marginally nonsignificant
changes in looking behavior during free play were also observed. No changes were found
in working memory. Current ongoing work is investigating whether these findings can be
replicated in “high-risk” populations, such as infants from low socio-economic status
backgrounds.

Researchersworkingwith toddlers have used computerized point-and-click interfaces to
administer training targeting different executive domains:workingmemory, nonverbal reason-
ing, inhibition, and attentional control (mixed). Thorell and colleagues (2009) trained visuos-
patial working memory in typically developing 4- to 5-year-old children. A total of 6 hours of
training was administered in one 5-week phase. They observed improvement posttraining at
nontrained working memory tasks, on an auditory Continuous Performance Task (CPT), and
onGo/No-Go omissions but no improvement on problem solving, Go/No-Go response speed,
and on a Stroop-like task. Bergman Nutley and colleagues (2011) trained WM in typically
developing 4-year-old children and identified posttraining transfer to nontrained working
memory tasks but not to problem solving tasks. Subsequent analyses of this study suggested
that the degree of training improvement observed was related to variation in the dopamine
transporter geneDAT1 (Söderqvist et al., 2012; see alsoKlingberg, 2010;McNab et al., 2009).

Thorell and colleagues (2009) also trained typically developing 4- to 5-year-old
children at inhibition using variants of the Go/No-Go paradigm and flanker task; training
was spread over 6 hours across one 5-week phase. They identified no significant transfer
to tasks such as Stroop and CPT, with less transfer observed than in the group that had
received WM training. In their discussion, Thorell and colleagues suggest that the larger
training effects observed following WM than inhibition training may be attributable to
methodological issues, such as problems defining how the difficulty of the inhibition tasks
changes adaptively during training (see Klingberg, 2010).

Rueda and colleagues administered a battery of training tasks targeting object
tracking, anticipation, stimulus discrimination, conflict resolution, and inhibitory control
to groups of 4- and 6-year-old children. A total of 3.5 hours of training was administered
over 2–3 weeks. They found substantial within-task training effects; pre- and posttests
identified some transfer to reasoning tasks but no significant changes to performance on
the Attention Network Test or Childhood Behaviour Questionnaire (Rueda et al., 2005).
Subsequent work replicated some of these effects and showed that some (weaker) effects
of training were also discernable at 2-month follow-up. Event-related potentials (ERPs)
were also recorded, which suggested a more efficient and faster activation of the executive
attention network after training (Rueda et al., 2005, 2012). Kloo and Perner (2003)
administered 30 minutes of noncomputerized training targeting either Dimensional Card
Change Sorting or false belief to typically developing 3- to 5-year-old children and
observed bidirectional transfer at posttesting relative to an active control group.

The majority of the developmental work in this field has involved older children
(aged 7+ years). Holmes et al. (2009) administered WM training sessions to 8- to
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11-year-old children and examined transfer to other academic measures. Loosli,
Buschkuehl, Perrig, and Jaeggi, (2012) administered ten 12-minute WM training ses-
sions to typically developing 9- to 11-year-old children and identified evidence of
improved reading performance after training but no improvement on a reasoning task.
St Clair Thompson (2007) administered training targeting explicit mnemonic strategies
to typically developing 7-year-olds and found transfer to some language and WM tasks
but not to standardized reading arithmetic or math tests, either immediately or 5 months
later. Klingberg et al. (2005) administered WM training for at least 20 days to 7- to 12-
year-old children with ADHD and identified improved performance at Stroop, non-
verbal reasoning and nontrained working memory tasks, along with some evidence of
reduction on parental (but not teacher) ratings of ADHD symptom severity. Green et al.
(2012) applied similar training to children with ADHD and found reductions posttrain-
ing in experimentally assessed off-task behaviors but not in parent ratings of ADHD
severity. Kray, Karbach, Haenig, and Freitag, (2011) trained 8- to 12-year-old children
with ADHD at a variant of the Wisconsin Card Sorting task and identified improve-
ments posttraining on the Stroop task but not on assessments of nonverbal reasoning
and processing speed. Kerns, Eso, and Thomson (1999) administered similar training to
7- to 11-year-old children with ADHD and found improvement posttraining on some
(but not other) experimental assessments of nonverbal reasoning, sustained attention, as
well as the Stroop task. Improvements were also noted on some but not on other ratings
of inattention-impulsivity.

Do studies targeting younger individuals report more widespread transfer of training
effects? Melby-Lervag and Hulme (2013) looked at transfer reported to nontrained work-
ing memory tasks following working memory training and found that younger children
showed significantly larger benefits from training than do older children; however, no
evidence was found of increased transfer to nonverbal abilities. Wass, Scerif, & Johnson,
(2012) analyzed 34 studies that applied cognitive training targeting working memory or
attentional control to individuals aged between 1–80 years, and analyzed the posttraining
transfer observed. They identified a significant relationship between the age of partici-
pants and the degree of training transfer reported (r = −.31), suggesting that training
targeted at younger participants tended to lead to more widespread transfer of training
effects. This effect became stronger when the amount of training administered was
included as a covariate (r = −.37), and when those studies targeting typically developing
individuals were considered independently (r = −.53). However, comparing the studies
targeting 4- to 6-year-olds with those targeting 7- to 10-year-olds suggests a contrary
effect, namely that most of the largest observed training effects are found in the 7- to 10-
year-old age range. Possible reasons for this are discussed below.

Summary and Recommendations for Future Work

The number of studies that have successfully applied targeted cognitive training to
individuals in the 0- to 5-year age range is low. However, the fact that several studies have
successfully reported training effects, together with the number of studies that have
reported similar findings in older children, suggests the future potential of these methods.

However, a number of limitations should be recognized to the studies reviewed
here. All studies included in the 0–5 age range were conducted with typically developing
rather than high-risk populations; future work should also explore whether similar training
effects can be identified in clinical populations or those identified as “high-risk” via
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epidemiological, familial, and genetic risk factors. It should also be noted that all the
studies reviewed here have administered a single, discrete “dose” of training (e.g.,
3.5 hours over 2–3 weeks), which from a developmental perspective may be suboptimal;
future work should explore the effect of administering much larger doses of training
spaced over longer time periods (cf., e.g., Slagter et al., 2007), as well as assessing the
degree to which training improvements are maintained over longer time periods. The total
amount of training administered in these studies also tends to be small (e.g., 77 minutes in
Wass et al., 2011). One reason for this is a practical one: Cognitive training regimes are
often intrinsically repetitious and, with infants and young toddlers, meta-cognitive factors
(an awareness that what they are doing should be good for them) cannot be used to
encourage participation.

Future work should explore practical ways of addressing these challenges to make
longer training phases viable with very young individuals: first, using a number of
different training tasks in rotation; these can either be heterogeneous (e.g., Rueda et al.,
2005; Wass et al., 2011) or different tasks targeting similar cognitive mechanisms
(Klingberg et al., 2005); second, using adaptive change criteria such that both the
difficulty of the training task and the audiovisual content of the training task change
contingent on task performance; third, actively monitoring participants’ engagement
levels during training, including the use of exogenously salient stimuli to re-attract
participants’ attention when they become distracted; fourth, careful design of responses
for correct and incorrect rewards to reward participation over longer time scales; fifth, the
use of different methods for interacting with the training paradigms (Wass & Porayska-
Pomsta, 2013). For infants, who lack the fine motor skills to interface via a point-and-
click or touchscreen interface, eye gaze appears to be an effective interface – particularly
because the control of visual attention is thought to be important in mediating learning
(e.g., Frischen, Bayliss, & Tipper, 2007). Future work with toddlers can incorporate
touchscreen technology and motion-contingent interfaces to provide a more immersive
training environment.

One further important point is the heterogeneity or homogeneity of the training
regime. I have reviewed cognitive training studies that administered a relatively hetero-
geneous battery of training tasks targeting different subcomponents of attentional control
(e.g., Rueda et al., 2005; Wass et al., 2011) and others that administered more homo-
genous training targeting a single component of cognition (e.g., visuospatial working
memory; Thorell et al., 2009). Some authors have suggested that heterogeneous training
batteries may be more effective in influencing global behavioral outcomes such as
academic learning or clinical diagnoses (Wallace & Rogers, 2010), although this question
has not to our knowledge been assessed systematically. The disadvantage of heteroge-
neous training, however, is that the results are often inconclusive as to which of the
elements of the battery has been responsible for the observed changes in behavior; this can
make causal mechanistic pathways hard to untangle. A homogenous training battery, in
contrast, may be more informative in helping us to understand underlying developmental
mechanisms but less effective in influencing global behavioral outcomes.

The most crucial avenue for future work, though, will involve applying early
targeted training to clinical or high-risk populations. Possible future targets include infants
born prematurely (Voigt et al., 2012), infants from “high-risk” backgrounds, such as low-
socioeconomic status (SES) families (Welsh, Nix, Blair, Bierman, & Nelson, 2010), as
well as infants with family histories of clinical conditions, such as ASD (Elsabbagh &
Johnson, 2012) and ADHD (Auerbach et al., 2004).
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Research with these atypical populations will allow us to address a number of key
questions about the role that domain-general faculties such as executive control play in
mediating other aspects of development. For example, Johnson argued that it may be that
deficits in EFs are observed across a range of developmental disorders because individuals
with strong EF skills are better able to compensate for atypicalities in other brain systems
early in life (Johnson, 2012). Dynamic, multidomain disease models of this type are hard
to assess using correlational (even longitudinal correlational) techniques for reasons
documented above. However, they make specific and falsifiable predictions for the
differential transfer of effects that would be observed across individuals following targeted
training to EFs early in development.

Another question that can be addressed in research with atypical populations is that
of whether some individuals may benefit more from training than others (cf. Söderqvist
et al., 2012). Multiple cognitive domains are involved in the achievement of learning
goals such as early language acquisition (e.g., Rose et al., 2008). Is it the case that training
executive control improves language acquisition only in cases where executive control
was deficient and thereby exerting a limiting influence on language learning? Or does
training executive control to supranormal levels also improve language learning, even in
those individuals who show no initial executive control deficit? Addressing these hypoth-
eses will enrich our understanding of the mechanisms underlying cognitive development.

A third question that can be assessed using targeted training is that of whether
critical periods subsist during cognitive development — for example, for the involvement
of executive control in language acquisition. Although a number of authors have specu-
lated that this may be the case (e.g., Richardson & Thomas, 2008; Tomalski & Johnson,
2010), these questions are virtually impossible to assess using correlational methods.
Examining how the effect of applying targeted training differs at different stages of
cognitive development would potentially be informative here.

CONCLUSION: THE IMPORTANCE OF TARGETING THE EARLY, FORMATIVE
STAGES OF COGNITIVE DEVELOPMENT

Researchers are increasingly recognizing the importance of developmentally
informed models that understand how pathogenic disease mechanisms operate early in
disrupted development. In this article, I have described studies from both typical and
atypical development that suggested that early developing individual differences in atten-
tional control and working memory may play a role in mediating later-emerging differ-
ences in learning in academic and other settings. These findings have been reported within
typical development (Snyder & Munakata, 2011) as well as within a number of disorder
or at-risk groups including individuals born preterm (Rose et al., 2008), from low-SES
backgrounds (Welsh et al., 2010), at risk of ADHD (Lawson & Ruff, 2004), and with
genetic disorders such as Fragile X syndrome and Down’s syndrome (Cornish et al., 2007;
Cornish, Cole, et al., 2012; Cornish, Scerif, et al., 2012). These findings point to the
potential utility of investigating early and intensive interventions designed to remediate
early emerging deficits in attentional control.

I have also described evidence suggesting that the effects of training attentional
control and working memory can be detected, even following only very small doses of
training (0.5–6 hours), in individuals in the 0- to 6-year age range. I have concluded,
however, that the number of studies in this area is currently low. I have discussed possible
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directions for future work, including assessing medium-term training effects and working
with young, “high-risk” populations.
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